silence a variety of compiler warnings
[mesa.git] / src / mesa / shader / slang / slang_library_noise.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5
4 *
5 * Copyright (C) 2006 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "imports.h"
26 #include "slang_library_noise.h"
27
28 /*
29 * SimplexNoise1234
30 * Copyright © 2003-2005, Stefan Gustavson
31 *
32 * Contact: stegu@itn.liu.se
33 *
34 * This library is free software; you can redistribute it and/or
35 * modify it under the terms of the GNU General Public
36 * License as published by the Free Software Foundation; either
37 * version 2 of the License, or (at your option) any later version.
38 *
39 * This library is distributed in the hope that it will be useful,
40 * but WITHOUT ANY WARRANTY; without even the implied warranty of
41 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
42 * General Public License for more details.
43 *
44 * You should have received a copy of the GNU General Public
45 * License along with this library; if not, write to the Free Software
46 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 */
48
49 /** \file
50 \brief C implementation of Perlin Simplex Noise over 1,2,3, and 4 dimensions.
51 \author Stefan Gustavson (stegu@itn.liu.se)
52 */
53
54 /*
55 * This implementation is "Simplex Noise" as presented by
56 * Ken Perlin at a relatively obscure and not often cited course
57 * session "Real-Time Shading" at Siggraph 2001 (before real
58 * time shading actually took on), under the title "hardware noise".
59 * The 3D function is numerically equivalent to his Java reference
60 * code available in the PDF course notes, although I re-implemented
61 * it from scratch to get more readable code. The 1D, 2D and 4D cases
62 * were implemented from scratch by me from Ken Perlin's text.
63 *
64 * This file has no dependencies on any other file, not even its own
65 * header file. The header file is made for use by external code only.
66 */
67
68
69 #define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) )
70
71 /*
72 * ---------------------------------------------------------------------
73 * Static data
74 */
75
76 /*
77 * Permutation table. This is just a random jumble of all numbers 0-255,
78 * repeated twice to avoid wrapping the index at 255 for each lookup.
79 * This needs to be exactly the same for all instances on all platforms,
80 * so it's easiest to just keep it as static explicit data.
81 * This also removes the need for any initialisation of this class.
82 *
83 * Note that making this an int[] instead of a char[] might make the
84 * code run faster on platforms with a high penalty for unaligned single
85 * byte addressing. Intel x86 is generally single-byte-friendly, but
86 * some other CPUs are faster with 4-aligned reads.
87 * However, a char[] is smaller, which avoids cache trashing, and that
88 * is probably the most important aspect on most architectures.
89 * This array is accessed a *lot* by the noise functions.
90 * A vector-valued noise over 3D accesses it 96 times, and a
91 * float-valued 4D noise 64 times. We want this to fit in the cache!
92 */
93 unsigned char perm[512] = {151,160,137,91,90,15,
94 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
95 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
96 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
97 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
98 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
99 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
100 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
101 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
102 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
103 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
104 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
105 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
106 151,160,137,91,90,15,
107 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
108 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
109 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
110 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
111 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
112 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
113 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
114 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
115 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
116 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
117 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
118 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
119 };
120
121 /*
122 * ---------------------------------------------------------------------
123 */
124
125 /*
126 * Helper functions to compute gradients-dot-residualvectors (1D to 4D)
127 * Note that these generate gradients of more than unit length. To make
128 * a close match with the value range of classic Perlin noise, the final
129 * noise values need to be rescaled to fit nicely within [-1,1].
130 * (The simplex noise functions as such also have different scaling.)
131 * Note also that these noise functions are the most practical and useful
132 * signed version of Perlin noise. To return values according to the
133 * RenderMan specification from the SL noise() and pnoise() functions,
134 * the noise values need to be scaled and offset to [0,1], like this:
135 * float SLnoise = (SimplexNoise1234::noise(x,y,z) + 1.0) * 0.5;
136 */
137
138 static float grad1( int hash, float x ) {
139 int h = hash & 15;
140 float grad = 1.0f + (h & 7); /* Gradient value 1.0, 2.0, ..., 8.0 */
141 if (h&8) grad = -grad; /* Set a random sign for the gradient */
142 return ( grad * x ); /* Multiply the gradient with the distance */
143 }
144
145 static float grad2( int hash, float x, float y ) {
146 int h = hash & 7; /* Convert low 3 bits of hash code */
147 float u = h<4 ? x : y; /* into 8 simple gradient directions, */
148 float v = h<4 ? y : x; /* and compute the dot product with (x,y). */
149 return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v);
150 }
151
152 static float grad3( int hash, float x, float y , float z ) {
153 int h = hash & 15; /* Convert low 4 bits of hash code into 12 simple */
154 float u = h<8 ? x : y; /* gradient directions, and compute dot product. */
155 float v = h<4 ? y : h==12||h==14 ? x : z; /* Fix repeats at h = 12 to 15 */
156 return ((h&1)? -u : u) + ((h&2)? -v : v);
157 }
158
159 static float grad4( int hash, float x, float y, float z, float t ) {
160 int h = hash & 31; /* Convert low 5 bits of hash code into 32 simple */
161 float u = h<24 ? x : y; /* gradient directions, and compute dot product. */
162 float v = h<16 ? y : z;
163 float w = h<8 ? z : t;
164 return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w);
165 }
166
167 /* A lookup table to traverse the simplex around a given point in 4D. */
168 /* Details can be found where this table is used, in the 4D noise method. */
169 /* TODO: This should not be required, backport it from Bill's GLSL code! */
170 static unsigned char simplex[64][4] = {
171 {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
172 {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
173 {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
174 {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
175 {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
176 {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
177 {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
178 {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};
179
180 /* 1D simplex noise */
181 GLfloat _slang_library_noise1 (GLfloat x)
182 {
183 int i0 = FASTFLOOR(x);
184 int i1 = i0 + 1;
185 float x0 = x - i0;
186 float x1 = x0 - 1.0f;
187 float t1 = 1.0f - x1*x1;
188 float n0, n1;
189
190 float t0 = 1.0f - x0*x0;
191 /* if(t0 < 0.0f) t0 = 0.0f; // this never happens for the 1D case */
192 t0 *= t0;
193 n0 = t0 * t0 * grad1(perm[i0 & 0xff], x0);
194
195 /* if(t1 < 0.0f) t1 = 0.0f; // this never happens for the 1D case */
196 t1 *= t1;
197 n1 = t1 * t1 * grad1(perm[i1 & 0xff], x1);
198 /* The maximum value of this noise is 8*(3/4)^4 = 2.53125 */
199 /* A factor of 0.395 would scale to fit exactly within [-1,1], but */
200 /* we want to match PRMan's 1D noise, so we scale it down some more. */
201 return 0.25f * (n0 + n1);
202 }
203
204 /* 2D simplex noise */
205 GLfloat _slang_library_noise2 (GLfloat x, GLfloat y)
206 {
207 #define F2 0.366025403f /* F2 = 0.5*(sqrt(3.0)-1.0) */
208 #define G2 0.211324865f /* G2 = (3.0-Math.sqrt(3.0))/6.0 */
209
210 float n0, n1, n2; /* Noise contributions from the three corners */
211
212 /* Skew the input space to determine which simplex cell we're in */
213 float s = (x+y)*F2; /* Hairy factor for 2D */
214 float xs = x + s;
215 float ys = y + s;
216 int i = FASTFLOOR(xs);
217 int j = FASTFLOOR(ys);
218
219 float t = (float)(i+j)*G2;
220 float X0 = i-t; /* Unskew the cell origin back to (x,y) space */
221 float Y0 = j-t;
222 float x0 = x-X0; /* The x,y distances from the cell origin */
223 float y0 = y-Y0;
224
225 float x1, y1, x2, y2;
226 int ii, jj;
227 float t0, t1, t2;
228
229 /* For the 2D case, the simplex shape is an equilateral triangle. */
230 /* Determine which simplex we are in. */
231 int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */
232 if(x0>y0) {i1=1; j1=0;} /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
233 else {i1=0; j1=1;} /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */
234
235 /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and */
236 /* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where */
237 /* c = (3-sqrt(3))/6 */
238
239 x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */
240 y1 = y0 - j1 + G2;
241 x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */
242 y2 = y0 - 1.0f + 2.0f * G2;
243
244 /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
245 ii = i % 256;
246 jj = j % 256;
247
248 /* Calculate the contribution from the three corners */
249 t0 = 0.5f - x0*x0-y0*y0;
250 if(t0 < 0.0f) n0 = 0.0f;
251 else {
252 t0 *= t0;
253 n0 = t0 * t0 * grad2(perm[ii+perm[jj]], x0, y0);
254 }
255
256 t1 = 0.5f - x1*x1-y1*y1;
257 if(t1 < 0.0f) n1 = 0.0f;
258 else {
259 t1 *= t1;
260 n1 = t1 * t1 * grad2(perm[ii+i1+perm[jj+j1]], x1, y1);
261 }
262
263 t2 = 0.5f - x2*x2-y2*y2;
264 if(t2 < 0.0f) n2 = 0.0f;
265 else {
266 t2 *= t2;
267 n2 = t2 * t2 * grad2(perm[ii+1+perm[jj+1]], x2, y2);
268 }
269
270 /* Add contributions from each corner to get the final noise value. */
271 /* The result is scaled to return values in the interval [-1,1]. */
272 return 40.0f * (n0 + n1 + n2); /* TODO: The scale factor is preliminary! */
273 }
274
275 /* 3D simplex noise */
276 GLfloat _slang_library_noise3 (GLfloat x, GLfloat y, GLfloat z)
277 {
278 /* Simple skewing factors for the 3D case */
279 #define F3 0.333333333f
280 #define G3 0.166666667f
281
282 float n0, n1, n2, n3; /* Noise contributions from the four corners */
283
284 /* Skew the input space to determine which simplex cell we're in */
285 float s = (x+y+z)*F3; /* Very nice and simple skew factor for 3D */
286 float xs = x+s;
287 float ys = y+s;
288 float zs = z+s;
289 int i = FASTFLOOR(xs);
290 int j = FASTFLOOR(ys);
291 int k = FASTFLOOR(zs);
292
293 float t = (float)(i+j+k)*G3;
294 float X0 = i-t; /* Unskew the cell origin back to (x,y,z) space */
295 float Y0 = j-t;
296 float Z0 = k-t;
297 float x0 = x-X0; /* The x,y,z distances from the cell origin */
298 float y0 = y-Y0;
299 float z0 = z-Z0;
300
301 float x1, y1, z1, x2, y2, z2, x3, y3, z3;
302 int ii, jj, kk;
303 float t0, t1, t2, t3;
304
305 /* For the 3D case, the simplex shape is a slightly irregular tetrahedron. */
306 /* Determine which simplex we are in. */
307 int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */
308 int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */
309
310 /* This code would benefit from a backport from the GLSL version! */
311 if(x0>=y0) {
312 if(y0>=z0)
313 { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } /* X Y Z order */
314 else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } /* X Z Y order */
315 else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } /* Z X Y order */
316 }
317 else { /* x0<y0 */
318 if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } /* Z Y X order */
319 else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } /* Y Z X order */
320 else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } /* Y X Z order */
321 }
322
323 /* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), */
324 /* a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and */
325 /* a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where */
326 /* c = 1/6. */
327
328 x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */
329 y1 = y0 - j1 + G3;
330 z1 = z0 - k1 + G3;
331 x2 = x0 - i2 + 2.0f*G3; /* Offsets for third corner in (x,y,z) coords */
332 y2 = y0 - j2 + 2.0f*G3;
333 z2 = z0 - k2 + 2.0f*G3;
334 x3 = x0 - 1.0f + 3.0f*G3; /* Offsets for last corner in (x,y,z) coords */
335 y3 = y0 - 1.0f + 3.0f*G3;
336 z3 = z0 - 1.0f + 3.0f*G3;
337
338 /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
339 ii = i % 256;
340 jj = j % 256;
341 kk = k % 256;
342
343 /* Calculate the contribution from the four corners */
344 t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
345 if(t0 < 0.0f) n0 = 0.0f;
346 else {
347 t0 *= t0;
348 n0 = t0 * t0 * grad3(perm[ii+perm[jj+perm[kk]]], x0, y0, z0);
349 }
350
351 t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
352 if(t1 < 0.0f) n1 = 0.0f;
353 else {
354 t1 *= t1;
355 n1 = t1 * t1 * grad3(perm[ii+i1+perm[jj+j1+perm[kk+k1]]], x1, y1, z1);
356 }
357
358 t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
359 if(t2 < 0.0f) n2 = 0.0f;
360 else {
361 t2 *= t2;
362 n2 = t2 * t2 * grad3(perm[ii+i2+perm[jj+j2+perm[kk+k2]]], x2, y2, z2);
363 }
364
365 t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
366 if(t3<0.0f) n3 = 0.0f;
367 else {
368 t3 *= t3;
369 n3 = t3 * t3 * grad3(perm[ii+1+perm[jj+1+perm[kk+1]]], x3, y3, z3);
370 }
371
372 /* Add contributions from each corner to get the final noise value. */
373 /* The result is scaled to stay just inside [-1,1] */
374 return 32.0f * (n0 + n1 + n2 + n3); /* TODO: The scale factor is preliminary! */
375 }
376
377 /* 4D simplex noise */
378 GLfloat _slang_library_noise4 (GLfloat x, GLfloat y, GLfloat z, GLfloat w)
379 {
380 /* The skewing and unskewing factors are hairy again for the 4D case */
381 #define F4 0.309016994f /* F4 = (Math.sqrt(5.0)-1.0)/4.0 */
382 #define G4 0.138196601f /* G4 = (5.0-Math.sqrt(5.0))/20.0 */
383
384 float n0, n1, n2, n3, n4; /* Noise contributions from the five corners */
385
386 /* Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in */
387 float s = (x + y + z + w) * F4; /* Factor for 4D skewing */
388 float xs = x + s;
389 float ys = y + s;
390 float zs = z + s;
391 float ws = w + s;
392 int i = FASTFLOOR(xs);
393 int j = FASTFLOOR(ys);
394 int k = FASTFLOOR(zs);
395 int l = FASTFLOOR(ws);
396
397 float t = (i + j + k + l) * G4; /* Factor for 4D unskewing */
398 float X0 = i - t; /* Unskew the cell origin back to (x,y,z,w) space */
399 float Y0 = j - t;
400 float Z0 = k - t;
401 float W0 = l - t;
402
403 float x0 = x - X0; /* The x,y,z,w distances from the cell origin */
404 float y0 = y - Y0;
405 float z0 = z - Z0;
406 float w0 = w - W0;
407
408 /* For the 4D case, the simplex is a 4D shape I won't even try to describe. */
409 /* To find out which of the 24 possible simplices we're in, we need to */
410 /* determine the magnitude ordering of x0, y0, z0 and w0. */
411 /* The method below is a good way of finding the ordering of x,y,z,w and */
412 /* then find the correct traversal order for the simplex we\92re in. */
413 /* First, six pair-wise comparisons are performed between each possible pair */
414 /* of the four coordinates, and the results are used to add up binary bits */
415 /* for an integer index. */
416 int c1 = (x0 > y0) ? 32 : 0;
417 int c2 = (x0 > z0) ? 16 : 0;
418 int c3 = (y0 > z0) ? 8 : 0;
419 int c4 = (x0 > w0) ? 4 : 0;
420 int c5 = (y0 > w0) ? 2 : 0;
421 int c6 = (z0 > w0) ? 1 : 0;
422 int c = c1 + c2 + c3 + c4 + c5 + c6;
423
424 int i1, j1, k1, l1; /* The integer offsets for the second simplex corner */
425 int i2, j2, k2, l2; /* The integer offsets for the third simplex corner */
426 int i3, j3, k3, l3; /* The integer offsets for the fourth simplex corner */
427
428 float x1, y1, z1, w1, x2, y2, z2, w2, x3, y3, z3, w3, x4, y4, z4, w4;
429 int ii, jj, kk, ll;
430 float t0, t1, t2, t3, t4;
431
432 /* simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. */
433 /* Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w */
434 /* impossible. Only the 24 indices which have non-zero entries make any sense. */
435 /* We use a thresholding to set the coordinates in turn from the largest magnitude. */
436 /* The number 3 in the "simplex" array is at the position of the largest coordinate. */
437 i1 = simplex[c][0]>=3 ? 1 : 0;
438 j1 = simplex[c][1]>=3 ? 1 : 0;
439 k1 = simplex[c][2]>=3 ? 1 : 0;
440 l1 = simplex[c][3]>=3 ? 1 : 0;
441 /* The number 2 in the "simplex" array is at the second largest coordinate. */
442 i2 = simplex[c][0]>=2 ? 1 : 0;
443 j2 = simplex[c][1]>=2 ? 1 : 0;
444 k2 = simplex[c][2]>=2 ? 1 : 0;
445 l2 = simplex[c][3]>=2 ? 1 : 0;
446 /* The number 1 in the "simplex" array is at the second smallest coordinate. */
447 i3 = simplex[c][0]>=1 ? 1 : 0;
448 j3 = simplex[c][1]>=1 ? 1 : 0;
449 k3 = simplex[c][2]>=1 ? 1 : 0;
450 l3 = simplex[c][3]>=1 ? 1 : 0;
451 /* The fifth corner has all coordinate offsets = 1, so no need to look that up. */
452
453 x1 = x0 - i1 + G4; /* Offsets for second corner in (x,y,z,w) coords */
454 y1 = y0 - j1 + G4;
455 z1 = z0 - k1 + G4;
456 w1 = w0 - l1 + G4;
457 x2 = x0 - i2 + 2.0f*G4; /* Offsets for third corner in (x,y,z,w) coords */
458 y2 = y0 - j2 + 2.0f*G4;
459 z2 = z0 - k2 + 2.0f*G4;
460 w2 = w0 - l2 + 2.0f*G4;
461 x3 = x0 - i3 + 3.0f*G4; /* Offsets for fourth corner in (x,y,z,w) coords */
462 y3 = y0 - j3 + 3.0f*G4;
463 z3 = z0 - k3 + 3.0f*G4;
464 w3 = w0 - l3 + 3.0f*G4;
465 x4 = x0 - 1.0f + 4.0f*G4; /* Offsets for last corner in (x,y,z,w) coords */
466 y4 = y0 - 1.0f + 4.0f*G4;
467 z4 = z0 - 1.0f + 4.0f*G4;
468 w4 = w0 - 1.0f + 4.0f*G4;
469
470 /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
471 ii = i % 256;
472 jj = j % 256;
473 kk = k % 256;
474 ll = l % 256;
475
476 /* Calculate the contribution from the five corners */
477 t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
478 if(t0 < 0.0f) n0 = 0.0f;
479 else {
480 t0 *= t0;
481 n0 = t0 * t0 * grad4(perm[ii+perm[jj+perm[kk+perm[ll]]]], x0, y0, z0, w0);
482 }
483
484 t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
485 if(t1 < 0.0f) n1 = 0.0f;
486 else {
487 t1 *= t1;
488 n1 = t1 * t1 * grad4(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], x1, y1, z1, w1);
489 }
490
491 t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
492 if(t2 < 0.0f) n2 = 0.0f;
493 else {
494 t2 *= t2;
495 n2 = t2 * t2 * grad4(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], x2, y2, z2, w2);
496 }
497
498 t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
499 if(t3 < 0.0f) n3 = 0.0f;
500 else {
501 t3 *= t3;
502 n3 = t3 * t3 * grad4(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], x3, y3, z3, w3);
503 }
504
505 t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
506 if(t4 < 0.0f) n4 = 0.0f;
507 else {
508 t4 *= t4;
509 n4 = t4 * t4 * grad4(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], x4, y4, z4, w4);
510 }
511
512 /* Sum up and scale the result to cover the range [-1,1] */
513 return 27.0f * (n0 + n1 + n2 + n3 + n4); /* TODO: The scale factor is preliminary! */
514 }
515