Merge branch 'mesa_7_5_branch'
[mesa.git] / src / mesa / shader / slang / slang_link.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.3
4 *
5 * Copyright (C) 2008 Brian Paul All Rights Reserved.
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file slang_link.c
28 * GLSL linker
29 * \author Brian Paul
30 */
31
32 #include "main/imports.h"
33 #include "main/context.h"
34 #include "main/hash.h"
35 #include "main/macros.h"
36 #include "shader/program.h"
37 #include "shader/prog_instruction.h"
38 #include "shader/prog_parameter.h"
39 #include "shader/prog_print.h"
40 #include "shader/prog_statevars.h"
41 #include "shader/prog_uniform.h"
42 #include "shader/shader_api.h"
43 #include "slang_builtin.h"
44 #include "slang_link.h"
45
46
47 /** cast wrapper */
48 static struct gl_vertex_program *
49 vertex_program(struct gl_program *prog)
50 {
51 assert(prog->Target == GL_VERTEX_PROGRAM_ARB);
52 return (struct gl_vertex_program *) prog;
53 }
54
55
56 /** cast wrapper */
57 static struct gl_fragment_program *
58 fragment_program(struct gl_program *prog)
59 {
60 assert(prog->Target == GL_FRAGMENT_PROGRAM_ARB);
61 return (struct gl_fragment_program *) prog;
62 }
63
64
65 /**
66 * Record a linking error.
67 */
68 static void
69 link_error(struct gl_shader_program *shProg, const char *msg)
70 {
71 if (shProg->InfoLog) {
72 _mesa_free(shProg->InfoLog);
73 }
74 shProg->InfoLog = _mesa_strdup(msg);
75 shProg->LinkStatus = GL_FALSE;
76 }
77
78
79
80 /**
81 * Check if the given bit is either set or clear in both bitfields.
82 */
83 static GLboolean
84 bits_agree(GLbitfield flags1, GLbitfield flags2, GLbitfield bit)
85 {
86 return (flags1 & bit) == (flags2 & bit);
87 }
88
89
90 /**
91 * Linking varying vars involves rearranging varying vars so that the
92 * vertex program's output varyings matches the order of the fragment
93 * program's input varyings.
94 * We'll then rewrite instructions to replace PROGRAM_VARYING with either
95 * PROGRAM_INPUT or PROGRAM_OUTPUT depending on whether it's a vertex or
96 * fragment shader.
97 * This is also where we set program Input/OutputFlags to indicate
98 * which inputs are centroid-sampled, invariant, etc.
99 */
100 static GLboolean
101 link_varying_vars(GLcontext *ctx,
102 struct gl_shader_program *shProg, struct gl_program *prog)
103 {
104 GLuint *map, i, firstVarying, newFile;
105 GLbitfield *inOutFlags;
106
107 map = (GLuint *) malloc(prog->Varying->NumParameters * sizeof(GLuint));
108 if (!map)
109 return GL_FALSE;
110
111 /* Varying variables are treated like other vertex program outputs
112 * (and like other fragment program inputs). The position of the
113 * first varying differs for vertex/fragment programs...
114 * Also, replace File=PROGRAM_VARYING with File=PROGRAM_INPUT/OUTPUT.
115 */
116 if (prog->Target == GL_VERTEX_PROGRAM_ARB) {
117 firstVarying = VERT_RESULT_VAR0;
118 newFile = PROGRAM_OUTPUT;
119 inOutFlags = prog->OutputFlags;
120 }
121 else {
122 assert(prog->Target == GL_FRAGMENT_PROGRAM_ARB);
123 firstVarying = FRAG_ATTRIB_VAR0;
124 newFile = PROGRAM_INPUT;
125 inOutFlags = prog->InputFlags;
126 }
127
128 for (i = 0; i < prog->Varying->NumParameters; i++) {
129 /* see if this varying is in the linked varying list */
130 const struct gl_program_parameter *var = prog->Varying->Parameters + i;
131 GLint j = _mesa_lookup_parameter_index(shProg->Varying, -1, var->Name);
132 if (j >= 0) {
133 /* varying is already in list, do some error checking */
134 const struct gl_program_parameter *v =
135 &shProg->Varying->Parameters[j];
136 if (var->Size != v->Size) {
137 link_error(shProg, "mismatched varying variable types");
138 return GL_FALSE;
139 }
140 if (!bits_agree(var->Flags, v->Flags, PROG_PARAM_BIT_CENTROID)) {
141 char msg[100];
142 _mesa_snprintf(msg, sizeof(msg),
143 "centroid modifier mismatch for '%s'", var->Name);
144 link_error(shProg, msg);
145 return GL_FALSE;
146 }
147 if (!bits_agree(var->Flags, v->Flags, PROG_PARAM_BIT_INVARIANT)) {
148 char msg[100];
149 _mesa_snprintf(msg, sizeof(msg),
150 "invariant modifier mismatch for '%s'", var->Name);
151 link_error(shProg, msg);
152 return GL_FALSE;
153 }
154 }
155 else {
156 /* not already in linked list */
157 j = _mesa_add_varying(shProg->Varying, var->Name, var->Size,
158 var->Flags);
159 }
160
161 if (shProg->Varying->NumParameters > ctx->Const.MaxVarying) {
162 link_error(shProg, "Too many varying variables");
163 return GL_FALSE;
164 }
165
166 /* Map varying[i] to varying[j].
167 * Note: the loop here takes care of arrays or large (sz>4) vars.
168 */
169 {
170 GLint sz = var->Size;
171 while (sz > 0) {
172 inOutFlags[firstVarying + j] = var->Flags;
173 /*printf("Link varying from %d to %d\n", i, j);*/
174 map[i++] = j++;
175 sz -= 4;
176 }
177 i--; /* go back one */
178 }
179 }
180
181
182 /* OK, now scan the program/shader instructions looking for varying vars,
183 * replacing the old index with the new index.
184 */
185 for (i = 0; i < prog->NumInstructions; i++) {
186 struct prog_instruction *inst = prog->Instructions + i;
187 GLuint j;
188
189 if (inst->DstReg.File == PROGRAM_VARYING) {
190 inst->DstReg.File = newFile;
191 inst->DstReg.Index = map[ inst->DstReg.Index ] + firstVarying;
192 }
193
194 for (j = 0; j < 3; j++) {
195 if (inst->SrcReg[j].File == PROGRAM_VARYING) {
196 inst->SrcReg[j].File = newFile;
197 inst->SrcReg[j].Index = map[ inst->SrcReg[j].Index ] + firstVarying;
198 }
199 }
200 }
201
202 free(map);
203
204 /* these will get recomputed before linking is completed */
205 prog->InputsRead = 0x0;
206 prog->OutputsWritten = 0x0;
207
208 return GL_TRUE;
209 }
210
211
212 /**
213 * Build the shProg->Uniforms list.
214 * This is basically a list/index of all uniforms found in either/both of
215 * the vertex and fragment shaders.
216 *
217 * About uniforms:
218 * Each uniform has two indexes, one that points into the vertex
219 * program's parameter array and another that points into the fragment
220 * program's parameter array. When the user changes a uniform's value
221 * we have to change the value in the vertex and/or fragment program's
222 * parameter array.
223 *
224 * This function will be called twice to set up the two uniform->parameter
225 * mappings.
226 *
227 * If a uniform is only present in the vertex program OR fragment program
228 * then the fragment/vertex parameter index, respectively, will be -1.
229 */
230 static GLboolean
231 link_uniform_vars(GLcontext *ctx,
232 struct gl_shader_program *shProg,
233 struct gl_program *prog,
234 GLuint *numSamplers)
235 {
236 GLuint samplerMap[200]; /* max number of samplers declared, not used */
237 GLuint i;
238
239 for (i = 0; i < prog->Parameters->NumParameters; i++) {
240 const struct gl_program_parameter *p = prog->Parameters->Parameters + i;
241
242 /*
243 * XXX FIX NEEDED HERE
244 * We should also be adding a uniform if p->Type == PROGRAM_STATE_VAR.
245 * For example, modelview matrix, light pos, etc.
246 * Also, we need to update the state-var name-generator code to
247 * generate GLSL-style names, like "gl_LightSource[0].position".
248 * Furthermore, we'll need to fix the state-var's size/datatype info.
249 */
250
251 if ((p->Type == PROGRAM_UNIFORM || p->Type == PROGRAM_SAMPLER)
252 && p->Used) {
253 /* add this uniform, indexing into the target's Parameters list */
254 struct gl_uniform *uniform =
255 _mesa_append_uniform(shProg->Uniforms, p->Name, prog->Target, i);
256 if (uniform)
257 uniform->Initialized = p->Initialized;
258 }
259
260 /* The samplerMap[] table we build here is used to remap/re-index
261 * sampler references by TEX instructions.
262 */
263 if (p->Type == PROGRAM_SAMPLER && p->Used) {
264 /* Allocate a new sampler index */
265 GLuint oldSampNum = (GLuint) prog->Parameters->ParameterValues[i][0];
266 GLuint newSampNum = *numSamplers;
267 if (newSampNum >= ctx->Const.MaxTextureImageUnits) {
268 char s[100];
269 _mesa_sprintf(s, "Too many texture samplers (%u, max is %u)",
270 newSampNum, ctx->Const.MaxTextureImageUnits);
271 link_error(shProg, s);
272 return GL_FALSE;
273 }
274 /* save old->new mapping in the table */
275 if (oldSampNum < Elements(samplerMap))
276 samplerMap[oldSampNum] = newSampNum;
277 /* update parameter's sampler index */
278 prog->Parameters->ParameterValues[i][0] = (GLfloat) newSampNum;
279 (*numSamplers)++;
280 }
281 }
282
283 /* OK, now scan the program/shader instructions looking for texture
284 * instructions using sampler vars. Replace old sampler indexes with
285 * new ones.
286 */
287 prog->SamplersUsed = 0x0;
288 for (i = 0; i < prog->NumInstructions; i++) {
289 struct prog_instruction *inst = prog->Instructions + i;
290 if (_mesa_is_tex_instruction(inst->Opcode)) {
291 /* here, inst->TexSrcUnit is really the sampler unit */
292 const GLint oldSampNum = inst->TexSrcUnit;
293
294 #if 0
295 printf("====== remap sampler from %d to %d\n",
296 inst->TexSrcUnit, samplerMap[ inst->TexSrcUnit ]);
297 #endif
298
299 if (oldSampNum < Elements(samplerMap)) {
300 const GLuint newSampNum = samplerMap[oldSampNum];
301 inst->TexSrcUnit = newSampNum;
302 prog->SamplerTargets[newSampNum] = inst->TexSrcTarget;
303 prog->SamplersUsed |= (1 << newSampNum);
304 if (inst->TexShadow) {
305 prog->ShadowSamplers |= (1 << newSampNum);
306 }
307 }
308 }
309 }
310
311 return GL_TRUE;
312 }
313
314
315 /**
316 * Resolve binding of generic vertex attributes.
317 * For example, if the vertex shader declared "attribute vec4 foobar" we'll
318 * allocate a generic vertex attribute for "foobar" and plug that value into
319 * the vertex program instructions.
320 * But if the user called glBindAttributeLocation(), those bindings will
321 * have priority.
322 */
323 static GLboolean
324 _slang_resolve_attributes(struct gl_shader_program *shProg,
325 const struct gl_program *origProg,
326 struct gl_program *linkedProg)
327 {
328 GLint attribMap[MAX_VERTEX_GENERIC_ATTRIBS];
329 GLuint i, j;
330 GLbitfield usedAttributes; /* generics only, not legacy attributes */
331 GLbitfield inputsRead = 0x0;
332
333 assert(origProg != linkedProg);
334 assert(origProg->Target == GL_VERTEX_PROGRAM_ARB);
335 assert(linkedProg->Target == GL_VERTEX_PROGRAM_ARB);
336
337 if (!shProg->Attributes)
338 shProg->Attributes = _mesa_new_parameter_list();
339
340 if (linkedProg->Attributes) {
341 _mesa_free_parameter_list(linkedProg->Attributes);
342 }
343 linkedProg->Attributes = _mesa_new_parameter_list();
344
345
346 /* Build a bitmask indicating which attribute indexes have been
347 * explicitly bound by the user with glBindAttributeLocation().
348 */
349 usedAttributes = 0x0;
350 for (i = 0; i < shProg->Attributes->NumParameters; i++) {
351 GLint attr = shProg->Attributes->Parameters[i].StateIndexes[0];
352 usedAttributes |= (1 << attr);
353 }
354
355 /* If gl_Vertex is used, that actually counts against the limit
356 * on generic vertex attributes. This avoids the ambiguity of
357 * whether glVertexAttrib4fv(0, v) sets legacy attribute 0 (vert pos)
358 * or generic attribute[0]. If gl_Vertex is used, we want the former.
359 */
360 if (origProg->InputsRead & VERT_BIT_POS) {
361 usedAttributes |= 0x1;
362 }
363
364 /* initialize the generic attribute map entries to -1 */
365 for (i = 0; i < MAX_VERTEX_GENERIC_ATTRIBS; i++) {
366 attribMap[i] = -1;
367 }
368
369 /*
370 * Scan program for generic attribute references
371 */
372 for (i = 0; i < linkedProg->NumInstructions; i++) {
373 struct prog_instruction *inst = linkedProg->Instructions + i;
374 for (j = 0; j < 3; j++) {
375 if (inst->SrcReg[j].File == PROGRAM_INPUT) {
376 inputsRead |= (1 << inst->SrcReg[j].Index);
377 }
378
379 if (inst->SrcReg[j].File == PROGRAM_INPUT &&
380 inst->SrcReg[j].Index >= VERT_ATTRIB_GENERIC0) {
381 /*
382 * OK, we've found a generic vertex attribute reference.
383 */
384 const GLint k = inst->SrcReg[j].Index - VERT_ATTRIB_GENERIC0;
385
386 GLint attr = attribMap[k];
387
388 if (attr < 0) {
389 /* Need to figure out attribute mapping now.
390 */
391 const char *name = origProg->Attributes->Parameters[k].Name;
392 const GLint size = origProg->Attributes->Parameters[k].Size;
393 const GLenum type =origProg->Attributes->Parameters[k].DataType;
394 GLint index;
395
396 /* See if there's a user-defined attribute binding for
397 * this name.
398 */
399 index = _mesa_lookup_parameter_index(shProg->Attributes,
400 -1, name);
401 if (index >= 0) {
402 /* Found a user-defined binding */
403 attr = shProg->Attributes->Parameters[index].StateIndexes[0];
404 }
405 else {
406 /* No user-defined binding, choose our own attribute number.
407 * Start at 1 since generic attribute 0 always aliases
408 * glVertex/position.
409 */
410 for (attr = 0; attr < MAX_VERTEX_GENERIC_ATTRIBS; attr++) {
411 if (((1 << attr) & usedAttributes) == 0)
412 break;
413 }
414 if (attr == MAX_VERTEX_GENERIC_ATTRIBS) {
415 link_error(shProg, "Too many vertex attributes");
416 return GL_FALSE;
417 }
418
419 /* mark this attribute as used */
420 usedAttributes |= (1 << attr);
421 }
422
423 attribMap[k] = attr;
424
425 /* Save the final name->attrib binding so it can be queried
426 * with glGetAttributeLocation().
427 */
428 _mesa_add_attribute(linkedProg->Attributes, name,
429 size, type, attr);
430 }
431
432 assert(attr >= 0);
433
434 /* update the instruction's src reg */
435 inst->SrcReg[j].Index = VERT_ATTRIB_GENERIC0 + attr;
436 }
437 }
438 }
439
440 /* Handle pre-defined attributes here (gl_Vertex, gl_Normal, etc).
441 * When the user queries the active attributes we need to include both
442 * the user-defined attributes and the built-in ones.
443 */
444 for (i = VERT_ATTRIB_POS; i < VERT_ATTRIB_GENERIC0; i++) {
445 if (inputsRead & (1 << i)) {
446 _mesa_add_attribute(linkedProg->Attributes,
447 _slang_vert_attrib_name(i),
448 4, /* size in floats */
449 _slang_vert_attrib_type(i),
450 -1 /* attrib/input */);
451 }
452 }
453
454 return GL_TRUE;
455 }
456
457
458 /**
459 * Scan program instructions to update the program's NumTemporaries field.
460 * Note: this implemenation relies on the code generator allocating
461 * temps in increasing order (0, 1, 2, ... ).
462 */
463 static void
464 _slang_count_temporaries(struct gl_program *prog)
465 {
466 GLuint i, j;
467 GLint maxIndex = -1;
468
469 for (i = 0; i < prog->NumInstructions; i++) {
470 const struct prog_instruction *inst = prog->Instructions + i;
471 const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
472 for (j = 0; j < numSrc; j++) {
473 if (inst->SrcReg[j].File == PROGRAM_TEMPORARY) {
474 if (maxIndex < inst->SrcReg[j].Index)
475 maxIndex = inst->SrcReg[j].Index;
476 }
477 if (inst->DstReg.File == PROGRAM_TEMPORARY) {
478 if (maxIndex < (GLint) inst->DstReg.Index)
479 maxIndex = inst->DstReg.Index;
480 }
481 }
482 }
483
484 prog->NumTemporaries = (GLuint) (maxIndex + 1);
485 }
486
487
488 /**
489 * Scan program instructions to update the program's InputsRead and
490 * OutputsWritten fields.
491 */
492 static void
493 _slang_update_inputs_outputs(struct gl_program *prog)
494 {
495 GLuint i, j;
496 GLuint maxAddrReg = 0;
497
498 prog->InputsRead = 0x0;
499 prog->OutputsWritten = 0x0;
500
501 for (i = 0; i < prog->NumInstructions; i++) {
502 const struct prog_instruction *inst = prog->Instructions + i;
503 const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
504 for (j = 0; j < numSrc; j++) {
505 if (inst->SrcReg[j].File == PROGRAM_INPUT) {
506 prog->InputsRead |= 1 << inst->SrcReg[j].Index;
507 }
508 else if (inst->SrcReg[j].File == PROGRAM_ADDRESS) {
509 maxAddrReg = MAX2(maxAddrReg, (GLuint) (inst->SrcReg[j].Index + 1));
510 }
511 }
512
513 if (inst->DstReg.File == PROGRAM_OUTPUT) {
514 prog->OutputsWritten |= 1 << inst->DstReg.Index;
515 if (inst->DstReg.RelAddr) {
516 /* If the output attribute is indexed with relative addressing
517 * we know that it must be a varying or texcoord such as
518 * gl_TexCoord[i] = v; In this case, mark all the texcoords
519 * or varying outputs as being written. It's not an error if
520 * a vertex shader writes varying vars that aren't used by the
521 * fragment shader. But it is an error for a fragment shader
522 * to use varyings that are not written by the vertex shader.
523 */
524 if (prog->Target == GL_VERTEX_PROGRAM_ARB) {
525 if (inst->DstReg.Index == VERT_RESULT_TEX0) {
526 /* mark all texcoord outputs as written */
527 const GLbitfield mask =
528 ((1 << MAX_TEXTURE_COORD_UNITS) - 1) << VERT_RESULT_TEX0;
529 prog->OutputsWritten |= mask;
530 }
531 else if (inst->DstReg.Index == VERT_RESULT_VAR0) {
532 /* mark all generic varying outputs as written */
533 const GLbitfield mask =
534 ((1 << MAX_VARYING) - 1) << VERT_RESULT_VAR0;
535 prog->OutputsWritten |= mask;
536 }
537 }
538 }
539 }
540 else if (inst->DstReg.File == PROGRAM_ADDRESS) {
541 maxAddrReg = MAX2(maxAddrReg, inst->DstReg.Index + 1);
542 }
543 }
544 prog->NumAddressRegs = maxAddrReg;
545 }
546
547
548
549
550
551 /**
552 * Return a new shader whose source code is the concatenation of
553 * all the shader sources of the given type.
554 */
555 static struct gl_shader *
556 concat_shaders(struct gl_shader_program *shProg, GLenum shaderType)
557 {
558 struct gl_shader *newShader;
559 const struct gl_shader *firstShader = NULL;
560 GLuint shaderLengths[100];
561 GLchar *source;
562 GLuint totalLen = 0, len = 0;
563 GLuint i;
564
565 /* compute total size of new shader source code */
566 for (i = 0; i < shProg->NumShaders; i++) {
567 const struct gl_shader *shader = shProg->Shaders[i];
568 if (shader->Type == shaderType) {
569 shaderLengths[i] = _mesa_strlen(shader->Source);
570 totalLen += shaderLengths[i];
571 if (!firstShader)
572 firstShader = shader;
573 }
574 }
575
576 if (totalLen == 0)
577 return NULL;
578
579 source = (GLchar *) _mesa_malloc(totalLen + 1);
580 if (!source)
581 return NULL;
582
583 /* concatenate shaders */
584 for (i = 0; i < shProg->NumShaders; i++) {
585 const struct gl_shader *shader = shProg->Shaders[i];
586 if (shader->Type == shaderType) {
587 _mesa_memcpy(source + len, shader->Source, shaderLengths[i]);
588 len += shaderLengths[i];
589 }
590 }
591 source[len] = '\0';
592 /*
593 _mesa_printf("---NEW CONCATENATED SHADER---:\n%s\n------------\n", source);
594 */
595
596 newShader = CALLOC_STRUCT(gl_shader);
597 newShader->Type = shaderType;
598 newShader->Source = source;
599 newShader->Pragmas = firstShader->Pragmas;
600
601 return newShader;
602 }
603
604
605 /**
606 * Search the shader program's list of shaders to find the one that
607 * defines main().
608 * This will involve shader concatenation and recompilation if needed.
609 */
610 static struct gl_shader *
611 get_main_shader(GLcontext *ctx,
612 struct gl_shader_program *shProg, GLenum type)
613 {
614 struct gl_shader *shader = NULL;
615 GLuint i;
616
617 /*
618 * Look for a shader that defines main() and has no unresolved references.
619 */
620 for (i = 0; i < shProg->NumShaders; i++) {
621 shader = shProg->Shaders[i];
622 if (shader->Type == type &&
623 shader->Main &&
624 !shader->UnresolvedRefs) {
625 /* All set! */
626 return shader;
627 }
628 }
629
630 /*
631 * There must have been unresolved references during the original
632 * compilation. Try concatenating all the shaders of the given type
633 * and recompile that.
634 */
635 shader = concat_shaders(shProg, type);
636
637 if (shader) {
638 _slang_compile(ctx, shader);
639
640 /* Finally, check if recompiling failed */
641 if (!shader->CompileStatus ||
642 !shader->Main ||
643 shader->UnresolvedRefs) {
644 link_error(shProg, "Unresolved symbols");
645 return NULL;
646 }
647 }
648
649 return shader;
650 }
651
652
653 /**
654 * Shader linker. Currently:
655 *
656 * 1. The last attached vertex shader and fragment shader are linked.
657 * 2. Varying vars in the two shaders are combined so their locations
658 * agree between the vertex and fragment stages. They're treated as
659 * vertex program output attribs and as fragment program input attribs.
660 * 3. The vertex and fragment programs are cloned and modified to update
661 * src/dst register references so they use the new, linked varying
662 * storage locations.
663 */
664 void
665 _slang_link(GLcontext *ctx,
666 GLhandleARB programObj,
667 struct gl_shader_program *shProg)
668 {
669 const struct gl_vertex_program *vertProg = NULL;
670 const struct gl_fragment_program *fragProg = NULL;
671 GLuint numSamplers = 0;
672 GLuint i;
673
674 _mesa_clear_shader_program_data(ctx, shProg);
675
676 /* Initialize LinkStatus to "success". Will be cleared if error. */
677 shProg->LinkStatus = GL_TRUE;
678
679 /* check that all programs compiled successfully */
680 for (i = 0; i < shProg->NumShaders; i++) {
681 if (!shProg->Shaders[i]->CompileStatus) {
682 link_error(shProg, "linking with uncompiled shader\n");
683 return;
684 }
685 }
686
687 shProg->Uniforms = _mesa_new_uniform_list();
688 shProg->Varying = _mesa_new_parameter_list();
689
690 /*
691 * Find the vertex and fragment shaders which define main()
692 */
693 {
694 struct gl_shader *vertShader, *fragShader;
695 vertShader = get_main_shader(ctx, shProg, GL_VERTEX_SHADER);
696 fragShader = get_main_shader(ctx, shProg, GL_FRAGMENT_SHADER);
697 if (vertShader)
698 vertProg = vertex_program(vertShader->Program);
699 if (fragShader)
700 fragProg = fragment_program(fragShader->Program);
701 if (!shProg->LinkStatus)
702 return;
703 }
704
705 #if FEATURE_es2_glsl
706 /* must have both a vertex and fragment program for ES2 */
707 if (!vertProg) {
708 link_error(shProg, "missing vertex shader\n");
709 return;
710 }
711 if (!fragProg) {
712 link_error(shProg, "missing fragment shader\n");
713 return;
714 }
715 #endif
716
717 /*
718 * Make copies of the vertex/fragment programs now since we'll be
719 * changing src/dst registers after merging the uniforms and varying vars.
720 */
721 _mesa_reference_vertprog(ctx, &shProg->VertexProgram, NULL);
722 if (vertProg) {
723 struct gl_vertex_program *linked_vprog =
724 vertex_program(_mesa_clone_program(ctx, &vertProg->Base));
725 shProg->VertexProgram = linked_vprog; /* refcount OK */
726 /* vertex program ID not significant; just set Id for debugging purposes */
727 shProg->VertexProgram->Base.Id = shProg->Name;
728 ASSERT(shProg->VertexProgram->Base.RefCount == 1);
729 }
730
731 _mesa_reference_fragprog(ctx, &shProg->FragmentProgram, NULL);
732 if (fragProg) {
733 struct gl_fragment_program *linked_fprog =
734 fragment_program(_mesa_clone_program(ctx, &fragProg->Base));
735 shProg->FragmentProgram = linked_fprog; /* refcount OK */
736 /* vertex program ID not significant; just set Id for debugging purposes */
737 shProg->FragmentProgram->Base.Id = shProg->Name;
738 ASSERT(shProg->FragmentProgram->Base.RefCount == 1);
739 }
740
741 /* link varying vars */
742 if (shProg->VertexProgram) {
743 if (!link_varying_vars(ctx, shProg, &shProg->VertexProgram->Base))
744 return;
745 }
746 if (shProg->FragmentProgram) {
747 if (!link_varying_vars(ctx, shProg, &shProg->FragmentProgram->Base))
748 return;
749 }
750
751 /* link uniform vars */
752 if (shProg->VertexProgram) {
753 if (!link_uniform_vars(ctx, shProg, &shProg->VertexProgram->Base,
754 &numSamplers)) {
755 return;
756 }
757 }
758 if (shProg->FragmentProgram) {
759 if (!link_uniform_vars(ctx, shProg, &shProg->FragmentProgram->Base,
760 &numSamplers)) {
761 return;
762 }
763 }
764
765 /*_mesa_print_uniforms(shProg->Uniforms);*/
766
767 if (shProg->VertexProgram) {
768 if (!_slang_resolve_attributes(shProg, &vertProg->Base,
769 &shProg->VertexProgram->Base)) {
770 return;
771 }
772 }
773
774 if (shProg->VertexProgram) {
775 _slang_update_inputs_outputs(&shProg->VertexProgram->Base);
776 _slang_count_temporaries(&shProg->VertexProgram->Base);
777 if (!(shProg->VertexProgram->Base.OutputsWritten & (1 << VERT_RESULT_HPOS))) {
778 /* the vertex program did not compute a vertex position */
779 link_error(shProg,
780 "gl_Position was not written by vertex shader\n");
781 return;
782 }
783 }
784 if (shProg->FragmentProgram) {
785 _slang_count_temporaries(&shProg->FragmentProgram->Base);
786 _slang_update_inputs_outputs(&shProg->FragmentProgram->Base);
787 }
788
789 /* Check that all the varying vars needed by the fragment shader are
790 * actually produced by the vertex shader.
791 */
792 if (shProg->FragmentProgram) {
793 const GLbitfield varyingRead
794 = shProg->FragmentProgram->Base.InputsRead >> FRAG_ATTRIB_VAR0;
795 const GLbitfield varyingWritten = shProg->VertexProgram ?
796 shProg->VertexProgram->Base.OutputsWritten >> VERT_RESULT_VAR0 : 0x0;
797 if ((varyingRead & varyingWritten) != varyingRead) {
798 link_error(shProg,
799 "Fragment program using varying vars not written by vertex shader\n");
800 return;
801 }
802 }
803
804 /* check that gl_FragColor and gl_FragData are not both written to */
805 if (shProg->FragmentProgram) {
806 GLbitfield outputsWritten = shProg->FragmentProgram->Base.OutputsWritten;
807 if ((outputsWritten & ((1 << FRAG_RESULT_COLOR))) &&
808 (outputsWritten >= (1 << FRAG_RESULT_DATA0))) {
809 link_error(shProg, "Fragment program cannot write both gl_FragColor"
810 " and gl_FragData[].\n");
811 return;
812 }
813 }
814
815
816 if (fragProg && shProg->FragmentProgram) {
817 /* Compute initial program's TexturesUsed info */
818 _mesa_update_shader_textures_used(&shProg->FragmentProgram->Base);
819
820 /* notify driver that a new fragment program has been compiled/linked */
821 ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
822 &shProg->FragmentProgram->Base);
823 if (ctx->Shader.Flags & GLSL_DUMP) {
824 _mesa_printf("Mesa pre-link fragment program:\n");
825 _mesa_print_program(&fragProg->Base);
826 _mesa_print_program_parameters(ctx, &fragProg->Base);
827
828 _mesa_printf("Mesa post-link fragment program:\n");
829 _mesa_print_program(&shProg->FragmentProgram->Base);
830 _mesa_print_program_parameters(ctx, &shProg->FragmentProgram->Base);
831 }
832 }
833
834 if (vertProg && shProg->VertexProgram) {
835 /* Compute initial program's TexturesUsed info */
836 _mesa_update_shader_textures_used(&shProg->VertexProgram->Base);
837
838 /* notify driver that a new vertex program has been compiled/linked */
839 ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
840 &shProg->VertexProgram->Base);
841 if (ctx->Shader.Flags & GLSL_DUMP) {
842 _mesa_printf("Mesa pre-link vertex program:\n");
843 _mesa_print_program(&vertProg->Base);
844 _mesa_print_program_parameters(ctx, &vertProg->Base);
845
846 _mesa_printf("Mesa post-link vertex program:\n");
847 _mesa_print_program(&shProg->VertexProgram->Base);
848 _mesa_print_program_parameters(ctx, &shProg->VertexProgram->Base);
849 }
850 }
851
852 /* Debug: */
853 if (0) {
854 if (shProg->VertexProgram)
855 _mesa_postprocess_program(ctx, &shProg->VertexProgram->Base);
856 if (shProg->FragmentProgram)
857 _mesa_postprocess_program(ctx, &shProg->FragmentProgram->Base);
858 }
859
860 if (ctx->Shader.Flags & GLSL_DUMP) {
861 _mesa_printf("Varying vars:\n");
862 _mesa_print_parameter_list(shProg->Varying);
863 if (shProg->InfoLog) {
864 _mesa_printf("Info Log: %s\n", shProg->InfoLog);
865 }
866 }
867
868 shProg->LinkStatus = (shProg->VertexProgram || shProg->FragmentProgram);
869 }
870