st/mesa: atomize vertex array state
[mesa.git] / src / mesa / state_tracker / st_atom_array.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * Copyright 2012 Marek Olšák <maraeo@gmail.com>
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /*
30 * This converts the VBO's vertex attribute/array information into
31 * Gallium vertex state and binds it.
32 *
33 * Authors:
34 * Keith Whitwell <keith@tungstengraphics.com>
35 * Marek Olšák <maraeo@gmail.com>
36 */
37
38 #include "st_context.h"
39 #include "st_atom.h"
40 #include "st_cb_bufferobjects.h"
41 #include "st_draw.h"
42 #include "st_program.h"
43
44 #include "cso_cache/cso_context.h"
45 #include "util/u_math.h"
46
47 #include "main/bufferobj.h"
48 #include "main/image.h"
49
50
51 static GLuint double_types[4] = {
52 PIPE_FORMAT_R64_FLOAT,
53 PIPE_FORMAT_R64G64_FLOAT,
54 PIPE_FORMAT_R64G64B64_FLOAT,
55 PIPE_FORMAT_R64G64B64A64_FLOAT
56 };
57
58 static GLuint float_types[4] = {
59 PIPE_FORMAT_R32_FLOAT,
60 PIPE_FORMAT_R32G32_FLOAT,
61 PIPE_FORMAT_R32G32B32_FLOAT,
62 PIPE_FORMAT_R32G32B32A32_FLOAT
63 };
64
65 static GLuint half_float_types[4] = {
66 PIPE_FORMAT_R16_FLOAT,
67 PIPE_FORMAT_R16G16_FLOAT,
68 PIPE_FORMAT_R16G16B16_FLOAT,
69 PIPE_FORMAT_R16G16B16A16_FLOAT
70 };
71
72 static GLuint uint_types_norm[4] = {
73 PIPE_FORMAT_R32_UNORM,
74 PIPE_FORMAT_R32G32_UNORM,
75 PIPE_FORMAT_R32G32B32_UNORM,
76 PIPE_FORMAT_R32G32B32A32_UNORM
77 };
78
79 static GLuint uint_types_scale[4] = {
80 PIPE_FORMAT_R32_USCALED,
81 PIPE_FORMAT_R32G32_USCALED,
82 PIPE_FORMAT_R32G32B32_USCALED,
83 PIPE_FORMAT_R32G32B32A32_USCALED
84 };
85
86 static GLuint uint_types_int[4] = {
87 PIPE_FORMAT_R32_UINT,
88 PIPE_FORMAT_R32G32_UINT,
89 PIPE_FORMAT_R32G32B32_UINT,
90 PIPE_FORMAT_R32G32B32A32_UINT
91 };
92
93 static GLuint int_types_norm[4] = {
94 PIPE_FORMAT_R32_SNORM,
95 PIPE_FORMAT_R32G32_SNORM,
96 PIPE_FORMAT_R32G32B32_SNORM,
97 PIPE_FORMAT_R32G32B32A32_SNORM
98 };
99
100 static GLuint int_types_scale[4] = {
101 PIPE_FORMAT_R32_SSCALED,
102 PIPE_FORMAT_R32G32_SSCALED,
103 PIPE_FORMAT_R32G32B32_SSCALED,
104 PIPE_FORMAT_R32G32B32A32_SSCALED
105 };
106
107 static GLuint int_types_int[4] = {
108 PIPE_FORMAT_R32_SINT,
109 PIPE_FORMAT_R32G32_SINT,
110 PIPE_FORMAT_R32G32B32_SINT,
111 PIPE_FORMAT_R32G32B32A32_SINT
112 };
113
114 static GLuint ushort_types_norm[4] = {
115 PIPE_FORMAT_R16_UNORM,
116 PIPE_FORMAT_R16G16_UNORM,
117 PIPE_FORMAT_R16G16B16_UNORM,
118 PIPE_FORMAT_R16G16B16A16_UNORM
119 };
120
121 static GLuint ushort_types_scale[4] = {
122 PIPE_FORMAT_R16_USCALED,
123 PIPE_FORMAT_R16G16_USCALED,
124 PIPE_FORMAT_R16G16B16_USCALED,
125 PIPE_FORMAT_R16G16B16A16_USCALED
126 };
127
128 static GLuint ushort_types_int[4] = {
129 PIPE_FORMAT_R16_UINT,
130 PIPE_FORMAT_R16G16_UINT,
131 PIPE_FORMAT_R16G16B16_UINT,
132 PIPE_FORMAT_R16G16B16A16_UINT
133 };
134
135 static GLuint short_types_norm[4] = {
136 PIPE_FORMAT_R16_SNORM,
137 PIPE_FORMAT_R16G16_SNORM,
138 PIPE_FORMAT_R16G16B16_SNORM,
139 PIPE_FORMAT_R16G16B16A16_SNORM
140 };
141
142 static GLuint short_types_scale[4] = {
143 PIPE_FORMAT_R16_SSCALED,
144 PIPE_FORMAT_R16G16_SSCALED,
145 PIPE_FORMAT_R16G16B16_SSCALED,
146 PIPE_FORMAT_R16G16B16A16_SSCALED
147 };
148
149 static GLuint short_types_int[4] = {
150 PIPE_FORMAT_R16_SINT,
151 PIPE_FORMAT_R16G16_SINT,
152 PIPE_FORMAT_R16G16B16_SINT,
153 PIPE_FORMAT_R16G16B16A16_SINT
154 };
155
156 static GLuint ubyte_types_norm[4] = {
157 PIPE_FORMAT_R8_UNORM,
158 PIPE_FORMAT_R8G8_UNORM,
159 PIPE_FORMAT_R8G8B8_UNORM,
160 PIPE_FORMAT_R8G8B8A8_UNORM
161 };
162
163 static GLuint ubyte_types_scale[4] = {
164 PIPE_FORMAT_R8_USCALED,
165 PIPE_FORMAT_R8G8_USCALED,
166 PIPE_FORMAT_R8G8B8_USCALED,
167 PIPE_FORMAT_R8G8B8A8_USCALED
168 };
169
170 static GLuint ubyte_types_int[4] = {
171 PIPE_FORMAT_R8_UINT,
172 PIPE_FORMAT_R8G8_UINT,
173 PIPE_FORMAT_R8G8B8_UINT,
174 PIPE_FORMAT_R8G8B8A8_UINT
175 };
176
177 static GLuint byte_types_norm[4] = {
178 PIPE_FORMAT_R8_SNORM,
179 PIPE_FORMAT_R8G8_SNORM,
180 PIPE_FORMAT_R8G8B8_SNORM,
181 PIPE_FORMAT_R8G8B8A8_SNORM
182 };
183
184 static GLuint byte_types_scale[4] = {
185 PIPE_FORMAT_R8_SSCALED,
186 PIPE_FORMAT_R8G8_SSCALED,
187 PIPE_FORMAT_R8G8B8_SSCALED,
188 PIPE_FORMAT_R8G8B8A8_SSCALED
189 };
190
191 static GLuint byte_types_int[4] = {
192 PIPE_FORMAT_R8_SINT,
193 PIPE_FORMAT_R8G8_SINT,
194 PIPE_FORMAT_R8G8B8_SINT,
195 PIPE_FORMAT_R8G8B8A8_SINT
196 };
197
198 static GLuint fixed_types[4] = {
199 PIPE_FORMAT_R32_FIXED,
200 PIPE_FORMAT_R32G32_FIXED,
201 PIPE_FORMAT_R32G32B32_FIXED,
202 PIPE_FORMAT_R32G32B32A32_FIXED
203 };
204
205
206 /**
207 * Return a PIPE_FORMAT_x for the given GL datatype and size.
208 */
209 enum pipe_format
210 st_pipe_vertex_format(GLenum type, GLuint size, GLenum format,
211 GLboolean normalized, GLboolean integer)
212 {
213 assert((type >= GL_BYTE && type <= GL_DOUBLE) ||
214 type == GL_FIXED || type == GL_HALF_FLOAT ||
215 type == GL_INT_2_10_10_10_REV ||
216 type == GL_UNSIGNED_INT_2_10_10_10_REV);
217 assert(size >= 1);
218 assert(size <= 4);
219 assert(format == GL_RGBA || format == GL_BGRA);
220
221 if (type == GL_INT_2_10_10_10_REV ||
222 type == GL_UNSIGNED_INT_2_10_10_10_REV) {
223 assert(size == 4);
224 assert(!integer);
225
226 if (format == GL_BGRA) {
227 if (type == GL_INT_2_10_10_10_REV) {
228 if (normalized)
229 return PIPE_FORMAT_B10G10R10A2_SNORM;
230 else
231 return PIPE_FORMAT_B10G10R10A2_SSCALED;
232 } else {
233 if (normalized)
234 return PIPE_FORMAT_B10G10R10A2_UNORM;
235 else
236 return PIPE_FORMAT_B10G10R10A2_USCALED;
237 }
238 } else {
239 if (type == GL_INT_2_10_10_10_REV) {
240 if (normalized)
241 return PIPE_FORMAT_R10G10B10A2_SNORM;
242 else
243 return PIPE_FORMAT_R10G10B10A2_SSCALED;
244 } else {
245 if (normalized)
246 return PIPE_FORMAT_R10G10B10A2_UNORM;
247 else
248 return PIPE_FORMAT_R10G10B10A2_USCALED;
249 }
250 }
251 }
252
253 if (format == GL_BGRA) {
254 /* this is an odd-ball case */
255 assert(type == GL_UNSIGNED_BYTE);
256 assert(normalized);
257 return PIPE_FORMAT_B8G8R8A8_UNORM;
258 }
259
260 if (integer) {
261 switch (type) {
262 case GL_INT: return int_types_int[size-1];
263 case GL_SHORT: return short_types_int[size-1];
264 case GL_BYTE: return byte_types_int[size-1];
265 case GL_UNSIGNED_INT: return uint_types_int[size-1];
266 case GL_UNSIGNED_SHORT: return ushort_types_int[size-1];
267 case GL_UNSIGNED_BYTE: return ubyte_types_int[size-1];
268 default: assert(0); return 0;
269 }
270 }
271 else if (normalized) {
272 switch (type) {
273 case GL_DOUBLE: return double_types[size-1];
274 case GL_FLOAT: return float_types[size-1];
275 case GL_HALF_FLOAT: return half_float_types[size-1];
276 case GL_INT: return int_types_norm[size-1];
277 case GL_SHORT: return short_types_norm[size-1];
278 case GL_BYTE: return byte_types_norm[size-1];
279 case GL_UNSIGNED_INT: return uint_types_norm[size-1];
280 case GL_UNSIGNED_SHORT: return ushort_types_norm[size-1];
281 case GL_UNSIGNED_BYTE: return ubyte_types_norm[size-1];
282 case GL_FIXED: return fixed_types[size-1];
283 default: assert(0); return 0;
284 }
285 }
286 else {
287 switch (type) {
288 case GL_DOUBLE: return double_types[size-1];
289 case GL_FLOAT: return float_types[size-1];
290 case GL_HALF_FLOAT: return half_float_types[size-1];
291 case GL_INT: return int_types_scale[size-1];
292 case GL_SHORT: return short_types_scale[size-1];
293 case GL_BYTE: return byte_types_scale[size-1];
294 case GL_UNSIGNED_INT: return uint_types_scale[size-1];
295 case GL_UNSIGNED_SHORT: return ushort_types_scale[size-1];
296 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size-1];
297 case GL_FIXED: return fixed_types[size-1];
298 default: assert(0); return 0;
299 }
300 }
301 return PIPE_FORMAT_NONE; /* silence compiler warning */
302 }
303
304 /**
305 * Examine the active arrays to determine if we have interleaved
306 * vertex arrays all living in one VBO, or all living in user space.
307 */
308 static GLboolean
309 is_interleaved_arrays(const struct st_vertex_program *vp,
310 const struct st_vp_variant *vpv,
311 const struct gl_client_array **arrays)
312 {
313 GLuint attr;
314 const struct gl_buffer_object *firstBufObj = NULL;
315 GLint firstStride = -1;
316 const GLubyte *firstPtr = NULL;
317 GLboolean userSpaceBuffer = GL_FALSE;
318
319 for (attr = 0; attr < vpv->num_inputs; attr++) {
320 const GLuint mesaAttr = vp->index_to_input[attr];
321 const struct gl_client_array *array = arrays[mesaAttr];
322 const struct gl_buffer_object *bufObj = array->BufferObj;
323 const GLsizei stride = array->StrideB; /* in bytes */
324
325 if (attr == 0) {
326 /* save info about the first array */
327 firstStride = stride;
328 firstPtr = array->Ptr;
329 firstBufObj = bufObj;
330 userSpaceBuffer = !bufObj || !bufObj->Name;
331 }
332 else {
333 /* check if other arrays interleave with the first, in same buffer */
334 if (stride != firstStride)
335 return GL_FALSE; /* strides don't match */
336
337 if (bufObj != firstBufObj)
338 return GL_FALSE; /* arrays in different VBOs */
339
340 if (abs(array->Ptr - firstPtr) > firstStride)
341 return GL_FALSE; /* arrays start too far apart */
342
343 if ((!_mesa_is_bufferobj(bufObj)) != userSpaceBuffer)
344 return GL_FALSE; /* mix of VBO and user-space arrays */
345 }
346 }
347
348 return GL_TRUE;
349 }
350
351 /**
352 * Set up for drawing interleaved arrays that all live in one VBO
353 * or all live in user space.
354 * \param vbuffer returns vertex buffer info
355 * \param velements returns vertex element info
356 */
357 static boolean
358 setup_interleaved_attribs(const struct st_vertex_program *vp,
359 const struct st_vp_variant *vpv,
360 const struct gl_client_array **arrays,
361 struct pipe_vertex_buffer *vbuffer,
362 struct pipe_vertex_element velements[])
363 {
364 GLuint attr;
365 const GLubyte *low_addr = NULL;
366 GLboolean usingVBO; /* all arrays in a VBO? */
367 struct gl_buffer_object *bufobj;
368 GLsizei stride;
369
370 /* Find the lowest address of the arrays we're drawing,
371 * Init bufobj and stride.
372 */
373 if (vpv->num_inputs) {
374 const GLuint mesaAttr0 = vp->index_to_input[0];
375 const struct gl_client_array *array = arrays[mesaAttr0];
376
377 /* Since we're doing interleaved arrays, we know there'll be at most
378 * one buffer object and the stride will be the same for all arrays.
379 * Grab them now.
380 */
381 bufobj = array->BufferObj;
382 stride = array->StrideB;
383
384 low_addr = arrays[vp->index_to_input[0]]->Ptr;
385
386 for (attr = 1; attr < vpv->num_inputs; attr++) {
387 const GLubyte *start = arrays[vp->index_to_input[attr]]->Ptr;
388 low_addr = MIN2(low_addr, start);
389 }
390 }
391 else {
392 /* not sure we'll ever have zero inputs, but play it safe */
393 bufobj = NULL;
394 stride = 0;
395 low_addr = 0;
396 }
397
398 /* are the arrays in user space? */
399 usingVBO = _mesa_is_bufferobj(bufobj);
400
401 for (attr = 0; attr < vpv->num_inputs; attr++) {
402 const GLuint mesaAttr = vp->index_to_input[attr];
403 const struct gl_client_array *array = arrays[mesaAttr];
404 unsigned src_offset = (unsigned) (array->Ptr - low_addr);
405 GLuint element_size = array->_ElementSize;
406
407 assert(element_size == array->Size * _mesa_sizeof_type(array->Type));
408
409 velements[attr].src_offset = src_offset;
410 velements[attr].instance_divisor = array->InstanceDivisor;
411 velements[attr].vertex_buffer_index = 0;
412 velements[attr].src_format = st_pipe_vertex_format(array->Type,
413 array->Size,
414 array->Format,
415 array->Normalized,
416 array->Integer);
417 assert(velements[attr].src_format);
418 }
419
420 /*
421 * Return the vbuffer info and setup user-space attrib info, if needed.
422 */
423 if (vpv->num_inputs == 0) {
424 /* just defensive coding here */
425 vbuffer->buffer = NULL;
426 vbuffer->user_buffer = NULL;
427 vbuffer->buffer_offset = 0;
428 vbuffer->stride = 0;
429 }
430 else if (usingVBO) {
431 /* all interleaved arrays in a VBO */
432 struct st_buffer_object *stobj = st_buffer_object(bufobj);
433
434 if (!stobj || !stobj->buffer) {
435 return FALSE; /* out-of-memory error probably */
436 }
437
438 vbuffer->buffer = stobj->buffer;
439 vbuffer->user_buffer = NULL;
440 vbuffer->buffer_offset = pointer_to_offset(low_addr);
441 vbuffer->stride = stride;
442 }
443 else {
444 /* all interleaved arrays in user memory */
445 vbuffer->buffer = NULL;
446 vbuffer->user_buffer = low_addr;
447 vbuffer->buffer_offset = 0;
448 vbuffer->stride = stride;
449 }
450 return TRUE;
451 }
452
453 /**
454 * Set up a separate pipe_vertex_buffer and pipe_vertex_element for each
455 * vertex attribute.
456 * \param vbuffer returns vertex buffer info
457 * \param velements returns vertex element info
458 */
459 static boolean
460 setup_non_interleaved_attribs(struct st_context *st,
461 const struct st_vertex_program *vp,
462 const struct st_vp_variant *vpv,
463 const struct gl_client_array **arrays,
464 struct pipe_vertex_buffer vbuffer[],
465 struct pipe_vertex_element velements[])
466 {
467 struct gl_context *ctx = st->ctx;
468 GLuint attr;
469
470 for (attr = 0; attr < vpv->num_inputs; attr++) {
471 const GLuint mesaAttr = vp->index_to_input[attr];
472 const struct gl_client_array *array = arrays[mesaAttr];
473 struct gl_buffer_object *bufobj = array->BufferObj;
474 GLsizei stride = array->StrideB;
475
476 assert(array->_ElementSize == array->Size * _mesa_sizeof_type(array->Type));
477
478 if (_mesa_is_bufferobj(bufobj)) {
479 /* Attribute data is in a VBO.
480 * Recall that for VBOs, the gl_client_array->Ptr field is
481 * really an offset from the start of the VBO, not a pointer.
482 */
483 struct st_buffer_object *stobj = st_buffer_object(bufobj);
484
485 if (!stobj || !stobj->buffer) {
486 return FALSE; /* out-of-memory error probably */
487 }
488
489 vbuffer[attr].buffer = stobj->buffer;
490 vbuffer[attr].user_buffer = NULL;
491 vbuffer[attr].buffer_offset = pointer_to_offset(array->Ptr);
492 }
493 else {
494 /* wrap user data */
495 void *ptr;
496
497 if (array->Ptr) {
498 ptr = (void *) array->Ptr;
499 }
500 else {
501 /* no array, use ctx->Current.Attrib[] value */
502 ptr = (void *) ctx->Current.Attrib[mesaAttr];
503 stride = 0;
504 }
505
506 assert(ptr);
507
508 vbuffer[attr].buffer = NULL;
509 vbuffer[attr].user_buffer = ptr;
510 vbuffer[attr].buffer_offset = 0;
511 }
512
513 /* common-case setup */
514 vbuffer[attr].stride = stride; /* in bytes */
515
516 velements[attr].src_offset = 0;
517 velements[attr].instance_divisor = array->InstanceDivisor;
518 velements[attr].vertex_buffer_index = attr;
519 velements[attr].src_format = st_pipe_vertex_format(array->Type,
520 array->Size,
521 array->Format,
522 array->Normalized,
523 array->Integer);
524 assert(velements[attr].src_format);
525 }
526 return TRUE;
527 }
528
529 static void update_array(struct st_context *st)
530 {
531 struct gl_context *ctx = st->ctx;
532 const struct gl_client_array **arrays = ctx->Array._DrawArrays;
533 const struct st_vertex_program *vp;
534 const struct st_vp_variant *vpv;
535 struct pipe_vertex_buffer vbuffer[PIPE_MAX_SHADER_INPUTS];
536 struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS];
537 unsigned num_vbuffers, num_velements;
538
539 st->vertex_array_out_of_memory = FALSE;
540
541 /* No drawing has been done yet, so do nothing. */
542 if (!arrays)
543 return;
544
545 /* vertex program validation must be done before this */
546 vp = st->vp;
547 vpv = st->vp_variant;
548
549 memset(velements, 0, sizeof(struct pipe_vertex_element) * vpv->num_inputs);
550
551 /*
552 * Setup the vbuffer[] and velements[] arrays.
553 */
554 if (is_interleaved_arrays(vp, vpv, arrays)) {
555 if (!setup_interleaved_attribs(vp, vpv, arrays, vbuffer, velements)) {
556 st->vertex_array_out_of_memory = TRUE;
557 return;
558 }
559
560 num_vbuffers = 1;
561 num_velements = vpv->num_inputs;
562 if (num_velements == 0)
563 num_vbuffers = 0;
564 }
565 else {
566 if (!setup_non_interleaved_attribs(st, vp, vpv, arrays, vbuffer,
567 velements)) {
568 st->vertex_array_out_of_memory = TRUE;
569 return;
570 }
571
572 num_vbuffers = vpv->num_inputs;
573 num_velements = vpv->num_inputs;
574 }
575
576 cso_set_vertex_buffers(st->cso_context, num_vbuffers, vbuffer);
577 cso_set_vertex_elements(st->cso_context, num_velements, velements);
578 }
579
580
581 const struct st_tracked_state st_update_array = {
582 "st_update_array", /* name */
583 { /* dirty */
584 (_NEW_PROGRAM | _NEW_BUFFER_OBJECT), /* mesa */
585 ST_NEW_VERTEX_ARRAYS | ST_NEW_VERTEX_PROGRAM, /* st */
586 },
587 update_array /* update */
588 };