Squash-merge branch 'gallium-clip-state'
[mesa.git] / src / mesa / state_tracker / st_cb_bitmap.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Authors:
30 * Brian Paul
31 */
32
33 #include "main/imports.h"
34 #include "main/image.h"
35 #include "main/bufferobj.h"
36 #include "main/macros.h"
37 #include "main/mfeatures.h"
38 #include "main/pbo.h"
39 #include "program/program.h"
40 #include "program/prog_print.h"
41
42 #include "st_context.h"
43 #include "st_atom.h"
44 #include "st_atom_constbuf.h"
45 #include "st_program.h"
46 #include "st_cb_bitmap.h"
47 #include "st_texture.h"
48
49 #include "pipe/p_context.h"
50 #include "pipe/p_defines.h"
51 #include "pipe/p_shader_tokens.h"
52 #include "util/u_inlines.h"
53 #include "util/u_draw_quad.h"
54 #include "util/u_simple_shaders.h"
55 #include "program/prog_instruction.h"
56 #include "cso_cache/cso_context.h"
57
58
59 #if FEATURE_drawpix
60
61 /**
62 * glBitmaps are drawn as textured quads. The user's bitmap pattern
63 * is stored in a texture image. An alpha8 texture format is used.
64 * The fragment shader samples a bit (texel) from the texture, then
65 * discards the fragment if the bit is off.
66 *
67 * Note that we actually store the inverse image of the bitmap to
68 * simplify the fragment program. An "on" bit gets stored as texel=0x0
69 * and an "off" bit is stored as texel=0xff. Then we kill the
70 * fragment if the negated texel value is less than zero.
71 */
72
73
74 /**
75 * The bitmap cache attempts to accumulate multiple glBitmap calls in a
76 * buffer which is then rendered en mass upon a flush, state change, etc.
77 * A wide, short buffer is used to target the common case of a series
78 * of glBitmap calls being used to draw text.
79 */
80 static GLboolean UseBitmapCache = GL_TRUE;
81
82
83 #define BITMAP_CACHE_WIDTH 512
84 #define BITMAP_CACHE_HEIGHT 32
85
86 struct bitmap_cache
87 {
88 /** Window pos to render the cached image */
89 GLint xpos, ypos;
90 /** Bounds of region used in window coords */
91 GLint xmin, ymin, xmax, ymax;
92
93 GLfloat color[4];
94
95 /** Bitmap's Z position */
96 GLfloat zpos;
97
98 struct pipe_resource *texture;
99 struct pipe_transfer *trans;
100
101 GLboolean empty;
102
103 /** An I8 texture image: */
104 ubyte *buffer;
105 };
106
107
108 /** Epsilon for Z comparisons */
109 #define Z_EPSILON 1e-06
110
111
112 /**
113 * Make fragment program for glBitmap:
114 * Sample the texture and kill the fragment if the bit is 0.
115 * This program will be combined with the user's fragment program.
116 */
117 static struct st_fragment_program *
118 make_bitmap_fragment_program(struct gl_context *ctx, GLuint samplerIndex)
119 {
120 struct st_context *st = st_context(ctx);
121 struct st_fragment_program *stfp;
122 struct gl_program *p;
123 GLuint ic = 0;
124
125 p = ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
126 if (!p)
127 return NULL;
128
129 p->NumInstructions = 3;
130
131 p->Instructions = _mesa_alloc_instructions(p->NumInstructions);
132 if (!p->Instructions) {
133 ctx->Driver.DeleteProgram(ctx, p);
134 return NULL;
135 }
136 _mesa_init_instructions(p->Instructions, p->NumInstructions);
137
138 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
139 p->Instructions[ic].Opcode = OPCODE_TEX;
140 p->Instructions[ic].DstReg.File = PROGRAM_TEMPORARY;
141 p->Instructions[ic].DstReg.Index = 0;
142 p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT;
143 p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_TEX0;
144 p->Instructions[ic].TexSrcUnit = samplerIndex;
145 p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX;
146 ic++;
147
148 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
149 p->Instructions[ic].Opcode = OPCODE_KIL;
150 p->Instructions[ic].SrcReg[0].File = PROGRAM_TEMPORARY;
151
152 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
153 p->Instructions[ic].SrcReg[0].Swizzle = SWIZZLE_XXXX;
154
155 p->Instructions[ic].SrcReg[0].Index = 0;
156 p->Instructions[ic].SrcReg[0].Negate = NEGATE_XYZW;
157 ic++;
158
159 /* END; */
160 p->Instructions[ic++].Opcode = OPCODE_END;
161
162 assert(ic == p->NumInstructions);
163
164 p->InputsRead = FRAG_BIT_TEX0;
165 p->OutputsWritten = 0x0;
166 p->SamplersUsed = (1 << samplerIndex);
167
168 stfp = (struct st_fragment_program *) p;
169 stfp->Base.UsesKill = GL_TRUE;
170
171 return stfp;
172 }
173
174
175 static struct gl_program *
176 make_bitmap_fragment_program_glsl(struct st_context *st,
177 struct st_fragment_program *orig,
178 GLuint samplerIndex)
179 {
180 struct gl_context *ctx = st->ctx;
181 struct st_fragment_program *fp = (struct st_fragment_program *)
182 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
183
184 if (!fp)
185 return NULL;
186
187 get_bitmap_visitor(fp, orig->glsl_to_tgsi, samplerIndex);
188 return &fp->Base.Base;
189 }
190
191
192 static int
193 find_free_bit(uint bitfield)
194 {
195 int i;
196 for (i = 0; i < 32; i++) {
197 if ((bitfield & (1 << i)) == 0) {
198 return i;
199 }
200 }
201 return -1;
202 }
203
204
205 /**
206 * Combine basic bitmap fragment program with the user-defined program.
207 * \param st current context
208 * \param fpIn the incoming fragment program
209 * \param fpOut the new fragment program which does fragment culling
210 * \param bitmap_sampler sampler number for the bitmap texture
211 */
212 void
213 st_make_bitmap_fragment_program(struct st_context *st,
214 struct gl_fragment_program *fpIn,
215 struct gl_fragment_program **fpOut,
216 GLuint *bitmap_sampler)
217 {
218 struct st_fragment_program *bitmap_prog;
219 struct st_fragment_program *stfpIn = (struct st_fragment_program *) fpIn;
220 struct gl_program *newProg;
221 uint sampler;
222
223 /*
224 * Generate new program which is the user-defined program prefixed
225 * with the bitmap sampler/kill instructions.
226 */
227 sampler = find_free_bit(fpIn->Base.SamplersUsed);
228
229 if (stfpIn->glsl_to_tgsi)
230 newProg = make_bitmap_fragment_program_glsl(st, stfpIn, sampler);
231 else {
232 bitmap_prog = make_bitmap_fragment_program(st->ctx, sampler);
233
234 newProg = _mesa_combine_programs(st->ctx,
235 &bitmap_prog->Base.Base,
236 &fpIn->Base);
237 /* done with this after combining */
238 st_reference_fragprog(st, &bitmap_prog, NULL);
239 }
240
241 #if 0
242 {
243 printf("Combined bitmap program:\n");
244 _mesa_print_program(newProg);
245 printf("InputsRead: 0x%x\n", newProg->InputsRead);
246 printf("OutputsWritten: 0x%x\n", newProg->OutputsWritten);
247 _mesa_print_parameter_list(newProg->Parameters);
248 }
249 #endif
250
251 /* return results */
252 *fpOut = (struct gl_fragment_program *) newProg;
253 *bitmap_sampler = sampler;
254 }
255
256
257 /**
258 * Copy user-provide bitmap bits into texture buffer, expanding
259 * bits into texels.
260 * "On" bits will set texels to 0x0.
261 * "Off" bits will not modify texels.
262 * Note that the image is actually going to be upside down in
263 * the texture. We deal with that with texcoords.
264 */
265 static void
266 unpack_bitmap(struct st_context *st,
267 GLint px, GLint py, GLsizei width, GLsizei height,
268 const struct gl_pixelstore_attrib *unpack,
269 const GLubyte *bitmap,
270 ubyte *destBuffer, uint destStride)
271 {
272 destBuffer += py * destStride + px;
273
274 _mesa_expand_bitmap(width, height, unpack, bitmap,
275 destBuffer, destStride, 0x0);
276 }
277
278
279 /**
280 * Create a texture which represents a bitmap image.
281 */
282 static struct pipe_resource *
283 make_bitmap_texture(struct gl_context *ctx, GLsizei width, GLsizei height,
284 const struct gl_pixelstore_attrib *unpack,
285 const GLubyte *bitmap)
286 {
287 struct st_context *st = st_context(ctx);
288 struct pipe_context *pipe = st->pipe;
289 struct pipe_transfer *transfer;
290 ubyte *dest;
291 struct pipe_resource *pt;
292
293 /* PBO source... */
294 bitmap = _mesa_map_pbo_source(ctx, unpack, bitmap);
295 if (!bitmap) {
296 return NULL;
297 }
298
299 /**
300 * Create texture to hold bitmap pattern.
301 */
302 pt = st_texture_create(st, st->internal_target, st->bitmap.tex_format,
303 0, width, height, 1, 1,
304 PIPE_BIND_SAMPLER_VIEW);
305 if (!pt) {
306 _mesa_unmap_pbo_source(ctx, unpack);
307 return NULL;
308 }
309
310 transfer = pipe_get_transfer(st->pipe, pt, 0, 0,
311 PIPE_TRANSFER_WRITE,
312 0, 0, width, height);
313
314 dest = pipe_transfer_map(pipe, transfer);
315
316 /* Put image into texture transfer */
317 memset(dest, 0xff, height * transfer->stride);
318 unpack_bitmap(st, 0, 0, width, height, unpack, bitmap,
319 dest, transfer->stride);
320
321 _mesa_unmap_pbo_source(ctx, unpack);
322
323 /* Release transfer */
324 pipe_transfer_unmap(pipe, transfer);
325 pipe->transfer_destroy(pipe, transfer);
326
327 return pt;
328 }
329
330 static GLuint
331 setup_bitmap_vertex_data(struct st_context *st, bool normalized,
332 int x, int y, int width, int height,
333 float z, const float color[4])
334 {
335 struct pipe_context *pipe = st->pipe;
336 const struct gl_framebuffer *fb = st->ctx->DrawBuffer;
337 const GLfloat fb_width = (GLfloat)fb->Width;
338 const GLfloat fb_height = (GLfloat)fb->Height;
339 const GLfloat x0 = (GLfloat)x;
340 const GLfloat x1 = (GLfloat)(x + width);
341 const GLfloat y0 = (GLfloat)y;
342 const GLfloat y1 = (GLfloat)(y + height);
343 GLfloat sLeft = (GLfloat)0.0, sRight = (GLfloat)1.0;
344 GLfloat tTop = (GLfloat)0.0, tBot = (GLfloat)1.0 - tTop;
345 const GLfloat clip_x0 = (GLfloat)(x0 / fb_width * 2.0 - 1.0);
346 const GLfloat clip_y0 = (GLfloat)(y0 / fb_height * 2.0 - 1.0);
347 const GLfloat clip_x1 = (GLfloat)(x1 / fb_width * 2.0 - 1.0);
348 const GLfloat clip_y1 = (GLfloat)(y1 / fb_height * 2.0 - 1.0);
349 const GLuint max_slots = 1; /* 4096 / sizeof(st->bitmap.vertices); */
350 GLuint i;
351
352 if(!normalized)
353 {
354 sRight = (GLfloat) width;
355 tBot = (GLfloat) height;
356 }
357
358 /* XXX: Need to improve buffer_write to allow NO_WAIT (as well as
359 * no_flush) updates to buffers where we know there is no conflict
360 * with previous data. Currently using max_slots > 1 will cause
361 * synchronous rendering if the driver flushes its command buffers
362 * between one bitmap and the next. Our flush hook below isn't
363 * sufficient to catch this as the driver doesn't tell us when it
364 * flushes its own command buffers. Until this gets fixed, pay the
365 * price of allocating a new buffer for each bitmap cache-flush to
366 * avoid synchronous rendering.
367 */
368 if (st->bitmap.vbuf_slot >= max_slots) {
369 pipe_resource_reference(&st->bitmap.vbuf, NULL);
370 st->bitmap.vbuf_slot = 0;
371 }
372
373 if (!st->bitmap.vbuf) {
374 st->bitmap.vbuf = pipe_buffer_create(pipe->screen,
375 PIPE_BIND_VERTEX_BUFFER,
376 PIPE_USAGE_STREAM,
377 max_slots *
378 sizeof(st->bitmap.vertices));
379 if (!st->bitmap.vbuf) {
380 /* out of memory */
381 return 0;
382 }
383 }
384
385 /* Positions are in clip coords since we need to do clipping in case
386 * the bitmap quad goes beyond the window bounds.
387 */
388 st->bitmap.vertices[0][0][0] = clip_x0;
389 st->bitmap.vertices[0][0][1] = clip_y0;
390 st->bitmap.vertices[0][2][0] = sLeft;
391 st->bitmap.vertices[0][2][1] = tTop;
392
393 st->bitmap.vertices[1][0][0] = clip_x1;
394 st->bitmap.vertices[1][0][1] = clip_y0;
395 st->bitmap.vertices[1][2][0] = sRight;
396 st->bitmap.vertices[1][2][1] = tTop;
397
398 st->bitmap.vertices[2][0][0] = clip_x1;
399 st->bitmap.vertices[2][0][1] = clip_y1;
400 st->bitmap.vertices[2][2][0] = sRight;
401 st->bitmap.vertices[2][2][1] = tBot;
402
403 st->bitmap.vertices[3][0][0] = clip_x0;
404 st->bitmap.vertices[3][0][1] = clip_y1;
405 st->bitmap.vertices[3][2][0] = sLeft;
406 st->bitmap.vertices[3][2][1] = tBot;
407
408 /* same for all verts: */
409 for (i = 0; i < 4; i++) {
410 st->bitmap.vertices[i][0][2] = z;
411 st->bitmap.vertices[i][0][3] = 1.0f;
412 st->bitmap.vertices[i][1][0] = color[0];
413 st->bitmap.vertices[i][1][1] = color[1];
414 st->bitmap.vertices[i][1][2] = color[2];
415 st->bitmap.vertices[i][1][3] = color[3];
416 st->bitmap.vertices[i][2][2] = 0.0; /*R*/
417 st->bitmap.vertices[i][2][3] = 1.0; /*Q*/
418 }
419
420 /* put vertex data into vbuf */
421 pipe_buffer_write_nooverlap(st->pipe,
422 st->bitmap.vbuf,
423 st->bitmap.vbuf_slot
424 * sizeof(st->bitmap.vertices),
425 sizeof st->bitmap.vertices,
426 st->bitmap.vertices);
427
428 return st->bitmap.vbuf_slot++ * sizeof st->bitmap.vertices;
429 }
430
431
432
433 /**
434 * Render a glBitmap by drawing a textured quad
435 */
436 static void
437 draw_bitmap_quad(struct gl_context *ctx, GLint x, GLint y, GLfloat z,
438 GLsizei width, GLsizei height,
439 struct pipe_sampler_view *sv,
440 const GLfloat *color)
441 {
442 struct st_context *st = st_context(ctx);
443 struct pipe_context *pipe = st->pipe;
444 struct cso_context *cso = st->cso_context;
445 struct st_fp_variant *fpv;
446 struct st_fp_variant_key key;
447 GLuint maxSize;
448 GLuint offset;
449
450 memset(&key, 0, sizeof(key));
451 key.st = st;
452 key.bitmap = GL_TRUE;
453
454 fpv = st_get_fp_variant(st, st->fp, &key);
455
456 /* As an optimization, Mesa's fragment programs will sometimes get the
457 * primary color from a statevar/constant rather than a varying variable.
458 * when that's the case, we need to ensure that we use the 'color'
459 * parameter and not the current attribute color (which may have changed
460 * through glRasterPos and state validation.
461 * So, we force the proper color here. Not elegant, but it works.
462 */
463 {
464 GLfloat colorSave[4];
465 COPY_4V(colorSave, ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
466 COPY_4V(ctx->Current.Attrib[VERT_ATTRIB_COLOR0], color);
467 st_upload_constants(st, fpv->parameters, PIPE_SHADER_FRAGMENT);
468 COPY_4V(ctx->Current.Attrib[VERT_ATTRIB_COLOR0], colorSave);
469 }
470
471
472 /* limit checks */
473 /* XXX if the bitmap is larger than the max texture size, break
474 * it up into chunks.
475 */
476 maxSize = 1 << (pipe->screen->get_param(pipe->screen,
477 PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
478 assert(width <= (GLsizei)maxSize);
479 assert(height <= (GLsizei)maxSize);
480
481 cso_save_rasterizer(cso);
482 cso_save_samplers(cso);
483 cso_save_fragment_sampler_views(cso);
484 cso_save_viewport(cso);
485 cso_save_fragment_shader(cso);
486 cso_save_stream_outputs(cso);
487 cso_save_vertex_shader(cso);
488 cso_save_geometry_shader(cso);
489 cso_save_vertex_elements(cso);
490 cso_save_vertex_buffers(cso);
491
492 /* rasterizer state: just scissor */
493 st->bitmap.rasterizer.scissor = ctx->Scissor.Enabled;
494 cso_set_rasterizer(cso, &st->bitmap.rasterizer);
495
496 /* fragment shader state: TEX lookup program */
497 cso_set_fragment_shader_handle(cso, fpv->driver_shader);
498
499 /* vertex shader state: position + texcoord pass-through */
500 cso_set_vertex_shader_handle(cso, st->bitmap.vs);
501
502 /* geometry shader state: disabled */
503 cso_set_geometry_shader_handle(cso, NULL);
504
505 /* user samplers, plus our bitmap sampler */
506 {
507 struct pipe_sampler_state *samplers[PIPE_MAX_SAMPLERS];
508 uint num = MAX2(fpv->bitmap_sampler + 1, st->state.num_samplers);
509 uint i;
510 for (i = 0; i < st->state.num_samplers; i++) {
511 samplers[i] = &st->state.samplers[i];
512 }
513 samplers[fpv->bitmap_sampler] =
514 &st->bitmap.samplers[sv->texture->target != PIPE_TEXTURE_RECT];
515 cso_set_samplers(cso, num, (const struct pipe_sampler_state **) samplers);
516 }
517
518 /* user textures, plus the bitmap texture */
519 {
520 struct pipe_sampler_view *sampler_views[PIPE_MAX_SAMPLERS];
521 uint num = MAX2(fpv->bitmap_sampler + 1, st->state.num_textures);
522 memcpy(sampler_views, st->state.sampler_views, sizeof(sampler_views));
523 sampler_views[fpv->bitmap_sampler] = sv;
524 cso_set_fragment_sampler_views(cso, num, sampler_views);
525 }
526
527 /* viewport state: viewport matching window dims */
528 {
529 const struct gl_framebuffer *fb = st->ctx->DrawBuffer;
530 const GLboolean invert = (st_fb_orientation(fb) == Y_0_TOP);
531 const GLfloat width = (GLfloat)fb->Width;
532 const GLfloat height = (GLfloat)fb->Height;
533 struct pipe_viewport_state vp;
534 vp.scale[0] = 0.5f * width;
535 vp.scale[1] = height * (invert ? -0.5f : 0.5f);
536 vp.scale[2] = 0.5f;
537 vp.scale[3] = 1.0f;
538 vp.translate[0] = 0.5f * width;
539 vp.translate[1] = 0.5f * height;
540 vp.translate[2] = 0.5f;
541 vp.translate[3] = 0.0f;
542 cso_set_viewport(cso, &vp);
543 }
544
545 cso_set_vertex_elements(cso, 3, st->velems_util_draw);
546 cso_set_stream_outputs(st->cso_context, 0, NULL, 0);
547
548 /* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */
549 z = z * 2.0f - 1.0f;
550
551 /* draw textured quad */
552 offset = setup_bitmap_vertex_data(st,
553 sv->texture->target != PIPE_TEXTURE_RECT,
554 x, y, width, height, z, color);
555
556 if (st->bitmap.vbuf) {
557 util_draw_vertex_buffer(pipe, st->cso_context, st->bitmap.vbuf, offset,
558 PIPE_PRIM_TRIANGLE_FAN,
559 4, /* verts */
560 3); /* attribs/vert */
561 }
562
563 /* restore state */
564 cso_restore_rasterizer(cso);
565 cso_restore_samplers(cso);
566 cso_restore_fragment_sampler_views(cso);
567 cso_restore_viewport(cso);
568 cso_restore_fragment_shader(cso);
569 cso_restore_vertex_shader(cso);
570 cso_restore_geometry_shader(cso);
571 cso_restore_vertex_elements(cso);
572 cso_restore_vertex_buffers(cso);
573 cso_restore_stream_outputs(cso);
574 }
575
576
577 static void
578 reset_cache(struct st_context *st)
579 {
580 struct pipe_context *pipe = st->pipe;
581 struct bitmap_cache *cache = st->bitmap.cache;
582
583 /*memset(cache->buffer, 0xff, sizeof(cache->buffer));*/
584 cache->empty = GL_TRUE;
585
586 cache->xmin = 1000000;
587 cache->xmax = -1000000;
588 cache->ymin = 1000000;
589 cache->ymax = -1000000;
590
591 if (cache->trans) {
592 pipe->transfer_destroy(pipe, cache->trans);
593 cache->trans = NULL;
594 }
595
596 assert(!cache->texture);
597
598 /* allocate a new texture */
599 cache->texture = st_texture_create(st, PIPE_TEXTURE_2D,
600 st->bitmap.tex_format, 0,
601 BITMAP_CACHE_WIDTH, BITMAP_CACHE_HEIGHT,
602 1, 1,
603 PIPE_BIND_SAMPLER_VIEW);
604 }
605
606
607 /** Print bitmap image to stdout (debug) */
608 static void
609 print_cache(const struct bitmap_cache *cache)
610 {
611 int i, j, k;
612
613 for (i = 0; i < BITMAP_CACHE_HEIGHT; i++) {
614 k = BITMAP_CACHE_WIDTH * (BITMAP_CACHE_HEIGHT - i - 1);
615 for (j = 0; j < BITMAP_CACHE_WIDTH; j++) {
616 if (cache->buffer[k])
617 printf("X");
618 else
619 printf(" ");
620 k++;
621 }
622 printf("\n");
623 }
624 }
625
626
627 /**
628 * Create gallium pipe_transfer object for the bitmap cache.
629 */
630 static void
631 create_cache_trans(struct st_context *st)
632 {
633 struct pipe_context *pipe = st->pipe;
634 struct bitmap_cache *cache = st->bitmap.cache;
635
636 if (cache->trans)
637 return;
638
639 /* Map the texture transfer.
640 * Subsequent glBitmap calls will write into the texture image.
641 */
642 cache->trans = pipe_get_transfer(st->pipe, cache->texture, 0, 0,
643 PIPE_TRANSFER_WRITE, 0, 0,
644 BITMAP_CACHE_WIDTH,
645 BITMAP_CACHE_HEIGHT);
646 cache->buffer = pipe_transfer_map(pipe, cache->trans);
647
648 /* init image to all 0xff */
649 memset(cache->buffer, 0xff, cache->trans->stride * BITMAP_CACHE_HEIGHT);
650 }
651
652
653 /**
654 * If there's anything in the bitmap cache, draw/flush it now.
655 */
656 void
657 st_flush_bitmap_cache(struct st_context *st)
658 {
659 if (!st->bitmap.cache->empty) {
660 struct bitmap_cache *cache = st->bitmap.cache;
661
662 if (st->ctx->DrawBuffer) {
663 struct pipe_context *pipe = st->pipe;
664 struct pipe_sampler_view *sv;
665
666 assert(cache->xmin <= cache->xmax);
667
668 /* printf("flush size %d x %d at %d, %d\n",
669 cache->xmax - cache->xmin,
670 cache->ymax - cache->ymin,
671 cache->xpos, cache->ypos);
672 */
673
674 /* The texture transfer has been mapped until now.
675 * So unmap and release the texture transfer before drawing.
676 */
677 if (cache->trans) {
678 if (0)
679 print_cache(cache);
680 pipe_transfer_unmap(pipe, cache->trans);
681 cache->buffer = NULL;
682
683 pipe->transfer_destroy(pipe, cache->trans);
684 cache->trans = NULL;
685 }
686
687 sv = st_create_texture_sampler_view(st->pipe, cache->texture);
688 if (sv) {
689 draw_bitmap_quad(st->ctx,
690 cache->xpos,
691 cache->ypos,
692 cache->zpos,
693 BITMAP_CACHE_WIDTH, BITMAP_CACHE_HEIGHT,
694 sv,
695 cache->color);
696
697 pipe_sampler_view_reference(&sv, NULL);
698 }
699 }
700
701 /* release/free the texture */
702 pipe_resource_reference(&cache->texture, NULL);
703
704 reset_cache(st);
705 }
706 }
707
708
709 /**
710 * Flush bitmap cache and release vertex buffer.
711 */
712 void
713 st_flush_bitmap( struct st_context *st )
714 {
715 st_flush_bitmap_cache(st);
716
717 /* Release vertex buffer to avoid synchronous rendering if we were
718 * to map it in the next frame.
719 */
720 pipe_resource_reference(&st->bitmap.vbuf, NULL);
721 st->bitmap.vbuf_slot = 0;
722 }
723
724
725 /**
726 * Try to accumulate this glBitmap call in the bitmap cache.
727 * \return GL_TRUE for success, GL_FALSE if bitmap is too large, etc.
728 */
729 static GLboolean
730 accum_bitmap(struct st_context *st,
731 GLint x, GLint y, GLsizei width, GLsizei height,
732 const struct gl_pixelstore_attrib *unpack,
733 const GLubyte *bitmap )
734 {
735 struct bitmap_cache *cache = st->bitmap.cache;
736 int px = -999, py = -999;
737 const GLfloat z = st->ctx->Current.RasterPos[2];
738
739 if (width > BITMAP_CACHE_WIDTH ||
740 height > BITMAP_CACHE_HEIGHT)
741 return GL_FALSE; /* too big to cache */
742
743 if (!cache->empty) {
744 px = x - cache->xpos; /* pos in buffer */
745 py = y - cache->ypos;
746 if (px < 0 || px + width > BITMAP_CACHE_WIDTH ||
747 py < 0 || py + height > BITMAP_CACHE_HEIGHT ||
748 !TEST_EQ_4V(st->ctx->Current.RasterColor, cache->color) ||
749 ((fabs(z - cache->zpos) > Z_EPSILON))) {
750 /* This bitmap would extend beyond cache bounds, or the bitmap
751 * color is changing
752 * so flush and continue.
753 */
754 st_flush_bitmap_cache(st);
755 }
756 }
757
758 if (cache->empty) {
759 /* Initialize. Center bitmap vertically in the buffer. */
760 px = 0;
761 py = (BITMAP_CACHE_HEIGHT - height) / 2;
762 cache->xpos = x;
763 cache->ypos = y - py;
764 cache->zpos = z;
765 cache->empty = GL_FALSE;
766 COPY_4FV(cache->color, st->ctx->Current.RasterColor);
767 }
768
769 assert(px != -999);
770 assert(py != -999);
771
772 if (x < cache->xmin)
773 cache->xmin = x;
774 if (y < cache->ymin)
775 cache->ymin = y;
776 if (x + width > cache->xmax)
777 cache->xmax = x + width;
778 if (y + height > cache->ymax)
779 cache->ymax = y + height;
780
781 /* create the transfer if needed */
782 create_cache_trans(st);
783
784 unpack_bitmap(st, px, py, width, height, unpack, bitmap,
785 cache->buffer, BITMAP_CACHE_WIDTH);
786
787 return GL_TRUE; /* accumulated */
788 }
789
790
791
792 /**
793 * Called via ctx->Driver.Bitmap()
794 */
795 static void
796 st_Bitmap(struct gl_context *ctx, GLint x, GLint y,
797 GLsizei width, GLsizei height,
798 const struct gl_pixelstore_attrib *unpack, const GLubyte *bitmap )
799 {
800 struct st_context *st = st_context(ctx);
801 struct pipe_resource *pt;
802
803 if (width == 0 || height == 0)
804 return;
805
806 st_validate_state(st);
807
808 if (!st->bitmap.vs) {
809 /* create pass-through vertex shader now */
810 const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
811 TGSI_SEMANTIC_COLOR,
812 TGSI_SEMANTIC_GENERIC };
813 const uint semantic_indexes[] = { 0, 0, 0 };
814 st->bitmap.vs = util_make_vertex_passthrough_shader(st->pipe, 3,
815 semantic_names,
816 semantic_indexes);
817 }
818
819 if (UseBitmapCache && accum_bitmap(st, x, y, width, height, unpack, bitmap))
820 return;
821
822 pt = make_bitmap_texture(ctx, width, height, unpack, bitmap);
823 if (pt) {
824 struct pipe_sampler_view *sv =
825 st_create_texture_sampler_view(st->pipe, pt);
826
827 assert(pt->target == PIPE_TEXTURE_2D || pt->target == PIPE_TEXTURE_RECT);
828
829 if (sv) {
830 draw_bitmap_quad(ctx, x, y, ctx->Current.RasterPos[2],
831 width, height, sv,
832 st->ctx->Current.RasterColor);
833
834 pipe_sampler_view_reference(&sv, NULL);
835 }
836
837 /* release/free the texture */
838 pipe_resource_reference(&pt, NULL);
839 }
840 }
841
842
843 /** Per-context init */
844 void
845 st_init_bitmap_functions(struct dd_function_table *functions)
846 {
847 functions->Bitmap = st_Bitmap;
848 }
849
850
851 /** Per-context init */
852 void
853 st_init_bitmap(struct st_context *st)
854 {
855 struct pipe_sampler_state *sampler = &st->bitmap.samplers[0];
856 struct pipe_context *pipe = st->pipe;
857 struct pipe_screen *screen = pipe->screen;
858
859 /* init sampler state once */
860 memset(sampler, 0, sizeof(*sampler));
861 sampler->wrap_s = PIPE_TEX_WRAP_CLAMP;
862 sampler->wrap_t = PIPE_TEX_WRAP_CLAMP;
863 sampler->wrap_r = PIPE_TEX_WRAP_CLAMP;
864 sampler->min_img_filter = PIPE_TEX_FILTER_NEAREST;
865 sampler->min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
866 sampler->mag_img_filter = PIPE_TEX_FILTER_NEAREST;
867 st->bitmap.samplers[1] = *sampler;
868 st->bitmap.samplers[1].normalized_coords = 1;
869
870 /* init baseline rasterizer state once */
871 memset(&st->bitmap.rasterizer, 0, sizeof(st->bitmap.rasterizer));
872 st->bitmap.rasterizer.gl_rasterization_rules = 1;
873 st->bitmap.rasterizer.depth_clip = 1;
874
875 /* find a usable texture format */
876 if (screen->is_format_supported(screen, PIPE_FORMAT_I8_UNORM,
877 PIPE_TEXTURE_2D, 0,
878 PIPE_BIND_SAMPLER_VIEW)) {
879 st->bitmap.tex_format = PIPE_FORMAT_I8_UNORM;
880 }
881 else if (screen->is_format_supported(screen, PIPE_FORMAT_A8_UNORM,
882 PIPE_TEXTURE_2D, 0,
883 PIPE_BIND_SAMPLER_VIEW)) {
884 st->bitmap.tex_format = PIPE_FORMAT_A8_UNORM;
885 }
886 else if (screen->is_format_supported(screen, PIPE_FORMAT_L8_UNORM,
887 PIPE_TEXTURE_2D, 0,
888 PIPE_BIND_SAMPLER_VIEW)) {
889 st->bitmap.tex_format = PIPE_FORMAT_L8_UNORM;
890 }
891 else {
892 /* XXX support more formats */
893 assert(0);
894 }
895
896 /* alloc bitmap cache object */
897 st->bitmap.cache = ST_CALLOC_STRUCT(bitmap_cache);
898
899 reset_cache(st);
900 }
901
902
903 /** Per-context tear-down */
904 void
905 st_destroy_bitmap(struct st_context *st)
906 {
907 struct pipe_context *pipe = st->pipe;
908 struct bitmap_cache *cache = st->bitmap.cache;
909
910 if (st->bitmap.vs) {
911 cso_delete_vertex_shader(st->cso_context, st->bitmap.vs);
912 st->bitmap.vs = NULL;
913 }
914
915 if (st->bitmap.vbuf) {
916 pipe_resource_reference(&st->bitmap.vbuf, NULL);
917 st->bitmap.vbuf = NULL;
918 }
919
920 if (cache) {
921 if (cache->trans) {
922 pipe_transfer_unmap(pipe, cache->trans);
923 pipe->transfer_destroy(pipe, cache->trans);
924 }
925 pipe_resource_reference(&st->bitmap.cache->texture, NULL);
926 free(st->bitmap.cache);
927 st->bitmap.cache = NULL;
928 }
929 }
930
931 #endif /* FEATURE_drawpix */