st/mesa: fix OOM failure in bitmap code
[mesa.git] / src / mesa / state_tracker / st_cb_bitmap.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Authors:
30 * Brian Paul
31 */
32
33 #include "main/imports.h"
34 #include "main/image.h"
35 #include "main/bufferobj.h"
36 #include "main/macros.h"
37 #include "main/mfeatures.h"
38 #include "main/pbo.h"
39 #include "program/program.h"
40 #include "program/prog_print.h"
41
42 #include "st_context.h"
43 #include "st_atom.h"
44 #include "st_atom_constbuf.h"
45 #include "st_program.h"
46 #include "st_cb_bitmap.h"
47 #include "st_texture.h"
48
49 #include "pipe/p_context.h"
50 #include "pipe/p_defines.h"
51 #include "pipe/p_shader_tokens.h"
52 #include "util/u_inlines.h"
53 #include "util/u_draw_quad.h"
54 #include "util/u_simple_shaders.h"
55 #include "program/prog_instruction.h"
56 #include "cso_cache/cso_context.h"
57
58
59 #if FEATURE_drawpix
60
61 /**
62 * glBitmaps are drawn as textured quads. The user's bitmap pattern
63 * is stored in a texture image. An alpha8 texture format is used.
64 * The fragment shader samples a bit (texel) from the texture, then
65 * discards the fragment if the bit is off.
66 *
67 * Note that we actually store the inverse image of the bitmap to
68 * simplify the fragment program. An "on" bit gets stored as texel=0x0
69 * and an "off" bit is stored as texel=0xff. Then we kill the
70 * fragment if the negated texel value is less than zero.
71 */
72
73
74 /**
75 * The bitmap cache attempts to accumulate multiple glBitmap calls in a
76 * buffer which is then rendered en mass upon a flush, state change, etc.
77 * A wide, short buffer is used to target the common case of a series
78 * of glBitmap calls being used to draw text.
79 */
80 static GLboolean UseBitmapCache = GL_TRUE;
81
82
83 #define BITMAP_CACHE_WIDTH 512
84 #define BITMAP_CACHE_HEIGHT 32
85
86 struct bitmap_cache
87 {
88 /** Window pos to render the cached image */
89 GLint xpos, ypos;
90 /** Bounds of region used in window coords */
91 GLint xmin, ymin, xmax, ymax;
92
93 GLfloat color[4];
94
95 /** Bitmap's Z position */
96 GLfloat zpos;
97
98 struct pipe_resource *texture;
99 struct pipe_transfer *trans;
100
101 GLboolean empty;
102
103 /** An I8 texture image: */
104 ubyte *buffer;
105 };
106
107
108 /** Epsilon for Z comparisons */
109 #define Z_EPSILON 1e-06
110
111
112 /**
113 * Make fragment program for glBitmap:
114 * Sample the texture and kill the fragment if the bit is 0.
115 * This program will be combined with the user's fragment program.
116 */
117 static struct st_fragment_program *
118 make_bitmap_fragment_program(struct gl_context *ctx, GLuint samplerIndex)
119 {
120 struct st_context *st = st_context(ctx);
121 struct st_fragment_program *stfp;
122 struct gl_program *p;
123 GLuint ic = 0;
124
125 p = ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
126 if (!p)
127 return NULL;
128
129 p->NumInstructions = 3;
130
131 p->Instructions = _mesa_alloc_instructions(p->NumInstructions);
132 if (!p->Instructions) {
133 ctx->Driver.DeleteProgram(ctx, p);
134 return NULL;
135 }
136 _mesa_init_instructions(p->Instructions, p->NumInstructions);
137
138 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
139 p->Instructions[ic].Opcode = OPCODE_TEX;
140 p->Instructions[ic].DstReg.File = PROGRAM_TEMPORARY;
141 p->Instructions[ic].DstReg.Index = 0;
142 p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT;
143 p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_TEX0;
144 p->Instructions[ic].TexSrcUnit = samplerIndex;
145 p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX;
146 ic++;
147
148 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
149 p->Instructions[ic].Opcode = OPCODE_KIL;
150 p->Instructions[ic].SrcReg[0].File = PROGRAM_TEMPORARY;
151
152 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
153 p->Instructions[ic].SrcReg[0].Swizzle = SWIZZLE_XXXX;
154
155 p->Instructions[ic].SrcReg[0].Index = 0;
156 p->Instructions[ic].SrcReg[0].Negate = NEGATE_XYZW;
157 ic++;
158
159 /* END; */
160 p->Instructions[ic++].Opcode = OPCODE_END;
161
162 assert(ic == p->NumInstructions);
163
164 p->InputsRead = FRAG_BIT_TEX0;
165 p->OutputsWritten = 0x0;
166 p->SamplersUsed = (1 << samplerIndex);
167
168 stfp = (struct st_fragment_program *) p;
169 stfp->Base.UsesKill = GL_TRUE;
170
171 return stfp;
172 }
173
174
175 static struct gl_program *
176 make_bitmap_fragment_program_glsl(struct st_context *st,
177 struct st_fragment_program *orig,
178 GLuint samplerIndex)
179 {
180 struct gl_context *ctx = st->ctx;
181 struct st_fragment_program *fp = (struct st_fragment_program *)
182 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
183
184 if (!fp)
185 return NULL;
186
187 get_bitmap_visitor(fp, orig->glsl_to_tgsi, samplerIndex);
188 return &fp->Base.Base;
189 }
190
191
192 static int
193 find_free_bit(uint bitfield)
194 {
195 int i;
196 for (i = 0; i < 32; i++) {
197 if ((bitfield & (1 << i)) == 0) {
198 return i;
199 }
200 }
201 return -1;
202 }
203
204
205 /**
206 * Combine basic bitmap fragment program with the user-defined program.
207 * \param st current context
208 * \param fpIn the incoming fragment program
209 * \param fpOut the new fragment program which does fragment culling
210 * \param bitmap_sampler sampler number for the bitmap texture
211 */
212 void
213 st_make_bitmap_fragment_program(struct st_context *st,
214 struct gl_fragment_program *fpIn,
215 struct gl_fragment_program **fpOut,
216 GLuint *bitmap_sampler)
217 {
218 struct st_fragment_program *bitmap_prog;
219 struct st_fragment_program *stfpIn = (struct st_fragment_program *) fpIn;
220 struct gl_program *newProg;
221 uint sampler;
222
223 /*
224 * Generate new program which is the user-defined program prefixed
225 * with the bitmap sampler/kill instructions.
226 */
227 sampler = find_free_bit(fpIn->Base.SamplersUsed);
228
229 if (stfpIn->glsl_to_tgsi)
230 newProg = make_bitmap_fragment_program_glsl(st, stfpIn, sampler);
231 else {
232 bitmap_prog = make_bitmap_fragment_program(st->ctx, sampler);
233
234 newProg = _mesa_combine_programs(st->ctx,
235 &bitmap_prog->Base.Base,
236 &fpIn->Base);
237 /* done with this after combining */
238 st_reference_fragprog(st, &bitmap_prog, NULL);
239 }
240
241 #if 0
242 {
243 printf("Combined bitmap program:\n");
244 _mesa_print_program(newProg);
245 printf("InputsRead: 0x%x\n", newProg->InputsRead);
246 printf("OutputsWritten: 0x%x\n", newProg->OutputsWritten);
247 _mesa_print_parameter_list(newProg->Parameters);
248 }
249 #endif
250
251 /* return results */
252 *fpOut = (struct gl_fragment_program *) newProg;
253 *bitmap_sampler = sampler;
254 }
255
256
257 /**
258 * Copy user-provide bitmap bits into texture buffer, expanding
259 * bits into texels.
260 * "On" bits will set texels to 0x0.
261 * "Off" bits will not modify texels.
262 * Note that the image is actually going to be upside down in
263 * the texture. We deal with that with texcoords.
264 */
265 static void
266 unpack_bitmap(struct st_context *st,
267 GLint px, GLint py, GLsizei width, GLsizei height,
268 const struct gl_pixelstore_attrib *unpack,
269 const GLubyte *bitmap,
270 ubyte *destBuffer, uint destStride)
271 {
272 destBuffer += py * destStride + px;
273
274 _mesa_expand_bitmap(width, height, unpack, bitmap,
275 destBuffer, destStride, 0x0);
276 }
277
278
279 /**
280 * Create a texture which represents a bitmap image.
281 */
282 static struct pipe_resource *
283 make_bitmap_texture(struct gl_context *ctx, GLsizei width, GLsizei height,
284 const struct gl_pixelstore_attrib *unpack,
285 const GLubyte *bitmap)
286 {
287 struct st_context *st = st_context(ctx);
288 struct pipe_context *pipe = st->pipe;
289 struct pipe_transfer *transfer;
290 ubyte *dest;
291 struct pipe_resource *pt;
292
293 /* PBO source... */
294 bitmap = _mesa_map_pbo_source(ctx, unpack, bitmap);
295 if (!bitmap) {
296 return NULL;
297 }
298
299 /**
300 * Create texture to hold bitmap pattern.
301 */
302 pt = st_texture_create(st, st->internal_target, st->bitmap.tex_format,
303 0, width, height, 1, 1,
304 PIPE_BIND_SAMPLER_VIEW);
305 if (!pt) {
306 _mesa_unmap_pbo_source(ctx, unpack);
307 return NULL;
308 }
309
310 transfer = pipe_get_transfer(st->pipe, pt, 0, 0,
311 PIPE_TRANSFER_WRITE,
312 0, 0, width, height);
313
314 dest = pipe_transfer_map(pipe, transfer);
315
316 /* Put image into texture transfer */
317 memset(dest, 0xff, height * transfer->stride);
318 unpack_bitmap(st, 0, 0, width, height, unpack, bitmap,
319 dest, transfer->stride);
320
321 _mesa_unmap_pbo_source(ctx, unpack);
322
323 /* Release transfer */
324 pipe_transfer_unmap(pipe, transfer);
325 pipe->transfer_destroy(pipe, transfer);
326
327 return pt;
328 }
329
330 static GLuint
331 setup_bitmap_vertex_data(struct st_context *st, bool normalized,
332 int x, int y, int width, int height,
333 float z, const float color[4])
334 {
335 struct pipe_context *pipe = st->pipe;
336 const struct gl_framebuffer *fb = st->ctx->DrawBuffer;
337 const GLfloat fb_width = (GLfloat)fb->Width;
338 const GLfloat fb_height = (GLfloat)fb->Height;
339 const GLfloat x0 = (GLfloat)x;
340 const GLfloat x1 = (GLfloat)(x + width);
341 const GLfloat y0 = (GLfloat)y;
342 const GLfloat y1 = (GLfloat)(y + height);
343 GLfloat sLeft = (GLfloat)0.0, sRight = (GLfloat)1.0;
344 GLfloat tTop = (GLfloat)0.0, tBot = (GLfloat)1.0 - tTop;
345 const GLfloat clip_x0 = (GLfloat)(x0 / fb_width * 2.0 - 1.0);
346 const GLfloat clip_y0 = (GLfloat)(y0 / fb_height * 2.0 - 1.0);
347 const GLfloat clip_x1 = (GLfloat)(x1 / fb_width * 2.0 - 1.0);
348 const GLfloat clip_y1 = (GLfloat)(y1 / fb_height * 2.0 - 1.0);
349 const GLuint max_slots = 1; /* 4096 / sizeof(st->bitmap.vertices); */
350 GLuint i;
351
352 if(!normalized)
353 {
354 sRight = (GLfloat) width;
355 tBot = (GLfloat) height;
356 }
357
358 /* XXX: Need to improve buffer_write to allow NO_WAIT (as well as
359 * no_flush) updates to buffers where we know there is no conflict
360 * with previous data. Currently using max_slots > 1 will cause
361 * synchronous rendering if the driver flushes its command buffers
362 * between one bitmap and the next. Our flush hook below isn't
363 * sufficient to catch this as the driver doesn't tell us when it
364 * flushes its own command buffers. Until this gets fixed, pay the
365 * price of allocating a new buffer for each bitmap cache-flush to
366 * avoid synchronous rendering.
367 */
368 if (st->bitmap.vbuf_slot >= max_slots) {
369 pipe_resource_reference(&st->bitmap.vbuf, NULL);
370 st->bitmap.vbuf_slot = 0;
371 }
372
373 if (!st->bitmap.vbuf) {
374 st->bitmap.vbuf = pipe_buffer_create(pipe->screen,
375 PIPE_BIND_VERTEX_BUFFER,
376 PIPE_USAGE_STREAM,
377 max_slots *
378 sizeof(st->bitmap.vertices));
379 if (!st->bitmap.vbuf) {
380 /* out of memory */
381 return 0;
382 }
383 }
384
385 /* Positions are in clip coords since we need to do clipping in case
386 * the bitmap quad goes beyond the window bounds.
387 */
388 st->bitmap.vertices[0][0][0] = clip_x0;
389 st->bitmap.vertices[0][0][1] = clip_y0;
390 st->bitmap.vertices[0][2][0] = sLeft;
391 st->bitmap.vertices[0][2][1] = tTop;
392
393 st->bitmap.vertices[1][0][0] = clip_x1;
394 st->bitmap.vertices[1][0][1] = clip_y0;
395 st->bitmap.vertices[1][2][0] = sRight;
396 st->bitmap.vertices[1][2][1] = tTop;
397
398 st->bitmap.vertices[2][0][0] = clip_x1;
399 st->bitmap.vertices[2][0][1] = clip_y1;
400 st->bitmap.vertices[2][2][0] = sRight;
401 st->bitmap.vertices[2][2][1] = tBot;
402
403 st->bitmap.vertices[3][0][0] = clip_x0;
404 st->bitmap.vertices[3][0][1] = clip_y1;
405 st->bitmap.vertices[3][2][0] = sLeft;
406 st->bitmap.vertices[3][2][1] = tBot;
407
408 /* same for all verts: */
409 for (i = 0; i < 4; i++) {
410 st->bitmap.vertices[i][0][2] = z;
411 st->bitmap.vertices[i][0][3] = 1.0f;
412 st->bitmap.vertices[i][1][0] = color[0];
413 st->bitmap.vertices[i][1][1] = color[1];
414 st->bitmap.vertices[i][1][2] = color[2];
415 st->bitmap.vertices[i][1][3] = color[3];
416 st->bitmap.vertices[i][2][2] = 0.0; /*R*/
417 st->bitmap.vertices[i][2][3] = 1.0; /*Q*/
418 }
419
420 /* put vertex data into vbuf */
421 pipe_buffer_write_nooverlap(st->pipe,
422 st->bitmap.vbuf,
423 st->bitmap.vbuf_slot
424 * sizeof(st->bitmap.vertices),
425 sizeof st->bitmap.vertices,
426 st->bitmap.vertices);
427
428 return st->bitmap.vbuf_slot++ * sizeof st->bitmap.vertices;
429 }
430
431
432
433 /**
434 * Render a glBitmap by drawing a textured quad
435 */
436 static void
437 draw_bitmap_quad(struct gl_context *ctx, GLint x, GLint y, GLfloat z,
438 GLsizei width, GLsizei height,
439 struct pipe_sampler_view *sv,
440 const GLfloat *color)
441 {
442 struct st_context *st = st_context(ctx);
443 struct pipe_context *pipe = st->pipe;
444 struct cso_context *cso = st->cso_context;
445 struct st_fp_variant *fpv;
446 struct st_fp_variant_key key;
447 GLuint maxSize;
448 GLuint offset;
449
450 memset(&key, 0, sizeof(key));
451 key.st = st;
452 key.bitmap = GL_TRUE;
453
454 fpv = st_get_fp_variant(st, st->fp, &key);
455
456 /* As an optimization, Mesa's fragment programs will sometimes get the
457 * primary color from a statevar/constant rather than a varying variable.
458 * when that's the case, we need to ensure that we use the 'color'
459 * parameter and not the current attribute color (which may have changed
460 * through glRasterPos and state validation.
461 * So, we force the proper color here. Not elegant, but it works.
462 */
463 {
464 GLfloat colorSave[4];
465 COPY_4V(colorSave, ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
466 COPY_4V(ctx->Current.Attrib[VERT_ATTRIB_COLOR0], color);
467 st_upload_constants(st, fpv->parameters, PIPE_SHADER_FRAGMENT);
468 COPY_4V(ctx->Current.Attrib[VERT_ATTRIB_COLOR0], colorSave);
469 }
470
471
472 /* limit checks */
473 /* XXX if the bitmap is larger than the max texture size, break
474 * it up into chunks.
475 */
476 maxSize = 1 << (pipe->screen->get_param(pipe->screen,
477 PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
478 assert(width <= (GLsizei)maxSize);
479 assert(height <= (GLsizei)maxSize);
480
481 cso_save_rasterizer(cso);
482 cso_save_samplers(cso);
483 cso_save_fragment_sampler_views(cso);
484 cso_save_viewport(cso);
485 cso_save_fragment_shader(cso);
486 cso_save_vertex_shader(cso);
487 cso_save_geometry_shader(cso);
488 cso_save_vertex_elements(cso);
489 cso_save_vertex_buffers(cso);
490
491 /* rasterizer state: just scissor */
492 st->bitmap.rasterizer.scissor = ctx->Scissor.Enabled;
493 cso_set_rasterizer(cso, &st->bitmap.rasterizer);
494
495 /* fragment shader state: TEX lookup program */
496 cso_set_fragment_shader_handle(cso, fpv->driver_shader);
497
498 /* vertex shader state: position + texcoord pass-through */
499 cso_set_vertex_shader_handle(cso, st->bitmap.vs);
500
501 /* geometry shader state: disabled */
502 cso_set_geometry_shader_handle(cso, NULL);
503
504 /* user samplers, plus our bitmap sampler */
505 {
506 struct pipe_sampler_state *samplers[PIPE_MAX_SAMPLERS];
507 uint num = MAX2(fpv->bitmap_sampler + 1, st->state.num_samplers);
508 uint i;
509 for (i = 0; i < st->state.num_samplers; i++) {
510 samplers[i] = &st->state.samplers[i];
511 }
512 samplers[fpv->bitmap_sampler] =
513 &st->bitmap.samplers[sv->texture->target != PIPE_TEXTURE_RECT];
514 cso_set_samplers(cso, num, (const struct pipe_sampler_state **) samplers);
515 }
516
517 /* user textures, plus the bitmap texture */
518 {
519 struct pipe_sampler_view *sampler_views[PIPE_MAX_SAMPLERS];
520 uint num = MAX2(fpv->bitmap_sampler + 1, st->state.num_textures);
521 memcpy(sampler_views, st->state.sampler_views, sizeof(sampler_views));
522 sampler_views[fpv->bitmap_sampler] = sv;
523 cso_set_fragment_sampler_views(cso, num, sampler_views);
524 }
525
526 /* viewport state: viewport matching window dims */
527 {
528 const struct gl_framebuffer *fb = st->ctx->DrawBuffer;
529 const GLboolean invert = (st_fb_orientation(fb) == Y_0_TOP);
530 const GLfloat width = (GLfloat)fb->Width;
531 const GLfloat height = (GLfloat)fb->Height;
532 struct pipe_viewport_state vp;
533 vp.scale[0] = 0.5f * width;
534 vp.scale[1] = height * (invert ? -0.5f : 0.5f);
535 vp.scale[2] = 0.5f;
536 vp.scale[3] = 1.0f;
537 vp.translate[0] = 0.5f * width;
538 vp.translate[1] = 0.5f * height;
539 vp.translate[2] = 0.5f;
540 vp.translate[3] = 0.0f;
541 cso_set_viewport(cso, &vp);
542 }
543
544 cso_set_vertex_elements(cso, 3, st->velems_util_draw);
545
546 /* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */
547 z = z * 2.0f - 1.0f;
548
549 /* draw textured quad */
550 offset = setup_bitmap_vertex_data(st,
551 sv->texture->target != PIPE_TEXTURE_RECT,
552 x, y, width, height, z, color);
553
554 if (st->bitmap.vbuf) {
555 util_draw_vertex_buffer(pipe, st->cso_context, st->bitmap.vbuf, offset,
556 PIPE_PRIM_TRIANGLE_FAN,
557 4, /* verts */
558 3); /* attribs/vert */
559 }
560
561 /* restore state */
562 cso_restore_rasterizer(cso);
563 cso_restore_samplers(cso);
564 cso_restore_fragment_sampler_views(cso);
565 cso_restore_viewport(cso);
566 cso_restore_fragment_shader(cso);
567 cso_restore_vertex_shader(cso);
568 cso_restore_geometry_shader(cso);
569 cso_restore_vertex_elements(cso);
570 cso_restore_vertex_buffers(cso);
571 }
572
573
574 static void
575 reset_cache(struct st_context *st)
576 {
577 struct pipe_context *pipe = st->pipe;
578 struct bitmap_cache *cache = st->bitmap.cache;
579
580 /*memset(cache->buffer, 0xff, sizeof(cache->buffer));*/
581 cache->empty = GL_TRUE;
582
583 cache->xmin = 1000000;
584 cache->xmax = -1000000;
585 cache->ymin = 1000000;
586 cache->ymax = -1000000;
587
588 if (cache->trans) {
589 pipe->transfer_destroy(pipe, cache->trans);
590 cache->trans = NULL;
591 }
592
593 assert(!cache->texture);
594
595 /* allocate a new texture */
596 cache->texture = st_texture_create(st, PIPE_TEXTURE_2D,
597 st->bitmap.tex_format, 0,
598 BITMAP_CACHE_WIDTH, BITMAP_CACHE_HEIGHT,
599 1, 1,
600 PIPE_BIND_SAMPLER_VIEW);
601 }
602
603
604 /** Print bitmap image to stdout (debug) */
605 static void
606 print_cache(const struct bitmap_cache *cache)
607 {
608 int i, j, k;
609
610 for (i = 0; i < BITMAP_CACHE_HEIGHT; i++) {
611 k = BITMAP_CACHE_WIDTH * (BITMAP_CACHE_HEIGHT - i - 1);
612 for (j = 0; j < BITMAP_CACHE_WIDTH; j++) {
613 if (cache->buffer[k])
614 printf("X");
615 else
616 printf(" ");
617 k++;
618 }
619 printf("\n");
620 }
621 }
622
623
624 /**
625 * Create gallium pipe_transfer object for the bitmap cache.
626 */
627 static void
628 create_cache_trans(struct st_context *st)
629 {
630 struct pipe_context *pipe = st->pipe;
631 struct bitmap_cache *cache = st->bitmap.cache;
632
633 if (cache->trans)
634 return;
635
636 /* Map the texture transfer.
637 * Subsequent glBitmap calls will write into the texture image.
638 */
639 cache->trans = pipe_get_transfer(st->pipe, cache->texture, 0, 0,
640 PIPE_TRANSFER_WRITE, 0, 0,
641 BITMAP_CACHE_WIDTH,
642 BITMAP_CACHE_HEIGHT);
643 cache->buffer = pipe_transfer_map(pipe, cache->trans);
644
645 /* init image to all 0xff */
646 memset(cache->buffer, 0xff, cache->trans->stride * BITMAP_CACHE_HEIGHT);
647 }
648
649
650 /**
651 * If there's anything in the bitmap cache, draw/flush it now.
652 */
653 void
654 st_flush_bitmap_cache(struct st_context *st)
655 {
656 if (!st->bitmap.cache->empty) {
657 struct bitmap_cache *cache = st->bitmap.cache;
658
659 if (st->ctx->DrawBuffer) {
660 struct pipe_context *pipe = st->pipe;
661 struct pipe_sampler_view *sv;
662
663 assert(cache->xmin <= cache->xmax);
664
665 /* printf("flush size %d x %d at %d, %d\n",
666 cache->xmax - cache->xmin,
667 cache->ymax - cache->ymin,
668 cache->xpos, cache->ypos);
669 */
670
671 /* The texture transfer has been mapped until now.
672 * So unmap and release the texture transfer before drawing.
673 */
674 if (cache->trans) {
675 if (0)
676 print_cache(cache);
677 pipe_transfer_unmap(pipe, cache->trans);
678 cache->buffer = NULL;
679
680 pipe->transfer_destroy(pipe, cache->trans);
681 cache->trans = NULL;
682 }
683
684 sv = st_create_texture_sampler_view(st->pipe, cache->texture);
685 if (sv) {
686 draw_bitmap_quad(st->ctx,
687 cache->xpos,
688 cache->ypos,
689 cache->zpos,
690 BITMAP_CACHE_WIDTH, BITMAP_CACHE_HEIGHT,
691 sv,
692 cache->color);
693
694 pipe_sampler_view_reference(&sv, NULL);
695 }
696 }
697
698 /* release/free the texture */
699 pipe_resource_reference(&cache->texture, NULL);
700
701 reset_cache(st);
702 }
703 }
704
705
706 /**
707 * Flush bitmap cache and release vertex buffer.
708 */
709 void
710 st_flush_bitmap( struct st_context *st )
711 {
712 st_flush_bitmap_cache(st);
713
714 /* Release vertex buffer to avoid synchronous rendering if we were
715 * to map it in the next frame.
716 */
717 pipe_resource_reference(&st->bitmap.vbuf, NULL);
718 st->bitmap.vbuf_slot = 0;
719 }
720
721
722 /**
723 * Try to accumulate this glBitmap call in the bitmap cache.
724 * \return GL_TRUE for success, GL_FALSE if bitmap is too large, etc.
725 */
726 static GLboolean
727 accum_bitmap(struct st_context *st,
728 GLint x, GLint y, GLsizei width, GLsizei height,
729 const struct gl_pixelstore_attrib *unpack,
730 const GLubyte *bitmap )
731 {
732 struct bitmap_cache *cache = st->bitmap.cache;
733 int px = -999, py = -999;
734 const GLfloat z = st->ctx->Current.RasterPos[2];
735
736 if (width > BITMAP_CACHE_WIDTH ||
737 height > BITMAP_CACHE_HEIGHT)
738 return GL_FALSE; /* too big to cache */
739
740 if (!cache->empty) {
741 px = x - cache->xpos; /* pos in buffer */
742 py = y - cache->ypos;
743 if (px < 0 || px + width > BITMAP_CACHE_WIDTH ||
744 py < 0 || py + height > BITMAP_CACHE_HEIGHT ||
745 !TEST_EQ_4V(st->ctx->Current.RasterColor, cache->color) ||
746 ((fabs(z - cache->zpos) > Z_EPSILON))) {
747 /* This bitmap would extend beyond cache bounds, or the bitmap
748 * color is changing
749 * so flush and continue.
750 */
751 st_flush_bitmap_cache(st);
752 }
753 }
754
755 if (cache->empty) {
756 /* Initialize. Center bitmap vertically in the buffer. */
757 px = 0;
758 py = (BITMAP_CACHE_HEIGHT - height) / 2;
759 cache->xpos = x;
760 cache->ypos = y - py;
761 cache->zpos = z;
762 cache->empty = GL_FALSE;
763 COPY_4FV(cache->color, st->ctx->Current.RasterColor);
764 }
765
766 assert(px != -999);
767 assert(py != -999);
768
769 if (x < cache->xmin)
770 cache->xmin = x;
771 if (y < cache->ymin)
772 cache->ymin = y;
773 if (x + width > cache->xmax)
774 cache->xmax = x + width;
775 if (y + height > cache->ymax)
776 cache->ymax = y + height;
777
778 /* create the transfer if needed */
779 create_cache_trans(st);
780
781 unpack_bitmap(st, px, py, width, height, unpack, bitmap,
782 cache->buffer, BITMAP_CACHE_WIDTH);
783
784 return GL_TRUE; /* accumulated */
785 }
786
787
788
789 /**
790 * Called via ctx->Driver.Bitmap()
791 */
792 static void
793 st_Bitmap(struct gl_context *ctx, GLint x, GLint y,
794 GLsizei width, GLsizei height,
795 const struct gl_pixelstore_attrib *unpack, const GLubyte *bitmap )
796 {
797 struct st_context *st = st_context(ctx);
798 struct pipe_resource *pt;
799
800 if (width == 0 || height == 0)
801 return;
802
803 st_validate_state(st);
804
805 if (!st->bitmap.vs) {
806 /* create pass-through vertex shader now */
807 const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
808 TGSI_SEMANTIC_COLOR,
809 TGSI_SEMANTIC_GENERIC };
810 const uint semantic_indexes[] = { 0, 0, 0 };
811 st->bitmap.vs = util_make_vertex_passthrough_shader(st->pipe, 3,
812 semantic_names,
813 semantic_indexes);
814 }
815
816 if (UseBitmapCache && accum_bitmap(st, x, y, width, height, unpack, bitmap))
817 return;
818
819 pt = make_bitmap_texture(ctx, width, height, unpack, bitmap);
820 if (pt) {
821 struct pipe_sampler_view *sv =
822 st_create_texture_sampler_view(st->pipe, pt);
823
824 assert(pt->target == PIPE_TEXTURE_2D || pt->target == PIPE_TEXTURE_RECT);
825
826 if (sv) {
827 draw_bitmap_quad(ctx, x, y, ctx->Current.RasterPos[2],
828 width, height, sv,
829 st->ctx->Current.RasterColor);
830
831 pipe_sampler_view_reference(&sv, NULL);
832 }
833
834 /* release/free the texture */
835 pipe_resource_reference(&pt, NULL);
836 }
837 }
838
839
840 /** Per-context init */
841 void
842 st_init_bitmap_functions(struct dd_function_table *functions)
843 {
844 functions->Bitmap = st_Bitmap;
845 }
846
847
848 /** Per-context init */
849 void
850 st_init_bitmap(struct st_context *st)
851 {
852 struct pipe_sampler_state *sampler = &st->bitmap.samplers[0];
853 struct pipe_context *pipe = st->pipe;
854 struct pipe_screen *screen = pipe->screen;
855
856 /* init sampler state once */
857 memset(sampler, 0, sizeof(*sampler));
858 sampler->wrap_s = PIPE_TEX_WRAP_CLAMP;
859 sampler->wrap_t = PIPE_TEX_WRAP_CLAMP;
860 sampler->wrap_r = PIPE_TEX_WRAP_CLAMP;
861 sampler->min_img_filter = PIPE_TEX_FILTER_NEAREST;
862 sampler->min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
863 sampler->mag_img_filter = PIPE_TEX_FILTER_NEAREST;
864 st->bitmap.samplers[1] = *sampler;
865 st->bitmap.samplers[1].normalized_coords = 1;
866
867 /* init baseline rasterizer state once */
868 memset(&st->bitmap.rasterizer, 0, sizeof(st->bitmap.rasterizer));
869 st->bitmap.rasterizer.gl_rasterization_rules = 1;
870
871 /* find a usable texture format */
872 if (screen->is_format_supported(screen, PIPE_FORMAT_I8_UNORM,
873 PIPE_TEXTURE_2D, 0,
874 PIPE_BIND_SAMPLER_VIEW)) {
875 st->bitmap.tex_format = PIPE_FORMAT_I8_UNORM;
876 }
877 else if (screen->is_format_supported(screen, PIPE_FORMAT_A8_UNORM,
878 PIPE_TEXTURE_2D, 0,
879 PIPE_BIND_SAMPLER_VIEW)) {
880 st->bitmap.tex_format = PIPE_FORMAT_A8_UNORM;
881 }
882 else if (screen->is_format_supported(screen, PIPE_FORMAT_L8_UNORM,
883 PIPE_TEXTURE_2D, 0,
884 PIPE_BIND_SAMPLER_VIEW)) {
885 st->bitmap.tex_format = PIPE_FORMAT_L8_UNORM;
886 }
887 else {
888 /* XXX support more formats */
889 assert(0);
890 }
891
892 /* alloc bitmap cache object */
893 st->bitmap.cache = ST_CALLOC_STRUCT(bitmap_cache);
894
895 reset_cache(st);
896 }
897
898
899 /** Per-context tear-down */
900 void
901 st_destroy_bitmap(struct st_context *st)
902 {
903 struct pipe_context *pipe = st->pipe;
904 struct bitmap_cache *cache = st->bitmap.cache;
905
906 if (st->bitmap.vs) {
907 cso_delete_vertex_shader(st->cso_context, st->bitmap.vs);
908 st->bitmap.vs = NULL;
909 }
910
911 if (st->bitmap.vbuf) {
912 pipe_resource_reference(&st->bitmap.vbuf, NULL);
913 st->bitmap.vbuf = NULL;
914 }
915
916 if (cache) {
917 if (cache->trans) {
918 pipe_transfer_unmap(pipe, cache->trans);
919 pipe->transfer_destroy(pipe, cache->trans);
920 }
921 pipe_resource_reference(&st->bitmap.cache->texture, NULL);
922 free(st->bitmap.cache);
923 st->bitmap.cache = NULL;
924 }
925 }
926
927 #endif /* FEATURE_drawpix */