st/mesa: fix indentation
[mesa.git] / src / mesa / state_tracker / st_cb_drawpixels.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Authors:
30 * Brian Paul
31 */
32
33 #include "main/imports.h"
34 #include "main/image.h"
35 #include "main/bufferobj.h"
36 #include "main/macros.h"
37 #include "main/mfeatures.h"
38 #include "main/mtypes.h"
39 #include "main/pack.h"
40 #include "main/pbo.h"
41 #include "main/texformat.h"
42 #include "main/teximage.h"
43 #include "main/texstore.h"
44 #include "program/program.h"
45 #include "program/prog_print.h"
46 #include "program/prog_instruction.h"
47
48 #include "st_atom.h"
49 #include "st_atom_constbuf.h"
50 #include "st_cb_drawpixels.h"
51 #include "st_cb_readpixels.h"
52 #include "st_cb_fbo.h"
53 #include "st_context.h"
54 #include "st_debug.h"
55 #include "st_format.h"
56 #include "st_program.h"
57 #include "st_texture.h"
58
59 #include "pipe/p_context.h"
60 #include "pipe/p_defines.h"
61 #include "tgsi/tgsi_ureg.h"
62 #include "util/u_draw_quad.h"
63 #include "util/u_format.h"
64 #include "util/u_inlines.h"
65 #include "util/u_math.h"
66 #include "util/u_tile.h"
67 #include "cso_cache/cso_context.h"
68
69
70 #if FEATURE_drawpix
71
72 /**
73 * Check if the given program is:
74 * 0: MOVE result.color, fragment.color;
75 * 1: END;
76 */
77 static GLboolean
78 is_passthrough_program(const struct gl_fragment_program *prog)
79 {
80 if (prog->Base.NumInstructions == 2) {
81 const struct prog_instruction *inst = prog->Base.Instructions;
82 if (inst[0].Opcode == OPCODE_MOV &&
83 inst[1].Opcode == OPCODE_END &&
84 inst[0].DstReg.File == PROGRAM_OUTPUT &&
85 inst[0].DstReg.Index == FRAG_RESULT_COLOR &&
86 inst[0].DstReg.WriteMask == WRITEMASK_XYZW &&
87 inst[0].SrcReg[0].File == PROGRAM_INPUT &&
88 inst[0].SrcReg[0].Index == FRAG_ATTRIB_COL0 &&
89 inst[0].SrcReg[0].Swizzle == SWIZZLE_XYZW) {
90 return GL_TRUE;
91 }
92 }
93 return GL_FALSE;
94 }
95
96
97 /**
98 * Returns a fragment program which implements the current pixel transfer ops.
99 */
100 static struct gl_fragment_program *
101 get_glsl_pixel_transfer_program(struct st_context *st,
102 struct st_fragment_program *orig)
103 {
104 int pixelMaps = 0, scaleAndBias = 0;
105 struct gl_context *ctx = st->ctx;
106 struct st_fragment_program *fp = (struct st_fragment_program *)
107 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
108
109 if (!fp)
110 return NULL;
111
112 if (ctx->Pixel.RedBias != 0.0 || ctx->Pixel.RedScale != 1.0 ||
113 ctx->Pixel.GreenBias != 0.0 || ctx->Pixel.GreenScale != 1.0 ||
114 ctx->Pixel.BlueBias != 0.0 || ctx->Pixel.BlueScale != 1.0 ||
115 ctx->Pixel.AlphaBias != 0.0 || ctx->Pixel.AlphaScale != 1.0) {
116 scaleAndBias = 1;
117 }
118
119 pixelMaps = ctx->Pixel.MapColorFlag;
120
121 if (pixelMaps) {
122 /* create the colormap/texture now if not already done */
123 if (!st->pixel_xfer.pixelmap_texture) {
124 st->pixel_xfer.pixelmap_texture = st_create_color_map_texture(ctx);
125 st->pixel_xfer.pixelmap_sampler_view =
126 st_create_texture_sampler_view(st->pipe,
127 st->pixel_xfer.pixelmap_texture);
128 }
129 }
130
131 get_pixel_transfer_visitor(fp, orig->glsl_to_tgsi,
132 scaleAndBias, pixelMaps);
133
134 return &fp->Base;
135 }
136
137
138 /**
139 * Make fragment shader for glDraw/CopyPixels. This shader is made
140 * by combining the pixel transfer shader with the user-defined shader.
141 * \param fpIn the current/incoming fragment program
142 * \param fpOut returns the combined fragment program
143 */
144 void
145 st_make_drawpix_fragment_program(struct st_context *st,
146 struct gl_fragment_program *fpIn,
147 struct gl_fragment_program **fpOut)
148 {
149 struct gl_program *newProg;
150 struct st_fragment_program *stfp = (struct st_fragment_program *) fpIn;
151
152 if (is_passthrough_program(fpIn)) {
153 newProg = (struct gl_program *) _mesa_clone_fragment_program(st->ctx,
154 &st->pixel_xfer.program->Base);
155 }
156 else if (stfp->glsl_to_tgsi != NULL) {
157 newProg = (struct gl_program *) get_glsl_pixel_transfer_program(st, stfp);
158 }
159 else {
160 #if 0
161 /* debug */
162 printf("Base program:\n");
163 _mesa_print_program(&fpIn->Base);
164 printf("DrawPix program:\n");
165 _mesa_print_program(&st->pixel_xfer.program->Base.Base);
166 #endif
167 newProg = _mesa_combine_programs(st->ctx,
168 &st->pixel_xfer.program->Base.Base,
169 &fpIn->Base);
170 }
171
172 #if 0
173 /* debug */
174 printf("Combined DrawPixels program:\n");
175 _mesa_print_program(newProg);
176 printf("InputsRead: 0x%x\n", newProg->InputsRead);
177 printf("OutputsWritten: 0x%x\n", newProg->OutputsWritten);
178 _mesa_print_parameter_list(newProg->Parameters);
179 #endif
180
181 *fpOut = (struct gl_fragment_program *) newProg;
182 }
183
184
185 /**
186 * Create fragment program that does a TEX() instruction to get a Z and/or
187 * stencil value value, then writes to FRAG_RESULT_DEPTH/FRAG_RESULT_STENCIL.
188 * Used for glDrawPixels(GL_DEPTH_COMPONENT / GL_STENCIL_INDEX).
189 * Pass fragment color through as-is.
190 * \return pointer to the gl_fragment program
191 */
192 struct gl_fragment_program *
193 st_make_drawpix_z_stencil_program(struct st_context *st,
194 GLboolean write_depth,
195 GLboolean write_stencil)
196 {
197 struct gl_context *ctx = st->ctx;
198 struct gl_program *p;
199 struct gl_fragment_program *fp;
200 GLuint ic = 0;
201 const GLuint shaderIndex = write_depth * 2 + write_stencil;
202
203 assert(shaderIndex < Elements(st->drawpix.shaders));
204
205 if (st->drawpix.shaders[shaderIndex]) {
206 /* already have the proper shader */
207 return st->drawpix.shaders[shaderIndex];
208 }
209
210 /*
211 * Create shader now
212 */
213 p = ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
214 if (!p)
215 return NULL;
216
217 p->NumInstructions = write_depth ? 2 : 1;
218 p->NumInstructions += write_stencil ? 1 : 0;
219
220 p->Instructions = _mesa_alloc_instructions(p->NumInstructions);
221 if (!p->Instructions) {
222 ctx->Driver.DeleteProgram(ctx, p);
223 return NULL;
224 }
225 _mesa_init_instructions(p->Instructions, p->NumInstructions);
226
227 if (write_depth) {
228 /* TEX result.depth, fragment.texcoord[0], texture[0], 2D; */
229 p->Instructions[ic].Opcode = OPCODE_TEX;
230 p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT;
231 p->Instructions[ic].DstReg.Index = FRAG_RESULT_DEPTH;
232 p->Instructions[ic].DstReg.WriteMask = WRITEMASK_Z;
233 p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT;
234 p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_TEX0;
235 p->Instructions[ic].TexSrcUnit = 0;
236 p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX;
237 ic++;
238 }
239
240 if (write_stencil) {
241 /* TEX result.stencil, fragment.texcoord[0], texture[0], 2D; */
242 p->Instructions[ic].Opcode = OPCODE_TEX;
243 p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT;
244 p->Instructions[ic].DstReg.Index = FRAG_RESULT_STENCIL;
245 p->Instructions[ic].DstReg.WriteMask = WRITEMASK_Y;
246 p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT;
247 p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_TEX0;
248 p->Instructions[ic].TexSrcUnit = 1;
249 p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX;
250 ic++;
251 }
252
253 /* END; */
254 p->Instructions[ic++].Opcode = OPCODE_END;
255
256 assert(ic == p->NumInstructions);
257
258 p->InputsRead = FRAG_BIT_TEX0 | FRAG_BIT_COL0;
259 p->OutputsWritten = 0;
260 if (write_depth)
261 p->OutputsWritten |= BITFIELD64_BIT(FRAG_RESULT_DEPTH);
262 if (write_stencil)
263 p->OutputsWritten |= BITFIELD64_BIT(FRAG_RESULT_STENCIL);
264
265 p->SamplersUsed = 0x1; /* sampler 0 (bit 0) is used */
266 if (write_stencil)
267 p->SamplersUsed |= 1 << 1;
268
269 fp = (struct gl_fragment_program *) p;
270
271 /* save the new shader */
272 st->drawpix.shaders[shaderIndex] = fp;
273
274 return fp;
275 }
276
277
278 /**
279 * Create a simple vertex shader that just passes through the
280 * vertex position and texcoord (and optionally, color).
281 */
282 static void *
283 make_passthrough_vertex_shader(struct st_context *st,
284 GLboolean passColor)
285 {
286 if (!st->drawpix.vert_shaders[passColor]) {
287 struct ureg_program *ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
288
289 if (ureg == NULL)
290 return NULL;
291
292 /* MOV result.pos, vertex.pos; */
293 ureg_MOV(ureg,
294 ureg_DECL_output( ureg, TGSI_SEMANTIC_POSITION, 0 ),
295 ureg_DECL_vs_input( ureg, 0 ));
296
297 /* MOV result.texcoord0, vertex.attr[1]; */
298 ureg_MOV(ureg,
299 ureg_DECL_output( ureg, TGSI_SEMANTIC_GENERIC, 0 ),
300 ureg_DECL_vs_input( ureg, 1 ));
301
302 if (passColor) {
303 /* MOV result.color0, vertex.attr[2]; */
304 ureg_MOV(ureg,
305 ureg_DECL_output( ureg, TGSI_SEMANTIC_COLOR, 0 ),
306 ureg_DECL_vs_input( ureg, 2 ));
307 }
308
309 ureg_END( ureg );
310
311 st->drawpix.vert_shaders[passColor] =
312 ureg_create_shader_and_destroy( ureg, st->pipe );
313 }
314
315 return st->drawpix.vert_shaders[passColor];
316 }
317
318
319 /**
320 * Return a texture internalFormat for drawing/copying an image
321 * of the given format and type.
322 */
323 static GLenum
324 internal_format(struct gl_context *ctx, GLenum format, GLenum type)
325 {
326 switch (format) {
327 case GL_DEPTH_COMPONENT:
328 switch (type) {
329 case GL_UNSIGNED_SHORT:
330 return GL_DEPTH_COMPONENT16;
331
332 case GL_UNSIGNED_INT:
333 return GL_DEPTH_COMPONENT32;
334
335 case GL_FLOAT:
336 if (ctx->Extensions.ARB_depth_buffer_float)
337 return GL_DEPTH_COMPONENT32F;
338 else
339 return GL_DEPTH_COMPONENT;
340
341 default:
342 return GL_DEPTH_COMPONENT;
343 }
344
345 case GL_DEPTH_STENCIL:
346 switch (type) {
347 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
348 return GL_DEPTH32F_STENCIL8;
349
350 case GL_UNSIGNED_INT_24_8:
351 default:
352 return GL_DEPTH24_STENCIL8;
353 }
354
355 case GL_STENCIL_INDEX:
356 return GL_STENCIL_INDEX;
357
358 default:
359 if (_mesa_is_integer_format(format)) {
360 switch (type) {
361 case GL_BYTE:
362 return GL_RGBA8I;
363 case GL_UNSIGNED_BYTE:
364 return GL_RGBA8UI;
365 case GL_SHORT:
366 return GL_RGBA16I;
367 case GL_UNSIGNED_SHORT:
368 return GL_RGBA16UI;
369 case GL_INT:
370 return GL_RGBA32I;
371 case GL_UNSIGNED_INT:
372 return GL_RGBA32UI;
373 default:
374 assert(0 && "Unexpected type in internal_format()");
375 return GL_RGBA_INTEGER;
376 }
377 }
378 else {
379 switch (type) {
380 case GL_UNSIGNED_BYTE:
381 case GL_UNSIGNED_INT_8_8_8_8:
382 case GL_UNSIGNED_INT_8_8_8_8_REV:
383 default:
384 return GL_RGBA8;
385
386 case GL_UNSIGNED_BYTE_3_3_2:
387 case GL_UNSIGNED_BYTE_2_3_3_REV:
388 case GL_UNSIGNED_SHORT_4_4_4_4:
389 case GL_UNSIGNED_SHORT_4_4_4_4_REV:
390 return GL_RGBA4;
391
392 case GL_UNSIGNED_SHORT_5_6_5:
393 case GL_UNSIGNED_SHORT_5_6_5_REV:
394 case GL_UNSIGNED_SHORT_5_5_5_1:
395 case GL_UNSIGNED_SHORT_1_5_5_5_REV:
396 return GL_RGB5_A1;
397
398 case GL_UNSIGNED_INT_10_10_10_2:
399 case GL_UNSIGNED_INT_2_10_10_10_REV:
400 return GL_RGB10_A2;
401
402 case GL_UNSIGNED_SHORT:
403 case GL_UNSIGNED_INT:
404 return GL_RGBA16;
405
406 case GL_BYTE:
407 return
408 ctx->Extensions.EXT_texture_snorm ? GL_RGBA8_SNORM : GL_RGBA8;
409
410 case GL_SHORT:
411 case GL_INT:
412 return
413 ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
414
415 case GL_HALF_FLOAT_ARB:
416 return
417 ctx->Extensions.ARB_texture_float ? GL_RGBA16F :
418 ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
419
420 case GL_FLOAT:
421 case GL_DOUBLE:
422 return
423 ctx->Extensions.ARB_texture_float ? GL_RGBA32F :
424 ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
425
426 case GL_UNSIGNED_INT_5_9_9_9_REV:
427 assert(ctx->Extensions.EXT_texture_shared_exponent);
428 return GL_RGB9_E5;
429
430 case GL_UNSIGNED_INT_10F_11F_11F_REV:
431 assert(ctx->Extensions.EXT_packed_float);
432 return GL_R11F_G11F_B10F;
433 }
434 }
435 }
436 }
437
438
439 /**
440 * Create a temporary texture to hold an image of the given size.
441 * If width, height are not POT and the driver only handles POT textures,
442 * allocate the next larger size of texture that is POT.
443 */
444 static struct pipe_resource *
445 alloc_texture(struct st_context *st, GLsizei width, GLsizei height,
446 enum pipe_format texFormat)
447 {
448 struct pipe_resource *pt;
449
450 pt = st_texture_create(st, st->internal_target, texFormat, 0,
451 width, height, 1, 1, PIPE_BIND_SAMPLER_VIEW);
452
453 return pt;
454 }
455
456
457 /**
458 * Make texture containing an image for glDrawPixels image.
459 * If 'pixels' is NULL, leave the texture image data undefined.
460 */
461 static struct pipe_resource *
462 make_texture(struct st_context *st,
463 GLsizei width, GLsizei height, GLenum format, GLenum type,
464 const struct gl_pixelstore_attrib *unpack,
465 const GLvoid *pixels)
466 {
467 struct gl_context *ctx = st->ctx;
468 struct pipe_context *pipe = st->pipe;
469 gl_format mformat;
470 struct pipe_resource *pt;
471 enum pipe_format pipeFormat;
472 GLenum baseInternalFormat, intFormat;
473
474 intFormat = internal_format(ctx, format, type);
475 baseInternalFormat = _mesa_base_tex_format(ctx, intFormat);
476
477 mformat = st_ChooseTextureFormat_renderable(ctx, intFormat,
478 format, type, GL_FALSE);
479 assert(mformat);
480
481 pipeFormat = st_mesa_format_to_pipe_format(mformat);
482 assert(pipeFormat);
483
484 pixels = _mesa_map_pbo_source(ctx, unpack, pixels);
485 if (!pixels)
486 return NULL;
487
488 /* alloc temporary texture */
489 pt = alloc_texture(st, width, height, pipeFormat);
490 if (!pt) {
491 _mesa_unmap_pbo_source(ctx, unpack);
492 return NULL;
493 }
494
495 {
496 struct pipe_transfer *transfer;
497 GLboolean success;
498 GLubyte *dest;
499 const GLbitfield imageTransferStateSave = ctx->_ImageTransferState;
500
501 /* we'll do pixel transfer in a fragment shader */
502 ctx->_ImageTransferState = 0x0;
503
504 transfer = pipe_get_transfer(st->pipe, pt, 0, 0,
505 PIPE_TRANSFER_WRITE, 0, 0,
506 width, height);
507
508 /* map texture transfer */
509 dest = pipe_transfer_map(pipe, transfer);
510
511
512 /* Put image into texture transfer.
513 * Note that the image is actually going to be upside down in
514 * the texture. We deal with that with texcoords.
515 */
516 success = _mesa_texstore(ctx, 2, /* dims */
517 baseInternalFormat, /* baseInternalFormat */
518 mformat, /* gl_format */
519 0, 0, 0, /* dstX/Y/Zoffset */
520 transfer->stride, /* dstRowStride, bytes */
521 &dest, /* destSlices */
522 width, height, 1, /* size */
523 format, type, /* src format/type */
524 pixels, /* data source */
525 unpack);
526
527 /* unmap */
528 pipe_transfer_unmap(pipe, transfer);
529 pipe->transfer_destroy(pipe, transfer);
530
531 assert(success);
532
533 /* restore */
534 ctx->_ImageTransferState = imageTransferStateSave;
535 }
536
537 _mesa_unmap_pbo_source(ctx, unpack);
538
539 return pt;
540 }
541
542
543 /**
544 * Draw quad with texcoords and optional color.
545 * Coords are gallium window coords with y=0=top.
546 * \param color may be null
547 * \param invertTex if true, flip texcoords vertically
548 */
549 static void
550 draw_quad(struct gl_context *ctx, GLfloat x0, GLfloat y0, GLfloat z,
551 GLfloat x1, GLfloat y1, const GLfloat *color,
552 GLboolean invertTex, GLfloat maxXcoord, GLfloat maxYcoord)
553 {
554 struct st_context *st = st_context(ctx);
555 struct pipe_context *pipe = st->pipe;
556 GLfloat verts[4][3][4]; /* four verts, three attribs, XYZW */
557
558 /* setup vertex data */
559 {
560 const struct gl_framebuffer *fb = st->ctx->DrawBuffer;
561 const GLfloat fb_width = (GLfloat) fb->Width;
562 const GLfloat fb_height = (GLfloat) fb->Height;
563 const GLfloat clip_x0 = x0 / fb_width * 2.0f - 1.0f;
564 const GLfloat clip_y0 = y0 / fb_height * 2.0f - 1.0f;
565 const GLfloat clip_x1 = x1 / fb_width * 2.0f - 1.0f;
566 const GLfloat clip_y1 = y1 / fb_height * 2.0f - 1.0f;
567 const GLfloat sLeft = 0.0f, sRight = maxXcoord;
568 const GLfloat tTop = invertTex ? maxYcoord : 0.0f;
569 const GLfloat tBot = invertTex ? 0.0f : maxYcoord;
570 GLuint i;
571
572 /* upper-left */
573 verts[0][0][0] = clip_x0; /* v[0].attr[0].x */
574 verts[0][0][1] = clip_y0; /* v[0].attr[0].y */
575
576 /* upper-right */
577 verts[1][0][0] = clip_x1;
578 verts[1][0][1] = clip_y0;
579
580 /* lower-right */
581 verts[2][0][0] = clip_x1;
582 verts[2][0][1] = clip_y1;
583
584 /* lower-left */
585 verts[3][0][0] = clip_x0;
586 verts[3][0][1] = clip_y1;
587
588 verts[0][1][0] = sLeft; /* v[0].attr[1].S */
589 verts[0][1][1] = tTop; /* v[0].attr[1].T */
590 verts[1][1][0] = sRight;
591 verts[1][1][1] = tTop;
592 verts[2][1][0] = sRight;
593 verts[2][1][1] = tBot;
594 verts[3][1][0] = sLeft;
595 verts[3][1][1] = tBot;
596
597 /* same for all verts: */
598 if (color) {
599 for (i = 0; i < 4; i++) {
600 verts[i][0][2] = z; /* v[i].attr[0].z */
601 verts[i][0][3] = 1.0f; /* v[i].attr[0].w */
602 verts[i][2][0] = color[0]; /* v[i].attr[2].r */
603 verts[i][2][1] = color[1]; /* v[i].attr[2].g */
604 verts[i][2][2] = color[2]; /* v[i].attr[2].b */
605 verts[i][2][3] = color[3]; /* v[i].attr[2].a */
606 verts[i][1][2] = 0.0f; /* v[i].attr[1].R */
607 verts[i][1][3] = 1.0f; /* v[i].attr[1].Q */
608 }
609 }
610 else {
611 for (i = 0; i < 4; i++) {
612 verts[i][0][2] = z; /*Z*/
613 verts[i][0][3] = 1.0f; /*W*/
614 verts[i][1][2] = 0.0f; /*R*/
615 verts[i][1][3] = 1.0f; /*Q*/
616 }
617 }
618 }
619
620 {
621 struct pipe_resource *buf;
622
623 /* allocate/load buffer object with vertex data */
624 buf = pipe_buffer_create(pipe->screen,
625 PIPE_BIND_VERTEX_BUFFER,
626 PIPE_USAGE_STATIC,
627 sizeof(verts));
628 pipe_buffer_write(st->pipe, buf, 0, sizeof(verts), verts);
629
630 util_draw_vertex_buffer(pipe, st->cso_context, buf, 0,
631 PIPE_PRIM_QUADS,
632 4, /* verts */
633 3); /* attribs/vert */
634 pipe_resource_reference(&buf, NULL);
635 }
636 }
637
638
639
640 static void
641 draw_textured_quad(struct gl_context *ctx, GLint x, GLint y, GLfloat z,
642 GLsizei width, GLsizei height,
643 GLfloat zoomX, GLfloat zoomY,
644 struct pipe_sampler_view **sv,
645 int num_sampler_view,
646 void *driver_vp,
647 void *driver_fp,
648 const GLfloat *color,
649 GLboolean invertTex,
650 GLboolean write_depth, GLboolean write_stencil)
651 {
652 struct st_context *st = st_context(ctx);
653 struct pipe_context *pipe = st->pipe;
654 struct cso_context *cso = st->cso_context;
655 GLfloat x0, y0, x1, y1;
656 GLsizei maxSize;
657 boolean normalized = sv[0]->texture->target != PIPE_TEXTURE_RECT;
658
659 /* limit checks */
660 /* XXX if DrawPixels image is larger than max texture size, break
661 * it up into chunks.
662 */
663 maxSize = 1 << (pipe->screen->get_param(pipe->screen,
664 PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
665 assert(width <= maxSize);
666 assert(height <= maxSize);
667
668 cso_save_rasterizer(cso);
669 cso_save_viewport(cso);
670 cso_save_samplers(cso);
671 cso_save_fragment_sampler_views(cso);
672 cso_save_fragment_shader(cso);
673 cso_save_vertex_shader(cso);
674 cso_save_geometry_shader(cso);
675 cso_save_vertex_elements(cso);
676 cso_save_vertex_buffers(cso);
677 if (write_stencil) {
678 cso_save_depth_stencil_alpha(cso);
679 cso_save_blend(cso);
680 }
681
682 /* rasterizer state: just scissor */
683 {
684 struct pipe_rasterizer_state rasterizer;
685 memset(&rasterizer, 0, sizeof(rasterizer));
686 rasterizer.clamp_fragment_color = ctx->Color._ClampFragmentColor;
687 rasterizer.gl_rasterization_rules = 1;
688 rasterizer.scissor = ctx->Scissor.Enabled;
689 cso_set_rasterizer(cso, &rasterizer);
690 }
691
692 if (write_stencil) {
693 /* Stencil writing bypasses the normal fragment pipeline to
694 * disable color writing and set stencil test to always pass.
695 */
696 struct pipe_depth_stencil_alpha_state dsa;
697 struct pipe_blend_state blend;
698
699 /* depth/stencil */
700 memset(&dsa, 0, sizeof(dsa));
701 dsa.stencil[0].enabled = 1;
702 dsa.stencil[0].func = PIPE_FUNC_ALWAYS;
703 dsa.stencil[0].writemask = ctx->Stencil.WriteMask[0] & 0xff;
704 dsa.stencil[0].zpass_op = PIPE_STENCIL_OP_REPLACE;
705 if (write_depth) {
706 /* writing depth+stencil: depth test always passes */
707 dsa.depth.enabled = 1;
708 dsa.depth.writemask = ctx->Depth.Mask;
709 dsa.depth.func = PIPE_FUNC_ALWAYS;
710 }
711 cso_set_depth_stencil_alpha(cso, &dsa);
712
713 /* blend (colormask) */
714 memset(&blend, 0, sizeof(blend));
715 cso_set_blend(cso, &blend);
716 }
717
718 /* fragment shader state: TEX lookup program */
719 cso_set_fragment_shader_handle(cso, driver_fp);
720
721 /* vertex shader state: position + texcoord pass-through */
722 cso_set_vertex_shader_handle(cso, driver_vp);
723
724 /* geometry shader state: disabled */
725 cso_set_geometry_shader_handle(cso, NULL);
726
727 /* texture sampling state: */
728 {
729 struct pipe_sampler_state sampler;
730 memset(&sampler, 0, sizeof(sampler));
731 sampler.wrap_s = PIPE_TEX_WRAP_CLAMP;
732 sampler.wrap_t = PIPE_TEX_WRAP_CLAMP;
733 sampler.wrap_r = PIPE_TEX_WRAP_CLAMP;
734 sampler.min_img_filter = PIPE_TEX_FILTER_NEAREST;
735 sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
736 sampler.mag_img_filter = PIPE_TEX_FILTER_NEAREST;
737 sampler.normalized_coords = normalized;
738
739 cso_single_sampler(cso, 0, &sampler);
740 if (num_sampler_view > 1) {
741 cso_single_sampler(cso, 1, &sampler);
742 }
743 cso_single_sampler_done(cso);
744 }
745
746 /* viewport state: viewport matching window dims */
747 {
748 const float w = (float) ctx->DrawBuffer->Width;
749 const float h = (float) ctx->DrawBuffer->Height;
750 struct pipe_viewport_state vp;
751 vp.scale[0] = 0.5f * w;
752 vp.scale[1] = -0.5f * h;
753 vp.scale[2] = 0.5f;
754 vp.scale[3] = 1.0f;
755 vp.translate[0] = 0.5f * w;
756 vp.translate[1] = 0.5f * h;
757 vp.translate[2] = 0.5f;
758 vp.translate[3] = 0.0f;
759 cso_set_viewport(cso, &vp);
760 }
761
762 cso_set_vertex_elements(cso, 3, st->velems_util_draw);
763
764 /* texture state: */
765 cso_set_fragment_sampler_views(cso, num_sampler_view, sv);
766
767 /* Compute Gallium window coords (y=0=top) with pixel zoom.
768 * Recall that these coords are transformed by the current
769 * vertex shader and viewport transformation.
770 */
771 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM) {
772 y = ctx->DrawBuffer->Height - (int) (y + height * ctx->Pixel.ZoomY);
773 invertTex = !invertTex;
774 }
775
776 x0 = (GLfloat) x;
777 x1 = x + width * ctx->Pixel.ZoomX;
778 y0 = (GLfloat) y;
779 y1 = y + height * ctx->Pixel.ZoomY;
780
781 /* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */
782 z = z * 2.0 - 1.0;
783
784 draw_quad(ctx, x0, y0, z, x1, y1, color, invertTex,
785 normalized ? ((GLfloat) width / sv[0]->texture->width0) : (GLfloat)width,
786 normalized ? ((GLfloat) height / sv[0]->texture->height0) : (GLfloat)height);
787
788 /* restore state */
789 cso_restore_rasterizer(cso);
790 cso_restore_viewport(cso);
791 cso_restore_samplers(cso);
792 cso_restore_fragment_sampler_views(cso);
793 cso_restore_fragment_shader(cso);
794 cso_restore_vertex_shader(cso);
795 cso_restore_geometry_shader(cso);
796 cso_restore_vertex_elements(cso);
797 cso_restore_vertex_buffers(cso);
798 if (write_stencil) {
799 cso_restore_depth_stencil_alpha(cso);
800 cso_restore_blend(cso);
801 }
802 }
803
804
805 /**
806 * Software fallback to do glDrawPixels(GL_STENCIL_INDEX) when we
807 * can't use a fragment shader to write stencil values.
808 */
809 static void
810 draw_stencil_pixels(struct gl_context *ctx, GLint x, GLint y,
811 GLsizei width, GLsizei height, GLenum format, GLenum type,
812 const struct gl_pixelstore_attrib *unpack,
813 const GLvoid *pixels)
814 {
815 struct st_context *st = st_context(ctx);
816 struct pipe_context *pipe = st->pipe;
817 struct st_renderbuffer *strb;
818 enum pipe_transfer_usage usage;
819 struct pipe_transfer *pt;
820 const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
821 GLint skipPixels;
822 ubyte *stmap;
823 struct gl_pixelstore_attrib clippedUnpack = *unpack;
824
825 if (!zoom) {
826 if (!_mesa_clip_drawpixels(ctx, &x, &y, &width, &height,
827 &clippedUnpack)) {
828 /* totally clipped */
829 return;
830 }
831 }
832
833 strb = st_renderbuffer(ctx->DrawBuffer->
834 Attachment[BUFFER_STENCIL].Renderbuffer);
835
836 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
837 y = ctx->DrawBuffer->Height - y - height;
838 }
839
840 if(format != GL_DEPTH_STENCIL &&
841 util_format_get_component_bits(strb->format,
842 UTIL_FORMAT_COLORSPACE_ZS, 0) != 0)
843 usage = PIPE_TRANSFER_READ_WRITE;
844 else
845 usage = PIPE_TRANSFER_WRITE;
846
847 pt = pipe_get_transfer(pipe, strb->texture,
848 strb->rtt_level, strb->rtt_face + strb->rtt_slice,
849 usage, x, y,
850 width, height);
851
852 stmap = pipe_transfer_map(pipe, pt);
853
854 pixels = _mesa_map_pbo_source(ctx, &clippedUnpack, pixels);
855 assert(pixels);
856
857 /* if width > MAX_WIDTH, have to process image in chunks */
858 skipPixels = 0;
859 while (skipPixels < width) {
860 const GLint spanX = skipPixels;
861 const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH);
862 GLint row;
863 for (row = 0; row < height; row++) {
864 GLubyte sValues[MAX_WIDTH];
865 GLuint zValues[MAX_WIDTH];
866 GLfloat *zValuesFloat = (GLfloat*)zValues;
867 GLenum destType = GL_UNSIGNED_BYTE;
868 const GLvoid *source = _mesa_image_address2d(&clippedUnpack, pixels,
869 width, height,
870 format, type,
871 row, skipPixels);
872 _mesa_unpack_stencil_span(ctx, spanWidth, destType, sValues,
873 type, source, &clippedUnpack,
874 ctx->_ImageTransferState);
875
876 if (format == GL_DEPTH_STENCIL) {
877 GLenum ztype =
878 pt->resource->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT ?
879 GL_FLOAT : GL_UNSIGNED_INT;
880
881 _mesa_unpack_depth_span(ctx, spanWidth, ztype, zValues,
882 (1 << 24) - 1, type, source,
883 &clippedUnpack);
884 }
885
886 if (zoom) {
887 _mesa_problem(ctx, "Gallium glDrawPixels(GL_STENCIL) with "
888 "zoom not complete");
889 }
890
891 {
892 GLint spanY;
893
894 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
895 spanY = height - row - 1;
896 }
897 else {
898 spanY = row;
899 }
900
901 /* now pack the stencil (and Z) values in the dest format */
902 switch (pt->resource->format) {
903 case PIPE_FORMAT_S8_UINT:
904 {
905 ubyte *dest = stmap + spanY * pt->stride + spanX;
906 assert(usage == PIPE_TRANSFER_WRITE);
907 memcpy(dest, sValues, spanWidth);
908 }
909 break;
910 case PIPE_FORMAT_Z24_UNORM_S8_UINT:
911 if (format == GL_DEPTH_STENCIL) {
912 uint *dest = (uint *) (stmap + spanY * pt->stride + spanX*4);
913 GLint k;
914 assert(usage == PIPE_TRANSFER_WRITE);
915 for (k = 0; k < spanWidth; k++) {
916 dest[k] = zValues[k] | (sValues[k] << 24);
917 }
918 }
919 else {
920 uint *dest = (uint *) (stmap + spanY * pt->stride + spanX*4);
921 GLint k;
922 assert(usage == PIPE_TRANSFER_READ_WRITE);
923 for (k = 0; k < spanWidth; k++) {
924 dest[k] = (dest[k] & 0xffffff) | (sValues[k] << 24);
925 }
926 }
927 break;
928 case PIPE_FORMAT_S8_UINT_Z24_UNORM:
929 if (format == GL_DEPTH_STENCIL) {
930 uint *dest = (uint *) (stmap + spanY * pt->stride + spanX*4);
931 GLint k;
932 assert(usage == PIPE_TRANSFER_WRITE);
933 for (k = 0; k < spanWidth; k++) {
934 dest[k] = (zValues[k] << 8) | (sValues[k] & 0xff);
935 }
936 }
937 else {
938 uint *dest = (uint *) (stmap + spanY * pt->stride + spanX*4);
939 GLint k;
940 assert(usage == PIPE_TRANSFER_READ_WRITE);
941 for (k = 0; k < spanWidth; k++) {
942 dest[k] = (dest[k] & 0xffffff00) | (sValues[k] & 0xff);
943 }
944 }
945 break;
946 case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
947 if (format == GL_DEPTH_STENCIL) {
948 uint *dest = (uint *) (stmap + spanY * pt->stride + spanX*4);
949 GLfloat *destf = (GLfloat*)dest;
950 GLint k;
951 assert(usage == PIPE_TRANSFER_WRITE);
952 for (k = 0; k < spanWidth; k++) {
953 destf[k*2] = zValuesFloat[k];
954 dest[k*2+1] = sValues[k] & 0xff;
955 }
956 }
957 else {
958 uint *dest = (uint *) (stmap + spanY * pt->stride + spanX*4);
959 GLint k;
960 assert(usage == PIPE_TRANSFER_READ_WRITE);
961 for (k = 0; k < spanWidth; k++) {
962 dest[k*2+1] = sValues[k] & 0xff;
963 }
964 }
965 break;
966 default:
967 assert(0);
968 }
969 }
970 }
971 skipPixels += spanWidth;
972 }
973
974 _mesa_unmap_pbo_source(ctx, &clippedUnpack);
975
976 /* unmap the stencil buffer */
977 pipe_transfer_unmap(pipe, pt);
978 pipe->transfer_destroy(pipe, pt);
979 }
980
981
982 /**
983 * Get fragment program variant for a glDrawPixels or glCopyPixels
984 * command for RGBA data.
985 */
986 static struct st_fp_variant *
987 get_color_fp_variant(struct st_context *st)
988 {
989 struct gl_context *ctx = st->ctx;
990 struct st_fp_variant_key key;
991 struct st_fp_variant *fpv;
992
993 memset(&key, 0, sizeof(key));
994
995 key.st = st;
996 key.drawpixels = 1;
997 key.scaleAndBias = (ctx->Pixel.RedBias != 0.0 ||
998 ctx->Pixel.RedScale != 1.0 ||
999 ctx->Pixel.GreenBias != 0.0 ||
1000 ctx->Pixel.GreenScale != 1.0 ||
1001 ctx->Pixel.BlueBias != 0.0 ||
1002 ctx->Pixel.BlueScale != 1.0 ||
1003 ctx->Pixel.AlphaBias != 0.0 ||
1004 ctx->Pixel.AlphaScale != 1.0);
1005 key.pixelMaps = ctx->Pixel.MapColorFlag;
1006
1007 fpv = st_get_fp_variant(st, st->fp, &key);
1008
1009 return fpv;
1010 }
1011
1012
1013 /**
1014 * Get fragment program variant for a glDrawPixels or glCopyPixels
1015 * command for depth/stencil data.
1016 */
1017 static struct st_fp_variant *
1018 get_depth_stencil_fp_variant(struct st_context *st, GLboolean write_depth,
1019 GLboolean write_stencil)
1020 {
1021 struct st_fp_variant_key key;
1022 struct st_fp_variant *fpv;
1023
1024 memset(&key, 0, sizeof(key));
1025
1026 key.st = st;
1027 key.drawpixels = 1;
1028 key.drawpixels_z = write_depth;
1029 key.drawpixels_stencil = write_stencil;
1030
1031 fpv = st_get_fp_variant(st, st->fp, &key);
1032
1033 return fpv;
1034 }
1035
1036
1037 /**
1038 * Called via ctx->Driver.DrawPixels()
1039 */
1040 static void
1041 st_DrawPixels(struct gl_context *ctx, GLint x, GLint y,
1042 GLsizei width, GLsizei height,
1043 GLenum format, GLenum type,
1044 const struct gl_pixelstore_attrib *unpack, const GLvoid *pixels)
1045 {
1046 void *driver_vp, *driver_fp;
1047 struct st_context *st = st_context(ctx);
1048 const GLfloat *color;
1049 struct pipe_context *pipe = st->pipe;
1050 GLboolean write_stencil = GL_FALSE, write_depth = GL_FALSE;
1051 struct pipe_sampler_view *sv[2];
1052 int num_sampler_view = 1;
1053 struct st_fp_variant *fpv;
1054
1055 if (format == GL_DEPTH_STENCIL)
1056 write_stencil = write_depth = GL_TRUE;
1057 else if (format == GL_STENCIL_INDEX)
1058 write_stencil = GL_TRUE;
1059 else if (format == GL_DEPTH_COMPONENT)
1060 write_depth = GL_TRUE;
1061
1062 if (write_stencil &&
1063 !pipe->screen->get_param(pipe->screen, PIPE_CAP_SHADER_STENCIL_EXPORT)) {
1064 /* software fallback */
1065 draw_stencil_pixels(ctx, x, y, width, height, format, type,
1066 unpack, pixels);
1067 return;
1068 }
1069
1070 /* Mesa state should be up to date by now */
1071 assert(ctx->NewState == 0x0);
1072
1073 st_validate_state(st);
1074
1075 /*
1076 * Get vertex/fragment shaders
1077 */
1078 if (write_depth || write_stencil) {
1079 fpv = get_depth_stencil_fp_variant(st, write_depth, write_stencil);
1080
1081 driver_fp = fpv->driver_shader;
1082
1083 driver_vp = make_passthrough_vertex_shader(st, GL_TRUE);
1084
1085 color = ctx->Current.RasterColor;
1086 }
1087 else {
1088 fpv = get_color_fp_variant(st);
1089
1090 driver_fp = fpv->driver_shader;
1091
1092 driver_vp = make_passthrough_vertex_shader(st, GL_FALSE);
1093
1094 color = NULL;
1095 if (st->pixel_xfer.pixelmap_enabled) {
1096 sv[1] = st->pixel_xfer.pixelmap_sampler_view;
1097 num_sampler_view++;
1098 }
1099 }
1100
1101 /* update fragment program constants */
1102 st_upload_constants(st, fpv->parameters, PIPE_SHADER_FRAGMENT);
1103
1104 /* draw with textured quad */
1105 {
1106 struct pipe_resource *pt
1107 = make_texture(st, width, height, format, type, unpack, pixels);
1108 if (pt) {
1109 sv[0] = st_create_texture_sampler_view(st->pipe, pt);
1110
1111 if (sv[0]) {
1112 /* Create a second sampler view to read stencil.
1113 * The stencil is written using the shader stencil export
1114 * functionality. */
1115 if (write_stencil) {
1116 enum pipe_format stencil_format = PIPE_FORMAT_NONE;
1117
1118 switch (pt->format) {
1119 case PIPE_FORMAT_Z24_UNORM_S8_UINT:
1120 case PIPE_FORMAT_X24S8_UINT:
1121 stencil_format = PIPE_FORMAT_X24S8_UINT;
1122 break;
1123 case PIPE_FORMAT_S8_UINT_Z24_UNORM:
1124 case PIPE_FORMAT_S8X24_UINT:
1125 stencil_format = PIPE_FORMAT_S8X24_UINT;
1126 break;
1127 case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
1128 case PIPE_FORMAT_X32_S8X24_UINT:
1129 stencil_format = PIPE_FORMAT_X32_S8X24_UINT;
1130 break;
1131 case PIPE_FORMAT_S8_UINT:
1132 stencil_format = PIPE_FORMAT_S8_UINT;
1133 break;
1134 default:
1135 assert(0);
1136 }
1137
1138 sv[1] = st_create_texture_sampler_view_format(st->pipe, pt,
1139 stencil_format);
1140 num_sampler_view++;
1141 }
1142
1143 draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2],
1144 width, height,
1145 ctx->Pixel.ZoomX, ctx->Pixel.ZoomY,
1146 sv,
1147 num_sampler_view,
1148 driver_vp,
1149 driver_fp,
1150 color, GL_FALSE, write_depth, write_stencil);
1151 pipe_sampler_view_reference(&sv[0], NULL);
1152 if (num_sampler_view > 1)
1153 pipe_sampler_view_reference(&sv[1], NULL);
1154 }
1155 pipe_resource_reference(&pt, NULL);
1156 }
1157 }
1158 }
1159
1160
1161
1162 /**
1163 * Software fallback for glCopyPixels(GL_STENCIL).
1164 */
1165 static void
1166 copy_stencil_pixels(struct gl_context *ctx, GLint srcx, GLint srcy,
1167 GLsizei width, GLsizei height,
1168 GLint dstx, GLint dsty)
1169 {
1170 struct st_renderbuffer *rbDraw;
1171 struct pipe_context *pipe = st_context(ctx)->pipe;
1172 enum pipe_transfer_usage usage;
1173 struct pipe_transfer *ptDraw;
1174 ubyte *drawMap;
1175 ubyte *buffer;
1176 int i;
1177
1178 buffer = malloc(width * height * sizeof(ubyte));
1179 if (!buffer) {
1180 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels(stencil)");
1181 return;
1182 }
1183
1184 /* Get the dest renderbuffer. If there's a wrapper, use the
1185 * underlying renderbuffer.
1186 */
1187 rbDraw = st_renderbuffer(ctx->DrawBuffer->_StencilBuffer);
1188 if (rbDraw->Base.Wrapped)
1189 rbDraw = st_renderbuffer(rbDraw->Base.Wrapped);
1190
1191 /* this will do stencil pixel transfer ops */
1192 st_read_stencil_pixels(ctx, srcx, srcy, width, height,
1193 GL_STENCIL_INDEX, GL_UNSIGNED_BYTE,
1194 &ctx->DefaultPacking, buffer);
1195
1196 if (0) {
1197 /* debug code: dump stencil values */
1198 GLint row, col;
1199 for (row = 0; row < height; row++) {
1200 printf("%3d: ", row);
1201 for (col = 0; col < width; col++) {
1202 printf("%02x ", buffer[col + row * width]);
1203 }
1204 printf("\n");
1205 }
1206 }
1207
1208 if (util_format_get_component_bits(rbDraw->format,
1209 UTIL_FORMAT_COLORSPACE_ZS, 0) != 0)
1210 usage = PIPE_TRANSFER_READ_WRITE;
1211 else
1212 usage = PIPE_TRANSFER_WRITE;
1213
1214 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
1215 dsty = rbDraw->Base.Height - dsty - height;
1216 }
1217
1218 ptDraw = pipe_get_transfer(pipe,
1219 rbDraw->texture,
1220 rbDraw->rtt_level,
1221 rbDraw->rtt_face + rbDraw->rtt_slice,
1222 usage, dstx, dsty,
1223 width, height);
1224
1225 assert(util_format_get_blockwidth(ptDraw->resource->format) == 1);
1226 assert(util_format_get_blockheight(ptDraw->resource->format) == 1);
1227
1228 /* map the stencil buffer */
1229 drawMap = pipe_transfer_map(pipe, ptDraw);
1230
1231 /* draw */
1232 /* XXX PixelZoom not handled yet */
1233 for (i = 0; i < height; i++) {
1234 ubyte *dst;
1235 const ubyte *src;
1236 int y;
1237
1238 y = i;
1239
1240 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
1241 y = height - y - 1;
1242 }
1243
1244 dst = drawMap + y * ptDraw->stride;
1245 src = buffer + i * width;
1246
1247 switch (ptDraw->resource->format) {
1248 case PIPE_FORMAT_Z24_UNORM_S8_UINT:
1249 {
1250 uint *dst4 = (uint *) dst;
1251 int j;
1252 assert(usage == PIPE_TRANSFER_READ_WRITE);
1253 for (j = 0; j < width; j++) {
1254 *dst4 = (*dst4 & 0xffffff) | (src[j] << 24);
1255 dst4++;
1256 }
1257 }
1258 break;
1259 case PIPE_FORMAT_S8_UINT_Z24_UNORM:
1260 {
1261 uint *dst4 = (uint *) dst;
1262 int j;
1263 assert(usage == PIPE_TRANSFER_READ_WRITE);
1264 for (j = 0; j < width; j++) {
1265 *dst4 = (*dst4 & 0xffffff00) | (src[j] & 0xff);
1266 dst4++;
1267 }
1268 }
1269 break;
1270 case PIPE_FORMAT_S8_UINT:
1271 assert(usage == PIPE_TRANSFER_WRITE);
1272 memcpy(dst, src, width);
1273 break;
1274 case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
1275 {
1276 uint *dst4 = (uint *) dst;
1277 int j;
1278 dst4++;
1279 assert(usage == PIPE_TRANSFER_READ_WRITE);
1280 for (j = 0; j < width; j++) {
1281 *dst4 = src[j] & 0xff;
1282 dst4 += 2;
1283 }
1284 }
1285 break;
1286 default:
1287 assert(0);
1288 }
1289 }
1290
1291 free(buffer);
1292
1293 /* unmap the stencil buffer */
1294 pipe_transfer_unmap(pipe, ptDraw);
1295 pipe->transfer_destroy(pipe, ptDraw);
1296 }
1297
1298
1299 /** Do the src/dest regions overlap? */
1300 static GLboolean
1301 regions_overlap(GLint srcX, GLint srcY, GLint dstX, GLint dstY,
1302 GLsizei width, GLsizei height)
1303 {
1304 if (srcX + width <= dstX ||
1305 dstX + width <= srcX ||
1306 srcY + height <= dstY ||
1307 dstY + height <= srcY)
1308 return GL_FALSE;
1309 else
1310 return GL_TRUE;
1311 }
1312
1313
1314 /**
1315 * Try to do a glCopyPixels for simple cases with a blit by calling
1316 * pipe->resource_copy_region().
1317 *
1318 * We can do this when we're copying color pixels (depth/stencil
1319 * eventually) with no pixel zoom, no pixel transfer ops, no
1320 * per-fragment ops, the src/dest regions don't overlap and the
1321 * src/dest pixel formats are the same.
1322 */
1323 static GLboolean
1324 blit_copy_pixels(struct gl_context *ctx, GLint srcx, GLint srcy,
1325 GLsizei width, GLsizei height,
1326 GLint dstx, GLint dsty, GLenum type)
1327 {
1328 struct st_context *st = st_context(ctx);
1329 struct pipe_context *pipe = st->pipe;
1330 struct gl_pixelstore_attrib pack, unpack;
1331 GLint readX, readY, readW, readH;
1332
1333 if (type == GL_COLOR &&
1334 ctx->Pixel.ZoomX == 1.0 &&
1335 ctx->Pixel.ZoomY == 1.0 &&
1336 ctx->_ImageTransferState == 0x0 &&
1337 !ctx->Color.BlendEnabled &&
1338 !ctx->Color.AlphaEnabled &&
1339 !ctx->Depth.Test &&
1340 !ctx->Fog.Enabled &&
1341 !ctx->Stencil.Enabled &&
1342 !ctx->FragmentProgram.Enabled &&
1343 !ctx->VertexProgram.Enabled &&
1344 !ctx->Shader.CurrentFragmentProgram &&
1345 st_fb_orientation(ctx->ReadBuffer) == st_fb_orientation(ctx->DrawBuffer) &&
1346 ctx->DrawBuffer->_NumColorDrawBuffers == 1 &&
1347 !ctx->Query.CondRenderQuery) {
1348 struct st_renderbuffer *rbRead, *rbDraw;
1349 GLint drawX, drawY;
1350
1351 /*
1352 * Clip the read region against the src buffer bounds.
1353 * We'll still allocate a temporary buffer/texture for the original
1354 * src region size but we'll only read the region which is on-screen.
1355 * This may mean that we draw garbage pixels into the dest region, but
1356 * that's expected.
1357 */
1358 readX = srcx;
1359 readY = srcy;
1360 readW = width;
1361 readH = height;
1362 pack = ctx->DefaultPacking;
1363 if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack))
1364 return GL_TRUE; /* all done */
1365
1366 /* clip against dest buffer bounds and scissor box */
1367 drawX = dstx + pack.SkipPixels;
1368 drawY = dsty + pack.SkipRows;
1369 unpack = pack;
1370 if (!_mesa_clip_drawpixels(ctx, &drawX, &drawY, &readW, &readH, &unpack))
1371 return GL_TRUE; /* all done */
1372
1373 readX = readX - pack.SkipPixels + unpack.SkipPixels;
1374 readY = readY - pack.SkipRows + unpack.SkipRows;
1375
1376 rbRead = st_get_color_read_renderbuffer(ctx);
1377 rbDraw = st_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[0]);
1378
1379 if ((rbRead != rbDraw ||
1380 !regions_overlap(readX, readY, drawX, drawY, readW, readH)) &&
1381 rbRead->Base.Format == rbDraw->Base.Format) {
1382 struct pipe_box srcBox;
1383
1384 /* flip src/dst position if needed */
1385 if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
1386 /* both buffers will have the same orientation */
1387 readY = ctx->ReadBuffer->Height - readY - readH;
1388 drawY = ctx->DrawBuffer->Height - drawY - readH;
1389 }
1390
1391 u_box_2d(readX, readY, readW, readH, &srcBox);
1392
1393 pipe->resource_copy_region(pipe,
1394 rbDraw->texture,
1395 rbDraw->rtt_level, drawX, drawY, 0,
1396 rbRead->texture,
1397 rbRead->rtt_level, &srcBox);
1398 return GL_TRUE;
1399 }
1400 }
1401
1402 return GL_FALSE;
1403 }
1404
1405
1406 static void
1407 st_CopyPixels(struct gl_context *ctx, GLint srcx, GLint srcy,
1408 GLsizei width, GLsizei height,
1409 GLint dstx, GLint dsty, GLenum type)
1410 {
1411 struct st_context *st = st_context(ctx);
1412 struct pipe_context *pipe = st->pipe;
1413 struct pipe_screen *screen = pipe->screen;
1414 struct st_renderbuffer *rbRead;
1415 void *driver_vp, *driver_fp;
1416 struct pipe_resource *pt;
1417 struct pipe_sampler_view *sv[2];
1418 int num_sampler_view = 1;
1419 GLfloat *color;
1420 enum pipe_format srcFormat, texFormat;
1421 GLboolean invertTex = GL_FALSE;
1422 GLint readX, readY, readW, readH;
1423 GLuint sample_count;
1424 struct gl_pixelstore_attrib pack = ctx->DefaultPacking;
1425 struct st_fp_variant *fpv;
1426
1427 st_validate_state(st);
1428
1429 if (type == GL_STENCIL) {
1430 /* can't use texturing to do stencil */
1431 copy_stencil_pixels(ctx, srcx, srcy, width, height, dstx, dsty);
1432 return;
1433 }
1434
1435 if (blit_copy_pixels(ctx, srcx, srcy, width, height, dstx, dsty, type))
1436 return;
1437
1438 /*
1439 * The subsequent code implements glCopyPixels by copying the source
1440 * pixels into a temporary texture that's then applied to a textured quad.
1441 * When we draw the textured quad, all the usual per-fragment operations
1442 * are handled.
1443 */
1444
1445
1446 /*
1447 * Get vertex/fragment shaders
1448 */
1449 if (type == GL_COLOR) {
1450 rbRead = st_get_color_read_renderbuffer(ctx);
1451 color = NULL;
1452
1453 fpv = get_color_fp_variant(st);
1454 driver_fp = fpv->driver_shader;
1455
1456 driver_vp = make_passthrough_vertex_shader(st, GL_FALSE);
1457
1458 if (st->pixel_xfer.pixelmap_enabled) {
1459 sv[1] = st->pixel_xfer.pixelmap_sampler_view;
1460 num_sampler_view++;
1461 }
1462 }
1463 else {
1464 assert(type == GL_DEPTH);
1465 rbRead = st_renderbuffer(ctx->ReadBuffer->_DepthBuffer);
1466 color = ctx->Current.Attrib[VERT_ATTRIB_COLOR0];
1467
1468 fpv = get_depth_stencil_fp_variant(st, GL_TRUE, GL_FALSE);
1469 driver_fp = fpv->driver_shader;
1470
1471 driver_vp = make_passthrough_vertex_shader(st, GL_TRUE);
1472 }
1473
1474 /* update fragment program constants */
1475 st_upload_constants(st, fpv->parameters, PIPE_SHADER_FRAGMENT);
1476
1477
1478 if (rbRead->Base.Wrapped)
1479 rbRead = st_renderbuffer(rbRead->Base.Wrapped);
1480
1481 sample_count = rbRead->texture->nr_samples;
1482 /* I believe this would be legal, presumably would need to do a resolve
1483 for color, and for depth/stencil spec says to just use one of the
1484 depth/stencil samples per pixel? Need some transfer clarifications. */
1485 assert(sample_count < 2);
1486
1487 srcFormat = rbRead->texture->format;
1488
1489 if (screen->is_format_supported(screen, srcFormat, st->internal_target,
1490 sample_count,
1491 PIPE_BIND_SAMPLER_VIEW)) {
1492 texFormat = srcFormat;
1493 }
1494 else {
1495 /* srcFormat can't be used as a texture format */
1496 if (type == GL_DEPTH) {
1497 texFormat = st_choose_format(screen, GL_DEPTH_COMPONENT,
1498 GL_NONE, GL_NONE, st->internal_target,
1499 sample_count, PIPE_BIND_DEPTH_STENCIL);
1500 assert(texFormat != PIPE_FORMAT_NONE);
1501 }
1502 else {
1503 /* default color format */
1504 texFormat = st_choose_format(screen, GL_RGBA,
1505 GL_NONE, GL_NONE, st->internal_target,
1506 sample_count, PIPE_BIND_SAMPLER_VIEW);
1507 assert(texFormat != PIPE_FORMAT_NONE);
1508 }
1509 }
1510
1511 /* Invert src region if needed */
1512 if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
1513 srcy = ctx->ReadBuffer->Height - srcy - height;
1514 invertTex = !invertTex;
1515 }
1516
1517 /* Clip the read region against the src buffer bounds.
1518 * We'll still allocate a temporary buffer/texture for the original
1519 * src region size but we'll only read the region which is on-screen.
1520 * This may mean that we draw garbage pixels into the dest region, but
1521 * that's expected.
1522 */
1523 readX = srcx;
1524 readY = srcy;
1525 readW = width;
1526 readH = height;
1527 _mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack);
1528 readW = MAX2(0, readW);
1529 readH = MAX2(0, readH);
1530
1531 /* alloc temporary texture */
1532 pt = alloc_texture(st, width, height, texFormat);
1533 if (!pt)
1534 return;
1535
1536 sv[0] = st_create_texture_sampler_view(st->pipe, pt);
1537 if (!sv[0]) {
1538 pipe_resource_reference(&pt, NULL);
1539 return;
1540 }
1541
1542 /* Make temporary texture which is a copy of the src region.
1543 */
1544 if (srcFormat == texFormat) {
1545 struct pipe_box src_box;
1546 u_box_2d(readX, readY, readW, readH, &src_box);
1547 /* copy source framebuffer surface into mipmap/texture */
1548 pipe->resource_copy_region(pipe,
1549 pt, /* dest tex */
1550 0, /* dest lvl */
1551 pack.SkipPixels, pack.SkipRows, 0, /* dest pos */
1552 rbRead->texture, /* src tex */
1553 rbRead->rtt_level, /* src lvl */
1554 &src_box);
1555
1556 }
1557 else {
1558 /* CPU-based fallback/conversion */
1559 struct pipe_transfer *ptRead =
1560 pipe_get_transfer(st->pipe, rbRead->texture,
1561 rbRead->rtt_level,
1562 rbRead->rtt_face + rbRead->rtt_slice,
1563 PIPE_TRANSFER_READ,
1564 readX, readY, readW, readH);
1565 struct pipe_transfer *ptTex;
1566 enum pipe_transfer_usage transfer_usage;
1567
1568 if (ST_DEBUG & DEBUG_FALLBACK)
1569 debug_printf("%s: fallback processing\n", __FUNCTION__);
1570
1571 if (type == GL_DEPTH && util_format_is_depth_and_stencil(pt->format))
1572 transfer_usage = PIPE_TRANSFER_READ_WRITE;
1573 else
1574 transfer_usage = PIPE_TRANSFER_WRITE;
1575
1576 ptTex = pipe_get_transfer(st->pipe, pt, 0, 0, transfer_usage,
1577 0, 0, width, height);
1578
1579 /* copy image from ptRead surface to ptTex surface */
1580 if (type == GL_COLOR) {
1581 /* alternate path using get/put_tile() */
1582 GLfloat *buf = (GLfloat *) malloc(width * height * 4 * sizeof(GLfloat));
1583 enum pipe_format readFormat, drawFormat;
1584 readFormat = util_format_linear(rbRead->texture->format);
1585 drawFormat = util_format_linear(pt->format);
1586 pipe_get_tile_rgba_format(pipe, ptRead, 0, 0, readW, readH,
1587 readFormat, buf);
1588 pipe_put_tile_rgba_format(pipe, ptTex, pack.SkipPixels, pack.SkipRows,
1589 readW, readH, drawFormat, buf);
1590 free(buf);
1591 }
1592 else {
1593 /* GL_DEPTH */
1594 GLuint *buf = (GLuint *) malloc(width * height * sizeof(GLuint));
1595 pipe_get_tile_z(pipe, ptRead, 0, 0, readW, readH, buf);
1596 pipe_put_tile_z(pipe, ptTex, pack.SkipPixels, pack.SkipRows,
1597 readW, readH, buf);
1598 free(buf);
1599 }
1600
1601 pipe->transfer_destroy(pipe, ptRead);
1602 pipe->transfer_destroy(pipe, ptTex);
1603 }
1604
1605 /* OK, the texture 'pt' contains the src image/pixels. Now draw a
1606 * textured quad with that texture.
1607 */
1608 draw_textured_quad(ctx, dstx, dsty, ctx->Current.RasterPos[2],
1609 width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY,
1610 sv,
1611 num_sampler_view,
1612 driver_vp,
1613 driver_fp,
1614 color, invertTex, GL_FALSE, GL_FALSE);
1615
1616 pipe_resource_reference(&pt, NULL);
1617 pipe_sampler_view_reference(&sv[0], NULL);
1618 }
1619
1620
1621
1622 void st_init_drawpixels_functions(struct dd_function_table *functions)
1623 {
1624 functions->DrawPixels = st_DrawPixels;
1625 functions->CopyPixels = st_CopyPixels;
1626 }
1627
1628
1629 void
1630 st_destroy_drawpix(struct st_context *st)
1631 {
1632 GLuint i;
1633
1634 for (i = 0; i < Elements(st->drawpix.shaders); i++) {
1635 if (st->drawpix.shaders[i])
1636 _mesa_reference_fragprog(st->ctx, &st->drawpix.shaders[i], NULL);
1637 }
1638
1639 st_reference_fragprog(st, &st->pixel_xfer.combined_prog, NULL);
1640 if (st->drawpix.vert_shaders[0])
1641 ureg_free_tokens(st->drawpix.vert_shaders[0]);
1642 if (st->drawpix.vert_shaders[1])
1643 ureg_free_tokens(st->drawpix.vert_shaders[1]);
1644 }
1645
1646 #endif /* FEATURE_drawpix */