mesa: Use shared code for converting shader targets to short strings.
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43
44 #include "main/mtypes.h"
45 #include "main/shaderobj.h"
46 #include "program/hash_table.h"
47
48 extern "C" {
49 #include "main/shaderapi.h"
50 #include "main/uniforms.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58 #include "pipe/p_compiler.h"
59 #include "pipe/p_context.h"
60 #include "pipe/p_screen.h"
61 #include "pipe/p_shader_tokens.h"
62 #include "pipe/p_state.h"
63 #include "util/u_math.h"
64 #include "tgsi/tgsi_ureg.h"
65 #include "tgsi/tgsi_info.h"
66 #include "st_context.h"
67 #include "st_program.h"
68 #include "st_glsl_to_tgsi.h"
69 #include "st_mesa_to_tgsi.h"
70 }
71
72 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
73 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
74 (1 << PROGRAM_ENV_PARAM) | \
75 (1 << PROGRAM_STATE_VAR) | \
76 (1 << PROGRAM_CONSTANT) | \
77 (1 << PROGRAM_UNIFORM))
78
79 /**
80 * Maximum number of temporary registers.
81 *
82 * It is too big for stack allocated arrays -- it will cause stack overflow on
83 * Windows and likely Mac OS X.
84 */
85 #define MAX_TEMPS 4096
86
87 /**
88 * Maximum number of arrays
89 */
90 #define MAX_ARRAYS 256
91
92 /* will be 4 for GLSL 4.00 */
93 #define MAX_GLSL_TEXTURE_OFFSET 1
94
95 class st_src_reg;
96 class st_dst_reg;
97
98 static int swizzle_for_size(int size);
99
100 /**
101 * This struct is a corresponding struct to TGSI ureg_src.
102 */
103 class st_src_reg {
104 public:
105 st_src_reg(gl_register_file file, int index, const glsl_type *type)
106 {
107 this->file = file;
108 this->index = index;
109 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
110 this->swizzle = swizzle_for_size(type->vector_elements);
111 else
112 this->swizzle = SWIZZLE_XYZW;
113 this->negate = 0;
114 this->index2D = 0;
115 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
116 this->reladdr = NULL;
117 }
118
119 st_src_reg(gl_register_file file, int index, int type)
120 {
121 this->type = type;
122 this->file = file;
123 this->index = index;
124 this->index2D = 0;
125 this->swizzle = SWIZZLE_XYZW;
126 this->negate = 0;
127 this->reladdr = NULL;
128 }
129
130 st_src_reg(gl_register_file file, int index, int type, int index2D)
131 {
132 this->type = type;
133 this->file = file;
134 this->index = index;
135 this->index2D = index2D;
136 this->swizzle = SWIZZLE_XYZW;
137 this->negate = 0;
138 this->reladdr = NULL;
139 }
140
141 st_src_reg()
142 {
143 this->type = GLSL_TYPE_ERROR;
144 this->file = PROGRAM_UNDEFINED;
145 this->index = 0;
146 this->index2D = 0;
147 this->swizzle = 0;
148 this->negate = 0;
149 this->reladdr = NULL;
150 }
151
152 explicit st_src_reg(st_dst_reg reg);
153
154 gl_register_file file; /**< PROGRAM_* from Mesa */
155 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
156 int index2D;
157 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
158 int negate; /**< NEGATE_XYZW mask from mesa */
159 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
160 /** Register index should be offset by the integer in this reg. */
161 st_src_reg *reladdr;
162 };
163
164 class st_dst_reg {
165 public:
166 st_dst_reg(gl_register_file file, int writemask, int type)
167 {
168 this->file = file;
169 this->index = 0;
170 this->writemask = writemask;
171 this->cond_mask = COND_TR;
172 this->reladdr = NULL;
173 this->type = type;
174 }
175
176 st_dst_reg()
177 {
178 this->type = GLSL_TYPE_ERROR;
179 this->file = PROGRAM_UNDEFINED;
180 this->index = 0;
181 this->writemask = 0;
182 this->cond_mask = COND_TR;
183 this->reladdr = NULL;
184 }
185
186 explicit st_dst_reg(st_src_reg reg);
187
188 gl_register_file file; /**< PROGRAM_* from Mesa */
189 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
190 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
191 GLuint cond_mask:4;
192 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
193 /** Register index should be offset by the integer in this reg. */
194 st_src_reg *reladdr;
195 };
196
197 st_src_reg::st_src_reg(st_dst_reg reg)
198 {
199 this->type = reg.type;
200 this->file = reg.file;
201 this->index = reg.index;
202 this->swizzle = SWIZZLE_XYZW;
203 this->negate = 0;
204 this->reladdr = reg.reladdr;
205 this->index2D = 0;
206 }
207
208 st_dst_reg::st_dst_reg(st_src_reg reg)
209 {
210 this->type = reg.type;
211 this->file = reg.file;
212 this->index = reg.index;
213 this->writemask = WRITEMASK_XYZW;
214 this->cond_mask = COND_TR;
215 this->reladdr = reg.reladdr;
216 }
217
218 class glsl_to_tgsi_instruction : public exec_node {
219 public:
220 /* Callers of this ralloc-based new need not call delete. It's
221 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
222 static void* operator new(size_t size, void *ctx)
223 {
224 void *node;
225
226 node = rzalloc_size(ctx, size);
227 assert(node != NULL);
228
229 return node;
230 }
231
232 unsigned op;
233 st_dst_reg dst;
234 st_src_reg src[3];
235 /** Pointer to the ir source this tree came from for debugging */
236 ir_instruction *ir;
237 GLboolean cond_update;
238 bool saturate;
239 int sampler; /**< sampler index */
240 int tex_target; /**< One of TEXTURE_*_INDEX */
241 GLboolean tex_shadow;
242 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
243 unsigned tex_offset_num_offset;
244 int dead_mask; /**< Used in dead code elimination */
245
246 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
247 };
248
249 class variable_storage : public exec_node {
250 public:
251 variable_storage(ir_variable *var, gl_register_file file, int index)
252 : file(file), index(index), var(var)
253 {
254 /* empty */
255 }
256
257 gl_register_file file;
258 int index;
259 ir_variable *var; /* variable that maps to this, if any */
260 };
261
262 class immediate_storage : public exec_node {
263 public:
264 immediate_storage(gl_constant_value *values, int size, int type)
265 {
266 memcpy(this->values, values, size * sizeof(gl_constant_value));
267 this->size = size;
268 this->type = type;
269 }
270
271 gl_constant_value values[4];
272 int size; /**< Number of components (1-4) */
273 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
274 };
275
276 class function_entry : public exec_node {
277 public:
278 ir_function_signature *sig;
279
280 /**
281 * identifier of this function signature used by the program.
282 *
283 * At the point that TGSI instructions for function calls are
284 * generated, we don't know the address of the first instruction of
285 * the function body. So we make the BranchTarget that is called a
286 * small integer and rewrite them during set_branchtargets().
287 */
288 int sig_id;
289
290 /**
291 * Pointer to first instruction of the function body.
292 *
293 * Set during function body emits after main() is processed.
294 */
295 glsl_to_tgsi_instruction *bgn_inst;
296
297 /**
298 * Index of the first instruction of the function body in actual TGSI.
299 *
300 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
301 */
302 int inst;
303
304 /** Storage for the return value. */
305 st_src_reg return_reg;
306 };
307
308 struct glsl_to_tgsi_visitor : public ir_visitor {
309 public:
310 glsl_to_tgsi_visitor();
311 ~glsl_to_tgsi_visitor();
312
313 function_entry *current_function;
314
315 struct gl_context *ctx;
316 struct gl_program *prog;
317 struct gl_shader_program *shader_program;
318 struct gl_shader_compiler_options *options;
319
320 int next_temp;
321
322 unsigned array_sizes[MAX_ARRAYS];
323 unsigned next_array;
324
325 int num_address_regs;
326 int samplers_used;
327 bool indirect_addr_consts;
328
329 int glsl_version;
330 bool native_integers;
331 bool have_sqrt;
332
333 variable_storage *find_variable_storage(ir_variable *var);
334
335 int add_constant(gl_register_file file, gl_constant_value values[4],
336 int size, int datatype, GLuint *swizzle_out);
337
338 function_entry *get_function_signature(ir_function_signature *sig);
339
340 st_src_reg get_temp(const glsl_type *type);
341 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
342
343 st_src_reg st_src_reg_for_float(float val);
344 st_src_reg st_src_reg_for_int(int val);
345 st_src_reg st_src_reg_for_type(int type, int val);
346
347 /**
348 * \name Visit methods
349 *
350 * As typical for the visitor pattern, there must be one \c visit method for
351 * each concrete subclass of \c ir_instruction. Virtual base classes within
352 * the hierarchy should not have \c visit methods.
353 */
354 /*@{*/
355 virtual void visit(ir_variable *);
356 virtual void visit(ir_loop *);
357 virtual void visit(ir_loop_jump *);
358 virtual void visit(ir_function_signature *);
359 virtual void visit(ir_function *);
360 virtual void visit(ir_expression *);
361 virtual void visit(ir_swizzle *);
362 virtual void visit(ir_dereference_variable *);
363 virtual void visit(ir_dereference_array *);
364 virtual void visit(ir_dereference_record *);
365 virtual void visit(ir_assignment *);
366 virtual void visit(ir_constant *);
367 virtual void visit(ir_call *);
368 virtual void visit(ir_return *);
369 virtual void visit(ir_discard *);
370 virtual void visit(ir_texture *);
371 virtual void visit(ir_if *);
372 /*@}*/
373
374 st_src_reg result;
375
376 /** List of variable_storage */
377 exec_list variables;
378
379 /** List of immediate_storage */
380 exec_list immediates;
381 unsigned num_immediates;
382
383 /** List of function_entry */
384 exec_list function_signatures;
385 int next_signature_id;
386
387 /** List of glsl_to_tgsi_instruction */
388 exec_list instructions;
389
390 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
391
392 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
393 st_dst_reg dst, st_src_reg src0);
394
395 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
396 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
397
398 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
399 st_dst_reg dst,
400 st_src_reg src0, st_src_reg src1, st_src_reg src2);
401
402 unsigned get_opcode(ir_instruction *ir, unsigned op,
403 st_dst_reg dst,
404 st_src_reg src0, st_src_reg src1);
405
406 /**
407 * Emit the correct dot-product instruction for the type of arguments
408 */
409 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
410 st_dst_reg dst,
411 st_src_reg src0,
412 st_src_reg src1,
413 unsigned elements);
414
415 void emit_scalar(ir_instruction *ir, unsigned op,
416 st_dst_reg dst, st_src_reg src0);
417
418 void emit_scalar(ir_instruction *ir, unsigned op,
419 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
420
421 void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
422
423 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
424
425 void emit_scs(ir_instruction *ir, unsigned op,
426 st_dst_reg dst, const st_src_reg &src);
427
428 bool try_emit_mad(ir_expression *ir,
429 int mul_operand);
430 bool try_emit_mad_for_and_not(ir_expression *ir,
431 int mul_operand);
432 bool try_emit_sat(ir_expression *ir);
433
434 void emit_swz(ir_expression *ir);
435
436 bool process_move_condition(ir_rvalue *ir);
437
438 void simplify_cmp(void);
439
440 void rename_temp_register(int index, int new_index);
441 int get_first_temp_read(int index);
442 int get_first_temp_write(int index);
443 int get_last_temp_read(int index);
444 int get_last_temp_write(int index);
445
446 void copy_propagate(void);
447 void eliminate_dead_code(void);
448 int eliminate_dead_code_advanced(void);
449 void merge_registers(void);
450 void renumber_registers(void);
451
452 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
453 st_dst_reg *l, st_src_reg *r);
454
455 void *mem_ctx;
456 };
457
458 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
459
460 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
461
462 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
463
464 static void
465 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
466
467 static void
468 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
469 {
470 va_list args;
471 va_start(args, fmt);
472 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
473 va_end(args);
474
475 prog->LinkStatus = GL_FALSE;
476 }
477
478 static int
479 swizzle_for_size(int size)
480 {
481 int size_swizzles[4] = {
482 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
483 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
484 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
485 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
486 };
487
488 assert((size >= 1) && (size <= 4));
489 return size_swizzles[size - 1];
490 }
491
492 static bool
493 is_tex_instruction(unsigned opcode)
494 {
495 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
496 return info->is_tex;
497 }
498
499 static unsigned
500 num_inst_dst_regs(unsigned opcode)
501 {
502 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
503 return info->num_dst;
504 }
505
506 static unsigned
507 num_inst_src_regs(unsigned opcode)
508 {
509 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
510 return info->is_tex ? info->num_src - 1 : info->num_src;
511 }
512
513 glsl_to_tgsi_instruction *
514 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
515 st_dst_reg dst,
516 st_src_reg src0, st_src_reg src1, st_src_reg src2)
517 {
518 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
519 int num_reladdr = 0, i;
520
521 op = get_opcode(ir, op, dst, src0, src1);
522
523 /* If we have to do relative addressing, we want to load the ARL
524 * reg directly for one of the regs, and preload the other reladdr
525 * sources into temps.
526 */
527 num_reladdr += dst.reladdr != NULL;
528 num_reladdr += src0.reladdr != NULL;
529 num_reladdr += src1.reladdr != NULL;
530 num_reladdr += src2.reladdr != NULL;
531
532 reladdr_to_temp(ir, &src2, &num_reladdr);
533 reladdr_to_temp(ir, &src1, &num_reladdr);
534 reladdr_to_temp(ir, &src0, &num_reladdr);
535
536 if (dst.reladdr) {
537 emit_arl(ir, address_reg, *dst.reladdr);
538 num_reladdr--;
539 }
540 assert(num_reladdr == 0);
541
542 inst->op = op;
543 inst->dst = dst;
544 inst->src[0] = src0;
545 inst->src[1] = src1;
546 inst->src[2] = src2;
547 inst->ir = ir;
548 inst->dead_mask = 0;
549
550 inst->function = NULL;
551
552 if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
553 this->num_address_regs = 1;
554
555 /* Update indirect addressing status used by TGSI */
556 if (dst.reladdr) {
557 switch(dst.file) {
558 case PROGRAM_LOCAL_PARAM:
559 case PROGRAM_ENV_PARAM:
560 case PROGRAM_STATE_VAR:
561 case PROGRAM_CONSTANT:
562 case PROGRAM_UNIFORM:
563 this->indirect_addr_consts = true;
564 break;
565 case PROGRAM_IMMEDIATE:
566 assert(!"immediates should not have indirect addressing");
567 break;
568 default:
569 break;
570 }
571 }
572 else {
573 for (i=0; i<3; i++) {
574 if(inst->src[i].reladdr) {
575 switch(inst->src[i].file) {
576 case PROGRAM_LOCAL_PARAM:
577 case PROGRAM_ENV_PARAM:
578 case PROGRAM_STATE_VAR:
579 case PROGRAM_CONSTANT:
580 case PROGRAM_UNIFORM:
581 this->indirect_addr_consts = true;
582 break;
583 case PROGRAM_IMMEDIATE:
584 assert(!"immediates should not have indirect addressing");
585 break;
586 default:
587 break;
588 }
589 }
590 }
591 }
592
593 this->instructions.push_tail(inst);
594
595 if (native_integers)
596 try_emit_float_set(ir, op, dst);
597
598 return inst;
599 }
600
601
602 glsl_to_tgsi_instruction *
603 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
604 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
605 {
606 return emit(ir, op, dst, src0, src1, undef_src);
607 }
608
609 glsl_to_tgsi_instruction *
610 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
611 st_dst_reg dst, st_src_reg src0)
612 {
613 assert(dst.writemask != 0);
614 return emit(ir, op, dst, src0, undef_src, undef_src);
615 }
616
617 glsl_to_tgsi_instruction *
618 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
619 {
620 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
621 }
622
623 /**
624 * Emits the code to convert the result of float SET instructions to integers.
625 */
626 void
627 glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
628 st_dst_reg dst)
629 {
630 if ((op == TGSI_OPCODE_SEQ ||
631 op == TGSI_OPCODE_SNE ||
632 op == TGSI_OPCODE_SGE ||
633 op == TGSI_OPCODE_SLT))
634 {
635 st_src_reg src = st_src_reg(dst);
636 src.negate = ~src.negate;
637 dst.type = GLSL_TYPE_FLOAT;
638 emit(ir, TGSI_OPCODE_F2I, dst, src);
639 }
640 }
641
642 /**
643 * Determines whether to use an integer, unsigned integer, or float opcode
644 * based on the operands and input opcode, then emits the result.
645 */
646 unsigned
647 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
648 st_dst_reg dst,
649 st_src_reg src0, st_src_reg src1)
650 {
651 int type = GLSL_TYPE_FLOAT;
652
653 assert(src0.type != GLSL_TYPE_ARRAY);
654 assert(src0.type != GLSL_TYPE_STRUCT);
655 assert(src1.type != GLSL_TYPE_ARRAY);
656 assert(src1.type != GLSL_TYPE_STRUCT);
657
658 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
659 type = GLSL_TYPE_FLOAT;
660 else if (native_integers)
661 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
662
663 #define case4(c, f, i, u) \
664 case TGSI_OPCODE_##c: \
665 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
666 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
667 else op = TGSI_OPCODE_##f; \
668 break;
669 #define case3(f, i, u) case4(f, f, i, u)
670 #define case2fi(f, i) case4(f, f, i, i)
671 #define case2iu(i, u) case4(i, LAST, i, u)
672
673 switch(op) {
674 case2fi(ADD, UADD);
675 case2fi(MUL, UMUL);
676 case2fi(MAD, UMAD);
677 case3(DIV, IDIV, UDIV);
678 case3(MAX, IMAX, UMAX);
679 case3(MIN, IMIN, UMIN);
680 case2iu(MOD, UMOD);
681
682 case2fi(SEQ, USEQ);
683 case2fi(SNE, USNE);
684 case3(SGE, ISGE, USGE);
685 case3(SLT, ISLT, USLT);
686
687 case2iu(ISHR, USHR);
688
689 case2fi(SSG, ISSG);
690 case3(ABS, IABS, IABS);
691
692 default: break;
693 }
694
695 assert(op != TGSI_OPCODE_LAST);
696 return op;
697 }
698
699 glsl_to_tgsi_instruction *
700 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
701 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
702 unsigned elements)
703 {
704 static const unsigned dot_opcodes[] = {
705 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
706 };
707
708 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
709 }
710
711 /**
712 * Emits TGSI scalar opcodes to produce unique answers across channels.
713 *
714 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
715 * channel determines the result across all channels. So to do a vec4
716 * of this operation, we want to emit a scalar per source channel used
717 * to produce dest channels.
718 */
719 void
720 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
721 st_dst_reg dst,
722 st_src_reg orig_src0, st_src_reg orig_src1)
723 {
724 int i, j;
725 int done_mask = ~dst.writemask;
726
727 /* TGSI RCP is a scalar operation splatting results to all channels,
728 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
729 * dst channels.
730 */
731 for (i = 0; i < 4; i++) {
732 GLuint this_mask = (1 << i);
733 glsl_to_tgsi_instruction *inst;
734 st_src_reg src0 = orig_src0;
735 st_src_reg src1 = orig_src1;
736
737 if (done_mask & this_mask)
738 continue;
739
740 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
741 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
742 for (j = i + 1; j < 4; j++) {
743 /* If there is another enabled component in the destination that is
744 * derived from the same inputs, generate its value on this pass as
745 * well.
746 */
747 if (!(done_mask & (1 << j)) &&
748 GET_SWZ(src0.swizzle, j) == src0_swiz &&
749 GET_SWZ(src1.swizzle, j) == src1_swiz) {
750 this_mask |= (1 << j);
751 }
752 }
753 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
754 src0_swiz, src0_swiz);
755 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
756 src1_swiz, src1_swiz);
757
758 inst = emit(ir, op, dst, src0, src1);
759 inst->dst.writemask = this_mask;
760 done_mask |= this_mask;
761 }
762 }
763
764 void
765 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
766 st_dst_reg dst, st_src_reg src0)
767 {
768 st_src_reg undef = undef_src;
769
770 undef.swizzle = SWIZZLE_XXXX;
771
772 emit_scalar(ir, op, dst, src0, undef);
773 }
774
775 void
776 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
777 st_dst_reg dst, st_src_reg src0)
778 {
779 int op = TGSI_OPCODE_ARL;
780
781 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
782 op = TGSI_OPCODE_UARL;
783
784 emit(NULL, op, dst, src0);
785 }
786
787 /**
788 * Emit an TGSI_OPCODE_SCS instruction
789 *
790 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
791 * Instead of splatting its result across all four components of the
792 * destination, it writes one value to the \c x component and another value to
793 * the \c y component.
794 *
795 * \param ir IR instruction being processed
796 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
797 * on which value is desired.
798 * \param dst Destination register
799 * \param src Source register
800 */
801 void
802 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
803 st_dst_reg dst,
804 const st_src_reg &src)
805 {
806 /* Vertex programs cannot use the SCS opcode.
807 */
808 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
809 emit_scalar(ir, op, dst, src);
810 return;
811 }
812
813 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
814 const unsigned scs_mask = (1U << component);
815 int done_mask = ~dst.writemask;
816 st_src_reg tmp;
817
818 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
819
820 /* If there are compnents in the destination that differ from the component
821 * that will be written by the SCS instrution, we'll need a temporary.
822 */
823 if (scs_mask != unsigned(dst.writemask)) {
824 tmp = get_temp(glsl_type::vec4_type);
825 }
826
827 for (unsigned i = 0; i < 4; i++) {
828 unsigned this_mask = (1U << i);
829 st_src_reg src0 = src;
830
831 if ((done_mask & this_mask) != 0)
832 continue;
833
834 /* The source swizzle specified which component of the source generates
835 * sine / cosine for the current component in the destination. The SCS
836 * instruction requires that this value be swizzle to the X component.
837 * Replace the current swizzle with a swizzle that puts the source in
838 * the X component.
839 */
840 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
841
842 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
843 src0_swiz, src0_swiz);
844 for (unsigned j = i + 1; j < 4; j++) {
845 /* If there is another enabled component in the destination that is
846 * derived from the same inputs, generate its value on this pass as
847 * well.
848 */
849 if (!(done_mask & (1 << j)) &&
850 GET_SWZ(src0.swizzle, j) == src0_swiz) {
851 this_mask |= (1 << j);
852 }
853 }
854
855 if (this_mask != scs_mask) {
856 glsl_to_tgsi_instruction *inst;
857 st_dst_reg tmp_dst = st_dst_reg(tmp);
858
859 /* Emit the SCS instruction.
860 */
861 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
862 inst->dst.writemask = scs_mask;
863
864 /* Move the result of the SCS instruction to the desired location in
865 * the destination.
866 */
867 tmp.swizzle = MAKE_SWIZZLE4(component, component,
868 component, component);
869 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
870 inst->dst.writemask = this_mask;
871 } else {
872 /* Emit the SCS instruction to write directly to the destination.
873 */
874 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
875 inst->dst.writemask = scs_mask;
876 }
877
878 done_mask |= this_mask;
879 }
880 }
881
882 int
883 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
884 gl_constant_value values[4], int size, int datatype,
885 GLuint *swizzle_out)
886 {
887 if (file == PROGRAM_CONSTANT) {
888 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
889 size, datatype, swizzle_out);
890 } else {
891 int index = 0;
892 immediate_storage *entry;
893 assert(file == PROGRAM_IMMEDIATE);
894
895 /* Search immediate storage to see if we already have an identical
896 * immediate that we can use instead of adding a duplicate entry.
897 */
898 foreach_iter(exec_list_iterator, iter, this->immediates) {
899 entry = (immediate_storage *)iter.get();
900
901 if (entry->size == size &&
902 entry->type == datatype &&
903 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
904 return index;
905 }
906 index++;
907 }
908
909 /* Add this immediate to the list. */
910 entry = new(mem_ctx) immediate_storage(values, size, datatype);
911 this->immediates.push_tail(entry);
912 this->num_immediates++;
913 return index;
914 }
915 }
916
917 st_src_reg
918 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
919 {
920 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
921 union gl_constant_value uval;
922
923 uval.f = val;
924 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
925
926 return src;
927 }
928
929 st_src_reg
930 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
931 {
932 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
933 union gl_constant_value uval;
934
935 assert(native_integers);
936
937 uval.i = val;
938 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
939
940 return src;
941 }
942
943 st_src_reg
944 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
945 {
946 if (native_integers)
947 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
948 st_src_reg_for_int(val);
949 else
950 return st_src_reg_for_float(val);
951 }
952
953 static int
954 type_size(const struct glsl_type *type)
955 {
956 unsigned int i;
957 int size;
958
959 switch (type->base_type) {
960 case GLSL_TYPE_UINT:
961 case GLSL_TYPE_INT:
962 case GLSL_TYPE_FLOAT:
963 case GLSL_TYPE_BOOL:
964 if (type->is_matrix()) {
965 return type->matrix_columns;
966 } else {
967 /* Regardless of size of vector, it gets a vec4. This is bad
968 * packing for things like floats, but otherwise arrays become a
969 * mess. Hopefully a later pass over the code can pack scalars
970 * down if appropriate.
971 */
972 return 1;
973 }
974 case GLSL_TYPE_ARRAY:
975 assert(type->length > 0);
976 return type_size(type->fields.array) * type->length;
977 case GLSL_TYPE_STRUCT:
978 size = 0;
979 for (i = 0; i < type->length; i++) {
980 size += type_size(type->fields.structure[i].type);
981 }
982 return size;
983 case GLSL_TYPE_SAMPLER:
984 /* Samplers take up one slot in UNIFORMS[], but they're baked in
985 * at link time.
986 */
987 return 1;
988 case GLSL_TYPE_INTERFACE:
989 case GLSL_TYPE_VOID:
990 case GLSL_TYPE_ERROR:
991 assert(!"Invalid type in type_size");
992 break;
993 }
994 return 0;
995 }
996
997 /**
998 * In the initial pass of codegen, we assign temporary numbers to
999 * intermediate results. (not SSA -- variable assignments will reuse
1000 * storage).
1001 */
1002 st_src_reg
1003 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1004 {
1005 st_src_reg src;
1006
1007 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1008 src.reladdr = NULL;
1009 src.negate = 0;
1010
1011 if (!options->EmitNoIndirectTemp &&
1012 (type->is_array() || type->is_matrix())) {
1013
1014 src.file = PROGRAM_ARRAY;
1015 src.index = next_array << 16 | 0x8000;
1016 array_sizes[next_array] = type_size(type);
1017 ++next_array;
1018
1019 } else {
1020 src.file = PROGRAM_TEMPORARY;
1021 src.index = next_temp;
1022 next_temp += type_size(type);
1023 }
1024
1025 if (type->is_array() || type->is_record()) {
1026 src.swizzle = SWIZZLE_NOOP;
1027 } else {
1028 src.swizzle = swizzle_for_size(type->vector_elements);
1029 }
1030
1031 return src;
1032 }
1033
1034 variable_storage *
1035 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1036 {
1037
1038 variable_storage *entry;
1039
1040 foreach_iter(exec_list_iterator, iter, this->variables) {
1041 entry = (variable_storage *)iter.get();
1042
1043 if (entry->var == var)
1044 return entry;
1045 }
1046
1047 return NULL;
1048 }
1049
1050 void
1051 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1052 {
1053 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1054 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1055
1056 fp->OriginUpperLeft = ir->origin_upper_left;
1057 fp->PixelCenterInteger = ir->pixel_center_integer;
1058 }
1059
1060 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1061 unsigned int i;
1062 const ir_state_slot *const slots = ir->state_slots;
1063 assert(ir->state_slots != NULL);
1064
1065 /* Check if this statevar's setup in the STATE file exactly
1066 * matches how we'll want to reference it as a
1067 * struct/array/whatever. If not, then we need to move it into
1068 * temporary storage and hope that it'll get copy-propagated
1069 * out.
1070 */
1071 for (i = 0; i < ir->num_state_slots; i++) {
1072 if (slots[i].swizzle != SWIZZLE_XYZW) {
1073 break;
1074 }
1075 }
1076
1077 variable_storage *storage;
1078 st_dst_reg dst;
1079 if (i == ir->num_state_slots) {
1080 /* We'll set the index later. */
1081 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1082 this->variables.push_tail(storage);
1083
1084 dst = undef_dst;
1085 } else {
1086 /* The variable_storage constructor allocates slots based on the size
1087 * of the type. However, this had better match the number of state
1088 * elements that we're going to copy into the new temporary.
1089 */
1090 assert((int) ir->num_state_slots == type_size(ir->type));
1091
1092 dst = st_dst_reg(get_temp(ir->type));
1093
1094 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1095
1096 this->variables.push_tail(storage);
1097 }
1098
1099
1100 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1101 int index = _mesa_add_state_reference(this->prog->Parameters,
1102 (gl_state_index *)slots[i].tokens);
1103
1104 if (storage->file == PROGRAM_STATE_VAR) {
1105 if (storage->index == -1) {
1106 storage->index = index;
1107 } else {
1108 assert(index == storage->index + (int)i);
1109 }
1110 } else {
1111 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1112 * the data being moved since MOV does not care about the type of
1113 * data it is moving, and we don't want to declare registers with
1114 * array or struct types.
1115 */
1116 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1117 src.swizzle = slots[i].swizzle;
1118 emit(ir, TGSI_OPCODE_MOV, dst, src);
1119 /* even a float takes up a whole vec4 reg in a struct/array. */
1120 dst.index++;
1121 }
1122 }
1123
1124 if (storage->file == PROGRAM_TEMPORARY &&
1125 dst.index != storage->index + (int) ir->num_state_slots) {
1126 fail_link(this->shader_program,
1127 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1128 ir->name, dst.index - storage->index,
1129 type_size(ir->type));
1130 }
1131 }
1132 }
1133
1134 void
1135 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1136 {
1137 ir_dereference_variable *counter = NULL;
1138
1139 if (ir->counter != NULL)
1140 counter = new(ir) ir_dereference_variable(ir->counter);
1141
1142 if (ir->from != NULL) {
1143 assert(ir->counter != NULL);
1144
1145 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1146
1147 a->accept(this);
1148 delete a;
1149 }
1150
1151 emit(NULL, TGSI_OPCODE_BGNLOOP);
1152
1153 if (ir->to) {
1154 ir_expression *e =
1155 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1156 counter, ir->to);
1157 ir_if *if_stmt = new(ir) ir_if(e);
1158
1159 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1160
1161 if_stmt->then_instructions.push_tail(brk);
1162
1163 if_stmt->accept(this);
1164
1165 delete if_stmt;
1166 delete e;
1167 delete brk;
1168 }
1169
1170 visit_exec_list(&ir->body_instructions, this);
1171
1172 if (ir->increment) {
1173 ir_expression *e =
1174 new(ir) ir_expression(ir_binop_add, counter->type,
1175 counter, ir->increment);
1176
1177 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1178
1179 a->accept(this);
1180 delete a;
1181 delete e;
1182 }
1183
1184 emit(NULL, TGSI_OPCODE_ENDLOOP);
1185 }
1186
1187 void
1188 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1189 {
1190 switch (ir->mode) {
1191 case ir_loop_jump::jump_break:
1192 emit(NULL, TGSI_OPCODE_BRK);
1193 break;
1194 case ir_loop_jump::jump_continue:
1195 emit(NULL, TGSI_OPCODE_CONT);
1196 break;
1197 }
1198 }
1199
1200
1201 void
1202 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1203 {
1204 assert(0);
1205 (void)ir;
1206 }
1207
1208 void
1209 glsl_to_tgsi_visitor::visit(ir_function *ir)
1210 {
1211 /* Ignore function bodies other than main() -- we shouldn't see calls to
1212 * them since they should all be inlined before we get to glsl_to_tgsi.
1213 */
1214 if (strcmp(ir->name, "main") == 0) {
1215 const ir_function_signature *sig;
1216 exec_list empty;
1217
1218 sig = ir->matching_signature(&empty);
1219
1220 assert(sig);
1221
1222 foreach_iter(exec_list_iterator, iter, sig->body) {
1223 ir_instruction *ir = (ir_instruction *)iter.get();
1224
1225 ir->accept(this);
1226 }
1227 }
1228 }
1229
1230 bool
1231 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1232 {
1233 int nonmul_operand = 1 - mul_operand;
1234 st_src_reg a, b, c;
1235 st_dst_reg result_dst;
1236
1237 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1238 if (!expr || expr->operation != ir_binop_mul)
1239 return false;
1240
1241 expr->operands[0]->accept(this);
1242 a = this->result;
1243 expr->operands[1]->accept(this);
1244 b = this->result;
1245 ir->operands[nonmul_operand]->accept(this);
1246 c = this->result;
1247
1248 this->result = get_temp(ir->type);
1249 result_dst = st_dst_reg(this->result);
1250 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1251 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1252
1253 return true;
1254 }
1255
1256 /**
1257 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1258 *
1259 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1260 * implemented using multiplication, and logical-or is implemented using
1261 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1262 * As result, the logical expression (a & !b) can be rewritten as:
1263 *
1264 * - a * !b
1265 * - a * (1 - b)
1266 * - (a * 1) - (a * b)
1267 * - a + -(a * b)
1268 * - a + (a * -b)
1269 *
1270 * This final expression can be implemented as a single MAD(a, -b, a)
1271 * instruction.
1272 */
1273 bool
1274 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1275 {
1276 const int other_operand = 1 - try_operand;
1277 st_src_reg a, b;
1278
1279 ir_expression *expr = ir->operands[try_operand]->as_expression();
1280 if (!expr || expr->operation != ir_unop_logic_not)
1281 return false;
1282
1283 ir->operands[other_operand]->accept(this);
1284 a = this->result;
1285 expr->operands[0]->accept(this);
1286 b = this->result;
1287
1288 b.negate = ~b.negate;
1289
1290 this->result = get_temp(ir->type);
1291 emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1292
1293 return true;
1294 }
1295
1296 bool
1297 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1298 {
1299 /* Emit saturates in the vertex shader only if SM 3.0 is supported.
1300 */
1301 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1302 !st_context(this->ctx)->has_shader_model3) {
1303 return false;
1304 }
1305
1306 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1307 if (!sat_src)
1308 return false;
1309
1310 sat_src->accept(this);
1311 st_src_reg src = this->result;
1312
1313 /* If we generated an expression instruction into a temporary in
1314 * processing the saturate's operand, apply the saturate to that
1315 * instruction. Otherwise, generate a MOV to do the saturate.
1316 *
1317 * Note that we have to be careful to only do this optimization if
1318 * the instruction in question was what generated src->result. For
1319 * example, ir_dereference_array might generate a MUL instruction
1320 * to create the reladdr, and return us a src reg using that
1321 * reladdr. That MUL result is not the value we're trying to
1322 * saturate.
1323 */
1324 ir_expression *sat_src_expr = sat_src->as_expression();
1325 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1326 sat_src_expr->operation == ir_binop_add ||
1327 sat_src_expr->operation == ir_binop_dot)) {
1328 glsl_to_tgsi_instruction *new_inst;
1329 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1330 new_inst->saturate = true;
1331 } else {
1332 this->result = get_temp(ir->type);
1333 st_dst_reg result_dst = st_dst_reg(this->result);
1334 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1335 glsl_to_tgsi_instruction *inst;
1336 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1337 inst->saturate = true;
1338 }
1339
1340 return true;
1341 }
1342
1343 void
1344 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1345 st_src_reg *reg, int *num_reladdr)
1346 {
1347 if (!reg->reladdr)
1348 return;
1349
1350 emit_arl(ir, address_reg, *reg->reladdr);
1351
1352 if (*num_reladdr != 1) {
1353 st_src_reg temp = get_temp(glsl_type::vec4_type);
1354
1355 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1356 *reg = temp;
1357 }
1358
1359 (*num_reladdr)--;
1360 }
1361
1362 void
1363 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1364 {
1365 unsigned int operand;
1366 st_src_reg op[Elements(ir->operands)];
1367 st_src_reg result_src;
1368 st_dst_reg result_dst;
1369
1370 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1371 */
1372 if (ir->operation == ir_binop_add) {
1373 if (try_emit_mad(ir, 1))
1374 return;
1375 if (try_emit_mad(ir, 0))
1376 return;
1377 }
1378
1379 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1380 */
1381 if (ir->operation == ir_binop_logic_and) {
1382 if (try_emit_mad_for_and_not(ir, 1))
1383 return;
1384 if (try_emit_mad_for_and_not(ir, 0))
1385 return;
1386 }
1387
1388 if (try_emit_sat(ir))
1389 return;
1390
1391 if (ir->operation == ir_quadop_vector)
1392 assert(!"ir_quadop_vector should have been lowered");
1393
1394 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1395 this->result.file = PROGRAM_UNDEFINED;
1396 ir->operands[operand]->accept(this);
1397 if (this->result.file == PROGRAM_UNDEFINED) {
1398 printf("Failed to get tree for expression operand:\n");
1399 ir->operands[operand]->print();
1400 printf("\n");
1401 exit(1);
1402 }
1403 op[operand] = this->result;
1404
1405 /* Matrix expression operands should have been broken down to vector
1406 * operations already.
1407 */
1408 assert(!ir->operands[operand]->type->is_matrix());
1409 }
1410
1411 int vector_elements = ir->operands[0]->type->vector_elements;
1412 if (ir->operands[1]) {
1413 vector_elements = MAX2(vector_elements,
1414 ir->operands[1]->type->vector_elements);
1415 }
1416
1417 this->result.file = PROGRAM_UNDEFINED;
1418
1419 /* Storage for our result. Ideally for an assignment we'd be using
1420 * the actual storage for the result here, instead.
1421 */
1422 result_src = get_temp(ir->type);
1423 /* convenience for the emit functions below. */
1424 result_dst = st_dst_reg(result_src);
1425 /* Limit writes to the channels that will be used by result_src later.
1426 * This does limit this temp's use as a temporary for multi-instruction
1427 * sequences.
1428 */
1429 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1430
1431 switch (ir->operation) {
1432 case ir_unop_logic_not:
1433 if (result_dst.type != GLSL_TYPE_FLOAT)
1434 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1435 else {
1436 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1437 * older GPUs implement SEQ using multiple instructions (i915 uses two
1438 * SGE instructions and a MUL instruction). Since our logic values are
1439 * 0.0 and 1.0, 1-x also implements !x.
1440 */
1441 op[0].negate = ~op[0].negate;
1442 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1443 }
1444 break;
1445 case ir_unop_neg:
1446 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1447 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1448 else {
1449 op[0].negate = ~op[0].negate;
1450 result_src = op[0];
1451 }
1452 break;
1453 case ir_unop_abs:
1454 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1455 break;
1456 case ir_unop_sign:
1457 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1458 break;
1459 case ir_unop_rcp:
1460 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1461 break;
1462
1463 case ir_unop_exp2:
1464 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1465 break;
1466 case ir_unop_exp:
1467 case ir_unop_log:
1468 assert(!"not reached: should be handled by ir_explog_to_explog2");
1469 break;
1470 case ir_unop_log2:
1471 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1472 break;
1473 case ir_unop_sin:
1474 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1475 break;
1476 case ir_unop_cos:
1477 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1478 break;
1479 case ir_unop_sin_reduced:
1480 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1481 break;
1482 case ir_unop_cos_reduced:
1483 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1484 break;
1485
1486 case ir_unop_dFdx:
1487 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1488 break;
1489 case ir_unop_dFdy:
1490 {
1491 /* The X component contains 1 or -1 depending on whether the framebuffer
1492 * is a FBO or the window system buffer, respectively.
1493 * It is then multiplied with the source operand of DDY.
1494 */
1495 static const gl_state_index transform_y_state[STATE_LENGTH]
1496 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1497
1498 unsigned transform_y_index =
1499 _mesa_add_state_reference(this->prog->Parameters,
1500 transform_y_state);
1501
1502 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1503 transform_y_index,
1504 glsl_type::vec4_type);
1505 transform_y.swizzle = SWIZZLE_XXXX;
1506
1507 st_src_reg temp = get_temp(glsl_type::vec4_type);
1508
1509 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1510 emit(ir, TGSI_OPCODE_DDY, result_dst, temp);
1511 break;
1512 }
1513
1514 case ir_unop_noise: {
1515 /* At some point, a motivated person could add a better
1516 * implementation of noise. Currently not even the nvidia
1517 * binary drivers do anything more than this. In any case, the
1518 * place to do this is in the GL state tracker, not the poor
1519 * driver.
1520 */
1521 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1522 break;
1523 }
1524
1525 case ir_binop_add:
1526 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1527 break;
1528 case ir_binop_sub:
1529 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1530 break;
1531
1532 case ir_binop_mul:
1533 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1534 break;
1535 case ir_binop_div:
1536 if (result_dst.type == GLSL_TYPE_FLOAT)
1537 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1538 else
1539 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1540 break;
1541 case ir_binop_mod:
1542 if (result_dst.type == GLSL_TYPE_FLOAT)
1543 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1544 else
1545 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1546 break;
1547
1548 case ir_binop_less:
1549 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1550 break;
1551 case ir_binop_greater:
1552 emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1553 break;
1554 case ir_binop_lequal:
1555 emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1556 break;
1557 case ir_binop_gequal:
1558 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1559 break;
1560 case ir_binop_equal:
1561 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1562 break;
1563 case ir_binop_nequal:
1564 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1565 break;
1566 case ir_binop_all_equal:
1567 /* "==" operator producing a scalar boolean. */
1568 if (ir->operands[0]->type->is_vector() ||
1569 ir->operands[1]->type->is_vector()) {
1570 st_src_reg temp = get_temp(native_integers ?
1571 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1572 glsl_type::vec4_type);
1573
1574 if (native_integers) {
1575 st_dst_reg temp_dst = st_dst_reg(temp);
1576 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1577
1578 emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1579
1580 /* Emit 1-3 AND operations to combine the SEQ results. */
1581 switch (ir->operands[0]->type->vector_elements) {
1582 case 2:
1583 break;
1584 case 3:
1585 temp_dst.writemask = WRITEMASK_Y;
1586 temp1.swizzle = SWIZZLE_YYYY;
1587 temp2.swizzle = SWIZZLE_ZZZZ;
1588 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1589 break;
1590 case 4:
1591 temp_dst.writemask = WRITEMASK_X;
1592 temp1.swizzle = SWIZZLE_XXXX;
1593 temp2.swizzle = SWIZZLE_YYYY;
1594 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1595 temp_dst.writemask = WRITEMASK_Y;
1596 temp1.swizzle = SWIZZLE_ZZZZ;
1597 temp2.swizzle = SWIZZLE_WWWW;
1598 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1599 }
1600
1601 temp1.swizzle = SWIZZLE_XXXX;
1602 temp2.swizzle = SWIZZLE_YYYY;
1603 emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1604 } else {
1605 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1606
1607 /* After the dot-product, the value will be an integer on the
1608 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1609 */
1610 emit_dp(ir, result_dst, temp, temp, vector_elements);
1611
1612 /* Negating the result of the dot-product gives values on the range
1613 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1614 * This is achieved using SGE.
1615 */
1616 st_src_reg sge_src = result_src;
1617 sge_src.negate = ~sge_src.negate;
1618 emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1619 }
1620 } else {
1621 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1622 }
1623 break;
1624 case ir_binop_any_nequal:
1625 /* "!=" operator producing a scalar boolean. */
1626 if (ir->operands[0]->type->is_vector() ||
1627 ir->operands[1]->type->is_vector()) {
1628 st_src_reg temp = get_temp(native_integers ?
1629 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1630 glsl_type::vec4_type);
1631 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1632
1633 if (native_integers) {
1634 st_dst_reg temp_dst = st_dst_reg(temp);
1635 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1636
1637 /* Emit 1-3 OR operations to combine the SNE results. */
1638 switch (ir->operands[0]->type->vector_elements) {
1639 case 2:
1640 break;
1641 case 3:
1642 temp_dst.writemask = WRITEMASK_Y;
1643 temp1.swizzle = SWIZZLE_YYYY;
1644 temp2.swizzle = SWIZZLE_ZZZZ;
1645 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1646 break;
1647 case 4:
1648 temp_dst.writemask = WRITEMASK_X;
1649 temp1.swizzle = SWIZZLE_XXXX;
1650 temp2.swizzle = SWIZZLE_YYYY;
1651 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1652 temp_dst.writemask = WRITEMASK_Y;
1653 temp1.swizzle = SWIZZLE_ZZZZ;
1654 temp2.swizzle = SWIZZLE_WWWW;
1655 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1656 }
1657
1658 temp1.swizzle = SWIZZLE_XXXX;
1659 temp2.swizzle = SWIZZLE_YYYY;
1660 emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1661 } else {
1662 /* After the dot-product, the value will be an integer on the
1663 * range [0,4]. Zero stays zero, and positive values become 1.0.
1664 */
1665 glsl_to_tgsi_instruction *const dp =
1666 emit_dp(ir, result_dst, temp, temp, vector_elements);
1667 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1668 /* The clamping to [0,1] can be done for free in the fragment
1669 * shader with a saturate.
1670 */
1671 dp->saturate = true;
1672 } else {
1673 /* Negating the result of the dot-product gives values on the range
1674 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1675 * achieved using SLT.
1676 */
1677 st_src_reg slt_src = result_src;
1678 slt_src.negate = ~slt_src.negate;
1679 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1680 }
1681 }
1682 } else {
1683 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1684 }
1685 break;
1686
1687 case ir_unop_any: {
1688 assert(ir->operands[0]->type->is_vector());
1689
1690 /* After the dot-product, the value will be an integer on the
1691 * range [0,4]. Zero stays zero, and positive values become 1.0.
1692 */
1693 glsl_to_tgsi_instruction *const dp =
1694 emit_dp(ir, result_dst, op[0], op[0],
1695 ir->operands[0]->type->vector_elements);
1696 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1697 result_dst.type == GLSL_TYPE_FLOAT) {
1698 /* The clamping to [0,1] can be done for free in the fragment
1699 * shader with a saturate.
1700 */
1701 dp->saturate = true;
1702 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1703 /* Negating the result of the dot-product gives values on the range
1704 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1705 * is achieved using SLT.
1706 */
1707 st_src_reg slt_src = result_src;
1708 slt_src.negate = ~slt_src.negate;
1709 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1710 }
1711 else {
1712 /* Use SNE 0 if integers are being used as boolean values. */
1713 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1714 }
1715 break;
1716 }
1717
1718 case ir_binop_logic_xor:
1719 if (native_integers)
1720 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1721 else
1722 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1723 break;
1724
1725 case ir_binop_logic_or: {
1726 if (native_integers) {
1727 /* If integers are used as booleans, we can use an actual "or"
1728 * instruction.
1729 */
1730 assert(native_integers);
1731 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1732 } else {
1733 /* After the addition, the value will be an integer on the
1734 * range [0,2]. Zero stays zero, and positive values become 1.0.
1735 */
1736 glsl_to_tgsi_instruction *add =
1737 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1738 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1739 /* The clamping to [0,1] can be done for free in the fragment
1740 * shader with a saturate if floats are being used as boolean values.
1741 */
1742 add->saturate = true;
1743 } else {
1744 /* Negating the result of the addition gives values on the range
1745 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1746 * is achieved using SLT.
1747 */
1748 st_src_reg slt_src = result_src;
1749 slt_src.negate = ~slt_src.negate;
1750 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1751 }
1752 }
1753 break;
1754 }
1755
1756 case ir_binop_logic_and:
1757 /* If native integers are disabled, the bool args are stored as float 0.0
1758 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1759 * actual AND opcode.
1760 */
1761 if (native_integers)
1762 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1763 else
1764 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1765 break;
1766
1767 case ir_binop_dot:
1768 assert(ir->operands[0]->type->is_vector());
1769 assert(ir->operands[0]->type == ir->operands[1]->type);
1770 emit_dp(ir, result_dst, op[0], op[1],
1771 ir->operands[0]->type->vector_elements);
1772 break;
1773
1774 case ir_unop_sqrt:
1775 if (have_sqrt) {
1776 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1777 }
1778 else {
1779 /* sqrt(x) = x * rsq(x). */
1780 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1781 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1782 /* For incoming channels <= 0, set the result to 0. */
1783 op[0].negate = ~op[0].negate;
1784 emit(ir, TGSI_OPCODE_CMP, result_dst,
1785 op[0], result_src, st_src_reg_for_float(0.0));
1786 }
1787 break;
1788 case ir_unop_rsq:
1789 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1790 break;
1791 case ir_unop_i2f:
1792 if (native_integers) {
1793 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1794 break;
1795 }
1796 /* fallthrough to next case otherwise */
1797 case ir_unop_b2f:
1798 if (native_integers) {
1799 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1800 break;
1801 }
1802 /* fallthrough to next case otherwise */
1803 case ir_unop_i2u:
1804 case ir_unop_u2i:
1805 /* Converting between signed and unsigned integers is a no-op. */
1806 result_src = op[0];
1807 break;
1808 case ir_unop_b2i:
1809 if (native_integers) {
1810 /* Booleans are stored as integers using ~0 for true and 0 for false.
1811 * GLSL requires that int(bool) return 1 for true and 0 for false.
1812 * This conversion is done with AND, but it could be done with NEG.
1813 */
1814 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1815 } else {
1816 /* Booleans and integers are both stored as floats when native
1817 * integers are disabled.
1818 */
1819 result_src = op[0];
1820 }
1821 break;
1822 case ir_unop_f2i:
1823 if (native_integers)
1824 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1825 else
1826 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1827 break;
1828 case ir_unop_f2u:
1829 if (native_integers)
1830 emit(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1831 else
1832 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1833 break;
1834 case ir_unop_bitcast_f2i:
1835 case ir_unop_bitcast_f2u:
1836 case ir_unop_bitcast_i2f:
1837 case ir_unop_bitcast_u2f:
1838 result_src = op[0];
1839 break;
1840 case ir_unop_f2b:
1841 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1842 break;
1843 case ir_unop_i2b:
1844 if (native_integers)
1845 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1846 else
1847 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1848 break;
1849 case ir_unop_trunc:
1850 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1851 break;
1852 case ir_unop_ceil:
1853 emit(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1854 break;
1855 case ir_unop_floor:
1856 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1857 break;
1858 case ir_unop_round_even:
1859 emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1860 break;
1861 case ir_unop_fract:
1862 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1863 break;
1864
1865 case ir_binop_min:
1866 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1867 break;
1868 case ir_binop_max:
1869 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1870 break;
1871 case ir_binop_pow:
1872 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1873 break;
1874
1875 case ir_unop_bit_not:
1876 if (native_integers) {
1877 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1878 break;
1879 }
1880 case ir_unop_u2f:
1881 if (native_integers) {
1882 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1883 break;
1884 }
1885 case ir_binop_lshift:
1886 if (native_integers) {
1887 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1888 break;
1889 }
1890 case ir_binop_rshift:
1891 if (native_integers) {
1892 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1893 break;
1894 }
1895 case ir_binop_bit_and:
1896 if (native_integers) {
1897 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1898 break;
1899 }
1900 case ir_binop_bit_xor:
1901 if (native_integers) {
1902 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1903 break;
1904 }
1905 case ir_binop_bit_or:
1906 if (native_integers) {
1907 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1908 break;
1909 }
1910
1911 assert(!"GLSL 1.30 features unsupported");
1912 break;
1913
1914 case ir_binop_ubo_load: {
1915 ir_constant *uniform_block = ir->operands[0]->as_constant();
1916 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1917 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1918 st_src_reg index_reg = get_temp(glsl_type::uint_type);
1919 st_src_reg cbuf;
1920
1921 cbuf.type = glsl_type::vec4_type->base_type;
1922 cbuf.file = PROGRAM_CONSTANT;
1923 cbuf.index = 0;
1924 cbuf.index2D = uniform_block->value.u[0] + 1;
1925 cbuf.reladdr = NULL;
1926 cbuf.negate = 0;
1927
1928 assert(ir->type->is_vector() || ir->type->is_scalar());
1929
1930 if (const_offset_ir) {
1931 index_reg = st_src_reg_for_int(const_offset / 16);
1932 } else {
1933 emit(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1], st_src_reg_for_int(4));
1934 }
1935
1936 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
1937 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
1938 const_offset % 16 / 4,
1939 const_offset % 16 / 4,
1940 const_offset % 16 / 4);
1941
1942 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1943 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
1944
1945 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1946 emit(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
1947 } else {
1948 emit(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
1949 }
1950 break;
1951 }
1952 case ir_triop_lrp:
1953 /* note: we have to reorder the three args here */
1954 emit(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1955 break;
1956 case ir_unop_pack_snorm_2x16:
1957 case ir_unop_pack_unorm_2x16:
1958 case ir_unop_pack_half_2x16:
1959 case ir_unop_pack_snorm_4x8:
1960 case ir_unop_pack_unorm_4x8:
1961 case ir_unop_unpack_snorm_2x16:
1962 case ir_unop_unpack_unorm_2x16:
1963 case ir_unop_unpack_half_2x16:
1964 case ir_unop_unpack_half_2x16_split_x:
1965 case ir_unop_unpack_half_2x16_split_y:
1966 case ir_unop_unpack_snorm_4x8:
1967 case ir_unop_unpack_unorm_4x8:
1968 case ir_binop_pack_half_2x16_split:
1969 case ir_unop_bitfield_reverse:
1970 case ir_unop_bit_count:
1971 case ir_unop_find_msb:
1972 case ir_unop_find_lsb:
1973 case ir_binop_bfm:
1974 case ir_triop_bfi:
1975 case ir_triop_bitfield_extract:
1976 case ir_quadop_bitfield_insert:
1977 case ir_quadop_vector:
1978 case ir_binop_vector_extract:
1979 case ir_triop_vector_insert:
1980 /* This operation is not supported, or should have already been handled.
1981 */
1982 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
1983 break;
1984 }
1985
1986 this->result = result_src;
1987 }
1988
1989
1990 void
1991 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1992 {
1993 st_src_reg src;
1994 int i;
1995 int swizzle[4];
1996
1997 /* Note that this is only swizzles in expressions, not those on the left
1998 * hand side of an assignment, which do write masking. See ir_assignment
1999 * for that.
2000 */
2001
2002 ir->val->accept(this);
2003 src = this->result;
2004 assert(src.file != PROGRAM_UNDEFINED);
2005
2006 for (i = 0; i < 4; i++) {
2007 if (i < ir->type->vector_elements) {
2008 switch (i) {
2009 case 0:
2010 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2011 break;
2012 case 1:
2013 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2014 break;
2015 case 2:
2016 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2017 break;
2018 case 3:
2019 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2020 break;
2021 }
2022 } else {
2023 /* If the type is smaller than a vec4, replicate the last
2024 * channel out.
2025 */
2026 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2027 }
2028 }
2029
2030 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2031
2032 this->result = src;
2033 }
2034
2035 void
2036 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2037 {
2038 variable_storage *entry = find_variable_storage(ir->var);
2039 ir_variable *var = ir->var;
2040
2041 if (!entry) {
2042 switch (var->mode) {
2043 case ir_var_uniform:
2044 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2045 var->location);
2046 this->variables.push_tail(entry);
2047 break;
2048 case ir_var_shader_in:
2049 /* The linker assigns locations for varyings and attributes,
2050 * including deprecated builtins (like gl_Color), user-assign
2051 * generic attributes (glBindVertexLocation), and
2052 * user-defined varyings.
2053 */
2054 assert(var->location != -1);
2055 entry = new(mem_ctx) variable_storage(var,
2056 PROGRAM_INPUT,
2057 var->location);
2058 break;
2059 case ir_var_shader_out:
2060 assert(var->location != -1);
2061 entry = new(mem_ctx) variable_storage(var,
2062 PROGRAM_OUTPUT,
2063 var->location + var->index);
2064 break;
2065 case ir_var_system_value:
2066 entry = new(mem_ctx) variable_storage(var,
2067 PROGRAM_SYSTEM_VALUE,
2068 var->location);
2069 break;
2070 case ir_var_auto:
2071 case ir_var_temporary:
2072 st_src_reg src = get_temp(var->type);
2073
2074 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2075 this->variables.push_tail(entry);
2076
2077 break;
2078 }
2079
2080 if (!entry) {
2081 printf("Failed to make storage for %s\n", var->name);
2082 exit(1);
2083 }
2084 }
2085
2086 this->result = st_src_reg(entry->file, entry->index, var->type);
2087 if (!native_integers)
2088 this->result.type = GLSL_TYPE_FLOAT;
2089 }
2090
2091 void
2092 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2093 {
2094 ir_constant *index;
2095 st_src_reg src;
2096 int element_size = type_size(ir->type);
2097
2098 index = ir->array_index->constant_expression_value();
2099
2100 ir->array->accept(this);
2101 src = this->result;
2102
2103 if (index) {
2104 src.index += index->value.i[0] * element_size;
2105 } else {
2106 /* Variable index array dereference. It eats the "vec4" of the
2107 * base of the array and an index that offsets the TGSI register
2108 * index.
2109 */
2110 ir->array_index->accept(this);
2111
2112 st_src_reg index_reg;
2113
2114 if (element_size == 1) {
2115 index_reg = this->result;
2116 } else {
2117 index_reg = get_temp(native_integers ?
2118 glsl_type::int_type : glsl_type::float_type);
2119
2120 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2121 this->result, st_src_reg_for_type(index_reg.type, element_size));
2122 }
2123
2124 /* If there was already a relative address register involved, add the
2125 * new and the old together to get the new offset.
2126 */
2127 if (src.reladdr != NULL) {
2128 st_src_reg accum_reg = get_temp(native_integers ?
2129 glsl_type::int_type : glsl_type::float_type);
2130
2131 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2132 index_reg, *src.reladdr);
2133
2134 index_reg = accum_reg;
2135 }
2136
2137 src.reladdr = ralloc(mem_ctx, st_src_reg);
2138 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2139 }
2140
2141 /* If the type is smaller than a vec4, replicate the last channel out. */
2142 if (ir->type->is_scalar() || ir->type->is_vector())
2143 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2144 else
2145 src.swizzle = SWIZZLE_NOOP;
2146
2147 /* Change the register type to the element type of the array. */
2148 src.type = ir->type->base_type;
2149
2150 this->result = src;
2151 }
2152
2153 void
2154 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2155 {
2156 unsigned int i;
2157 const glsl_type *struct_type = ir->record->type;
2158 int offset = 0;
2159
2160 ir->record->accept(this);
2161
2162 for (i = 0; i < struct_type->length; i++) {
2163 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2164 break;
2165 offset += type_size(struct_type->fields.structure[i].type);
2166 }
2167
2168 /* If the type is smaller than a vec4, replicate the last channel out. */
2169 if (ir->type->is_scalar() || ir->type->is_vector())
2170 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2171 else
2172 this->result.swizzle = SWIZZLE_NOOP;
2173
2174 this->result.index += offset;
2175 this->result.type = ir->type->base_type;
2176 }
2177
2178 /**
2179 * We want to be careful in assignment setup to hit the actual storage
2180 * instead of potentially using a temporary like we might with the
2181 * ir_dereference handler.
2182 */
2183 static st_dst_reg
2184 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2185 {
2186 /* The LHS must be a dereference. If the LHS is a variable indexed array
2187 * access of a vector, it must be separated into a series conditional moves
2188 * before reaching this point (see ir_vec_index_to_cond_assign).
2189 */
2190 assert(ir->as_dereference());
2191 ir_dereference_array *deref_array = ir->as_dereference_array();
2192 if (deref_array) {
2193 assert(!deref_array->array->type->is_vector());
2194 }
2195
2196 /* Use the rvalue deref handler for the most part. We'll ignore
2197 * swizzles in it and write swizzles using writemask, though.
2198 */
2199 ir->accept(v);
2200 return st_dst_reg(v->result);
2201 }
2202
2203 /**
2204 * Process the condition of a conditional assignment
2205 *
2206 * Examines the condition of a conditional assignment to generate the optimal
2207 * first operand of a \c CMP instruction. If the condition is a relational
2208 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2209 * used as the source for the \c CMP instruction. Otherwise the comparison
2210 * is processed to a boolean result, and the boolean result is used as the
2211 * operand to the CMP instruction.
2212 */
2213 bool
2214 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2215 {
2216 ir_rvalue *src_ir = ir;
2217 bool negate = true;
2218 bool switch_order = false;
2219
2220 ir_expression *const expr = ir->as_expression();
2221 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2222 bool zero_on_left = false;
2223
2224 if (expr->operands[0]->is_zero()) {
2225 src_ir = expr->operands[1];
2226 zero_on_left = true;
2227 } else if (expr->operands[1]->is_zero()) {
2228 src_ir = expr->operands[0];
2229 zero_on_left = false;
2230 }
2231
2232 /* a is - 0 + - 0 +
2233 * (a < 0) T F F ( a < 0) T F F
2234 * (0 < a) F F T (-a < 0) F F T
2235 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2236 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2237 * (a > 0) F F T (-a < 0) F F T
2238 * (0 > a) T F F ( a < 0) T F F
2239 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2240 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2241 *
2242 * Note that exchanging the order of 0 and 'a' in the comparison simply
2243 * means that the value of 'a' should be negated.
2244 */
2245 if (src_ir != ir) {
2246 switch (expr->operation) {
2247 case ir_binop_less:
2248 switch_order = false;
2249 negate = zero_on_left;
2250 break;
2251
2252 case ir_binop_greater:
2253 switch_order = false;
2254 negate = !zero_on_left;
2255 break;
2256
2257 case ir_binop_lequal:
2258 switch_order = true;
2259 negate = !zero_on_left;
2260 break;
2261
2262 case ir_binop_gequal:
2263 switch_order = true;
2264 negate = zero_on_left;
2265 break;
2266
2267 default:
2268 /* This isn't the right kind of comparison afterall, so make sure
2269 * the whole condition is visited.
2270 */
2271 src_ir = ir;
2272 break;
2273 }
2274 }
2275 }
2276
2277 src_ir->accept(this);
2278
2279 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2280 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2281 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2282 * computing the condition.
2283 */
2284 if (negate)
2285 this->result.negate = ~this->result.negate;
2286
2287 return switch_order;
2288 }
2289
2290 void
2291 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2292 st_dst_reg *l, st_src_reg *r)
2293 {
2294 if (type->base_type == GLSL_TYPE_STRUCT) {
2295 for (unsigned int i = 0; i < type->length; i++) {
2296 emit_block_mov(ir, type->fields.structure[i].type, l, r);
2297 }
2298 return;
2299 }
2300
2301 if (type->is_array()) {
2302 for (unsigned int i = 0; i < type->length; i++) {
2303 emit_block_mov(ir, type->fields.array, l, r);
2304 }
2305 return;
2306 }
2307
2308 if (type->is_matrix()) {
2309 const struct glsl_type *vec_type;
2310
2311 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
2312 type->vector_elements, 1);
2313
2314 for (int i = 0; i < type->matrix_columns; i++) {
2315 emit_block_mov(ir, vec_type, l, r);
2316 }
2317 return;
2318 }
2319
2320 assert(type->is_scalar() || type->is_vector());
2321
2322 r->type = type->base_type;
2323 emit(ir, TGSI_OPCODE_MOV, *l, *r);
2324 l->index++;
2325 r->index++;
2326 }
2327
2328 void
2329 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2330 {
2331 st_dst_reg l;
2332 st_src_reg r;
2333 int i;
2334
2335 ir->rhs->accept(this);
2336 r = this->result;
2337
2338 l = get_assignment_lhs(ir->lhs, this);
2339
2340 /* FINISHME: This should really set to the correct maximal writemask for each
2341 * FINISHME: component written (in the loops below). This case can only
2342 * FINISHME: occur for matrices, arrays, and structures.
2343 */
2344 if (ir->write_mask == 0) {
2345 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2346 l.writemask = WRITEMASK_XYZW;
2347 } else if (ir->lhs->type->is_scalar() &&
2348 ir->lhs->variable_referenced()->mode == ir_var_shader_out) {
2349 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2350 * FINISHME: W component of fragment shader output zero, work correctly.
2351 */
2352 l.writemask = WRITEMASK_XYZW;
2353 } else {
2354 int swizzles[4];
2355 int first_enabled_chan = 0;
2356 int rhs_chan = 0;
2357
2358 l.writemask = ir->write_mask;
2359
2360 for (int i = 0; i < 4; i++) {
2361 if (l.writemask & (1 << i)) {
2362 first_enabled_chan = GET_SWZ(r.swizzle, i);
2363 break;
2364 }
2365 }
2366
2367 /* Swizzle a small RHS vector into the channels being written.
2368 *
2369 * glsl ir treats write_mask as dictating how many channels are
2370 * present on the RHS while TGSI treats write_mask as just
2371 * showing which channels of the vec4 RHS get written.
2372 */
2373 for (int i = 0; i < 4; i++) {
2374 if (l.writemask & (1 << i))
2375 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2376 else
2377 swizzles[i] = first_enabled_chan;
2378 }
2379 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2380 swizzles[2], swizzles[3]);
2381 }
2382
2383 assert(l.file != PROGRAM_UNDEFINED);
2384 assert(r.file != PROGRAM_UNDEFINED);
2385
2386 if (ir->condition) {
2387 const bool switch_order = this->process_move_condition(ir->condition);
2388 st_src_reg condition = this->result;
2389
2390 for (i = 0; i < type_size(ir->lhs->type); i++) {
2391 st_src_reg l_src = st_src_reg(l);
2392 st_src_reg condition_temp = condition;
2393 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2394
2395 if (native_integers) {
2396 /* This is necessary because TGSI's CMP instruction expects the
2397 * condition to be a float, and we store booleans as integers.
2398 * TODO: really want to avoid i2f path and use UCMP. Requires
2399 * changes to process_move_condition though too.
2400 */
2401 condition_temp = get_temp(glsl_type::vec4_type);
2402 condition.negate = 0;
2403 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2404 condition_temp.swizzle = condition.swizzle;
2405 }
2406
2407 if (switch_order) {
2408 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2409 } else {
2410 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2411 }
2412
2413 l.index++;
2414 r.index++;
2415 }
2416 } else if (ir->rhs->as_expression() &&
2417 this->instructions.get_tail() &&
2418 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2419 type_size(ir->lhs->type) == 1 &&
2420 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2421 /* To avoid emitting an extra MOV when assigning an expression to a
2422 * variable, emit the last instruction of the expression again, but
2423 * replace the destination register with the target of the assignment.
2424 * Dead code elimination will remove the original instruction.
2425 */
2426 glsl_to_tgsi_instruction *inst, *new_inst;
2427 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2428 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2429 new_inst->saturate = inst->saturate;
2430 inst->dead_mask = inst->dst.writemask;
2431 } else {
2432 emit_block_mov(ir, ir->rhs->type, &l, &r);
2433 }
2434 }
2435
2436
2437 void
2438 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2439 {
2440 st_src_reg src;
2441 GLfloat stack_vals[4] = { 0 };
2442 gl_constant_value *values = (gl_constant_value *) stack_vals;
2443 GLenum gl_type = GL_NONE;
2444 unsigned int i;
2445 static int in_array = 0;
2446 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2447
2448 /* Unfortunately, 4 floats is all we can get into
2449 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2450 * aggregate constant and move each constant value into it. If we
2451 * get lucky, copy propagation will eliminate the extra moves.
2452 */
2453 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2454 st_src_reg temp_base = get_temp(ir->type);
2455 st_dst_reg temp = st_dst_reg(temp_base);
2456
2457 foreach_iter(exec_list_iterator, iter, ir->components) {
2458 ir_constant *field_value = (ir_constant *)iter.get();
2459 int size = type_size(field_value->type);
2460
2461 assert(size > 0);
2462
2463 field_value->accept(this);
2464 src = this->result;
2465
2466 for (i = 0; i < (unsigned int)size; i++) {
2467 emit(ir, TGSI_OPCODE_MOV, temp, src);
2468
2469 src.index++;
2470 temp.index++;
2471 }
2472 }
2473 this->result = temp_base;
2474 return;
2475 }
2476
2477 if (ir->type->is_array()) {
2478 st_src_reg temp_base = get_temp(ir->type);
2479 st_dst_reg temp = st_dst_reg(temp_base);
2480 int size = type_size(ir->type->fields.array);
2481
2482 assert(size > 0);
2483 in_array++;
2484
2485 for (i = 0; i < ir->type->length; i++) {
2486 ir->array_elements[i]->accept(this);
2487 src = this->result;
2488 for (int j = 0; j < size; j++) {
2489 emit(ir, TGSI_OPCODE_MOV, temp, src);
2490
2491 src.index++;
2492 temp.index++;
2493 }
2494 }
2495 this->result = temp_base;
2496 in_array--;
2497 return;
2498 }
2499
2500 if (ir->type->is_matrix()) {
2501 st_src_reg mat = get_temp(ir->type);
2502 st_dst_reg mat_column = st_dst_reg(mat);
2503
2504 for (i = 0; i < ir->type->matrix_columns; i++) {
2505 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2506 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2507
2508 src = st_src_reg(file, -1, ir->type->base_type);
2509 src.index = add_constant(file,
2510 values,
2511 ir->type->vector_elements,
2512 GL_FLOAT,
2513 &src.swizzle);
2514 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2515
2516 mat_column.index++;
2517 }
2518
2519 this->result = mat;
2520 return;
2521 }
2522
2523 switch (ir->type->base_type) {
2524 case GLSL_TYPE_FLOAT:
2525 gl_type = GL_FLOAT;
2526 for (i = 0; i < ir->type->vector_elements; i++) {
2527 values[i].f = ir->value.f[i];
2528 }
2529 break;
2530 case GLSL_TYPE_UINT:
2531 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2532 for (i = 0; i < ir->type->vector_elements; i++) {
2533 if (native_integers)
2534 values[i].u = ir->value.u[i];
2535 else
2536 values[i].f = ir->value.u[i];
2537 }
2538 break;
2539 case GLSL_TYPE_INT:
2540 gl_type = native_integers ? GL_INT : GL_FLOAT;
2541 for (i = 0; i < ir->type->vector_elements; i++) {
2542 if (native_integers)
2543 values[i].i = ir->value.i[i];
2544 else
2545 values[i].f = ir->value.i[i];
2546 }
2547 break;
2548 case GLSL_TYPE_BOOL:
2549 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2550 for (i = 0; i < ir->type->vector_elements; i++) {
2551 if (native_integers)
2552 values[i].u = ir->value.b[i] ? ~0 : 0;
2553 else
2554 values[i].f = ir->value.b[i];
2555 }
2556 break;
2557 default:
2558 assert(!"Non-float/uint/int/bool constant");
2559 }
2560
2561 this->result = st_src_reg(file, -1, ir->type);
2562 this->result.index = add_constant(file,
2563 values,
2564 ir->type->vector_elements,
2565 gl_type,
2566 &this->result.swizzle);
2567 }
2568
2569 function_entry *
2570 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2571 {
2572 function_entry *entry;
2573
2574 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2575 entry = (function_entry *)iter.get();
2576
2577 if (entry->sig == sig)
2578 return entry;
2579 }
2580
2581 entry = ralloc(mem_ctx, function_entry);
2582 entry->sig = sig;
2583 entry->sig_id = this->next_signature_id++;
2584 entry->bgn_inst = NULL;
2585
2586 /* Allocate storage for all the parameters. */
2587 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2588 ir_variable *param = (ir_variable *)iter.get();
2589 variable_storage *storage;
2590
2591 storage = find_variable_storage(param);
2592 assert(!storage);
2593
2594 st_src_reg src = get_temp(param->type);
2595
2596 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
2597 this->variables.push_tail(storage);
2598 }
2599
2600 if (!sig->return_type->is_void()) {
2601 entry->return_reg = get_temp(sig->return_type);
2602 } else {
2603 entry->return_reg = undef_src;
2604 }
2605
2606 this->function_signatures.push_tail(entry);
2607 return entry;
2608 }
2609
2610 void
2611 glsl_to_tgsi_visitor::visit(ir_call *ir)
2612 {
2613 glsl_to_tgsi_instruction *call_inst;
2614 ir_function_signature *sig = ir->callee;
2615 function_entry *entry = get_function_signature(sig);
2616 int i;
2617
2618 /* Process in parameters. */
2619 exec_list_iterator sig_iter = sig->parameters.iterator();
2620 foreach_iter(exec_list_iterator, iter, *ir) {
2621 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2622 ir_variable *param = (ir_variable *)sig_iter.get();
2623
2624 if (param->mode == ir_var_function_in ||
2625 param->mode == ir_var_function_inout) {
2626 variable_storage *storage = find_variable_storage(param);
2627 assert(storage);
2628
2629 param_rval->accept(this);
2630 st_src_reg r = this->result;
2631
2632 st_dst_reg l;
2633 l.file = storage->file;
2634 l.index = storage->index;
2635 l.reladdr = NULL;
2636 l.writemask = WRITEMASK_XYZW;
2637 l.cond_mask = COND_TR;
2638
2639 for (i = 0; i < type_size(param->type); i++) {
2640 emit(ir, TGSI_OPCODE_MOV, l, r);
2641 l.index++;
2642 r.index++;
2643 }
2644 }
2645
2646 sig_iter.next();
2647 }
2648 assert(!sig_iter.has_next());
2649
2650 /* Emit call instruction */
2651 call_inst = emit(ir, TGSI_OPCODE_CAL);
2652 call_inst->function = entry;
2653
2654 /* Process out parameters. */
2655 sig_iter = sig->parameters.iterator();
2656 foreach_iter(exec_list_iterator, iter, *ir) {
2657 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2658 ir_variable *param = (ir_variable *)sig_iter.get();
2659
2660 if (param->mode == ir_var_function_out ||
2661 param->mode == ir_var_function_inout) {
2662 variable_storage *storage = find_variable_storage(param);
2663 assert(storage);
2664
2665 st_src_reg r;
2666 r.file = storage->file;
2667 r.index = storage->index;
2668 r.reladdr = NULL;
2669 r.swizzle = SWIZZLE_NOOP;
2670 r.negate = 0;
2671
2672 param_rval->accept(this);
2673 st_dst_reg l = st_dst_reg(this->result);
2674
2675 for (i = 0; i < type_size(param->type); i++) {
2676 emit(ir, TGSI_OPCODE_MOV, l, r);
2677 l.index++;
2678 r.index++;
2679 }
2680 }
2681
2682 sig_iter.next();
2683 }
2684 assert(!sig_iter.has_next());
2685
2686 /* Process return value. */
2687 this->result = entry->return_reg;
2688 }
2689
2690 void
2691 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2692 {
2693 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy, offset, sample_index;
2694 st_dst_reg result_dst, coord_dst, cube_sc_dst;
2695 glsl_to_tgsi_instruction *inst = NULL;
2696 unsigned opcode = TGSI_OPCODE_NOP;
2697 const glsl_type *sampler_type = ir->sampler->type;
2698 bool is_cube_array = false;
2699
2700 /* if we are a cube array sampler */
2701 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2702 sampler_type->sampler_array)) {
2703 is_cube_array = true;
2704 }
2705
2706 if (ir->coordinate) {
2707 ir->coordinate->accept(this);
2708
2709 /* Put our coords in a temp. We'll need to modify them for shadow,
2710 * projection, or LOD, so the only case we'd use it as is is if
2711 * we're doing plain old texturing. The optimization passes on
2712 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2713 */
2714 coord = get_temp(glsl_type::vec4_type);
2715 coord_dst = st_dst_reg(coord);
2716 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
2717 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2718 }
2719
2720 if (ir->projector) {
2721 ir->projector->accept(this);
2722 projector = this->result;
2723 }
2724
2725 /* Storage for our result. Ideally for an assignment we'd be using
2726 * the actual storage for the result here, instead.
2727 */
2728 result_src = get_temp(ir->type);
2729 result_dst = st_dst_reg(result_src);
2730
2731 switch (ir->op) {
2732 case ir_tex:
2733 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
2734 if (ir->offset) {
2735 ir->offset->accept(this);
2736 offset = this->result;
2737 }
2738 break;
2739 case ir_txb:
2740 opcode = is_cube_array ? TGSI_OPCODE_TXB2 : TGSI_OPCODE_TXB;
2741 ir->lod_info.bias->accept(this);
2742 lod_info = this->result;
2743 if (ir->offset) {
2744 ir->offset->accept(this);
2745 offset = this->result;
2746 }
2747 break;
2748 case ir_txl:
2749 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
2750 ir->lod_info.lod->accept(this);
2751 lod_info = this->result;
2752 if (ir->offset) {
2753 ir->offset->accept(this);
2754 offset = this->result;
2755 }
2756 break;
2757 case ir_txd:
2758 opcode = TGSI_OPCODE_TXD;
2759 ir->lod_info.grad.dPdx->accept(this);
2760 dx = this->result;
2761 ir->lod_info.grad.dPdy->accept(this);
2762 dy = this->result;
2763 if (ir->offset) {
2764 ir->offset->accept(this);
2765 offset = this->result;
2766 }
2767 break;
2768 case ir_txs:
2769 opcode = TGSI_OPCODE_TXQ;
2770 ir->lod_info.lod->accept(this);
2771 lod_info = this->result;
2772 break;
2773 case ir_txf:
2774 opcode = TGSI_OPCODE_TXF;
2775 ir->lod_info.lod->accept(this);
2776 lod_info = this->result;
2777 if (ir->offset) {
2778 ir->offset->accept(this);
2779 offset = this->result;
2780 }
2781 break;
2782 case ir_txf_ms:
2783 opcode = TGSI_OPCODE_TXF;
2784 ir->lod_info.sample_index->accept(this);
2785 sample_index = this->result;
2786 break;
2787 case ir_lod:
2788 assert(!"Unexpected ir_lod opcode");
2789 break;
2790 }
2791
2792 if (ir->projector) {
2793 if (opcode == TGSI_OPCODE_TEX) {
2794 /* Slot the projector in as the last component of the coord. */
2795 coord_dst.writemask = WRITEMASK_W;
2796 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2797 coord_dst.writemask = WRITEMASK_XYZW;
2798 opcode = TGSI_OPCODE_TXP;
2799 } else {
2800 st_src_reg coord_w = coord;
2801 coord_w.swizzle = SWIZZLE_WWWW;
2802
2803 /* For the other TEX opcodes there's no projective version
2804 * since the last slot is taken up by LOD info. Do the
2805 * projective divide now.
2806 */
2807 coord_dst.writemask = WRITEMASK_W;
2808 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2809
2810 /* In the case where we have to project the coordinates "by hand,"
2811 * the shadow comparator value must also be projected.
2812 */
2813 st_src_reg tmp_src = coord;
2814 if (ir->shadow_comparitor) {
2815 /* Slot the shadow value in as the second to last component of the
2816 * coord.
2817 */
2818 ir->shadow_comparitor->accept(this);
2819
2820 tmp_src = get_temp(glsl_type::vec4_type);
2821 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2822
2823 /* Projective division not allowed for array samplers. */
2824 assert(!sampler_type->sampler_array);
2825
2826 tmp_dst.writemask = WRITEMASK_Z;
2827 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2828
2829 tmp_dst.writemask = WRITEMASK_XY;
2830 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2831 }
2832
2833 coord_dst.writemask = WRITEMASK_XYZ;
2834 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2835
2836 coord_dst.writemask = WRITEMASK_XYZW;
2837 coord.swizzle = SWIZZLE_XYZW;
2838 }
2839 }
2840
2841 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2842 * comparator was put in the correct place (and projected) by the code,
2843 * above, that handles by-hand projection.
2844 */
2845 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2846 /* Slot the shadow value in as the second to last component of the
2847 * coord.
2848 */
2849 ir->shadow_comparitor->accept(this);
2850
2851 if (is_cube_array) {
2852 cube_sc = get_temp(glsl_type::float_type);
2853 cube_sc_dst = st_dst_reg(cube_sc);
2854 cube_sc_dst.writemask = WRITEMASK_X;
2855 emit(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
2856 cube_sc_dst.writemask = WRITEMASK_X;
2857 }
2858 else {
2859 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2860 sampler_type->sampler_array) ||
2861 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
2862 coord_dst.writemask = WRITEMASK_W;
2863 } else {
2864 coord_dst.writemask = WRITEMASK_Z;
2865 }
2866
2867 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2868 coord_dst.writemask = WRITEMASK_XYZW;
2869 }
2870 }
2871
2872 if (ir->op == ir_txf_ms) {
2873 coord_dst.writemask = WRITEMASK_W;
2874 emit(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
2875 coord_dst.writemask = WRITEMASK_XYZW;
2876 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2877 opcode == TGSI_OPCODE_TXF) {
2878 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2879 coord_dst.writemask = WRITEMASK_W;
2880 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2881 coord_dst.writemask = WRITEMASK_XYZW;
2882 }
2883
2884 if (opcode == TGSI_OPCODE_TXD)
2885 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2886 else if (opcode == TGSI_OPCODE_TXQ)
2887 inst = emit(ir, opcode, result_dst, lod_info);
2888 else if (opcode == TGSI_OPCODE_TXF) {
2889 inst = emit(ir, opcode, result_dst, coord);
2890 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
2891 inst = emit(ir, opcode, result_dst, coord, lod_info);
2892 } else if (opcode == TGSI_OPCODE_TEX2) {
2893 inst = emit(ir, opcode, result_dst, coord, cube_sc);
2894 } else
2895 inst = emit(ir, opcode, result_dst, coord);
2896
2897 if (ir->shadow_comparitor)
2898 inst->tex_shadow = GL_TRUE;
2899
2900 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2901 this->shader_program,
2902 this->prog);
2903
2904 if (ir->offset) {
2905 inst->tex_offset_num_offset = 1;
2906 inst->tex_offsets[0].Index = offset.index;
2907 inst->tex_offsets[0].File = offset.file;
2908 inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2909 inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2910 inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2911 }
2912
2913 switch (sampler_type->sampler_dimensionality) {
2914 case GLSL_SAMPLER_DIM_1D:
2915 inst->tex_target = (sampler_type->sampler_array)
2916 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2917 break;
2918 case GLSL_SAMPLER_DIM_2D:
2919 inst->tex_target = (sampler_type->sampler_array)
2920 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2921 break;
2922 case GLSL_SAMPLER_DIM_3D:
2923 inst->tex_target = TEXTURE_3D_INDEX;
2924 break;
2925 case GLSL_SAMPLER_DIM_CUBE:
2926 inst->tex_target = (sampler_type->sampler_array)
2927 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
2928 break;
2929 case GLSL_SAMPLER_DIM_RECT:
2930 inst->tex_target = TEXTURE_RECT_INDEX;
2931 break;
2932 case GLSL_SAMPLER_DIM_BUF:
2933 inst->tex_target = TEXTURE_BUFFER_INDEX;
2934 break;
2935 case GLSL_SAMPLER_DIM_EXTERNAL:
2936 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2937 break;
2938 case GLSL_SAMPLER_DIM_MS:
2939 inst->tex_target = (sampler_type->sampler_array)
2940 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
2941 break;
2942 default:
2943 assert(!"Should not get here.");
2944 }
2945
2946 this->result = result_src;
2947 }
2948
2949 void
2950 glsl_to_tgsi_visitor::visit(ir_return *ir)
2951 {
2952 if (ir->get_value()) {
2953 st_dst_reg l;
2954 int i;
2955
2956 assert(current_function);
2957
2958 ir->get_value()->accept(this);
2959 st_src_reg r = this->result;
2960
2961 l = st_dst_reg(current_function->return_reg);
2962
2963 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2964 emit(ir, TGSI_OPCODE_MOV, l, r);
2965 l.index++;
2966 r.index++;
2967 }
2968 }
2969
2970 emit(ir, TGSI_OPCODE_RET);
2971 }
2972
2973 void
2974 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2975 {
2976 if (ir->condition) {
2977 ir->condition->accept(this);
2978 this->result.negate = ~this->result.negate;
2979 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2980 } else {
2981 emit(ir, TGSI_OPCODE_KILP);
2982 }
2983 }
2984
2985 void
2986 glsl_to_tgsi_visitor::visit(ir_if *ir)
2987 {
2988 unsigned if_opcode;
2989 glsl_to_tgsi_instruction *if_inst;
2990
2991 ir->condition->accept(this);
2992 assert(this->result.file != PROGRAM_UNDEFINED);
2993
2994 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
2995
2996 if_inst = emit(ir->condition, if_opcode, undef_dst, this->result);
2997
2998 this->instructions.push_tail(if_inst);
2999
3000 visit_exec_list(&ir->then_instructions, this);
3001
3002 if (!ir->else_instructions.is_empty()) {
3003 emit(ir->condition, TGSI_OPCODE_ELSE);
3004 visit_exec_list(&ir->else_instructions, this);
3005 }
3006
3007 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
3008 }
3009
3010 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
3011 {
3012 result.file = PROGRAM_UNDEFINED;
3013 next_temp = 1;
3014 next_array = 0;
3015 next_signature_id = 1;
3016 num_immediates = 0;
3017 current_function = NULL;
3018 num_address_regs = 0;
3019 samplers_used = 0;
3020 indirect_addr_consts = false;
3021 glsl_version = 0;
3022 native_integers = false;
3023 mem_ctx = ralloc_context(NULL);
3024 ctx = NULL;
3025 prog = NULL;
3026 shader_program = NULL;
3027 options = NULL;
3028 }
3029
3030 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
3031 {
3032 ralloc_free(mem_ctx);
3033 }
3034
3035 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
3036 {
3037 delete v;
3038 }
3039
3040
3041 /**
3042 * Count resources used by the given gpu program (number of texture
3043 * samplers, etc).
3044 */
3045 static void
3046 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
3047 {
3048 v->samplers_used = 0;
3049
3050 foreach_iter(exec_list_iterator, iter, v->instructions) {
3051 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3052
3053 if (is_tex_instruction(inst->op)) {
3054 v->samplers_used |= 1 << inst->sampler;
3055
3056 if (inst->tex_shadow) {
3057 prog->ShadowSamplers |= 1 << inst->sampler;
3058 }
3059 }
3060 }
3061
3062 prog->SamplersUsed = v->samplers_used;
3063
3064 if (v->shader_program != NULL)
3065 _mesa_update_shader_textures_used(v->shader_program, prog);
3066 }
3067
3068 static void
3069 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
3070 struct gl_shader_program *shader_program,
3071 const char *name, const glsl_type *type,
3072 ir_constant *val)
3073 {
3074 if (type->is_record()) {
3075 ir_constant *field_constant;
3076
3077 field_constant = (ir_constant *)val->components.get_head();
3078
3079 for (unsigned int i = 0; i < type->length; i++) {
3080 const glsl_type *field_type = type->fields.structure[i].type;
3081 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
3082 type->fields.structure[i].name);
3083 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
3084 field_type, field_constant);
3085 field_constant = (ir_constant *)field_constant->next;
3086 }
3087 return;
3088 }
3089
3090 unsigned offset;
3091 unsigned index = _mesa_get_uniform_location(ctx, shader_program, name,
3092 &offset);
3093 if (offset == GL_INVALID_INDEX) {
3094 fail_link(shader_program,
3095 "Couldn't find uniform for initializer %s\n", name);
3096 return;
3097 }
3098 int loc = _mesa_uniform_merge_location_offset(shader_program, index, offset);
3099
3100 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
3101 ir_constant *element;
3102 const glsl_type *element_type;
3103 if (type->is_array()) {
3104 element = val->array_elements[i];
3105 element_type = type->fields.array;
3106 } else {
3107 element = val;
3108 element_type = type;
3109 }
3110
3111 void *values;
3112
3113 if (element_type->base_type == GLSL_TYPE_BOOL) {
3114 int *conv = ralloc_array(mem_ctx, int, element_type->components());
3115 for (unsigned int j = 0; j < element_type->components(); j++) {
3116 conv[j] = element->value.b[j];
3117 }
3118 values = (void *)conv;
3119 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
3120 element_type->vector_elements,
3121 1);
3122 } else {
3123 values = &element->value;
3124 }
3125
3126 if (element_type->is_matrix()) {
3127 _mesa_uniform_matrix(ctx, shader_program,
3128 element_type->matrix_columns,
3129 element_type->vector_elements,
3130 loc, 1, GL_FALSE, (GLfloat *)values);
3131 } else {
3132 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
3133 values, element_type->gl_type);
3134 }
3135
3136 loc++;
3137 }
3138 }
3139
3140 /**
3141 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3142 * are read from the given src in this instruction
3143 */
3144 static int
3145 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3146 {
3147 int read_mask = 0, comp;
3148
3149 /* Now, given the src swizzle and the written channels, find which
3150 * components are actually read
3151 */
3152 for (comp = 0; comp < 4; ++comp) {
3153 const unsigned coord = GET_SWZ(src.swizzle, comp);
3154 ASSERT(coord < 4);
3155 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3156 read_mask |= 1 << coord;
3157 }
3158
3159 return read_mask;
3160 }
3161
3162 /**
3163 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3164 * instruction is the first instruction to write to register T0. There are
3165 * several lowering passes done in GLSL IR (e.g. branches and
3166 * relative addressing) that create a large number of conditional assignments
3167 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3168 *
3169 * Here is why this conversion is safe:
3170 * CMP T0, T1 T2 T0 can be expanded to:
3171 * if (T1 < 0.0)
3172 * MOV T0, T2;
3173 * else
3174 * MOV T0, T0;
3175 *
3176 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3177 * as the original program. If (T1 < 0.0) evaluates to false, executing
3178 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3179 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3180 * because any instruction that was going to read from T0 after this was going
3181 * to read a garbage value anyway.
3182 */
3183 void
3184 glsl_to_tgsi_visitor::simplify_cmp(void)
3185 {
3186 unsigned *tempWrites;
3187 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3188
3189 tempWrites = new unsigned[MAX_TEMPS];
3190 if (!tempWrites) {
3191 return;
3192 }
3193 memset(tempWrites, 0, sizeof(unsigned) * MAX_TEMPS);
3194 memset(outputWrites, 0, sizeof(outputWrites));
3195
3196 foreach_iter(exec_list_iterator, iter, this->instructions) {
3197 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3198 unsigned prevWriteMask = 0;
3199
3200 /* Give up if we encounter relative addressing or flow control. */
3201 if (inst->dst.reladdr ||
3202 tgsi_get_opcode_info(inst->op)->is_branch ||
3203 inst->op == TGSI_OPCODE_BGNSUB ||
3204 inst->op == TGSI_OPCODE_CONT ||
3205 inst->op == TGSI_OPCODE_END ||
3206 inst->op == TGSI_OPCODE_ENDSUB ||
3207 inst->op == TGSI_OPCODE_RET) {
3208 break;
3209 }
3210
3211 if (inst->dst.file == PROGRAM_OUTPUT) {
3212 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3213 prevWriteMask = outputWrites[inst->dst.index];
3214 outputWrites[inst->dst.index] |= inst->dst.writemask;
3215 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3216 assert(inst->dst.index < MAX_TEMPS);
3217 prevWriteMask = tempWrites[inst->dst.index];
3218 tempWrites[inst->dst.index] |= inst->dst.writemask;
3219 } else
3220 continue;
3221
3222 /* For a CMP to be considered a conditional write, the destination
3223 * register and source register two must be the same. */
3224 if (inst->op == TGSI_OPCODE_CMP
3225 && !(inst->dst.writemask & prevWriteMask)
3226 && inst->src[2].file == inst->dst.file
3227 && inst->src[2].index == inst->dst.index
3228 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3229
3230 inst->op = TGSI_OPCODE_MOV;
3231 inst->src[0] = inst->src[1];
3232 }
3233 }
3234
3235 delete [] tempWrites;
3236 }
3237
3238 /* Replaces all references to a temporary register index with another index. */
3239 void
3240 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3241 {
3242 foreach_iter(exec_list_iterator, iter, this->instructions) {
3243 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3244 unsigned j;
3245
3246 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3247 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3248 inst->src[j].index == index) {
3249 inst->src[j].index = new_index;
3250 }
3251 }
3252
3253 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3254 inst->dst.index = new_index;
3255 }
3256 }
3257 }
3258
3259 int
3260 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3261 {
3262 int depth = 0; /* loop depth */
3263 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3264 unsigned i = 0, j;
3265
3266 foreach_iter(exec_list_iterator, iter, this->instructions) {
3267 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3268
3269 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3270 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3271 inst->src[j].index == index) {
3272 return (depth == 0) ? i : loop_start;
3273 }
3274 }
3275
3276 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3277 if(depth++ == 0)
3278 loop_start = i;
3279 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3280 if (--depth == 0)
3281 loop_start = -1;
3282 }
3283 assert(depth >= 0);
3284
3285 i++;
3286 }
3287
3288 return -1;
3289 }
3290
3291 int
3292 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3293 {
3294 int depth = 0; /* loop depth */
3295 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3296 int i = 0;
3297
3298 foreach_iter(exec_list_iterator, iter, this->instructions) {
3299 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3300
3301 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3302 return (depth == 0) ? i : loop_start;
3303 }
3304
3305 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3306 if(depth++ == 0)
3307 loop_start = i;
3308 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3309 if (--depth == 0)
3310 loop_start = -1;
3311 }
3312 assert(depth >= 0);
3313
3314 i++;
3315 }
3316
3317 return -1;
3318 }
3319
3320 int
3321 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3322 {
3323 int depth = 0; /* loop depth */
3324 int last = -1; /* index of last instruction that reads the temporary */
3325 unsigned i = 0, j;
3326
3327 foreach_iter(exec_list_iterator, iter, this->instructions) {
3328 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3329
3330 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3331 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3332 inst->src[j].index == index) {
3333 last = (depth == 0) ? i : -2;
3334 }
3335 }
3336
3337 if (inst->op == TGSI_OPCODE_BGNLOOP)
3338 depth++;
3339 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3340 if (--depth == 0 && last == -2)
3341 last = i;
3342 assert(depth >= 0);
3343
3344 i++;
3345 }
3346
3347 assert(last >= -1);
3348 return last;
3349 }
3350
3351 int
3352 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3353 {
3354 int depth = 0; /* loop depth */
3355 int last = -1; /* index of last instruction that writes to the temporary */
3356 int i = 0;
3357
3358 foreach_iter(exec_list_iterator, iter, this->instructions) {
3359 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3360
3361 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3362 last = (depth == 0) ? i : -2;
3363
3364 if (inst->op == TGSI_OPCODE_BGNLOOP)
3365 depth++;
3366 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3367 if (--depth == 0 && last == -2)
3368 last = i;
3369 assert(depth >= 0);
3370
3371 i++;
3372 }
3373
3374 assert(last >= -1);
3375 return last;
3376 }
3377
3378 /*
3379 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3380 * channels for copy propagation and updates following instructions to
3381 * use the original versions.
3382 *
3383 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3384 * will occur. As an example, a TXP production before this pass:
3385 *
3386 * 0: MOV TEMP[1], INPUT[4].xyyy;
3387 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3388 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3389 *
3390 * and after:
3391 *
3392 * 0: MOV TEMP[1], INPUT[4].xyyy;
3393 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3394 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3395 *
3396 * which allows for dead code elimination on TEMP[1]'s writes.
3397 */
3398 void
3399 glsl_to_tgsi_visitor::copy_propagate(void)
3400 {
3401 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3402 glsl_to_tgsi_instruction *,
3403 this->next_temp * 4);
3404 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3405 int level = 0;
3406
3407 foreach_iter(exec_list_iterator, iter, this->instructions) {
3408 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3409
3410 assert(inst->dst.file != PROGRAM_TEMPORARY
3411 || inst->dst.index < this->next_temp);
3412
3413 /* First, do any copy propagation possible into the src regs. */
3414 for (int r = 0; r < 3; r++) {
3415 glsl_to_tgsi_instruction *first = NULL;
3416 bool good = true;
3417 int acp_base = inst->src[r].index * 4;
3418
3419 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3420 inst->src[r].reladdr)
3421 continue;
3422
3423 /* See if we can find entries in the ACP consisting of MOVs
3424 * from the same src register for all the swizzled channels
3425 * of this src register reference.
3426 */
3427 for (int i = 0; i < 4; i++) {
3428 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3429 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3430
3431 if (!copy_chan) {
3432 good = false;
3433 break;
3434 }
3435
3436 assert(acp_level[acp_base + src_chan] <= level);
3437
3438 if (!first) {
3439 first = copy_chan;
3440 } else {
3441 if (first->src[0].file != copy_chan->src[0].file ||
3442 first->src[0].index != copy_chan->src[0].index) {
3443 good = false;
3444 break;
3445 }
3446 }
3447 }
3448
3449 if (good) {
3450 /* We've now validated that we can copy-propagate to
3451 * replace this src register reference. Do it.
3452 */
3453 inst->src[r].file = first->src[0].file;
3454 inst->src[r].index = first->src[0].index;
3455
3456 int swizzle = 0;
3457 for (int i = 0; i < 4; i++) {
3458 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3459 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3460 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3461 (3 * i));
3462 }
3463 inst->src[r].swizzle = swizzle;
3464 }
3465 }
3466
3467 switch (inst->op) {
3468 case TGSI_OPCODE_BGNLOOP:
3469 case TGSI_OPCODE_ENDLOOP:
3470 /* End of a basic block, clear the ACP entirely. */
3471 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3472 break;
3473
3474 case TGSI_OPCODE_IF:
3475 case TGSI_OPCODE_UIF:
3476 ++level;
3477 break;
3478
3479 case TGSI_OPCODE_ENDIF:
3480 case TGSI_OPCODE_ELSE:
3481 /* Clear all channels written inside the block from the ACP, but
3482 * leaving those that were not touched.
3483 */
3484 for (int r = 0; r < this->next_temp; r++) {
3485 for (int c = 0; c < 4; c++) {
3486 if (!acp[4 * r + c])
3487 continue;
3488
3489 if (acp_level[4 * r + c] >= level)
3490 acp[4 * r + c] = NULL;
3491 }
3492 }
3493 if (inst->op == TGSI_OPCODE_ENDIF)
3494 --level;
3495 break;
3496
3497 default:
3498 /* Continuing the block, clear any written channels from
3499 * the ACP.
3500 */
3501 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3502 /* Any temporary might be written, so no copy propagation
3503 * across this instruction.
3504 */
3505 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3506 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3507 inst->dst.reladdr) {
3508 /* Any output might be written, so no copy propagation
3509 * from outputs across this instruction.
3510 */
3511 for (int r = 0; r < this->next_temp; r++) {
3512 for (int c = 0; c < 4; c++) {
3513 if (!acp[4 * r + c])
3514 continue;
3515
3516 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3517 acp[4 * r + c] = NULL;
3518 }
3519 }
3520 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3521 inst->dst.file == PROGRAM_OUTPUT) {
3522 /* Clear where it's used as dst. */
3523 if (inst->dst.file == PROGRAM_TEMPORARY) {
3524 for (int c = 0; c < 4; c++) {
3525 if (inst->dst.writemask & (1 << c)) {
3526 acp[4 * inst->dst.index + c] = NULL;
3527 }
3528 }
3529 }
3530
3531 /* Clear where it's used as src. */
3532 for (int r = 0; r < this->next_temp; r++) {
3533 for (int c = 0; c < 4; c++) {
3534 if (!acp[4 * r + c])
3535 continue;
3536
3537 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3538
3539 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3540 acp[4 * r + c]->src[0].index == inst->dst.index &&
3541 inst->dst.writemask & (1 << src_chan))
3542 {
3543 acp[4 * r + c] = NULL;
3544 }
3545 }
3546 }
3547 }
3548 break;
3549 }
3550
3551 /* If this is a copy, add it to the ACP. */
3552 if (inst->op == TGSI_OPCODE_MOV &&
3553 inst->dst.file == PROGRAM_TEMPORARY &&
3554 !(inst->dst.file == inst->src[0].file &&
3555 inst->dst.index == inst->src[0].index) &&
3556 !inst->dst.reladdr &&
3557 !inst->saturate &&
3558 !inst->src[0].reladdr &&
3559 !inst->src[0].negate) {
3560 for (int i = 0; i < 4; i++) {
3561 if (inst->dst.writemask & (1 << i)) {
3562 acp[4 * inst->dst.index + i] = inst;
3563 acp_level[4 * inst->dst.index + i] = level;
3564 }
3565 }
3566 }
3567 }
3568
3569 ralloc_free(acp_level);
3570 ralloc_free(acp);
3571 }
3572
3573 /*
3574 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3575 *
3576 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3577 * will occur. As an example, a TXP production after copy propagation but
3578 * before this pass:
3579 *
3580 * 0: MOV TEMP[1], INPUT[4].xyyy;
3581 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3582 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3583 *
3584 * and after this pass:
3585 *
3586 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3587 *
3588 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3589 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3590 */
3591 void
3592 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3593 {
3594 int i;
3595
3596 for (i=0; i < this->next_temp; i++) {
3597 int last_read = get_last_temp_read(i);
3598 int j = 0;
3599
3600 foreach_iter(exec_list_iterator, iter, this->instructions) {
3601 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3602
3603 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3604 j > last_read)
3605 {
3606 iter.remove();
3607 delete inst;
3608 }
3609
3610 j++;
3611 }
3612 }
3613 }
3614
3615 /*
3616 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3617 * code elimination. This is less primitive than eliminate_dead_code(), as it
3618 * is per-channel and can detect consecutive writes without a read between them
3619 * as dead code. However, there is some dead code that can be eliminated by
3620 * eliminate_dead_code() but not this function - for example, this function
3621 * cannot eliminate an instruction writing to a register that is never read and
3622 * is the only instruction writing to that register.
3623 *
3624 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3625 * will occur.
3626 */
3627 int
3628 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3629 {
3630 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3631 glsl_to_tgsi_instruction *,
3632 this->next_temp * 4);
3633 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3634 int level = 0;
3635 int removed = 0;
3636
3637 foreach_iter(exec_list_iterator, iter, this->instructions) {
3638 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3639
3640 assert(inst->dst.file != PROGRAM_TEMPORARY
3641 || inst->dst.index < this->next_temp);
3642
3643 switch (inst->op) {
3644 case TGSI_OPCODE_BGNLOOP:
3645 case TGSI_OPCODE_ENDLOOP:
3646 case TGSI_OPCODE_CONT:
3647 case TGSI_OPCODE_BRK:
3648 /* End of a basic block, clear the write array entirely.
3649 *
3650 * This keeps us from killing dead code when the writes are
3651 * on either side of a loop, even when the register isn't touched
3652 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
3653 * dead code of this type, so it shouldn't make a difference as long as
3654 * the dead code elimination pass in the GLSL compiler does its job.
3655 */
3656 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3657 break;
3658
3659 case TGSI_OPCODE_ENDIF:
3660 case TGSI_OPCODE_ELSE:
3661 /* Promote the recorded level of all channels written inside the
3662 * preceding if or else block to the level above the if/else block.
3663 */
3664 for (int r = 0; r < this->next_temp; r++) {
3665 for (int c = 0; c < 4; c++) {
3666 if (!writes[4 * r + c])
3667 continue;
3668
3669 if (write_level[4 * r + c] == level)
3670 write_level[4 * r + c] = level-1;
3671 }
3672 }
3673
3674 if(inst->op == TGSI_OPCODE_ENDIF)
3675 --level;
3676
3677 break;
3678
3679 case TGSI_OPCODE_IF:
3680 case TGSI_OPCODE_UIF:
3681 ++level;
3682 /* fallthrough to default case to mark the condition as read */
3683
3684 default:
3685 /* Continuing the block, clear any channels from the write array that
3686 * are read by this instruction.
3687 */
3688 for (unsigned i = 0; i < Elements(inst->src); i++) {
3689 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3690 /* Any temporary might be read, so no dead code elimination
3691 * across this instruction.
3692 */
3693 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3694 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3695 /* Clear where it's used as src. */
3696 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3697 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3698 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3699 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3700
3701 for (int c = 0; c < 4; c++) {
3702 if (src_chans & (1 << c)) {
3703 writes[4 * inst->src[i].index + c] = NULL;
3704 }
3705 }
3706 }
3707 }
3708 break;
3709 }
3710
3711 /* If this instruction writes to a temporary, add it to the write array.
3712 * If there is already an instruction in the write array for one or more
3713 * of the channels, flag that channel write as dead.
3714 */
3715 if (inst->dst.file == PROGRAM_TEMPORARY &&
3716 !inst->dst.reladdr &&
3717 !inst->saturate) {
3718 for (int c = 0; c < 4; c++) {
3719 if (inst->dst.writemask & (1 << c)) {
3720 if (writes[4 * inst->dst.index + c]) {
3721 if (write_level[4 * inst->dst.index + c] < level)
3722 continue;
3723 else
3724 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3725 }
3726 writes[4 * inst->dst.index + c] = inst;
3727 write_level[4 * inst->dst.index + c] = level;
3728 }
3729 }
3730 }
3731 }
3732
3733 /* Anything still in the write array at this point is dead code. */
3734 for (int r = 0; r < this->next_temp; r++) {
3735 for (int c = 0; c < 4; c++) {
3736 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3737 if (inst)
3738 inst->dead_mask |= (1 << c);
3739 }
3740 }
3741
3742 /* Now actually remove the instructions that are completely dead and update
3743 * the writemask of other instructions with dead channels.
3744 */
3745 foreach_iter(exec_list_iterator, iter, this->instructions) {
3746 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3747
3748 if (!inst->dead_mask || !inst->dst.writemask)
3749 continue;
3750 else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3751 iter.remove();
3752 delete inst;
3753 removed++;
3754 } else
3755 inst->dst.writemask &= ~(inst->dead_mask);
3756 }
3757
3758 ralloc_free(write_level);
3759 ralloc_free(writes);
3760
3761 return removed;
3762 }
3763
3764 /* Merges temporary registers together where possible to reduce the number of
3765 * registers needed to run a program.
3766 *
3767 * Produces optimal code only after copy propagation and dead code elimination
3768 * have been run. */
3769 void
3770 glsl_to_tgsi_visitor::merge_registers(void)
3771 {
3772 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3773 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3774 int i, j;
3775
3776 /* Read the indices of the last read and first write to each temp register
3777 * into an array so that we don't have to traverse the instruction list as
3778 * much. */
3779 for (i=0; i < this->next_temp; i++) {
3780 last_reads[i] = get_last_temp_read(i);
3781 first_writes[i] = get_first_temp_write(i);
3782 }
3783
3784 /* Start looking for registers with non-overlapping usages that can be
3785 * merged together. */
3786 for (i=0; i < this->next_temp; i++) {
3787 /* Don't touch unused registers. */
3788 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3789
3790 for (j=0; j < this->next_temp; j++) {
3791 /* Don't touch unused registers. */
3792 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3793
3794 /* We can merge the two registers if the first write to j is after or
3795 * in the same instruction as the last read from i. Note that the
3796 * register at index i will always be used earlier or at the same time
3797 * as the register at index j. */
3798 if (first_writes[i] <= first_writes[j] &&
3799 last_reads[i] <= first_writes[j])
3800 {
3801 rename_temp_register(j, i); /* Replace all references to j with i.*/
3802
3803 /* Update the first_writes and last_reads arrays with the new
3804 * values for the merged register index, and mark the newly unused
3805 * register index as such. */
3806 last_reads[i] = last_reads[j];
3807 first_writes[j] = -1;
3808 last_reads[j] = -1;
3809 }
3810 }
3811 }
3812
3813 ralloc_free(last_reads);
3814 ralloc_free(first_writes);
3815 }
3816
3817 /* Reassign indices to temporary registers by reusing unused indices created
3818 * by optimization passes. */
3819 void
3820 glsl_to_tgsi_visitor::renumber_registers(void)
3821 {
3822 int i = 0;
3823 int new_index = 0;
3824
3825 for (i=0; i < this->next_temp; i++) {
3826 if (get_first_temp_read(i) < 0) continue;
3827 if (i != new_index)
3828 rename_temp_register(i, new_index);
3829 new_index++;
3830 }
3831
3832 this->next_temp = new_index;
3833 }
3834
3835 /**
3836 * Returns a fragment program which implements the current pixel transfer ops.
3837 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3838 */
3839 extern "C" void
3840 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3841 glsl_to_tgsi_visitor *original,
3842 int scale_and_bias, int pixel_maps)
3843 {
3844 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3845 struct st_context *st = st_context(original->ctx);
3846 struct gl_program *prog = &fp->Base.Base;
3847 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3848 st_src_reg coord, src0;
3849 st_dst_reg dst0;
3850 glsl_to_tgsi_instruction *inst;
3851
3852 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3853 v->ctx = original->ctx;
3854 v->prog = prog;
3855 v->shader_program = NULL;
3856 v->glsl_version = original->glsl_version;
3857 v->native_integers = original->native_integers;
3858 v->options = original->options;
3859 v->next_temp = original->next_temp;
3860 v->num_address_regs = original->num_address_regs;
3861 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3862 v->indirect_addr_consts = original->indirect_addr_consts;
3863 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3864 v->num_immediates = original->num_immediates;
3865
3866 /*
3867 * Get initial pixel color from the texture.
3868 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3869 */
3870 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
3871 src0 = v->get_temp(glsl_type::vec4_type);
3872 dst0 = st_dst_reg(src0);
3873 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3874 inst->sampler = 0;
3875 inst->tex_target = TEXTURE_2D_INDEX;
3876
3877 prog->InputsRead |= VARYING_BIT_TEX0;
3878 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3879 v->samplers_used |= (1 << 0);
3880
3881 if (scale_and_bias) {
3882 static const gl_state_index scale_state[STATE_LENGTH] =
3883 { STATE_INTERNAL, STATE_PT_SCALE,
3884 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3885 static const gl_state_index bias_state[STATE_LENGTH] =
3886 { STATE_INTERNAL, STATE_PT_BIAS,
3887 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3888 GLint scale_p, bias_p;
3889 st_src_reg scale, bias;
3890
3891 scale_p = _mesa_add_state_reference(params, scale_state);
3892 bias_p = _mesa_add_state_reference(params, bias_state);
3893
3894 /* MAD colorTemp, colorTemp, scale, bias; */
3895 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3896 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3897 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3898 }
3899
3900 if (pixel_maps) {
3901 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3902 st_dst_reg temp_dst = st_dst_reg(temp);
3903
3904 assert(st->pixel_xfer.pixelmap_texture);
3905
3906 /* With a little effort, we can do four pixel map look-ups with
3907 * two TEX instructions:
3908 */
3909
3910 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3911 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3912 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3913 inst->sampler = 1;
3914 inst->tex_target = TEXTURE_2D_INDEX;
3915
3916 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3917 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3918 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3919 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3920 inst->sampler = 1;
3921 inst->tex_target = TEXTURE_2D_INDEX;
3922
3923 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3924 v->samplers_used |= (1 << 1);
3925
3926 /* MOV colorTemp, temp; */
3927 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3928 }
3929
3930 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3931 * new visitor. */
3932 foreach_iter(exec_list_iterator, iter, original->instructions) {
3933 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3934 glsl_to_tgsi_instruction *newinst;
3935 st_src_reg src_regs[3];
3936
3937 if (inst->dst.file == PROGRAM_OUTPUT)
3938 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3939
3940 for (int i=0; i<3; i++) {
3941 src_regs[i] = inst->src[i];
3942 if (src_regs[i].file == PROGRAM_INPUT &&
3943 src_regs[i].index == VARYING_SLOT_COL0)
3944 {
3945 src_regs[i].file = PROGRAM_TEMPORARY;
3946 src_regs[i].index = src0.index;
3947 }
3948 else if (src_regs[i].file == PROGRAM_INPUT)
3949 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3950 }
3951
3952 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3953 newinst->tex_target = inst->tex_target;
3954 }
3955
3956 /* Make modifications to fragment program info. */
3957 prog->Parameters = _mesa_combine_parameter_lists(params,
3958 original->prog->Parameters);
3959 _mesa_free_parameter_list(params);
3960 count_resources(v, prog);
3961 fp->glsl_to_tgsi = v;
3962 }
3963
3964 /**
3965 * Make fragment program for glBitmap:
3966 * Sample the texture and kill the fragment if the bit is 0.
3967 * This program will be combined with the user's fragment program.
3968 *
3969 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3970 */
3971 extern "C" void
3972 get_bitmap_visitor(struct st_fragment_program *fp,
3973 glsl_to_tgsi_visitor *original, int samplerIndex)
3974 {
3975 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3976 struct st_context *st = st_context(original->ctx);
3977 struct gl_program *prog = &fp->Base.Base;
3978 st_src_reg coord, src0;
3979 st_dst_reg dst0;
3980 glsl_to_tgsi_instruction *inst;
3981
3982 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3983 v->ctx = original->ctx;
3984 v->prog = prog;
3985 v->shader_program = NULL;
3986 v->glsl_version = original->glsl_version;
3987 v->native_integers = original->native_integers;
3988 v->options = original->options;
3989 v->next_temp = original->next_temp;
3990 v->num_address_regs = original->num_address_regs;
3991 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3992 v->indirect_addr_consts = original->indirect_addr_consts;
3993 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3994 v->num_immediates = original->num_immediates;
3995
3996 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3997 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
3998 src0 = v->get_temp(glsl_type::vec4_type);
3999 dst0 = st_dst_reg(src0);
4000 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
4001 inst->sampler = samplerIndex;
4002 inst->tex_target = TEXTURE_2D_INDEX;
4003
4004 prog->InputsRead |= VARYING_BIT_TEX0;
4005 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
4006 v->samplers_used |= (1 << samplerIndex);
4007
4008 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
4009 src0.negate = NEGATE_XYZW;
4010 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
4011 src0.swizzle = SWIZZLE_XXXX;
4012 inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
4013
4014 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4015 * new visitor. */
4016 foreach_iter(exec_list_iterator, iter, original->instructions) {
4017 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
4018 glsl_to_tgsi_instruction *newinst;
4019 st_src_reg src_regs[3];
4020
4021 if (inst->dst.file == PROGRAM_OUTPUT)
4022 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4023
4024 for (int i=0; i<3; i++) {
4025 src_regs[i] = inst->src[i];
4026 if (src_regs[i].file == PROGRAM_INPUT)
4027 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
4028 }
4029
4030 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4031 newinst->tex_target = inst->tex_target;
4032 }
4033
4034 /* Make modifications to fragment program info. */
4035 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
4036 count_resources(v, prog);
4037 fp->glsl_to_tgsi = v;
4038 }
4039
4040 /* ------------------------- TGSI conversion stuff -------------------------- */
4041 struct label {
4042 unsigned branch_target;
4043 unsigned token;
4044 };
4045
4046 /**
4047 * Intermediate state used during shader translation.
4048 */
4049 struct st_translate {
4050 struct ureg_program *ureg;
4051
4052 struct ureg_dst temps[MAX_TEMPS];
4053 struct ureg_dst arrays[MAX_ARRAYS];
4054 struct ureg_src *constants;
4055 struct ureg_src *immediates;
4056 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4057 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4058 struct ureg_dst address[1];
4059 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4060 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4061
4062 unsigned array_sizes[MAX_ARRAYS];
4063
4064 const GLuint *inputMapping;
4065 const GLuint *outputMapping;
4066
4067 /* For every instruction that contains a label (eg CALL), keep
4068 * details so that we can go back afterwards and emit the correct
4069 * tgsi instruction number for each label.
4070 */
4071 struct label *labels;
4072 unsigned labels_size;
4073 unsigned labels_count;
4074
4075 /* Keep a record of the tgsi instruction number that each mesa
4076 * instruction starts at, will be used to fix up labels after
4077 * translation.
4078 */
4079 unsigned *insn;
4080 unsigned insn_size;
4081 unsigned insn_count;
4082
4083 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4084
4085 boolean error;
4086 };
4087
4088 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4089 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4090 TGSI_SEMANTIC_FACE,
4091 TGSI_SEMANTIC_VERTEXID,
4092 TGSI_SEMANTIC_INSTANCEID
4093 };
4094
4095 /**
4096 * Make note of a branch to a label in the TGSI code.
4097 * After we've emitted all instructions, we'll go over the list
4098 * of labels built here and patch the TGSI code with the actual
4099 * location of each label.
4100 */
4101 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4102 {
4103 unsigned i;
4104
4105 if (t->labels_count + 1 >= t->labels_size) {
4106 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4107 t->labels = (struct label *)realloc(t->labels,
4108 t->labels_size * sizeof(struct label));
4109 if (t->labels == NULL) {
4110 static unsigned dummy;
4111 t->error = TRUE;
4112 return &dummy;
4113 }
4114 }
4115
4116 i = t->labels_count++;
4117 t->labels[i].branch_target = branch_target;
4118 return &t->labels[i].token;
4119 }
4120
4121 /**
4122 * Called prior to emitting the TGSI code for each instruction.
4123 * Allocate additional space for instructions if needed.
4124 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4125 * the next TGSI instruction.
4126 */
4127 static void set_insn_start(struct st_translate *t, unsigned start)
4128 {
4129 if (t->insn_count + 1 >= t->insn_size) {
4130 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4131 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4132 if (t->insn == NULL) {
4133 t->error = TRUE;
4134 return;
4135 }
4136 }
4137
4138 t->insn[t->insn_count++] = start;
4139 }
4140
4141 /**
4142 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4143 */
4144 static struct ureg_src
4145 emit_immediate(struct st_translate *t,
4146 gl_constant_value values[4],
4147 int type, int size)
4148 {
4149 struct ureg_program *ureg = t->ureg;
4150
4151 switch(type)
4152 {
4153 case GL_FLOAT:
4154 return ureg_DECL_immediate(ureg, &values[0].f, size);
4155 case GL_INT:
4156 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4157 case GL_UNSIGNED_INT:
4158 case GL_BOOL:
4159 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4160 default:
4161 assert(!"should not get here - type must be float, int, uint, or bool");
4162 return ureg_src_undef();
4163 }
4164 }
4165
4166 /**
4167 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4168 */
4169 static struct ureg_dst
4170 dst_register(struct st_translate *t,
4171 gl_register_file file,
4172 GLuint index)
4173 {
4174 unsigned array;
4175
4176 switch(file) {
4177 case PROGRAM_UNDEFINED:
4178 return ureg_dst_undef();
4179
4180 case PROGRAM_TEMPORARY:
4181 assert(index >= 0);
4182 assert(index < (int) Elements(t->temps));
4183
4184 if (ureg_dst_is_undef(t->temps[index]))
4185 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4186
4187 return t->temps[index];
4188
4189 case PROGRAM_ARRAY:
4190 array = index >> 16;
4191
4192 assert(array >= 0);
4193 assert(array < (int) Elements(t->arrays));
4194
4195 if (ureg_dst_is_undef(t->arrays[array]))
4196 t->arrays[array] = ureg_DECL_array_temporary(
4197 t->ureg, t->array_sizes[array], TRUE);
4198
4199 return ureg_dst_array_offset(t->arrays[array],
4200 (int)(index & 0xFFFF) - 0x8000);
4201
4202 case PROGRAM_OUTPUT:
4203 if (t->procType == TGSI_PROCESSOR_VERTEX)
4204 assert(index < VARYING_SLOT_MAX);
4205 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4206 assert(index < FRAG_RESULT_MAX);
4207 else
4208 assert(index < VARYING_SLOT_MAX);
4209
4210 assert(t->outputMapping[index] < Elements(t->outputs));
4211
4212 return t->outputs[t->outputMapping[index]];
4213
4214 case PROGRAM_ADDRESS:
4215 return t->address[index];
4216
4217 default:
4218 assert(!"unknown dst register file");
4219 return ureg_dst_undef();
4220 }
4221 }
4222
4223 /**
4224 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4225 */
4226 static struct ureg_src
4227 src_register(struct st_translate *t,
4228 gl_register_file file,
4229 GLint index, GLint index2D)
4230 {
4231 switch(file) {
4232 case PROGRAM_UNDEFINED:
4233 return ureg_src_undef();
4234
4235 case PROGRAM_TEMPORARY:
4236 case PROGRAM_ARRAY:
4237 return ureg_src(dst_register(t, file, index));
4238
4239 case PROGRAM_ENV_PARAM:
4240 case PROGRAM_LOCAL_PARAM:
4241 case PROGRAM_UNIFORM:
4242 assert(index >= 0);
4243 return t->constants[index];
4244 case PROGRAM_STATE_VAR:
4245 case PROGRAM_CONSTANT: /* ie, immediate */
4246 if (index2D) {
4247 struct ureg_src src;
4248 src = ureg_src_register(TGSI_FILE_CONSTANT, 0);
4249 src.Dimension = 1;
4250 src.DimensionIndex = index2D;
4251 return src;
4252 } else if (index < 0)
4253 return ureg_DECL_constant(t->ureg, 0);
4254 else
4255 return t->constants[index];
4256
4257 case PROGRAM_IMMEDIATE:
4258 return t->immediates[index];
4259
4260 case PROGRAM_INPUT:
4261 assert(t->inputMapping[index] < Elements(t->inputs));
4262 return t->inputs[t->inputMapping[index]];
4263
4264 case PROGRAM_OUTPUT:
4265 assert(t->outputMapping[index] < Elements(t->outputs));
4266 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4267
4268 case PROGRAM_ADDRESS:
4269 return ureg_src(t->address[index]);
4270
4271 case PROGRAM_SYSTEM_VALUE:
4272 assert(index < (int) Elements(t->systemValues));
4273 return t->systemValues[index];
4274
4275 default:
4276 assert(!"unknown src register file");
4277 return ureg_src_undef();
4278 }
4279 }
4280
4281 /**
4282 * Create a TGSI ureg_dst register from an st_dst_reg.
4283 */
4284 static struct ureg_dst
4285 translate_dst(struct st_translate *t,
4286 const st_dst_reg *dst_reg,
4287 bool saturate, bool clamp_color)
4288 {
4289 struct ureg_dst dst = dst_register(t,
4290 dst_reg->file,
4291 dst_reg->index);
4292
4293 dst = ureg_writemask(dst, dst_reg->writemask);
4294
4295 if (saturate)
4296 dst = ureg_saturate(dst);
4297 else if (clamp_color && dst_reg->file == PROGRAM_OUTPUT) {
4298 /* Clamp colors for ARB_color_buffer_float. */
4299 switch (t->procType) {
4300 case TGSI_PROCESSOR_VERTEX:
4301 /* XXX if the geometry shader is present, this must be done there
4302 * instead of here. */
4303 if (dst_reg->index == VARYING_SLOT_COL0 ||
4304 dst_reg->index == VARYING_SLOT_COL1 ||
4305 dst_reg->index == VARYING_SLOT_BFC0 ||
4306 dst_reg->index == VARYING_SLOT_BFC1) {
4307 dst = ureg_saturate(dst);
4308 }
4309 break;
4310
4311 case TGSI_PROCESSOR_FRAGMENT:
4312 if (dst_reg->index >= FRAG_RESULT_COLOR) {
4313 dst = ureg_saturate(dst);
4314 }
4315 break;
4316 }
4317 }
4318
4319 if (dst_reg->reladdr != NULL) {
4320 assert(dst_reg->file != PROGRAM_TEMPORARY);
4321 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4322 }
4323
4324 return dst;
4325 }
4326
4327 /**
4328 * Create a TGSI ureg_src register from an st_src_reg.
4329 */
4330 static struct ureg_src
4331 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4332 {
4333 struct ureg_src src = src_register(t, src_reg->file, src_reg->index, src_reg->index2D);
4334
4335 src = ureg_swizzle(src,
4336 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4337 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4338 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4339 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4340
4341 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4342 src = ureg_negate(src);
4343
4344 if (src_reg->reladdr != NULL) {
4345 assert(src_reg->file != PROGRAM_TEMPORARY);
4346 src = ureg_src_indirect(src, ureg_src(t->address[0]));
4347 }
4348
4349 return src;
4350 }
4351
4352 static struct tgsi_texture_offset
4353 translate_tex_offset(struct st_translate *t,
4354 const struct tgsi_texture_offset *in_offset)
4355 {
4356 struct tgsi_texture_offset offset;
4357 struct ureg_src imm_src;
4358
4359 assert(in_offset->File == PROGRAM_IMMEDIATE);
4360 imm_src = t->immediates[in_offset->Index];
4361
4362 offset.File = imm_src.File;
4363 offset.Index = imm_src.Index;
4364 offset.SwizzleX = imm_src.SwizzleX;
4365 offset.SwizzleY = imm_src.SwizzleY;
4366 offset.SwizzleZ = imm_src.SwizzleZ;
4367 offset.File = TGSI_FILE_IMMEDIATE;
4368 offset.Padding = 0;
4369
4370 return offset;
4371 }
4372
4373 static void
4374 compile_tgsi_instruction(struct st_translate *t,
4375 const glsl_to_tgsi_instruction *inst,
4376 bool clamp_dst_color_output)
4377 {
4378 struct ureg_program *ureg = t->ureg;
4379 GLuint i;
4380 struct ureg_dst dst[1];
4381 struct ureg_src src[4];
4382 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4383
4384 unsigned num_dst;
4385 unsigned num_src;
4386 unsigned tex_target;
4387
4388 num_dst = num_inst_dst_regs(inst->op);
4389 num_src = num_inst_src_regs(inst->op);
4390
4391 if (num_dst)
4392 dst[0] = translate_dst(t,
4393 &inst->dst,
4394 inst->saturate,
4395 clamp_dst_color_output);
4396
4397 for (i = 0; i < num_src; i++)
4398 src[i] = translate_src(t, &inst->src[i]);
4399
4400 switch(inst->op) {
4401 case TGSI_OPCODE_BGNLOOP:
4402 case TGSI_OPCODE_CAL:
4403 case TGSI_OPCODE_ELSE:
4404 case TGSI_OPCODE_ENDLOOP:
4405 case TGSI_OPCODE_IF:
4406 case TGSI_OPCODE_UIF:
4407 assert(num_dst == 0);
4408 ureg_label_insn(ureg,
4409 inst->op,
4410 src, num_src,
4411 get_label(t,
4412 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4413 return;
4414
4415 case TGSI_OPCODE_TEX:
4416 case TGSI_OPCODE_TXB:
4417 case TGSI_OPCODE_TXD:
4418 case TGSI_OPCODE_TXL:
4419 case TGSI_OPCODE_TXP:
4420 case TGSI_OPCODE_TXQ:
4421 case TGSI_OPCODE_TXF:
4422 case TGSI_OPCODE_TEX2:
4423 case TGSI_OPCODE_TXB2:
4424 case TGSI_OPCODE_TXL2:
4425 src[num_src++] = t->samplers[inst->sampler];
4426 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4427 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4428 }
4429 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4430
4431 ureg_tex_insn(ureg,
4432 inst->op,
4433 dst, num_dst,
4434 tex_target,
4435 texoffsets, inst->tex_offset_num_offset,
4436 src, num_src);
4437 return;
4438
4439 case TGSI_OPCODE_SCS:
4440 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4441 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4442 break;
4443
4444 default:
4445 ureg_insn(ureg,
4446 inst->op,
4447 dst, num_dst,
4448 src, num_src);
4449 break;
4450 }
4451 }
4452
4453 /**
4454 * Emit the TGSI instructions for inverting and adjusting WPOS.
4455 * This code is unavoidable because it also depends on whether
4456 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4457 */
4458 static void
4459 emit_wpos_adjustment( struct st_translate *t,
4460 const struct gl_program *program,
4461 boolean invert,
4462 GLfloat adjX, GLfloat adjY[2])
4463 {
4464 struct ureg_program *ureg = t->ureg;
4465
4466 /* Fragment program uses fragment position input.
4467 * Need to replace instances of INPUT[WPOS] with temp T
4468 * where T = INPUT[WPOS] by y is inverted.
4469 */
4470 static const gl_state_index wposTransformState[STATE_LENGTH]
4471 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4472 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4473
4474 /* XXX: note we are modifying the incoming shader here! Need to
4475 * do this before emitting the constant decls below, or this
4476 * will be missed:
4477 */
4478 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4479 wposTransformState);
4480
4481 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4482 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4483 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
4484
4485 /* First, apply the coordinate shift: */
4486 if (adjX || adjY[0] || adjY[1]) {
4487 if (adjY[0] != adjY[1]) {
4488 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4489 * depending on whether inversion is actually going to be applied
4490 * or not, which is determined by testing against the inversion
4491 * state variable used below, which will be either +1 or -1.
4492 */
4493 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4494
4495 ureg_CMP(ureg, adj_temp,
4496 ureg_scalar(wpostrans, invert ? 2 : 0),
4497 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4498 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4499 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4500 } else {
4501 ureg_ADD(ureg, wpos_temp, wpos_input,
4502 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4503 }
4504 wpos_input = ureg_src(wpos_temp);
4505 } else {
4506 /* MOV wpos_temp, input[wpos]
4507 */
4508 ureg_MOV( ureg, wpos_temp, wpos_input );
4509 }
4510
4511 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4512 * inversion/identity, or the other way around if we're drawing to an FBO.
4513 */
4514 if (invert) {
4515 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4516 */
4517 ureg_MAD( ureg,
4518 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4519 wpos_input,
4520 ureg_scalar(wpostrans, 0),
4521 ureg_scalar(wpostrans, 1));
4522 } else {
4523 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4524 */
4525 ureg_MAD( ureg,
4526 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4527 wpos_input,
4528 ureg_scalar(wpostrans, 2),
4529 ureg_scalar(wpostrans, 3));
4530 }
4531
4532 /* Use wpos_temp as position input from here on:
4533 */
4534 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
4535 }
4536
4537
4538 /**
4539 * Emit fragment position/ooordinate code.
4540 */
4541 static void
4542 emit_wpos(struct st_context *st,
4543 struct st_translate *t,
4544 const struct gl_program *program,
4545 struct ureg_program *ureg)
4546 {
4547 const struct gl_fragment_program *fp =
4548 (const struct gl_fragment_program *) program;
4549 struct pipe_screen *pscreen = st->pipe->screen;
4550 GLfloat adjX = 0.0f;
4551 GLfloat adjY[2] = { 0.0f, 0.0f };
4552 boolean invert = FALSE;
4553
4554 /* Query the pixel center conventions supported by the pipe driver and set
4555 * adjX, adjY to help out if it cannot handle the requested one internally.
4556 *
4557 * The bias of the y-coordinate depends on whether y-inversion takes place
4558 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4559 * drawing to an FBO (causes additional inversion), and whether the the pipe
4560 * driver origin and the requested origin differ (the latter condition is
4561 * stored in the 'invert' variable).
4562 *
4563 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4564 *
4565 * center shift only:
4566 * i -> h: +0.5
4567 * h -> i: -0.5
4568 *
4569 * inversion only:
4570 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4571 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4572 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4573 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4574 *
4575 * inversion and center shift:
4576 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4577 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4578 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4579 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4580 */
4581 if (fp->OriginUpperLeft) {
4582 /* Fragment shader wants origin in upper-left */
4583 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4584 /* the driver supports upper-left origin */
4585 }
4586 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4587 /* the driver supports lower-left origin, need to invert Y */
4588 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4589 invert = TRUE;
4590 }
4591 else
4592 assert(0);
4593 }
4594 else {
4595 /* Fragment shader wants origin in lower-left */
4596 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4597 /* the driver supports lower-left origin */
4598 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4599 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4600 /* the driver supports upper-left origin, need to invert Y */
4601 invert = TRUE;
4602 else
4603 assert(0);
4604 }
4605
4606 if (fp->PixelCenterInteger) {
4607 /* Fragment shader wants pixel center integer */
4608 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4609 /* the driver supports pixel center integer */
4610 adjY[1] = 1.0f;
4611 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4612 }
4613 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4614 /* the driver supports pixel center half integer, need to bias X,Y */
4615 adjX = -0.5f;
4616 adjY[0] = -0.5f;
4617 adjY[1] = 0.5f;
4618 }
4619 else
4620 assert(0);
4621 }
4622 else {
4623 /* Fragment shader wants pixel center half integer */
4624 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4625 /* the driver supports pixel center half integer */
4626 }
4627 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4628 /* the driver supports pixel center integer, need to bias X,Y */
4629 adjX = adjY[0] = adjY[1] = 0.5f;
4630 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4631 }
4632 else
4633 assert(0);
4634 }
4635
4636 /* we invert after adjustment so that we avoid the MOV to temporary,
4637 * and reuse the adjustment ADD instead */
4638 emit_wpos_adjustment(t, program, invert, adjX, adjY);
4639 }
4640
4641 /**
4642 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4643 * TGSI uses +1 for front, -1 for back.
4644 * This function converts the TGSI value to the GL value. Simply clamping/
4645 * saturating the value to [0,1] does the job.
4646 */
4647 static void
4648 emit_face_var(struct st_translate *t)
4649 {
4650 struct ureg_program *ureg = t->ureg;
4651 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4652 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
4653
4654 /* MOV_SAT face_temp, input[face] */
4655 face_temp = ureg_saturate(face_temp);
4656 ureg_MOV(ureg, face_temp, face_input);
4657
4658 /* Use face_temp as face input from here on: */
4659 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
4660 }
4661
4662 static void
4663 emit_edgeflags(struct st_translate *t)
4664 {
4665 struct ureg_program *ureg = t->ureg;
4666 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VARYING_SLOT_EDGE]];
4667 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4668
4669 ureg_MOV(ureg, edge_dst, edge_src);
4670 }
4671
4672 /**
4673 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4674 * \param program the program to translate
4675 * \param numInputs number of input registers used
4676 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4677 * input indexes
4678 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4679 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4680 * each input
4681 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4682 * \param numOutputs number of output registers used
4683 * \param outputMapping maps Mesa fragment program outputs to TGSI
4684 * generic outputs
4685 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4686 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4687 * each output
4688 *
4689 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4690 */
4691 extern "C" enum pipe_error
4692 st_translate_program(
4693 struct gl_context *ctx,
4694 uint procType,
4695 struct ureg_program *ureg,
4696 glsl_to_tgsi_visitor *program,
4697 const struct gl_program *proginfo,
4698 GLuint numInputs,
4699 const GLuint inputMapping[],
4700 const ubyte inputSemanticName[],
4701 const ubyte inputSemanticIndex[],
4702 const GLuint interpMode[],
4703 const GLboolean is_centroid[],
4704 GLuint numOutputs,
4705 const GLuint outputMapping[],
4706 const ubyte outputSemanticName[],
4707 const ubyte outputSemanticIndex[],
4708 boolean passthrough_edgeflags,
4709 boolean clamp_color)
4710 {
4711 struct st_translate *t;
4712 unsigned i;
4713 enum pipe_error ret = PIPE_OK;
4714
4715 assert(numInputs <= Elements(t->inputs));
4716 assert(numOutputs <= Elements(t->outputs));
4717
4718 t = CALLOC_STRUCT(st_translate);
4719 if (!t) {
4720 ret = PIPE_ERROR_OUT_OF_MEMORY;
4721 goto out;
4722 }
4723
4724 memset(t, 0, sizeof *t);
4725
4726 t->procType = procType;
4727 t->inputMapping = inputMapping;
4728 t->outputMapping = outputMapping;
4729 t->ureg = ureg;
4730
4731 if (program->shader_program) {
4732 for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4733 struct gl_uniform_storage *const storage =
4734 &program->shader_program->UniformStorage[i];
4735
4736 _mesa_uniform_detach_all_driver_storage(storage);
4737 }
4738 }
4739
4740 /*
4741 * Declare input attributes.
4742 */
4743 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4744 for (i = 0; i < numInputs; i++) {
4745 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
4746 inputSemanticName[i],
4747 inputSemanticIndex[i],
4748 interpMode[i], 0,
4749 is_centroid[i]);
4750 }
4751
4752 if (proginfo->InputsRead & VARYING_BIT_POS) {
4753 /* Must do this after setting up t->inputs, and before
4754 * emitting constant references, below:
4755 */
4756 emit_wpos(st_context(ctx), t, proginfo, ureg);
4757 }
4758
4759 if (proginfo->InputsRead & VARYING_BIT_FACE)
4760 emit_face_var(t);
4761
4762 /*
4763 * Declare output attributes.
4764 */
4765 for (i = 0; i < numOutputs; i++) {
4766 switch (outputSemanticName[i]) {
4767 case TGSI_SEMANTIC_POSITION:
4768 t->outputs[i] = ureg_DECL_output(ureg,
4769 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4770 outputSemanticIndex[i]);
4771 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4772 break;
4773 case TGSI_SEMANTIC_STENCIL:
4774 t->outputs[i] = ureg_DECL_output(ureg,
4775 TGSI_SEMANTIC_STENCIL, /* Stencil */
4776 outputSemanticIndex[i]);
4777 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4778 break;
4779 case TGSI_SEMANTIC_COLOR:
4780 t->outputs[i] = ureg_DECL_output(ureg,
4781 TGSI_SEMANTIC_COLOR,
4782 outputSemanticIndex[i]);
4783 break;
4784 default:
4785 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4786 ret = PIPE_ERROR_BAD_INPUT;
4787 goto out;
4788 }
4789 }
4790 }
4791 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4792 for (i = 0; i < numInputs; i++) {
4793 t->inputs[i] = ureg_DECL_gs_input(ureg,
4794 i,
4795 inputSemanticName[i],
4796 inputSemanticIndex[i]);
4797 }
4798
4799 for (i = 0; i < numOutputs; i++) {
4800 t->outputs[i] = ureg_DECL_output(ureg,
4801 outputSemanticName[i],
4802 outputSemanticIndex[i]);
4803 }
4804 }
4805 else {
4806 assert(procType == TGSI_PROCESSOR_VERTEX);
4807
4808 for (i = 0; i < numInputs; i++) {
4809 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4810 }
4811
4812 for (i = 0; i < numOutputs; i++) {
4813 t->outputs[i] = ureg_DECL_output(ureg,
4814 outputSemanticName[i],
4815 outputSemanticIndex[i]);
4816 }
4817 if (passthrough_edgeflags)
4818 emit_edgeflags(t);
4819 }
4820
4821 /* Declare address register.
4822 */
4823 if (program->num_address_regs > 0) {
4824 assert(program->num_address_regs == 1);
4825 t->address[0] = ureg_DECL_address(ureg);
4826 }
4827
4828 /* Declare misc input registers
4829 */
4830 {
4831 GLbitfield sysInputs = proginfo->SystemValuesRead;
4832 unsigned numSys = 0;
4833 for (i = 0; sysInputs; i++) {
4834 if (sysInputs & (1 << i)) {
4835 unsigned semName = mesa_sysval_to_semantic[i];
4836 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4837 if (semName == TGSI_SEMANTIC_INSTANCEID ||
4838 semName == TGSI_SEMANTIC_VERTEXID) {
4839 /* From Gallium perspective, these system values are always
4840 * integer, and require native integer support. However, if
4841 * native integer is supported on the vertex stage but not the
4842 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
4843 * assumes these system values are floats. To resolve the
4844 * inconsistency, we insert a U2F.
4845 */
4846 struct st_context *st = st_context(ctx);
4847 struct pipe_screen *pscreen = st->pipe->screen;
4848 assert(procType == TGSI_PROCESSOR_VERTEX);
4849 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
4850 if (!ctx->Const.NativeIntegers) {
4851 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
4852 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
4853 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
4854 }
4855 }
4856 numSys++;
4857 sysInputs &= ~(1 << i);
4858 }
4859 }
4860 }
4861
4862 /* Copy over array sizes
4863 */
4864 memcpy(t->array_sizes, program->array_sizes, sizeof(unsigned) * program->next_array);
4865
4866 /* Emit constants and uniforms. TGSI uses a single index space for these,
4867 * so we put all the translated regs in t->constants.
4868 */
4869 if (proginfo->Parameters) {
4870 t->constants = (struct ureg_src *)
4871 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
4872 if (t->constants == NULL) {
4873 ret = PIPE_ERROR_OUT_OF_MEMORY;
4874 goto out;
4875 }
4876
4877 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4878 switch (proginfo->Parameters->Parameters[i].Type) {
4879 case PROGRAM_ENV_PARAM:
4880 case PROGRAM_LOCAL_PARAM:
4881 case PROGRAM_STATE_VAR:
4882 case PROGRAM_UNIFORM:
4883 t->constants[i] = ureg_DECL_constant(ureg, i);
4884 break;
4885
4886 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4887 * addressing of the const buffer.
4888 * FIXME: Be smarter and recognize param arrays:
4889 * indirect addressing is only valid within the referenced
4890 * array.
4891 */
4892 case PROGRAM_CONSTANT:
4893 if (program->indirect_addr_consts)
4894 t->constants[i] = ureg_DECL_constant(ureg, i);
4895 else
4896 t->constants[i] = emit_immediate(t,
4897 proginfo->Parameters->ParameterValues[i],
4898 proginfo->Parameters->Parameters[i].DataType,
4899 4);
4900 break;
4901 default:
4902 break;
4903 }
4904 }
4905 }
4906
4907 if (program->shader_program) {
4908 unsigned num_ubos = program->shader_program->NumUniformBlocks;
4909
4910 for (i = 0; i < num_ubos; i++) {
4911 ureg_DECL_constant2D(t->ureg, 0, program->shader_program->UniformBlocks[i].UniformBufferSize / 4, i + 1);
4912 }
4913 }
4914
4915 /* Emit immediate values.
4916 */
4917 t->immediates = (struct ureg_src *)
4918 calloc(program->num_immediates, sizeof(struct ureg_src));
4919 if (t->immediates == NULL) {
4920 ret = PIPE_ERROR_OUT_OF_MEMORY;
4921 goto out;
4922 }
4923 i = 0;
4924 foreach_iter(exec_list_iterator, iter, program->immediates) {
4925 immediate_storage *imm = (immediate_storage *)iter.get();
4926 assert(i < program->num_immediates);
4927 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4928 }
4929 assert(i == program->num_immediates);
4930
4931 /* texture samplers */
4932 for (i = 0; i < ctx->Const.FragmentProgram.MaxTextureImageUnits; i++) {
4933 if (program->samplers_used & (1 << i)) {
4934 t->samplers[i] = ureg_DECL_sampler(ureg, i);
4935 }
4936 }
4937
4938 /* Emit each instruction in turn:
4939 */
4940 foreach_iter(exec_list_iterator, iter, program->instructions) {
4941 set_insn_start(t, ureg_get_instruction_number(ureg));
4942 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get(),
4943 clamp_color);
4944 }
4945
4946 /* Fix up all emitted labels:
4947 */
4948 for (i = 0; i < t->labels_count; i++) {
4949 ureg_fixup_label(ureg, t->labels[i].token,
4950 t->insn[t->labels[i].branch_target]);
4951 }
4952
4953 if (program->shader_program) {
4954 /* This has to be done last. Any operation the can cause
4955 * prog->ParameterValues to get reallocated (e.g., anything that adds a
4956 * program constant) has to happen before creating this linkage.
4957 */
4958 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4959 if (program->shader_program->_LinkedShaders[i] == NULL)
4960 continue;
4961
4962 _mesa_associate_uniform_storage(ctx, program->shader_program,
4963 program->shader_program->_LinkedShaders[i]->Program->Parameters);
4964 }
4965 }
4966
4967 out:
4968 if (t) {
4969 free(t->insn);
4970 free(t->labels);
4971 free(t->constants);
4972 free(t->immediates);
4973
4974 if (t->error) {
4975 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4976 }
4977
4978 free(t);
4979 }
4980
4981 return ret;
4982 }
4983 /* ----------------------------- End TGSI code ------------------------------ */
4984
4985 /**
4986 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4987 * generating Mesa IR.
4988 */
4989 static struct gl_program *
4990 get_mesa_program(struct gl_context *ctx,
4991 struct gl_shader_program *shader_program,
4992 struct gl_shader *shader)
4993 {
4994 glsl_to_tgsi_visitor* v;
4995 struct gl_program *prog;
4996 GLenum target;
4997 bool progress;
4998 struct gl_shader_compiler_options *options =
4999 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
5000 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5001 unsigned ptarget;
5002
5003 switch (shader->Type) {
5004 case GL_VERTEX_SHADER:
5005 target = GL_VERTEX_PROGRAM_ARB;
5006 ptarget = PIPE_SHADER_VERTEX;
5007 break;
5008 case GL_FRAGMENT_SHADER:
5009 target = GL_FRAGMENT_PROGRAM_ARB;
5010 ptarget = PIPE_SHADER_FRAGMENT;
5011 break;
5012 case GL_GEOMETRY_SHADER:
5013 target = GL_GEOMETRY_PROGRAM_NV;
5014 ptarget = PIPE_SHADER_GEOMETRY;
5015 break;
5016 default:
5017 assert(!"should not be reached");
5018 return NULL;
5019 }
5020
5021 validate_ir_tree(shader->ir);
5022
5023 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
5024 if (!prog)
5025 return NULL;
5026 prog->Parameters = _mesa_new_parameter_list();
5027 v = new glsl_to_tgsi_visitor();
5028 v->ctx = ctx;
5029 v->prog = prog;
5030 v->shader_program = shader_program;
5031 v->options = options;
5032 v->glsl_version = ctx->Const.GLSLVersion;
5033 v->native_integers = ctx->Const.NativeIntegers;
5034
5035 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
5036 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
5037
5038 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
5039 prog->Parameters);
5040
5041 /* Remove reads from output registers. */
5042 lower_output_reads(shader->ir);
5043
5044 /* Emit intermediate IR for main(). */
5045 visit_exec_list(shader->ir, v);
5046
5047 /* Now emit bodies for any functions that were used. */
5048 do {
5049 progress = GL_FALSE;
5050
5051 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
5052 function_entry *entry = (function_entry *)iter.get();
5053
5054 if (!entry->bgn_inst) {
5055 v->current_function = entry;
5056
5057 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
5058 entry->bgn_inst->function = entry;
5059
5060 visit_exec_list(&entry->sig->body, v);
5061
5062 glsl_to_tgsi_instruction *last;
5063 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
5064 if (last->op != TGSI_OPCODE_RET)
5065 v->emit(NULL, TGSI_OPCODE_RET);
5066
5067 glsl_to_tgsi_instruction *end;
5068 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
5069 end->function = entry;
5070
5071 progress = GL_TRUE;
5072 }
5073 }
5074 } while (progress);
5075
5076 #if 0
5077 /* Print out some information (for debugging purposes) used by the
5078 * optimization passes. */
5079 for (i=0; i < v->next_temp; i++) {
5080 int fr = v->get_first_temp_read(i);
5081 int fw = v->get_first_temp_write(i);
5082 int lr = v->get_last_temp_read(i);
5083 int lw = v->get_last_temp_write(i);
5084
5085 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
5086 assert(fw <= fr);
5087 }
5088 #endif
5089
5090 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5091 v->simplify_cmp();
5092 v->copy_propagate();
5093 while (v->eliminate_dead_code_advanced());
5094
5095 v->eliminate_dead_code();
5096 v->merge_registers();
5097 v->renumber_registers();
5098
5099 /* Write the END instruction. */
5100 v->emit(NULL, TGSI_OPCODE_END);
5101
5102 if (ctx->Shader.Flags & GLSL_DUMP) {
5103 printf("\n");
5104 printf("GLSL IR for linked %s program %d:\n",
5105 _mesa_glsl_shader_target_name(shader->Type),
5106 shader_program->Name);
5107 _mesa_print_ir(shader->ir, NULL);
5108 printf("\n");
5109 printf("\n");
5110 fflush(stdout);
5111 }
5112
5113 prog->Instructions = NULL;
5114 prog->NumInstructions = 0;
5115
5116 do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
5117 count_resources(v, prog);
5118
5119 _mesa_reference_program(ctx, &shader->Program, prog);
5120
5121 /* This has to be done last. Any operation the can cause
5122 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5123 * program constant) has to happen before creating this linkage.
5124 */
5125 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5126 if (!shader_program->LinkStatus) {
5127 return NULL;
5128 }
5129
5130 struct st_vertex_program *stvp;
5131 struct st_fragment_program *stfp;
5132 struct st_geometry_program *stgp;
5133
5134 switch (shader->Type) {
5135 case GL_VERTEX_SHADER:
5136 stvp = (struct st_vertex_program *)prog;
5137 stvp->glsl_to_tgsi = v;
5138 break;
5139 case GL_FRAGMENT_SHADER:
5140 stfp = (struct st_fragment_program *)prog;
5141 stfp->glsl_to_tgsi = v;
5142 break;
5143 case GL_GEOMETRY_SHADER:
5144 stgp = (struct st_geometry_program *)prog;
5145 stgp->glsl_to_tgsi = v;
5146 break;
5147 default:
5148 assert(!"should not be reached");
5149 return NULL;
5150 }
5151
5152 return prog;
5153 }
5154
5155 extern "C" {
5156
5157 struct gl_shader *
5158 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
5159 {
5160 struct gl_shader *shader;
5161 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
5162 type == GL_GEOMETRY_SHADER_ARB);
5163 shader = rzalloc(NULL, struct gl_shader);
5164 if (shader) {
5165 shader->Type = type;
5166 shader->Name = name;
5167 _mesa_init_shader(ctx, shader);
5168 }
5169 return shader;
5170 }
5171
5172 struct gl_shader_program *
5173 st_new_shader_program(struct gl_context *ctx, GLuint name)
5174 {
5175 struct gl_shader_program *shProg;
5176 shProg = rzalloc(NULL, struct gl_shader_program);
5177 if (shProg) {
5178 shProg->Name = name;
5179 _mesa_init_shader_program(ctx, shProg);
5180 }
5181 return shProg;
5182 }
5183
5184 /**
5185 * Link a shader.
5186 * Called via ctx->Driver.LinkShader()
5187 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5188 * with code lowering and other optimizations.
5189 */
5190 GLboolean
5191 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5192 {
5193 assert(prog->LinkStatus);
5194
5195 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5196 if (prog->_LinkedShaders[i] == NULL)
5197 continue;
5198
5199 bool progress;
5200 exec_list *ir = prog->_LinkedShaders[i]->ir;
5201 const struct gl_shader_compiler_options *options =
5202 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
5203
5204 /* If there are forms of indirect addressing that the driver
5205 * cannot handle, perform the lowering pass.
5206 */
5207 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
5208 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
5209 lower_variable_index_to_cond_assign(ir,
5210 options->EmitNoIndirectInput,
5211 options->EmitNoIndirectOutput,
5212 options->EmitNoIndirectTemp,
5213 options->EmitNoIndirectUniform);
5214 }
5215
5216 if (ctx->Extensions.ARB_shading_language_packing) {
5217 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
5218 LOWER_UNPACK_SNORM_2x16 |
5219 LOWER_PACK_UNORM_2x16 |
5220 LOWER_UNPACK_UNORM_2x16 |
5221 LOWER_PACK_SNORM_4x8 |
5222 LOWER_UNPACK_SNORM_4x8 |
5223 LOWER_UNPACK_UNORM_4x8 |
5224 LOWER_PACK_UNORM_4x8 |
5225 LOWER_PACK_HALF_2x16 |
5226 LOWER_UNPACK_HALF_2x16;
5227
5228 lower_packing_builtins(ir, lower_inst);
5229 }
5230
5231 do_mat_op_to_vec(ir);
5232 lower_instructions(ir,
5233 MOD_TO_FRACT |
5234 DIV_TO_MUL_RCP |
5235 EXP_TO_EXP2 |
5236 LOG_TO_LOG2 |
5237 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
5238 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0));
5239
5240 lower_ubo_reference(prog->_LinkedShaders[i], ir);
5241 do_vec_index_to_cond_assign(ir);
5242 lower_vector_insert(ir, true);
5243 lower_quadop_vector(ir, false);
5244 lower_noise(ir);
5245 if (options->MaxIfDepth == 0) {
5246 lower_discard(ir);
5247 }
5248
5249 do {
5250 progress = false;
5251
5252 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5253
5254 progress = do_common_optimization(ir, true, true,
5255 options->MaxUnrollIterations, options)
5256 || progress;
5257
5258 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5259
5260 } while (progress);
5261
5262 validate_ir_tree(ir);
5263 }
5264
5265 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5266 struct gl_program *linked_prog;
5267
5268 if (prog->_LinkedShaders[i] == NULL)
5269 continue;
5270
5271 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5272
5273 if (linked_prog) {
5274 static const GLenum targets[] = {
5275 GL_VERTEX_PROGRAM_ARB,
5276 GL_FRAGMENT_PROGRAM_ARB,
5277 GL_GEOMETRY_PROGRAM_NV
5278 };
5279
5280 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5281 linked_prog);
5282 if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
5283 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5284 NULL);
5285 _mesa_reference_program(ctx, &linked_prog, NULL);
5286 return GL_FALSE;
5287 }
5288 }
5289
5290 _mesa_reference_program(ctx, &linked_prog, NULL);
5291 }
5292
5293 return GL_TRUE;
5294 }
5295
5296 void
5297 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5298 const GLuint outputMapping[],
5299 struct pipe_stream_output_info *so)
5300 {
5301 unsigned i;
5302 struct gl_transform_feedback_info *info =
5303 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5304
5305 for (i = 0; i < info->NumOutputs; i++) {
5306 so->output[i].register_index =
5307 outputMapping[info->Outputs[i].OutputRegister];
5308 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5309 so->output[i].num_components = info->Outputs[i].NumComponents;
5310 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5311 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5312 }
5313
5314 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5315 so->stride[i] = info->BufferStride[i];
5316 }
5317 so->num_outputs = info->NumOutputs;
5318 }
5319
5320 } /* extern "C" */