40c77258de7098d1cfb98c30a636e66a4e9935c9
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "glsl_parser_extras.h"
36 #include "ir_optimization.h"
37
38 #include "main/errors.h"
39 #include "main/shaderobj.h"
40 #include "main/uniforms.h"
41 #include "main/shaderapi.h"
42 #include "program/prog_instruction.h"
43 #include "program/sampler.h"
44
45 #include "pipe/p_context.h"
46 #include "pipe/p_screen.h"
47 #include "tgsi/tgsi_ureg.h"
48 #include "tgsi/tgsi_info.h"
49 #include "util/u_math.h"
50 #include "util/u_memory.h"
51 #include "st_program.h"
52 #include "st_mesa_to_tgsi.h"
53
54
55 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
56 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
57 (1 << PROGRAM_CONSTANT) | \
58 (1 << PROGRAM_UNIFORM))
59
60 #define MAX_GLSL_TEXTURE_OFFSET 4
61
62 class st_src_reg;
63 class st_dst_reg;
64
65 static int swizzle_for_size(int size);
66
67 /**
68 * This struct is a corresponding struct to TGSI ureg_src.
69 */
70 class st_src_reg {
71 public:
72 st_src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->index2D = 0;
82 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
83 this->reladdr = NULL;
84 this->reladdr2 = NULL;
85 this->has_index2 = false;
86 this->double_reg2 = false;
87 this->array_id = 0;
88 }
89
90 st_src_reg(gl_register_file file, int index, int type)
91 {
92 this->type = type;
93 this->file = file;
94 this->index = index;
95 this->index2D = 0;
96 this->swizzle = SWIZZLE_XYZW;
97 this->negate = 0;
98 this->reladdr = NULL;
99 this->reladdr2 = NULL;
100 this->has_index2 = false;
101 this->double_reg2 = false;
102 this->array_id = 0;
103 }
104
105 st_src_reg(gl_register_file file, int index, int type, int index2D)
106 {
107 this->type = type;
108 this->file = file;
109 this->index = index;
110 this->index2D = index2D;
111 this->swizzle = SWIZZLE_XYZW;
112 this->negate = 0;
113 this->reladdr = NULL;
114 this->reladdr2 = NULL;
115 this->has_index2 = false;
116 this->double_reg2 = false;
117 this->array_id = 0;
118 }
119
120 st_src_reg()
121 {
122 this->type = GLSL_TYPE_ERROR;
123 this->file = PROGRAM_UNDEFINED;
124 this->index = 0;
125 this->index2D = 0;
126 this->swizzle = 0;
127 this->negate = 0;
128 this->reladdr = NULL;
129 this->reladdr2 = NULL;
130 this->has_index2 = false;
131 this->double_reg2 = false;
132 this->array_id = 0;
133 }
134
135 explicit st_src_reg(st_dst_reg reg);
136
137 gl_register_file file; /**< PROGRAM_* from Mesa */
138 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
139 int index2D;
140 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
141 int negate; /**< NEGATE_XYZW mask from mesa */
142 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
143 /** Register index should be offset by the integer in this reg. */
144 st_src_reg *reladdr;
145 st_src_reg *reladdr2;
146 bool has_index2;
147 /*
148 * Is this the second half of a double register pair?
149 * currently used for input mapping only.
150 */
151 bool double_reg2;
152 unsigned array_id;
153 };
154
155 class st_dst_reg {
156 public:
157 st_dst_reg(gl_register_file file, int writemask, int type, int index)
158 {
159 this->file = file;
160 this->index = index;
161 this->index2D = 0;
162 this->writemask = writemask;
163 this->cond_mask = COND_TR;
164 this->reladdr = NULL;
165 this->reladdr2 = NULL;
166 this->has_index2 = false;
167 this->type = type;
168 this->array_id = 0;
169 }
170
171 st_dst_reg(gl_register_file file, int writemask, int type)
172 {
173 this->file = file;
174 this->index = 0;
175 this->index2D = 0;
176 this->writemask = writemask;
177 this->cond_mask = COND_TR;
178 this->reladdr = NULL;
179 this->reladdr2 = NULL;
180 this->has_index2 = false;
181 this->type = type;
182 this->array_id = 0;
183 }
184
185 st_dst_reg()
186 {
187 this->type = GLSL_TYPE_ERROR;
188 this->file = PROGRAM_UNDEFINED;
189 this->index = 0;
190 this->index2D = 0;
191 this->writemask = 0;
192 this->cond_mask = COND_TR;
193 this->reladdr = NULL;
194 this->reladdr2 = NULL;
195 this->has_index2 = false;
196 this->array_id = 0;
197 }
198
199 explicit st_dst_reg(st_src_reg reg);
200
201 gl_register_file file; /**< PROGRAM_* from Mesa */
202 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
203 int index2D;
204 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
205 GLuint cond_mask:4;
206 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
207 /** Register index should be offset by the integer in this reg. */
208 st_src_reg *reladdr;
209 st_src_reg *reladdr2;
210 bool has_index2;
211 unsigned array_id;
212 };
213
214 st_src_reg::st_src_reg(st_dst_reg reg)
215 {
216 this->type = reg.type;
217 this->file = reg.file;
218 this->index = reg.index;
219 this->swizzle = SWIZZLE_XYZW;
220 this->negate = 0;
221 this->reladdr = reg.reladdr;
222 this->index2D = reg.index2D;
223 this->reladdr2 = reg.reladdr2;
224 this->has_index2 = reg.has_index2;
225 this->double_reg2 = false;
226 this->array_id = reg.array_id;
227 }
228
229 st_dst_reg::st_dst_reg(st_src_reg reg)
230 {
231 this->type = reg.type;
232 this->file = reg.file;
233 this->index = reg.index;
234 this->writemask = WRITEMASK_XYZW;
235 this->cond_mask = COND_TR;
236 this->reladdr = reg.reladdr;
237 this->index2D = reg.index2D;
238 this->reladdr2 = reg.reladdr2;
239 this->has_index2 = reg.has_index2;
240 this->array_id = reg.array_id;
241 }
242
243 class glsl_to_tgsi_instruction : public exec_node {
244 public:
245 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
246
247 unsigned op;
248 st_dst_reg dst[2];
249 st_src_reg src[4];
250 /** Pointer to the ir source this tree came from for debugging */
251 ir_instruction *ir;
252 GLboolean cond_update;
253 bool saturate;
254 st_src_reg sampler; /**< sampler register */
255 int sampler_array_size; /**< 1-based size of sampler array, 1 if not array */
256 int tex_target; /**< One of TEXTURE_*_INDEX */
257 glsl_base_type tex_type;
258 GLboolean tex_shadow;
259
260 st_src_reg tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
261 unsigned tex_offset_num_offset;
262 int dead_mask; /**< Used in dead code elimination */
263
264 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
265 const struct tgsi_opcode_info *info;
266 };
267
268 class variable_storage : public exec_node {
269 public:
270 variable_storage(ir_variable *var, gl_register_file file, int index,
271 unsigned array_id = 0)
272 : file(file), index(index), var(var), array_id(array_id)
273 {
274 /* empty */
275 }
276
277 gl_register_file file;
278 int index;
279 ir_variable *var; /* variable that maps to this, if any */
280 unsigned array_id;
281 };
282
283 class immediate_storage : public exec_node {
284 public:
285 immediate_storage(gl_constant_value *values, int size32, int type)
286 {
287 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
288 this->size32 = size32;
289 this->type = type;
290 }
291
292 /* doubles are stored across 2 gl_constant_values */
293 gl_constant_value values[4];
294 int size32; /**< Number of 32-bit components (1-4) */
295 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
296 };
297
298 class function_entry : public exec_node {
299 public:
300 ir_function_signature *sig;
301
302 /**
303 * identifier of this function signature used by the program.
304 *
305 * At the point that TGSI instructions for function calls are
306 * generated, we don't know the address of the first instruction of
307 * the function body. So we make the BranchTarget that is called a
308 * small integer and rewrite them during set_branchtargets().
309 */
310 int sig_id;
311
312 /**
313 * Pointer to first instruction of the function body.
314 *
315 * Set during function body emits after main() is processed.
316 */
317 glsl_to_tgsi_instruction *bgn_inst;
318
319 /**
320 * Index of the first instruction of the function body in actual TGSI.
321 *
322 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
323 */
324 int inst;
325
326 /** Storage for the return value. */
327 st_src_reg return_reg;
328 };
329
330 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
331 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
332
333 struct array_decl {
334 unsigned mesa_index;
335 unsigned array_id;
336 unsigned array_size;
337 };
338
339 struct rename_reg_pair {
340 int old_reg;
341 int new_reg;
342 };
343
344 struct glsl_to_tgsi_visitor : public ir_visitor {
345 public:
346 glsl_to_tgsi_visitor();
347 ~glsl_to_tgsi_visitor();
348
349 function_entry *current_function;
350
351 struct gl_context *ctx;
352 struct gl_program *prog;
353 struct gl_shader_program *shader_program;
354 struct gl_shader *shader;
355 struct gl_shader_compiler_options *options;
356
357 int next_temp;
358
359 unsigned *array_sizes;
360 unsigned max_num_arrays;
361 unsigned next_array;
362
363 struct array_decl input_arrays[PIPE_MAX_SHADER_INPUTS];
364 unsigned num_input_arrays;
365 struct array_decl output_arrays[PIPE_MAX_SHADER_OUTPUTS];
366 unsigned num_output_arrays;
367
368 int num_address_regs;
369 int samplers_used;
370 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
371 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
372 bool indirect_addr_consts;
373 int wpos_transform_const;
374
375 int glsl_version;
376 bool native_integers;
377 bool have_sqrt;
378 bool have_fma;
379
380 variable_storage *find_variable_storage(ir_variable *var);
381
382 int add_constant(gl_register_file file, gl_constant_value values[8],
383 int size, int datatype, GLuint *swizzle_out);
384
385 function_entry *get_function_signature(ir_function_signature *sig);
386
387 st_src_reg get_temp(const glsl_type *type);
388 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
389
390 st_src_reg st_src_reg_for_double(double val);
391 st_src_reg st_src_reg_for_float(float val);
392 st_src_reg st_src_reg_for_int(int val);
393 st_src_reg st_src_reg_for_type(int type, int val);
394
395 /**
396 * \name Visit methods
397 *
398 * As typical for the visitor pattern, there must be one \c visit method for
399 * each concrete subclass of \c ir_instruction. Virtual base classes within
400 * the hierarchy should not have \c visit methods.
401 */
402 /*@{*/
403 virtual void visit(ir_variable *);
404 virtual void visit(ir_loop *);
405 virtual void visit(ir_loop_jump *);
406 virtual void visit(ir_function_signature *);
407 virtual void visit(ir_function *);
408 virtual void visit(ir_expression *);
409 virtual void visit(ir_swizzle *);
410 virtual void visit(ir_dereference_variable *);
411 virtual void visit(ir_dereference_array *);
412 virtual void visit(ir_dereference_record *);
413 virtual void visit(ir_assignment *);
414 virtual void visit(ir_constant *);
415 virtual void visit(ir_call *);
416 virtual void visit(ir_return *);
417 virtual void visit(ir_discard *);
418 virtual void visit(ir_texture *);
419 virtual void visit(ir_if *);
420 virtual void visit(ir_emit_vertex *);
421 virtual void visit(ir_end_primitive *);
422 virtual void visit(ir_barrier *);
423 /*@}*/
424
425 st_src_reg result;
426
427 /** List of variable_storage */
428 exec_list variables;
429
430 /** List of immediate_storage */
431 exec_list immediates;
432 unsigned num_immediates;
433
434 /** List of function_entry */
435 exec_list function_signatures;
436 int next_signature_id;
437
438 /** List of glsl_to_tgsi_instruction */
439 exec_list instructions;
440
441 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
442 st_dst_reg dst = undef_dst,
443 st_src_reg src0 = undef_src,
444 st_src_reg src1 = undef_src,
445 st_src_reg src2 = undef_src,
446 st_src_reg src3 = undef_src);
447
448 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
449 st_dst_reg dst, st_dst_reg dst1,
450 st_src_reg src0 = undef_src,
451 st_src_reg src1 = undef_src,
452 st_src_reg src2 = undef_src,
453 st_src_reg src3 = undef_src);
454
455 unsigned get_opcode(ir_instruction *ir, unsigned op,
456 st_dst_reg dst,
457 st_src_reg src0, st_src_reg src1);
458
459 /**
460 * Emit the correct dot-product instruction for the type of arguments
461 */
462 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
463 st_dst_reg dst,
464 st_src_reg src0,
465 st_src_reg src1,
466 unsigned elements);
467
468 void emit_scalar(ir_instruction *ir, unsigned op,
469 st_dst_reg dst, st_src_reg src0);
470
471 void emit_scalar(ir_instruction *ir, unsigned op,
472 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
473
474 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
475
476 bool try_emit_mad(ir_expression *ir,
477 int mul_operand);
478 bool try_emit_mad_for_and_not(ir_expression *ir,
479 int mul_operand);
480
481 void emit_swz(ir_expression *ir);
482
483 bool process_move_condition(ir_rvalue *ir);
484
485 void simplify_cmp(void);
486
487 void rename_temp_registers(int num_renames, struct rename_reg_pair *renames);
488 void get_first_temp_read(int *first_reads);
489 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
490 void get_last_temp_write(int *last_writes);
491
492 void copy_propagate(void);
493 int eliminate_dead_code(void);
494
495 void merge_two_dsts(void);
496 void merge_registers(void);
497 void renumber_registers(void);
498
499 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
500 st_dst_reg *l, st_src_reg *r,
501 st_src_reg *cond, bool cond_swap);
502
503 void *mem_ctx;
504 };
505
506 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
507 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
508 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
509
510 static void
511 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
512
513 static void
514 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
515 {
516 va_list args;
517 va_start(args, fmt);
518 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
519 va_end(args);
520
521 prog->LinkStatus = GL_FALSE;
522 }
523
524 static int
525 swizzle_for_size(int size)
526 {
527 static const int size_swizzles[4] = {
528 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
529 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
530 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
531 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
532 };
533
534 assert((size >= 1) && (size <= 4));
535 return size_swizzles[size - 1];
536 }
537
538 static unsigned
539 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
540 {
541 return op->info->num_dst;
542 }
543
544 static unsigned
545 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
546 {
547 return op->info->is_tex ? op->info->num_src - 1 : op->info->num_src;
548 }
549
550 glsl_to_tgsi_instruction *
551 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
552 st_dst_reg dst, st_dst_reg dst1,
553 st_src_reg src0, st_src_reg src1,
554 st_src_reg src2, st_src_reg src3)
555 {
556 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
557 int num_reladdr = 0, i, j;
558
559 op = get_opcode(ir, op, dst, src0, src1);
560
561 /* If we have to do relative addressing, we want to load the ARL
562 * reg directly for one of the regs, and preload the other reladdr
563 * sources into temps.
564 */
565 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
566 num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
567 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
568 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
569 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
570 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
571
572 reladdr_to_temp(ir, &src3, &num_reladdr);
573 reladdr_to_temp(ir, &src2, &num_reladdr);
574 reladdr_to_temp(ir, &src1, &num_reladdr);
575 reladdr_to_temp(ir, &src0, &num_reladdr);
576
577 if (dst.reladdr || dst.reladdr2) {
578 if (dst.reladdr)
579 emit_arl(ir, address_reg, *dst.reladdr);
580 if (dst.reladdr2)
581 emit_arl(ir, address_reg2, *dst.reladdr2);
582 num_reladdr--;
583 }
584 if (dst1.reladdr) {
585 emit_arl(ir, address_reg, *dst1.reladdr);
586 num_reladdr--;
587 }
588 assert(num_reladdr == 0);
589
590 inst->op = op;
591 inst->info = tgsi_get_opcode_info(op);
592 inst->dst[0] = dst;
593 inst->dst[1] = dst1;
594 inst->src[0] = src0;
595 inst->src[1] = src1;
596 inst->src[2] = src2;
597 inst->src[3] = src3;
598 inst->ir = ir;
599 inst->dead_mask = 0;
600 /* default to float, for paths where this is not initialized
601 * (since 0==UINT which is likely wrong):
602 */
603 inst->tex_type = GLSL_TYPE_FLOAT;
604
605 inst->function = NULL;
606
607 /* Update indirect addressing status used by TGSI */
608 if (dst.reladdr || dst.reladdr2) {
609 switch(dst.file) {
610 case PROGRAM_STATE_VAR:
611 case PROGRAM_CONSTANT:
612 case PROGRAM_UNIFORM:
613 this->indirect_addr_consts = true;
614 break;
615 case PROGRAM_IMMEDIATE:
616 assert(!"immediates should not have indirect addressing");
617 break;
618 default:
619 break;
620 }
621 }
622 else {
623 for (i = 0; i < 4; i++) {
624 if(inst->src[i].reladdr) {
625 switch(inst->src[i].file) {
626 case PROGRAM_STATE_VAR:
627 case PROGRAM_CONSTANT:
628 case PROGRAM_UNIFORM:
629 this->indirect_addr_consts = true;
630 break;
631 case PROGRAM_IMMEDIATE:
632 assert(!"immediates should not have indirect addressing");
633 break;
634 default:
635 break;
636 }
637 }
638 }
639 }
640
641 this->instructions.push_tail(inst);
642
643 /*
644 * This section contains the double processing.
645 * GLSL just represents doubles as single channel values,
646 * however most HW and TGSI represent doubles as pairs of register channels.
647 *
648 * so we have to fixup destination writemask/index and src swizzle/indexes.
649 * dest writemasks need to translate from single channel write mask
650 * to a dual-channel writemask, but also need to modify the index,
651 * if we are touching the Z,W fields in the pre-translated writemask.
652 *
653 * src channels have similiar index modifications along with swizzle
654 * changes to we pick the XY, ZW pairs from the correct index.
655 *
656 * GLSL [0].x -> TGSI [0].xy
657 * GLSL [0].y -> TGSI [0].zw
658 * GLSL [0].z -> TGSI [1].xy
659 * GLSL [0].w -> TGSI [1].zw
660 */
661 if (inst->dst[0].type == GLSL_TYPE_DOUBLE || inst->dst[1].type == GLSL_TYPE_DOUBLE ||
662 inst->src[0].type == GLSL_TYPE_DOUBLE) {
663 glsl_to_tgsi_instruction *dinst = NULL;
664 int initial_src_swz[4], initial_src_idx[4];
665 int initial_dst_idx[2], initial_dst_writemask[2];
666 /* select the writemask for dst0 or dst1 */
667 unsigned writemask = inst->dst[0].file == PROGRAM_UNDEFINED ? inst->dst[1].writemask : inst->dst[0].writemask;
668
669 /* copy out the writemask, index and swizzles for all src/dsts. */
670 for (j = 0; j < 2; j++) {
671 initial_dst_writemask[j] = inst->dst[j].writemask;
672 initial_dst_idx[j] = inst->dst[j].index;
673 }
674
675 for (j = 0; j < 4; j++) {
676 initial_src_swz[j] = inst->src[j].swizzle;
677 initial_src_idx[j] = inst->src[j].index;
678 }
679
680 /*
681 * scan all the components in the dst writemask
682 * generate an instruction for each of them if required.
683 */
684 while (writemask) {
685
686 int i = u_bit_scan(&writemask);
687
688 /* first time use previous instruction */
689 if (dinst == NULL) {
690 dinst = inst;
691 } else {
692 /* create a new instructions for subsequent attempts */
693 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
694 *dinst = *inst;
695 dinst->next = NULL;
696 dinst->prev = NULL;
697 this->instructions.push_tail(dinst);
698 }
699
700 /* modify the destination if we are splitting */
701 for (j = 0; j < 2; j++) {
702 if (dinst->dst[j].type == GLSL_TYPE_DOUBLE) {
703 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
704 dinst->dst[j].index = initial_dst_idx[j];
705 if (i > 1)
706 dinst->dst[j].index++;
707 } else {
708 /* if we aren't writing to a double, just get the bit of the initial writemask
709 for this channel */
710 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
711 }
712 }
713
714 /* modify the src registers */
715 for (j = 0; j < 4; j++) {
716 int swz = GET_SWZ(initial_src_swz[j], i);
717
718 if (dinst->src[j].type == GLSL_TYPE_DOUBLE) {
719 dinst->src[j].index = initial_src_idx[j];
720 if (swz > 1) {
721 dinst->src[j].double_reg2 = true;
722 dinst->src[j].index++;
723 }
724
725 if (swz & 1)
726 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
727 else
728 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
729
730 } else {
731 /* some opcodes are special case in what they use as sources
732 - F2D is a float src0, DLDEXP is integer src1 */
733 if (op == TGSI_OPCODE_F2D ||
734 op == TGSI_OPCODE_DLDEXP ||
735 (op == TGSI_OPCODE_UCMP && dinst->dst[0].type == GLSL_TYPE_DOUBLE)) {
736 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
737 }
738 }
739 }
740 }
741 inst = dinst;
742 }
743
744
745 return inst;
746 }
747
748 glsl_to_tgsi_instruction *
749 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
750 st_dst_reg dst,
751 st_src_reg src0, st_src_reg src1,
752 st_src_reg src2, st_src_reg src3)
753 {
754 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
755 }
756
757 /**
758 * Determines whether to use an integer, unsigned integer, or float opcode
759 * based on the operands and input opcode, then emits the result.
760 */
761 unsigned
762 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
763 st_dst_reg dst,
764 st_src_reg src0, st_src_reg src1)
765 {
766 int type = GLSL_TYPE_FLOAT;
767
768 if (op == TGSI_OPCODE_MOV)
769 return op;
770
771 assert(src0.type != GLSL_TYPE_ARRAY);
772 assert(src0.type != GLSL_TYPE_STRUCT);
773 assert(src1.type != GLSL_TYPE_ARRAY);
774 assert(src1.type != GLSL_TYPE_STRUCT);
775
776 if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
777 type = GLSL_TYPE_DOUBLE;
778 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
779 type = GLSL_TYPE_FLOAT;
780 else if (native_integers)
781 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
782
783 #define case5(c, f, i, u, d) \
784 case TGSI_OPCODE_##c: \
785 if (type == GLSL_TYPE_DOUBLE) \
786 op = TGSI_OPCODE_##d; \
787 else if (type == GLSL_TYPE_INT) \
788 op = TGSI_OPCODE_##i; \
789 else if (type == GLSL_TYPE_UINT) \
790 op = TGSI_OPCODE_##u; \
791 else \
792 op = TGSI_OPCODE_##f; \
793 break;
794
795 #define case4(c, f, i, u) \
796 case TGSI_OPCODE_##c: \
797 if (type == GLSL_TYPE_INT) \
798 op = TGSI_OPCODE_##i; \
799 else if (type == GLSL_TYPE_UINT) \
800 op = TGSI_OPCODE_##u; \
801 else \
802 op = TGSI_OPCODE_##f; \
803 break;
804
805 #define case3(f, i, u) case4(f, f, i, u)
806 #define case4d(f, i, u, d) case5(f, f, i, u, d)
807 #define case3fid(f, i, d) case5(f, f, i, i, d)
808 #define case2fi(f, i) case4(f, f, i, i)
809 #define case2iu(i, u) case4(i, LAST, i, u)
810
811 #define casecomp(c, f, i, u, d) \
812 case TGSI_OPCODE_##c: \
813 if (type == GLSL_TYPE_DOUBLE) \
814 op = TGSI_OPCODE_##d; \
815 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
816 op = TGSI_OPCODE_##i; \
817 else if (type == GLSL_TYPE_UINT) \
818 op = TGSI_OPCODE_##u; \
819 else if (native_integers) \
820 op = TGSI_OPCODE_##f; \
821 else \
822 op = TGSI_OPCODE_##c; \
823 break;
824
825 switch(op) {
826 case3fid(ADD, UADD, DADD);
827 case3fid(MUL, UMUL, DMUL);
828 case3fid(MAD, UMAD, DMAD);
829 case3fid(FMA, UMAD, DFMA);
830 case3(DIV, IDIV, UDIV);
831 case4d(MAX, IMAX, UMAX, DMAX);
832 case4d(MIN, IMIN, UMIN, DMIN);
833 case2iu(MOD, UMOD);
834
835 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ);
836 casecomp(SNE, FSNE, USNE, USNE, DSNE);
837 casecomp(SGE, FSGE, ISGE, USGE, DSGE);
838 casecomp(SLT, FSLT, ISLT, USLT, DSLT);
839
840 case2iu(ISHR, USHR);
841
842 case3fid(SSG, ISSG, DSSG);
843 case3fid(ABS, IABS, DABS);
844
845 case2iu(IBFE, UBFE);
846 case2iu(IMSB, UMSB);
847 case2iu(IMUL_HI, UMUL_HI);
848
849 case3fid(SQRT, SQRT, DSQRT);
850
851 case3fid(RCP, RCP, DRCP);
852 case3fid(RSQ, RSQ, DRSQ);
853
854 case3fid(FRC, FRC, DFRAC);
855 case3fid(TRUNC, TRUNC, DTRUNC);
856 case3fid(CEIL, CEIL, DCEIL);
857 case3fid(FLR, FLR, DFLR);
858 case3fid(ROUND, ROUND, DROUND);
859
860 default: break;
861 }
862
863 assert(op != TGSI_OPCODE_LAST);
864 return op;
865 }
866
867 glsl_to_tgsi_instruction *
868 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
869 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
870 unsigned elements)
871 {
872 static const unsigned dot_opcodes[] = {
873 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
874 };
875
876 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
877 }
878
879 /**
880 * Emits TGSI scalar opcodes to produce unique answers across channels.
881 *
882 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
883 * channel determines the result across all channels. So to do a vec4
884 * of this operation, we want to emit a scalar per source channel used
885 * to produce dest channels.
886 */
887 void
888 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
889 st_dst_reg dst,
890 st_src_reg orig_src0, st_src_reg orig_src1)
891 {
892 int i, j;
893 int done_mask = ~dst.writemask;
894
895 /* TGSI RCP is a scalar operation splatting results to all channels,
896 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
897 * dst channels.
898 */
899 for (i = 0; i < 4; i++) {
900 GLuint this_mask = (1 << i);
901 st_src_reg src0 = orig_src0;
902 st_src_reg src1 = orig_src1;
903
904 if (done_mask & this_mask)
905 continue;
906
907 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
908 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
909 for (j = i + 1; j < 4; j++) {
910 /* If there is another enabled component in the destination that is
911 * derived from the same inputs, generate its value on this pass as
912 * well.
913 */
914 if (!(done_mask & (1 << j)) &&
915 GET_SWZ(src0.swizzle, j) == src0_swiz &&
916 GET_SWZ(src1.swizzle, j) == src1_swiz) {
917 this_mask |= (1 << j);
918 }
919 }
920 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
921 src0_swiz, src0_swiz);
922 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
923 src1_swiz, src1_swiz);
924
925 dst.writemask = this_mask;
926 emit_asm(ir, op, dst, src0, src1);
927 done_mask |= this_mask;
928 }
929 }
930
931 void
932 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
933 st_dst_reg dst, st_src_reg src0)
934 {
935 st_src_reg undef = undef_src;
936
937 undef.swizzle = SWIZZLE_XXXX;
938
939 emit_scalar(ir, op, dst, src0, undef);
940 }
941
942 void
943 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
944 st_dst_reg dst, st_src_reg src0)
945 {
946 int op = TGSI_OPCODE_ARL;
947
948 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
949 op = TGSI_OPCODE_UARL;
950
951 assert(dst.file == PROGRAM_ADDRESS);
952 if (dst.index >= this->num_address_regs)
953 this->num_address_regs = dst.index + 1;
954
955 emit_asm(NULL, op, dst, src0);
956 }
957
958 int
959 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
960 gl_constant_value values[8], int size, int datatype,
961 GLuint *swizzle_out)
962 {
963 if (file == PROGRAM_CONSTANT) {
964 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
965 size, datatype, swizzle_out);
966 }
967
968 assert(file == PROGRAM_IMMEDIATE);
969
970 int index = 0;
971 immediate_storage *entry;
972 int size32 = size * (datatype == GL_DOUBLE ? 2 : 1);
973 int i;
974
975 /* Search immediate storage to see if we already have an identical
976 * immediate that we can use instead of adding a duplicate entry.
977 */
978 foreach_in_list(immediate_storage, entry, &this->immediates) {
979 immediate_storage *tmp = entry;
980
981 for (i = 0; i * 4 < size32; i++) {
982 int slot_size = MIN2(size32 - (i * 4), 4);
983 if (tmp->type != datatype || tmp->size32 != slot_size)
984 break;
985 if (memcmp(tmp->values, &values[i * 4],
986 slot_size * sizeof(gl_constant_value)))
987 break;
988
989 /* Everything matches, keep going until the full size is matched */
990 tmp = (immediate_storage *)tmp->next;
991 }
992
993 /* The full value matched */
994 if (i * 4 >= size32)
995 return index;
996
997 index++;
998 }
999
1000 for (i = 0; i * 4 < size32; i++) {
1001 int slot_size = MIN2(size32 - (i * 4), 4);
1002 /* Add this immediate to the list. */
1003 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
1004 this->immediates.push_tail(entry);
1005 this->num_immediates++;
1006 }
1007 return index;
1008 }
1009
1010 st_src_reg
1011 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1012 {
1013 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1014 union gl_constant_value uval;
1015
1016 uval.f = val;
1017 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1018
1019 return src;
1020 }
1021
1022 st_src_reg
1023 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1024 {
1025 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1026 union gl_constant_value uval[2];
1027
1028 uval[0].u = *(uint32_t *)&val;
1029 uval[1].u = *(((uint32_t *)&val) + 1);
1030 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1031
1032 return src;
1033 }
1034
1035 st_src_reg
1036 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1037 {
1038 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1039 union gl_constant_value uval;
1040
1041 assert(native_integers);
1042
1043 uval.i = val;
1044 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1045
1046 return src;
1047 }
1048
1049 st_src_reg
1050 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
1051 {
1052 if (native_integers)
1053 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1054 st_src_reg_for_int(val);
1055 else
1056 return st_src_reg_for_float(val);
1057 }
1058
1059 static int
1060 type_size(const struct glsl_type *type)
1061 {
1062 unsigned int i;
1063 int size;
1064
1065 switch (type->base_type) {
1066 case GLSL_TYPE_UINT:
1067 case GLSL_TYPE_INT:
1068 case GLSL_TYPE_FLOAT:
1069 case GLSL_TYPE_BOOL:
1070 if (type->is_matrix()) {
1071 return type->matrix_columns;
1072 } else {
1073 /* Regardless of size of vector, it gets a vec4. This is bad
1074 * packing for things like floats, but otherwise arrays become a
1075 * mess. Hopefully a later pass over the code can pack scalars
1076 * down if appropriate.
1077 */
1078 return 1;
1079 }
1080 break;
1081 case GLSL_TYPE_DOUBLE:
1082 if (type->is_matrix()) {
1083 if (type->vector_elements <= 2)
1084 return type->matrix_columns;
1085 else
1086 return type->matrix_columns * 2;
1087 } else {
1088 /* For doubles if we have a double or dvec2 they fit in one
1089 * vec4, else they need 2 vec4s.
1090 */
1091 if (type->vector_elements <= 2)
1092 return 1;
1093 else
1094 return 2;
1095 }
1096 break;
1097 case GLSL_TYPE_ARRAY:
1098 assert(type->length > 0);
1099 return type_size(type->fields.array) * type->length;
1100 case GLSL_TYPE_STRUCT:
1101 size = 0;
1102 for (i = 0; i < type->length; i++) {
1103 size += type_size(type->fields.structure[i].type);
1104 }
1105 return size;
1106 case GLSL_TYPE_SAMPLER:
1107 case GLSL_TYPE_IMAGE:
1108 case GLSL_TYPE_SUBROUTINE:
1109 /* Samplers take up one slot in UNIFORMS[], but they're baked in
1110 * at link time.
1111 */
1112 return 1;
1113 case GLSL_TYPE_ATOMIC_UINT:
1114 case GLSL_TYPE_INTERFACE:
1115 case GLSL_TYPE_VOID:
1116 case GLSL_TYPE_ERROR:
1117 assert(!"Invalid type in type_size");
1118 break;
1119 }
1120 return 0;
1121 }
1122
1123
1124 /**
1125 * If the given GLSL type is an array or matrix or a structure containing
1126 * an array/matrix member, return true. Else return false.
1127 *
1128 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1129 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
1130 * we have an array that might be indexed with a variable, we need to use
1131 * the later storage type.
1132 */
1133 static bool
1134 type_has_array_or_matrix(const glsl_type *type)
1135 {
1136 if (type->is_array() || type->is_matrix())
1137 return true;
1138
1139 if (type->is_record()) {
1140 for (unsigned i = 0; i < type->length; i++) {
1141 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1142 return true;
1143 }
1144 }
1145 }
1146
1147 return false;
1148 }
1149
1150
1151 /**
1152 * In the initial pass of codegen, we assign temporary numbers to
1153 * intermediate results. (not SSA -- variable assignments will reuse
1154 * storage).
1155 */
1156 st_src_reg
1157 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1158 {
1159 st_src_reg src;
1160
1161 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1162 src.reladdr = NULL;
1163 src.negate = 0;
1164
1165 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1166 if (next_array >= max_num_arrays) {
1167 max_num_arrays += 32;
1168 array_sizes = (unsigned*)
1169 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1170 }
1171
1172 src.file = PROGRAM_ARRAY;
1173 src.index = next_array << 16 | 0x8000;
1174 array_sizes[next_array] = type_size(type);
1175 ++next_array;
1176
1177 } else {
1178 src.file = PROGRAM_TEMPORARY;
1179 src.index = next_temp;
1180 next_temp += type_size(type);
1181 }
1182
1183 if (type->is_array() || type->is_record()) {
1184 src.swizzle = SWIZZLE_NOOP;
1185 } else {
1186 src.swizzle = swizzle_for_size(type->vector_elements);
1187 }
1188
1189 return src;
1190 }
1191
1192 variable_storage *
1193 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1194 {
1195
1196 foreach_in_list(variable_storage, entry, &this->variables) {
1197 if (entry->var == var)
1198 return entry;
1199 }
1200
1201 return NULL;
1202 }
1203
1204 void
1205 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1206 {
1207 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1208 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1209
1210 fp->OriginUpperLeft = ir->data.origin_upper_left;
1211 fp->PixelCenterInteger = ir->data.pixel_center_integer;
1212 }
1213
1214 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1215 unsigned int i;
1216 const ir_state_slot *const slots = ir->get_state_slots();
1217 assert(slots != NULL);
1218
1219 /* Check if this statevar's setup in the STATE file exactly
1220 * matches how we'll want to reference it as a
1221 * struct/array/whatever. If not, then we need to move it into
1222 * temporary storage and hope that it'll get copy-propagated
1223 * out.
1224 */
1225 for (i = 0; i < ir->get_num_state_slots(); i++) {
1226 if (slots[i].swizzle != SWIZZLE_XYZW) {
1227 break;
1228 }
1229 }
1230
1231 variable_storage *storage;
1232 st_dst_reg dst;
1233 if (i == ir->get_num_state_slots()) {
1234 /* We'll set the index later. */
1235 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1236 this->variables.push_tail(storage);
1237
1238 dst = undef_dst;
1239 } else {
1240 /* The variable_storage constructor allocates slots based on the size
1241 * of the type. However, this had better match the number of state
1242 * elements that we're going to copy into the new temporary.
1243 */
1244 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1245
1246 dst = st_dst_reg(get_temp(ir->type));
1247
1248 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1249
1250 this->variables.push_tail(storage);
1251 }
1252
1253
1254 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1255 int index = _mesa_add_state_reference(this->prog->Parameters,
1256 (gl_state_index *)slots[i].tokens);
1257
1258 if (storage->file == PROGRAM_STATE_VAR) {
1259 if (storage->index == -1) {
1260 storage->index = index;
1261 } else {
1262 assert(index == storage->index + (int)i);
1263 }
1264 } else {
1265 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1266 * the data being moved since MOV does not care about the type of
1267 * data it is moving, and we don't want to declare registers with
1268 * array or struct types.
1269 */
1270 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1271 src.swizzle = slots[i].swizzle;
1272 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1273 /* even a float takes up a whole vec4 reg in a struct/array. */
1274 dst.index++;
1275 }
1276 }
1277
1278 if (storage->file == PROGRAM_TEMPORARY &&
1279 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1280 fail_link(this->shader_program,
1281 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1282 ir->name, dst.index - storage->index,
1283 type_size(ir->type));
1284 }
1285 }
1286 }
1287
1288 void
1289 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1290 {
1291 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1292
1293 visit_exec_list(&ir->body_instructions, this);
1294
1295 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1296 }
1297
1298 void
1299 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1300 {
1301 switch (ir->mode) {
1302 case ir_loop_jump::jump_break:
1303 emit_asm(NULL, TGSI_OPCODE_BRK);
1304 break;
1305 case ir_loop_jump::jump_continue:
1306 emit_asm(NULL, TGSI_OPCODE_CONT);
1307 break;
1308 }
1309 }
1310
1311
1312 void
1313 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1314 {
1315 assert(0);
1316 (void)ir;
1317 }
1318
1319 void
1320 glsl_to_tgsi_visitor::visit(ir_function *ir)
1321 {
1322 /* Ignore function bodies other than main() -- we shouldn't see calls to
1323 * them since they should all be inlined before we get to glsl_to_tgsi.
1324 */
1325 if (strcmp(ir->name, "main") == 0) {
1326 const ir_function_signature *sig;
1327 exec_list empty;
1328
1329 sig = ir->matching_signature(NULL, &empty, false);
1330
1331 assert(sig);
1332
1333 foreach_in_list(ir_instruction, ir, &sig->body) {
1334 ir->accept(this);
1335 }
1336 }
1337 }
1338
1339 bool
1340 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1341 {
1342 int nonmul_operand = 1 - mul_operand;
1343 st_src_reg a, b, c;
1344 st_dst_reg result_dst;
1345
1346 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1347 if (!expr || expr->operation != ir_binop_mul)
1348 return false;
1349
1350 expr->operands[0]->accept(this);
1351 a = this->result;
1352 expr->operands[1]->accept(this);
1353 b = this->result;
1354 ir->operands[nonmul_operand]->accept(this);
1355 c = this->result;
1356
1357 this->result = get_temp(ir->type);
1358 result_dst = st_dst_reg(this->result);
1359 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1360 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1361
1362 return true;
1363 }
1364
1365 /**
1366 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1367 *
1368 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1369 * implemented using multiplication, and logical-or is implemented using
1370 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1371 * As result, the logical expression (a & !b) can be rewritten as:
1372 *
1373 * - a * !b
1374 * - a * (1 - b)
1375 * - (a * 1) - (a * b)
1376 * - a + -(a * b)
1377 * - a + (a * -b)
1378 *
1379 * This final expression can be implemented as a single MAD(a, -b, a)
1380 * instruction.
1381 */
1382 bool
1383 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1384 {
1385 const int other_operand = 1 - try_operand;
1386 st_src_reg a, b;
1387
1388 ir_expression *expr = ir->operands[try_operand]->as_expression();
1389 if (!expr || expr->operation != ir_unop_logic_not)
1390 return false;
1391
1392 ir->operands[other_operand]->accept(this);
1393 a = this->result;
1394 expr->operands[0]->accept(this);
1395 b = this->result;
1396
1397 b.negate = ~b.negate;
1398
1399 this->result = get_temp(ir->type);
1400 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1401
1402 return true;
1403 }
1404
1405 void
1406 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1407 st_src_reg *reg, int *num_reladdr)
1408 {
1409 if (!reg->reladdr && !reg->reladdr2)
1410 return;
1411
1412 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1413 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1414
1415 if (*num_reladdr != 1) {
1416 st_src_reg temp = get_temp(glsl_type::vec4_type);
1417
1418 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1419 *reg = temp;
1420 }
1421
1422 (*num_reladdr)--;
1423 }
1424
1425 void
1426 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1427 {
1428 unsigned int operand;
1429 st_src_reg op[ARRAY_SIZE(ir->operands)];
1430 st_src_reg result_src;
1431 st_dst_reg result_dst;
1432
1433 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1434 */
1435 if (ir->operation == ir_binop_add) {
1436 if (try_emit_mad(ir, 1))
1437 return;
1438 if (try_emit_mad(ir, 0))
1439 return;
1440 }
1441
1442 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1443 */
1444 if (!native_integers && ir->operation == ir_binop_logic_and) {
1445 if (try_emit_mad_for_and_not(ir, 1))
1446 return;
1447 if (try_emit_mad_for_and_not(ir, 0))
1448 return;
1449 }
1450
1451 if (ir->operation == ir_quadop_vector)
1452 assert(!"ir_quadop_vector should have been lowered");
1453
1454 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1455 this->result.file = PROGRAM_UNDEFINED;
1456 ir->operands[operand]->accept(this);
1457 if (this->result.file == PROGRAM_UNDEFINED) {
1458 printf("Failed to get tree for expression operand:\n");
1459 ir->operands[operand]->print();
1460 printf("\n");
1461 exit(1);
1462 }
1463 op[operand] = this->result;
1464
1465 /* Matrix expression operands should have been broken down to vector
1466 * operations already.
1467 */
1468 assert(!ir->operands[operand]->type->is_matrix());
1469 }
1470
1471 int vector_elements = ir->operands[0]->type->vector_elements;
1472 if (ir->operands[1]) {
1473 vector_elements = MAX2(vector_elements,
1474 ir->operands[1]->type->vector_elements);
1475 }
1476
1477 this->result.file = PROGRAM_UNDEFINED;
1478
1479 /* Storage for our result. Ideally for an assignment we'd be using
1480 * the actual storage for the result here, instead.
1481 */
1482 result_src = get_temp(ir->type);
1483 /* convenience for the emit functions below. */
1484 result_dst = st_dst_reg(result_src);
1485 /* Limit writes to the channels that will be used by result_src later.
1486 * This does limit this temp's use as a temporary for multi-instruction
1487 * sequences.
1488 */
1489 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1490
1491 switch (ir->operation) {
1492 case ir_unop_logic_not:
1493 if (result_dst.type != GLSL_TYPE_FLOAT)
1494 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1495 else {
1496 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1497 * older GPUs implement SEQ using multiple instructions (i915 uses two
1498 * SGE instructions and a MUL instruction). Since our logic values are
1499 * 0.0 and 1.0, 1-x also implements !x.
1500 */
1501 op[0].negate = ~op[0].negate;
1502 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1503 }
1504 break;
1505 case ir_unop_neg:
1506 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1507 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1508 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1509 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1510 else {
1511 op[0].negate = ~op[0].negate;
1512 result_src = op[0];
1513 }
1514 break;
1515 case ir_unop_subroutine_to_int:
1516 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1517 break;
1518 case ir_unop_abs:
1519 emit_asm(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1520 break;
1521 case ir_unop_sign:
1522 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1523 break;
1524 case ir_unop_rcp:
1525 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1526 break;
1527
1528 case ir_unop_exp2:
1529 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1530 break;
1531 case ir_unop_exp:
1532 case ir_unop_log:
1533 assert(!"not reached: should be handled by ir_explog_to_explog2");
1534 break;
1535 case ir_unop_log2:
1536 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1537 break;
1538 case ir_unop_sin:
1539 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1540 break;
1541 case ir_unop_cos:
1542 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1543 break;
1544 case ir_unop_saturate: {
1545 glsl_to_tgsi_instruction *inst;
1546 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1547 inst->saturate = true;
1548 break;
1549 }
1550
1551 case ir_unop_dFdx:
1552 case ir_unop_dFdx_coarse:
1553 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1554 break;
1555 case ir_unop_dFdx_fine:
1556 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1557 break;
1558 case ir_unop_dFdy:
1559 case ir_unop_dFdy_coarse:
1560 case ir_unop_dFdy_fine:
1561 {
1562 /* The X component contains 1 or -1 depending on whether the framebuffer
1563 * is a FBO or the window system buffer, respectively.
1564 * It is then multiplied with the source operand of DDY.
1565 */
1566 static const gl_state_index transform_y_state[STATE_LENGTH]
1567 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1568
1569 unsigned transform_y_index =
1570 _mesa_add_state_reference(this->prog->Parameters,
1571 transform_y_state);
1572
1573 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1574 transform_y_index,
1575 glsl_type::vec4_type);
1576 transform_y.swizzle = SWIZZLE_XXXX;
1577
1578 st_src_reg temp = get_temp(glsl_type::vec4_type);
1579
1580 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1581 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1582 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1583 break;
1584 }
1585
1586 case ir_unop_frexp_sig:
1587 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1588 break;
1589
1590 case ir_unop_frexp_exp:
1591 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1592 break;
1593
1594 case ir_unop_noise: {
1595 /* At some point, a motivated person could add a better
1596 * implementation of noise. Currently not even the nvidia
1597 * binary drivers do anything more than this. In any case, the
1598 * place to do this is in the GL state tracker, not the poor
1599 * driver.
1600 */
1601 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1602 break;
1603 }
1604
1605 case ir_binop_add:
1606 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1607 break;
1608 case ir_binop_sub:
1609 emit_asm(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1610 break;
1611
1612 case ir_binop_mul:
1613 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1614 break;
1615 case ir_binop_div:
1616 if (result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_DOUBLE)
1617 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1618 else
1619 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1620 break;
1621 case ir_binop_mod:
1622 if (result_dst.type == GLSL_TYPE_FLOAT)
1623 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1624 else
1625 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1626 break;
1627
1628 case ir_binop_less:
1629 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1630 break;
1631 case ir_binop_greater:
1632 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1633 break;
1634 case ir_binop_lequal:
1635 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1636 break;
1637 case ir_binop_gequal:
1638 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1639 break;
1640 case ir_binop_equal:
1641 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1642 break;
1643 case ir_binop_nequal:
1644 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1645 break;
1646 case ir_binop_all_equal:
1647 /* "==" operator producing a scalar boolean. */
1648 if (ir->operands[0]->type->is_vector() ||
1649 ir->operands[1]->type->is_vector()) {
1650 st_src_reg temp = get_temp(native_integers ?
1651 glsl_type::uvec4_type :
1652 glsl_type::vec4_type);
1653
1654 if (native_integers) {
1655 st_dst_reg temp_dst = st_dst_reg(temp);
1656 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1657
1658 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1659
1660 /* Emit 1-3 AND operations to combine the SEQ results. */
1661 switch (ir->operands[0]->type->vector_elements) {
1662 case 2:
1663 break;
1664 case 3:
1665 temp_dst.writemask = WRITEMASK_Y;
1666 temp1.swizzle = SWIZZLE_YYYY;
1667 temp2.swizzle = SWIZZLE_ZZZZ;
1668 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1669 break;
1670 case 4:
1671 temp_dst.writemask = WRITEMASK_X;
1672 temp1.swizzle = SWIZZLE_XXXX;
1673 temp2.swizzle = SWIZZLE_YYYY;
1674 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1675 temp_dst.writemask = WRITEMASK_Y;
1676 temp1.swizzle = SWIZZLE_ZZZZ;
1677 temp2.swizzle = SWIZZLE_WWWW;
1678 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1679 }
1680
1681 temp1.swizzle = SWIZZLE_XXXX;
1682 temp2.swizzle = SWIZZLE_YYYY;
1683 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1684 } else {
1685 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1686
1687 /* After the dot-product, the value will be an integer on the
1688 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1689 */
1690 emit_dp(ir, result_dst, temp, temp, vector_elements);
1691
1692 /* Negating the result of the dot-product gives values on the range
1693 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1694 * This is achieved using SGE.
1695 */
1696 st_src_reg sge_src = result_src;
1697 sge_src.negate = ~sge_src.negate;
1698 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1699 }
1700 } else {
1701 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1702 }
1703 break;
1704 case ir_binop_any_nequal:
1705 /* "!=" operator producing a scalar boolean. */
1706 if (ir->operands[0]->type->is_vector() ||
1707 ir->operands[1]->type->is_vector()) {
1708 st_src_reg temp = get_temp(native_integers ?
1709 glsl_type::uvec4_type :
1710 glsl_type::vec4_type);
1711 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1712
1713 if (native_integers) {
1714 st_dst_reg temp_dst = st_dst_reg(temp);
1715 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1716
1717 /* Emit 1-3 OR operations to combine the SNE results. */
1718 switch (ir->operands[0]->type->vector_elements) {
1719 case 2:
1720 break;
1721 case 3:
1722 temp_dst.writemask = WRITEMASK_Y;
1723 temp1.swizzle = SWIZZLE_YYYY;
1724 temp2.swizzle = SWIZZLE_ZZZZ;
1725 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1726 break;
1727 case 4:
1728 temp_dst.writemask = WRITEMASK_X;
1729 temp1.swizzle = SWIZZLE_XXXX;
1730 temp2.swizzle = SWIZZLE_YYYY;
1731 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1732 temp_dst.writemask = WRITEMASK_Y;
1733 temp1.swizzle = SWIZZLE_ZZZZ;
1734 temp2.swizzle = SWIZZLE_WWWW;
1735 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1736 }
1737
1738 temp1.swizzle = SWIZZLE_XXXX;
1739 temp2.swizzle = SWIZZLE_YYYY;
1740 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1741 } else {
1742 /* After the dot-product, the value will be an integer on the
1743 * range [0,4]. Zero stays zero, and positive values become 1.0.
1744 */
1745 glsl_to_tgsi_instruction *const dp =
1746 emit_dp(ir, result_dst, temp, temp, vector_elements);
1747 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1748 /* The clamping to [0,1] can be done for free in the fragment
1749 * shader with a saturate.
1750 */
1751 dp->saturate = true;
1752 } else {
1753 /* Negating the result of the dot-product gives values on the range
1754 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1755 * achieved using SLT.
1756 */
1757 st_src_reg slt_src = result_src;
1758 slt_src.negate = ~slt_src.negate;
1759 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1760 }
1761 }
1762 } else {
1763 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1764 }
1765 break;
1766
1767 case ir_unop_any: {
1768 assert(ir->operands[0]->type->is_vector());
1769
1770 if (native_integers) {
1771 int dst_swizzle = 0, op0_swizzle, i;
1772 st_src_reg accum = op[0];
1773
1774 op0_swizzle = op[0].swizzle;
1775 accum.swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 0),
1776 GET_SWZ(op0_swizzle, 0),
1777 GET_SWZ(op0_swizzle, 0),
1778 GET_SWZ(op0_swizzle, 0));
1779 for (i = 0; i < 4; i++) {
1780 if (result_dst.writemask & (1 << i)) {
1781 dst_swizzle = MAKE_SWIZZLE4(i, i, i, i);
1782 break;
1783 }
1784 }
1785 assert(i != 4);
1786 assert(ir->operands[0]->type->is_boolean());
1787
1788 /* OR all the components together, since they should be either 0 or ~0
1789 */
1790 switch (ir->operands[0]->type->vector_elements) {
1791 case 4:
1792 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 3),
1793 GET_SWZ(op0_swizzle, 3),
1794 GET_SWZ(op0_swizzle, 3),
1795 GET_SWZ(op0_swizzle, 3));
1796 emit_asm(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1797 accum = st_src_reg(result_dst);
1798 accum.swizzle = dst_swizzle;
1799 /* fallthrough */
1800 case 3:
1801 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 2),
1802 GET_SWZ(op0_swizzle, 2),
1803 GET_SWZ(op0_swizzle, 2),
1804 GET_SWZ(op0_swizzle, 2));
1805 emit_asm(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1806 accum = st_src_reg(result_dst);
1807 accum.swizzle = dst_swizzle;
1808 /* fallthrough */
1809 case 2:
1810 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 1),
1811 GET_SWZ(op0_swizzle, 1),
1812 GET_SWZ(op0_swizzle, 1),
1813 GET_SWZ(op0_swizzle, 1));
1814 emit_asm(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1815 break;
1816 default:
1817 assert(!"Unexpected vector size");
1818 break;
1819 }
1820 } else {
1821 /* After the dot-product, the value will be an integer on the
1822 * range [0,4]. Zero stays zero, and positive values become 1.0.
1823 */
1824 glsl_to_tgsi_instruction *const dp =
1825 emit_dp(ir, result_dst, op[0], op[0],
1826 ir->operands[0]->type->vector_elements);
1827 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1828 result_dst.type == GLSL_TYPE_FLOAT) {
1829 /* The clamping to [0,1] can be done for free in the fragment
1830 * shader with a saturate.
1831 */
1832 dp->saturate = true;
1833 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1834 /* Negating the result of the dot-product gives values on the range
1835 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1836 * is achieved using SLT.
1837 */
1838 st_src_reg slt_src = result_src;
1839 slt_src.negate = ~slt_src.negate;
1840 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1841 }
1842 else {
1843 /* Use SNE 0 if integers are being used as boolean values. */
1844 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1845 }
1846 }
1847 break;
1848 }
1849
1850 case ir_binop_logic_xor:
1851 if (native_integers)
1852 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1853 else
1854 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1855 break;
1856
1857 case ir_binop_logic_or: {
1858 if (native_integers) {
1859 /* If integers are used as booleans, we can use an actual "or"
1860 * instruction.
1861 */
1862 assert(native_integers);
1863 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1864 } else {
1865 /* After the addition, the value will be an integer on the
1866 * range [0,2]. Zero stays zero, and positive values become 1.0.
1867 */
1868 glsl_to_tgsi_instruction *add =
1869 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1870 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1871 /* The clamping to [0,1] can be done for free in the fragment
1872 * shader with a saturate if floats are being used as boolean values.
1873 */
1874 add->saturate = true;
1875 } else {
1876 /* Negating the result of the addition gives values on the range
1877 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1878 * is achieved using SLT.
1879 */
1880 st_src_reg slt_src = result_src;
1881 slt_src.negate = ~slt_src.negate;
1882 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1883 }
1884 }
1885 break;
1886 }
1887
1888 case ir_binop_logic_and:
1889 /* If native integers are disabled, the bool args are stored as float 0.0
1890 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1891 * actual AND opcode.
1892 */
1893 if (native_integers)
1894 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1895 else
1896 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1897 break;
1898
1899 case ir_binop_dot:
1900 assert(ir->operands[0]->type->is_vector());
1901 assert(ir->operands[0]->type == ir->operands[1]->type);
1902 emit_dp(ir, result_dst, op[0], op[1],
1903 ir->operands[0]->type->vector_elements);
1904 break;
1905
1906 case ir_unop_sqrt:
1907 if (have_sqrt) {
1908 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1909 } else {
1910 /* sqrt(x) = x * rsq(x). */
1911 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1912 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1913 /* For incoming channels <= 0, set the result to 0. */
1914 op[0].negate = ~op[0].negate;
1915 emit_asm(ir, TGSI_OPCODE_CMP, result_dst,
1916 op[0], result_src, st_src_reg_for_float(0.0));
1917 }
1918 break;
1919 case ir_unop_rsq:
1920 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1921 break;
1922 case ir_unop_i2f:
1923 if (native_integers) {
1924 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1925 break;
1926 }
1927 /* fallthrough to next case otherwise */
1928 case ir_unop_b2f:
1929 if (native_integers) {
1930 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1931 break;
1932 }
1933 /* fallthrough to next case otherwise */
1934 case ir_unop_i2u:
1935 case ir_unop_u2i:
1936 /* Converting between signed and unsigned integers is a no-op. */
1937 result_src = op[0];
1938 break;
1939 case ir_unop_b2i:
1940 if (native_integers) {
1941 /* Booleans are stored as integers using ~0 for true and 0 for false.
1942 * GLSL requires that int(bool) return 1 for true and 0 for false.
1943 * This conversion is done with AND, but it could be done with NEG.
1944 */
1945 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1946 } else {
1947 /* Booleans and integers are both stored as floats when native
1948 * integers are disabled.
1949 */
1950 result_src = op[0];
1951 }
1952 break;
1953 case ir_unop_f2i:
1954 if (native_integers)
1955 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1956 else
1957 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1958 break;
1959 case ir_unop_f2u:
1960 if (native_integers)
1961 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1962 else
1963 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1964 break;
1965 case ir_unop_bitcast_f2i:
1966 result_src = op[0];
1967 result_src.type = GLSL_TYPE_INT;
1968 break;
1969 case ir_unop_bitcast_f2u:
1970 result_src = op[0];
1971 result_src.type = GLSL_TYPE_UINT;
1972 break;
1973 case ir_unop_bitcast_i2f:
1974 case ir_unop_bitcast_u2f:
1975 result_src = op[0];
1976 result_src.type = GLSL_TYPE_FLOAT;
1977 break;
1978 case ir_unop_f2b:
1979 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1980 break;
1981 case ir_unop_d2b:
1982 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
1983 break;
1984 case ir_unop_i2b:
1985 if (native_integers)
1986 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
1987 else
1988 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1989 break;
1990 case ir_unop_trunc:
1991 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1992 break;
1993 case ir_unop_ceil:
1994 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1995 break;
1996 case ir_unop_floor:
1997 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1998 break;
1999 case ir_unop_round_even:
2000 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
2001 break;
2002 case ir_unop_fract:
2003 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
2004 break;
2005
2006 case ir_binop_min:
2007 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
2008 break;
2009 case ir_binop_max:
2010 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
2011 break;
2012 case ir_binop_pow:
2013 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
2014 break;
2015
2016 case ir_unop_bit_not:
2017 if (native_integers) {
2018 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
2019 break;
2020 }
2021 case ir_unop_u2f:
2022 if (native_integers) {
2023 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
2024 break;
2025 }
2026 case ir_binop_lshift:
2027 if (native_integers) {
2028 emit_asm(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
2029 break;
2030 }
2031 case ir_binop_rshift:
2032 if (native_integers) {
2033 emit_asm(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
2034 break;
2035 }
2036 case ir_binop_bit_and:
2037 if (native_integers) {
2038 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2039 break;
2040 }
2041 case ir_binop_bit_xor:
2042 if (native_integers) {
2043 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
2044 break;
2045 }
2046 case ir_binop_bit_or:
2047 if (native_integers) {
2048 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
2049 break;
2050 }
2051
2052 assert(!"GLSL 1.30 features unsupported");
2053 break;
2054
2055 case ir_binop_ubo_load: {
2056 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2057 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2058 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
2059 unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
2060 st_src_reg index_reg = get_temp(glsl_type::uint_type);
2061 st_src_reg cbuf;
2062
2063 cbuf.type = ir->type->base_type;
2064 cbuf.file = PROGRAM_CONSTANT;
2065 cbuf.index = 0;
2066 cbuf.reladdr = NULL;
2067 cbuf.negate = 0;
2068
2069 assert(ir->type->is_vector() || ir->type->is_scalar());
2070
2071 if (const_offset_ir) {
2072 /* Constant index into constant buffer */
2073 cbuf.reladdr = NULL;
2074 cbuf.index = const_offset / 16;
2075 }
2076 else {
2077 /* Relative/variable index into constant buffer */
2078 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1],
2079 st_src_reg_for_int(4));
2080 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2081 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
2082 }
2083
2084 if (const_uniform_block) {
2085 /* Constant constant buffer */
2086 cbuf.reladdr2 = NULL;
2087 cbuf.index2D = const_block;
2088 cbuf.has_index2 = true;
2089 }
2090 else {
2091 /* Relative/variable constant buffer */
2092 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2093 cbuf.index2D = 1;
2094 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
2095 cbuf.has_index2 = true;
2096 }
2097
2098 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2099 if (cbuf.type == GLSL_TYPE_DOUBLE)
2100 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2101 const_offset % 16 / 8,
2102 const_offset % 16 / 8,
2103 const_offset % 16 / 8);
2104 else
2105 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2106 const_offset % 16 / 4,
2107 const_offset % 16 / 4,
2108 const_offset % 16 / 4);
2109
2110 if (ir->type->base_type == GLSL_TYPE_BOOL) {
2111 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2112 } else {
2113 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2114 }
2115 break;
2116 }
2117 case ir_triop_lrp:
2118 /* note: we have to reorder the three args here */
2119 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2120 break;
2121 case ir_triop_csel:
2122 if (this->ctx->Const.NativeIntegers)
2123 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2124 else {
2125 op[0].negate = ~op[0].negate;
2126 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2127 }
2128 break;
2129 case ir_triop_bitfield_extract:
2130 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2131 break;
2132 case ir_quadop_bitfield_insert:
2133 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2134 break;
2135 case ir_unop_bitfield_reverse:
2136 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2137 break;
2138 case ir_unop_bit_count:
2139 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2140 break;
2141 case ir_unop_find_msb:
2142 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2143 break;
2144 case ir_unop_find_lsb:
2145 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2146 break;
2147 case ir_binop_imul_high:
2148 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2149 break;
2150 case ir_triop_fma:
2151 /* In theory, MAD is incorrect here. */
2152 if (have_fma)
2153 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2154 else
2155 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2156 break;
2157 case ir_unop_interpolate_at_centroid:
2158 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2159 break;
2160 case ir_binop_interpolate_at_offset:
2161 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], op[1]);
2162 break;
2163 case ir_binop_interpolate_at_sample:
2164 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2165 break;
2166
2167 case ir_unop_d2f:
2168 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2169 break;
2170 case ir_unop_f2d:
2171 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2172 break;
2173 case ir_unop_d2i:
2174 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2175 break;
2176 case ir_unop_i2d:
2177 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2178 break;
2179 case ir_unop_d2u:
2180 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2181 break;
2182 case ir_unop_u2d:
2183 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2184 break;
2185 case ir_unop_unpack_double_2x32:
2186 case ir_unop_pack_double_2x32:
2187 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2188 break;
2189
2190 case ir_binop_ldexp:
2191 if (ir->operands[0]->type->base_type == GLSL_TYPE_DOUBLE) {
2192 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2193 } else {
2194 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2195 }
2196 break;
2197
2198 case ir_unop_pack_snorm_2x16:
2199 case ir_unop_pack_unorm_2x16:
2200 case ir_unop_pack_half_2x16:
2201 case ir_unop_pack_snorm_4x8:
2202 case ir_unop_pack_unorm_4x8:
2203
2204 case ir_unop_unpack_snorm_2x16:
2205 case ir_unop_unpack_unorm_2x16:
2206 case ir_unop_unpack_half_2x16:
2207 case ir_unop_unpack_half_2x16_split_x:
2208 case ir_unop_unpack_half_2x16_split_y:
2209 case ir_unop_unpack_snorm_4x8:
2210 case ir_unop_unpack_unorm_4x8:
2211
2212 case ir_binop_pack_half_2x16_split:
2213 case ir_binop_bfm:
2214 case ir_triop_bfi:
2215 case ir_quadop_vector:
2216 case ir_binop_vector_extract:
2217 case ir_triop_vector_insert:
2218 case ir_binop_carry:
2219 case ir_binop_borrow:
2220 case ir_unop_ssbo_unsized_array_length:
2221 /* This operation is not supported, or should have already been handled.
2222 */
2223 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2224 break;
2225
2226 case ir_unop_get_buffer_size:
2227 assert(!"Not implemented yet");
2228 break;
2229 }
2230
2231 this->result = result_src;
2232 }
2233
2234
2235 void
2236 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2237 {
2238 st_src_reg src;
2239 int i;
2240 int swizzle[4];
2241
2242 /* Note that this is only swizzles in expressions, not those on the left
2243 * hand side of an assignment, which do write masking. See ir_assignment
2244 * for that.
2245 */
2246
2247 ir->val->accept(this);
2248 src = this->result;
2249 assert(src.file != PROGRAM_UNDEFINED);
2250 assert(ir->type->vector_elements > 0);
2251
2252 for (i = 0; i < 4; i++) {
2253 if (i < ir->type->vector_elements) {
2254 switch (i) {
2255 case 0:
2256 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2257 break;
2258 case 1:
2259 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2260 break;
2261 case 2:
2262 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2263 break;
2264 case 3:
2265 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2266 break;
2267 }
2268 } else {
2269 /* If the type is smaller than a vec4, replicate the last
2270 * channel out.
2271 */
2272 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2273 }
2274 }
2275
2276 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2277
2278 this->result = src;
2279 }
2280
2281 /* Test if the variable is an array. Note that geometry and
2282 * tessellation shader inputs are outputs are always arrays (except
2283 * for patch inputs), so only the array element type is considered.
2284 */
2285 static bool
2286 is_inout_array(unsigned stage, ir_variable *var, bool *is_2d)
2287 {
2288 const glsl_type *type = var->type;
2289
2290 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2291 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2292 return false;
2293
2294 *is_2d = false;
2295
2296 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2297 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2298 stage == MESA_SHADER_TESS_CTRL) &&
2299 !var->data.patch) {
2300 if (!var->type->is_array())
2301 return false; /* a system value probably */
2302
2303 type = var->type->fields.array;
2304 *is_2d = true;
2305 }
2306
2307 return type->is_array() || type->is_matrix();
2308 }
2309
2310 void
2311 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2312 {
2313 variable_storage *entry = find_variable_storage(ir->var);
2314 ir_variable *var = ir->var;
2315 bool is_2d;
2316
2317 if (!entry) {
2318 switch (var->data.mode) {
2319 case ir_var_uniform:
2320 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2321 var->data.location);
2322 this->variables.push_tail(entry);
2323 break;
2324 case ir_var_shader_in:
2325 /* The linker assigns locations for varyings and attributes,
2326 * including deprecated builtins (like gl_Color), user-assign
2327 * generic attributes (glBindVertexLocation), and
2328 * user-defined varyings.
2329 */
2330 assert(var->data.location != -1);
2331
2332 if (is_inout_array(shader->Stage, var, &is_2d)) {
2333 struct array_decl *decl = &input_arrays[num_input_arrays];
2334
2335 decl->mesa_index = var->data.location;
2336 decl->array_id = num_input_arrays + 1;
2337 if (is_2d)
2338 decl->array_size = type_size(var->type->fields.array);
2339 else
2340 decl->array_size = type_size(var->type);
2341 num_input_arrays++;
2342
2343 entry = new(mem_ctx) variable_storage(var,
2344 PROGRAM_INPUT,
2345 var->data.location,
2346 decl->array_id);
2347 }
2348 else {
2349 entry = new(mem_ctx) variable_storage(var,
2350 PROGRAM_INPUT,
2351 var->data.location);
2352 }
2353 this->variables.push_tail(entry);
2354 break;
2355 case ir_var_shader_out:
2356 assert(var->data.location != -1);
2357
2358 if (is_inout_array(shader->Stage, var, &is_2d)) {
2359 struct array_decl *decl = &output_arrays[num_output_arrays];
2360
2361 decl->mesa_index = var->data.location;
2362 decl->array_id = num_output_arrays + 1;
2363 if (is_2d)
2364 decl->array_size = type_size(var->type->fields.array);
2365 else
2366 decl->array_size = type_size(var->type);
2367 num_output_arrays++;
2368
2369 entry = new(mem_ctx) variable_storage(var,
2370 PROGRAM_OUTPUT,
2371 var->data.location,
2372 decl->array_id);
2373 }
2374 else {
2375 entry = new(mem_ctx) variable_storage(var,
2376 PROGRAM_OUTPUT,
2377 var->data.location
2378 + var->data.index);
2379 }
2380 this->variables.push_tail(entry);
2381 break;
2382 case ir_var_system_value:
2383 entry = new(mem_ctx) variable_storage(var,
2384 PROGRAM_SYSTEM_VALUE,
2385 var->data.location);
2386 break;
2387 case ir_var_auto:
2388 case ir_var_temporary:
2389 st_src_reg src = get_temp(var->type);
2390
2391 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2392 this->variables.push_tail(entry);
2393
2394 break;
2395 }
2396
2397 if (!entry) {
2398 printf("Failed to make storage for %s\n", var->name);
2399 exit(1);
2400 }
2401 }
2402
2403 this->result = st_src_reg(entry->file, entry->index, var->type);
2404 this->result.array_id = entry->array_id;
2405 if (!native_integers)
2406 this->result.type = GLSL_TYPE_FLOAT;
2407 }
2408
2409 static void
2410 shrink_array_declarations(struct array_decl *arrays, unsigned count,
2411 GLbitfield64 usage_mask,
2412 GLbitfield patch_usage_mask)
2413 {
2414 unsigned i, j;
2415
2416 /* Fix array declarations by removing unused array elements at both ends
2417 * of the arrays. For example, mat4[3] where only mat[1] is used.
2418 */
2419 for (i = 0; i < count; i++) {
2420 struct array_decl *decl = &arrays[i];
2421
2422 /* Shrink the beginning. */
2423 for (j = 0; j < decl->array_size; j++) {
2424 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2425 if (patch_usage_mask &
2426 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2427 break;
2428 }
2429 else {
2430 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2431 break;
2432 }
2433
2434 decl->mesa_index++;
2435 decl->array_size--;
2436 j--;
2437 }
2438
2439 /* Shrink the end. */
2440 for (j = decl->array_size-1; j >= 0; j--) {
2441 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2442 if (patch_usage_mask &
2443 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2444 break;
2445 }
2446 else {
2447 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2448 break;
2449 }
2450
2451 decl->array_size--;
2452 }
2453 }
2454 }
2455
2456 void
2457 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2458 {
2459 ir_constant *index;
2460 st_src_reg src;
2461 int element_size = type_size(ir->type);
2462 bool is_2D = false;
2463
2464 index = ir->array_index->constant_expression_value();
2465
2466 ir->array->accept(this);
2467 src = this->result;
2468
2469 if (ir->array->ir_type != ir_type_dereference_array) {
2470 switch (this->prog->Target) {
2471 case GL_TESS_CONTROL_PROGRAM_NV:
2472 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2473 !ir->variable_referenced()->data.patch;
2474 break;
2475 case GL_TESS_EVALUATION_PROGRAM_NV:
2476 is_2D = src.file == PROGRAM_INPUT &&
2477 !ir->variable_referenced()->data.patch;
2478 break;
2479 case GL_GEOMETRY_PROGRAM_NV:
2480 is_2D = src.file == PROGRAM_INPUT;
2481 break;
2482 }
2483 }
2484
2485 if (is_2D)
2486 element_size = 1;
2487
2488 if (index) {
2489 if (is_2D) {
2490 src.index2D = index->value.i[0];
2491 src.has_index2 = true;
2492 } else
2493 src.index += index->value.i[0] * element_size;
2494 } else {
2495 /* Variable index array dereference. It eats the "vec4" of the
2496 * base of the array and an index that offsets the TGSI register
2497 * index.
2498 */
2499 ir->array_index->accept(this);
2500
2501 st_src_reg index_reg;
2502
2503 if (element_size == 1) {
2504 index_reg = this->result;
2505 } else {
2506 index_reg = get_temp(native_integers ?
2507 glsl_type::int_type : glsl_type::float_type);
2508
2509 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2510 this->result, st_src_reg_for_type(index_reg.type, element_size));
2511 }
2512
2513 /* If there was already a relative address register involved, add the
2514 * new and the old together to get the new offset.
2515 */
2516 if (!is_2D && src.reladdr != NULL) {
2517 st_src_reg accum_reg = get_temp(native_integers ?
2518 glsl_type::int_type : glsl_type::float_type);
2519
2520 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2521 index_reg, *src.reladdr);
2522
2523 index_reg = accum_reg;
2524 }
2525
2526 if (is_2D) {
2527 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2528 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2529 src.index2D = 0;
2530 src.has_index2 = true;
2531 } else {
2532 src.reladdr = ralloc(mem_ctx, st_src_reg);
2533 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2534 }
2535 }
2536
2537 /* If the type is smaller than a vec4, replicate the last channel out. */
2538 if (ir->type->is_scalar() || ir->type->is_vector())
2539 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2540 else
2541 src.swizzle = SWIZZLE_NOOP;
2542
2543 /* Change the register type to the element type of the array. */
2544 src.type = ir->type->base_type;
2545
2546 this->result = src;
2547 }
2548
2549 void
2550 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2551 {
2552 unsigned int i;
2553 const glsl_type *struct_type = ir->record->type;
2554 int offset = 0;
2555
2556 ir->record->accept(this);
2557
2558 for (i = 0; i < struct_type->length; i++) {
2559 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2560 break;
2561 offset += type_size(struct_type->fields.structure[i].type);
2562 }
2563
2564 /* If the type is smaller than a vec4, replicate the last channel out. */
2565 if (ir->type->is_scalar() || ir->type->is_vector())
2566 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2567 else
2568 this->result.swizzle = SWIZZLE_NOOP;
2569
2570 this->result.index += offset;
2571 this->result.type = ir->type->base_type;
2572 }
2573
2574 /**
2575 * We want to be careful in assignment setup to hit the actual storage
2576 * instead of potentially using a temporary like we might with the
2577 * ir_dereference handler.
2578 */
2579 static st_dst_reg
2580 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2581 {
2582 /* The LHS must be a dereference. If the LHS is a variable indexed array
2583 * access of a vector, it must be separated into a series conditional moves
2584 * before reaching this point (see ir_vec_index_to_cond_assign).
2585 */
2586 assert(ir->as_dereference());
2587 ir_dereference_array *deref_array = ir->as_dereference_array();
2588 if (deref_array) {
2589 assert(!deref_array->array->type->is_vector());
2590 }
2591
2592 /* Use the rvalue deref handler for the most part. We'll ignore
2593 * swizzles in it and write swizzles using writemask, though.
2594 */
2595 ir->accept(v);
2596 return st_dst_reg(v->result);
2597 }
2598
2599 /**
2600 * Process the condition of a conditional assignment
2601 *
2602 * Examines the condition of a conditional assignment to generate the optimal
2603 * first operand of a \c CMP instruction. If the condition is a relational
2604 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2605 * used as the source for the \c CMP instruction. Otherwise the comparison
2606 * is processed to a boolean result, and the boolean result is used as the
2607 * operand to the CMP instruction.
2608 */
2609 bool
2610 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2611 {
2612 ir_rvalue *src_ir = ir;
2613 bool negate = true;
2614 bool switch_order = false;
2615
2616 ir_expression *const expr = ir->as_expression();
2617
2618 if (native_integers) {
2619 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2620 enum glsl_base_type type = expr->operands[0]->type->base_type;
2621 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2622 type == GLSL_TYPE_BOOL) {
2623 if (expr->operation == ir_binop_equal) {
2624 if (expr->operands[0]->is_zero()) {
2625 src_ir = expr->operands[1];
2626 switch_order = true;
2627 }
2628 else if (expr->operands[1]->is_zero()) {
2629 src_ir = expr->operands[0];
2630 switch_order = true;
2631 }
2632 }
2633 else if (expr->operation == ir_binop_nequal) {
2634 if (expr->operands[0]->is_zero()) {
2635 src_ir = expr->operands[1];
2636 }
2637 else if (expr->operands[1]->is_zero()) {
2638 src_ir = expr->operands[0];
2639 }
2640 }
2641 }
2642 }
2643
2644 src_ir->accept(this);
2645 return switch_order;
2646 }
2647
2648 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2649 bool zero_on_left = false;
2650
2651 if (expr->operands[0]->is_zero()) {
2652 src_ir = expr->operands[1];
2653 zero_on_left = true;
2654 } else if (expr->operands[1]->is_zero()) {
2655 src_ir = expr->operands[0];
2656 zero_on_left = false;
2657 }
2658
2659 /* a is - 0 + - 0 +
2660 * (a < 0) T F F ( a < 0) T F F
2661 * (0 < a) F F T (-a < 0) F F T
2662 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2663 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2664 * (a > 0) F F T (-a < 0) F F T
2665 * (0 > a) T F F ( a < 0) T F F
2666 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2667 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2668 *
2669 * Note that exchanging the order of 0 and 'a' in the comparison simply
2670 * means that the value of 'a' should be negated.
2671 */
2672 if (src_ir != ir) {
2673 switch (expr->operation) {
2674 case ir_binop_less:
2675 switch_order = false;
2676 negate = zero_on_left;
2677 break;
2678
2679 case ir_binop_greater:
2680 switch_order = false;
2681 negate = !zero_on_left;
2682 break;
2683
2684 case ir_binop_lequal:
2685 switch_order = true;
2686 negate = !zero_on_left;
2687 break;
2688
2689 case ir_binop_gequal:
2690 switch_order = true;
2691 negate = zero_on_left;
2692 break;
2693
2694 default:
2695 /* This isn't the right kind of comparison afterall, so make sure
2696 * the whole condition is visited.
2697 */
2698 src_ir = ir;
2699 break;
2700 }
2701 }
2702 }
2703
2704 src_ir->accept(this);
2705
2706 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2707 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2708 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2709 * computing the condition.
2710 */
2711 if (negate)
2712 this->result.negate = ~this->result.negate;
2713
2714 return switch_order;
2715 }
2716
2717 void
2718 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2719 st_dst_reg *l, st_src_reg *r,
2720 st_src_reg *cond, bool cond_swap)
2721 {
2722 if (type->base_type == GLSL_TYPE_STRUCT) {
2723 for (unsigned int i = 0; i < type->length; i++) {
2724 emit_block_mov(ir, type->fields.structure[i].type, l, r,
2725 cond, cond_swap);
2726 }
2727 return;
2728 }
2729
2730 if (type->is_array()) {
2731 for (unsigned int i = 0; i < type->length; i++) {
2732 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
2733 }
2734 return;
2735 }
2736
2737 if (type->is_matrix()) {
2738 const struct glsl_type *vec_type;
2739
2740 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
2741 type->vector_elements, 1);
2742
2743 for (int i = 0; i < type->matrix_columns; i++) {
2744 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
2745 }
2746 return;
2747 }
2748
2749 assert(type->is_scalar() || type->is_vector());
2750
2751 r->type = type->base_type;
2752 if (cond) {
2753 st_src_reg l_src = st_src_reg(*l);
2754 l_src.swizzle = swizzle_for_size(type->vector_elements);
2755
2756 if (native_integers) {
2757 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
2758 cond_swap ? l_src : *r,
2759 cond_swap ? *r : l_src);
2760 } else {
2761 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
2762 cond_swap ? l_src : *r,
2763 cond_swap ? *r : l_src);
2764 }
2765 } else {
2766 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
2767 }
2768 l->index++;
2769 r->index++;
2770 }
2771
2772 void
2773 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2774 {
2775 st_dst_reg l;
2776 st_src_reg r;
2777
2778 ir->rhs->accept(this);
2779 r = this->result;
2780
2781 l = get_assignment_lhs(ir->lhs, this);
2782
2783 /* FINISHME: This should really set to the correct maximal writemask for each
2784 * FINISHME: component written (in the loops below). This case can only
2785 * FINISHME: occur for matrices, arrays, and structures.
2786 */
2787 if (ir->write_mask == 0) {
2788 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2789 l.writemask = WRITEMASK_XYZW;
2790 } else if (ir->lhs->type->is_scalar() &&
2791 !ir->lhs->type->is_double() &&
2792 ir->lhs->variable_referenced()->data.mode == ir_var_shader_out) {
2793 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2794 * FINISHME: W component of fragment shader output zero, work correctly.
2795 */
2796 l.writemask = WRITEMASK_XYZW;
2797 } else {
2798 int swizzles[4];
2799 int first_enabled_chan = 0;
2800 int rhs_chan = 0;
2801
2802 l.writemask = ir->write_mask;
2803
2804 for (int i = 0; i < 4; i++) {
2805 if (l.writemask & (1 << i)) {
2806 first_enabled_chan = GET_SWZ(r.swizzle, i);
2807 break;
2808 }
2809 }
2810
2811 /* Swizzle a small RHS vector into the channels being written.
2812 *
2813 * glsl ir treats write_mask as dictating how many channels are
2814 * present on the RHS while TGSI treats write_mask as just
2815 * showing which channels of the vec4 RHS get written.
2816 */
2817 for (int i = 0; i < 4; i++) {
2818 if (l.writemask & (1 << i))
2819 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2820 else
2821 swizzles[i] = first_enabled_chan;
2822 }
2823 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2824 swizzles[2], swizzles[3]);
2825 }
2826
2827 assert(l.file != PROGRAM_UNDEFINED);
2828 assert(r.file != PROGRAM_UNDEFINED);
2829
2830 if (ir->condition) {
2831 const bool switch_order = this->process_move_condition(ir->condition);
2832 st_src_reg condition = this->result;
2833
2834 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
2835 } else if (ir->rhs->as_expression() &&
2836 this->instructions.get_tail() &&
2837 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2838 type_size(ir->lhs->type) == 1 &&
2839 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
2840 /* To avoid emitting an extra MOV when assigning an expression to a
2841 * variable, emit the last instruction of the expression again, but
2842 * replace the destination register with the target of the assignment.
2843 * Dead code elimination will remove the original instruction.
2844 */
2845 glsl_to_tgsi_instruction *inst, *new_inst;
2846 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2847 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
2848 new_inst->saturate = inst->saturate;
2849 inst->dead_mask = inst->dst[0].writemask;
2850 } else {
2851 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
2852 }
2853 }
2854
2855
2856 void
2857 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2858 {
2859 st_src_reg src;
2860 GLdouble stack_vals[4] = { 0 };
2861 gl_constant_value *values = (gl_constant_value *) stack_vals;
2862 GLenum gl_type = GL_NONE;
2863 unsigned int i;
2864 static int in_array = 0;
2865 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2866
2867 /* Unfortunately, 4 floats is all we can get into
2868 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2869 * aggregate constant and move each constant value into it. If we
2870 * get lucky, copy propagation will eliminate the extra moves.
2871 */
2872 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2873 st_src_reg temp_base = get_temp(ir->type);
2874 st_dst_reg temp = st_dst_reg(temp_base);
2875
2876 foreach_in_list(ir_constant, field_value, &ir->components) {
2877 int size = type_size(field_value->type);
2878
2879 assert(size > 0);
2880
2881 field_value->accept(this);
2882 src = this->result;
2883
2884 for (i = 0; i < (unsigned int)size; i++) {
2885 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2886
2887 src.index++;
2888 temp.index++;
2889 }
2890 }
2891 this->result = temp_base;
2892 return;
2893 }
2894
2895 if (ir->type->is_array()) {
2896 st_src_reg temp_base = get_temp(ir->type);
2897 st_dst_reg temp = st_dst_reg(temp_base);
2898 int size = type_size(ir->type->fields.array);
2899
2900 assert(size > 0);
2901 in_array++;
2902
2903 for (i = 0; i < ir->type->length; i++) {
2904 ir->array_elements[i]->accept(this);
2905 src = this->result;
2906 for (int j = 0; j < size; j++) {
2907 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2908
2909 src.index++;
2910 temp.index++;
2911 }
2912 }
2913 this->result = temp_base;
2914 in_array--;
2915 return;
2916 }
2917
2918 if (ir->type->is_matrix()) {
2919 st_src_reg mat = get_temp(ir->type);
2920 st_dst_reg mat_column = st_dst_reg(mat);
2921
2922 for (i = 0; i < ir->type->matrix_columns; i++) {
2923 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2924 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2925
2926 src = st_src_reg(file, -1, ir->type->base_type);
2927 src.index = add_constant(file,
2928 values,
2929 ir->type->vector_elements,
2930 GL_FLOAT,
2931 &src.swizzle);
2932 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
2933
2934 mat_column.index++;
2935 }
2936
2937 this->result = mat;
2938 return;
2939 }
2940
2941 switch (ir->type->base_type) {
2942 case GLSL_TYPE_FLOAT:
2943 gl_type = GL_FLOAT;
2944 for (i = 0; i < ir->type->vector_elements; i++) {
2945 values[i].f = ir->value.f[i];
2946 }
2947 break;
2948 case GLSL_TYPE_DOUBLE:
2949 gl_type = GL_DOUBLE;
2950 for (i = 0; i < ir->type->vector_elements; i++) {
2951 values[i * 2].i = *(uint32_t *)&ir->value.d[i];
2952 values[i * 2 + 1].i = *(((uint32_t *)&ir->value.d[i]) + 1);
2953 }
2954 break;
2955 case GLSL_TYPE_UINT:
2956 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2957 for (i = 0; i < ir->type->vector_elements; i++) {
2958 if (native_integers)
2959 values[i].u = ir->value.u[i];
2960 else
2961 values[i].f = ir->value.u[i];
2962 }
2963 break;
2964 case GLSL_TYPE_INT:
2965 gl_type = native_integers ? GL_INT : GL_FLOAT;
2966 for (i = 0; i < ir->type->vector_elements; i++) {
2967 if (native_integers)
2968 values[i].i = ir->value.i[i];
2969 else
2970 values[i].f = ir->value.i[i];
2971 }
2972 break;
2973 case GLSL_TYPE_BOOL:
2974 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2975 for (i = 0; i < ir->type->vector_elements; i++) {
2976 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
2977 }
2978 break;
2979 default:
2980 assert(!"Non-float/uint/int/bool constant");
2981 }
2982
2983 this->result = st_src_reg(file, -1, ir->type);
2984 this->result.index = add_constant(file,
2985 values,
2986 ir->type->vector_elements,
2987 gl_type,
2988 &this->result.swizzle);
2989 }
2990
2991 function_entry *
2992 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2993 {
2994 foreach_in_list_use_after(function_entry, entry, &this->function_signatures) {
2995 if (entry->sig == sig)
2996 return entry;
2997 }
2998
2999 entry = ralloc(mem_ctx, function_entry);
3000 entry->sig = sig;
3001 entry->sig_id = this->next_signature_id++;
3002 entry->bgn_inst = NULL;
3003
3004 /* Allocate storage for all the parameters. */
3005 foreach_in_list(ir_variable, param, &sig->parameters) {
3006 variable_storage *storage;
3007
3008 storage = find_variable_storage(param);
3009 assert(!storage);
3010
3011 st_src_reg src = get_temp(param->type);
3012
3013 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
3014 this->variables.push_tail(storage);
3015 }
3016
3017 if (!sig->return_type->is_void()) {
3018 entry->return_reg = get_temp(sig->return_type);
3019 } else {
3020 entry->return_reg = undef_src;
3021 }
3022
3023 this->function_signatures.push_tail(entry);
3024 return entry;
3025 }
3026
3027 void
3028 glsl_to_tgsi_visitor::visit(ir_call *ir)
3029 {
3030 glsl_to_tgsi_instruction *call_inst;
3031 ir_function_signature *sig = ir->callee;
3032 function_entry *entry = get_function_signature(sig);
3033 int i;
3034
3035 /* Process in parameters. */
3036 foreach_two_lists(formal_node, &sig->parameters,
3037 actual_node, &ir->actual_parameters) {
3038 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
3039 ir_variable *param = (ir_variable *) formal_node;
3040
3041 if (param->data.mode == ir_var_function_in ||
3042 param->data.mode == ir_var_function_inout) {
3043 variable_storage *storage = find_variable_storage(param);
3044 assert(storage);
3045
3046 param_rval->accept(this);
3047 st_src_reg r = this->result;
3048
3049 st_dst_reg l;
3050 l.file = storage->file;
3051 l.index = storage->index;
3052 l.reladdr = NULL;
3053 l.writemask = WRITEMASK_XYZW;
3054 l.cond_mask = COND_TR;
3055
3056 for (i = 0; i < type_size(param->type); i++) {
3057 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3058 l.index++;
3059 r.index++;
3060 }
3061 }
3062 }
3063
3064 /* Emit call instruction */
3065 call_inst = emit_asm(ir, TGSI_OPCODE_CAL);
3066 call_inst->function = entry;
3067
3068 /* Process out parameters. */
3069 foreach_two_lists(formal_node, &sig->parameters,
3070 actual_node, &ir->actual_parameters) {
3071 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
3072 ir_variable *param = (ir_variable *) formal_node;
3073
3074 if (param->data.mode == ir_var_function_out ||
3075 param->data.mode == ir_var_function_inout) {
3076 variable_storage *storage = find_variable_storage(param);
3077 assert(storage);
3078
3079 st_src_reg r;
3080 r.file = storage->file;
3081 r.index = storage->index;
3082 r.reladdr = NULL;
3083 r.swizzle = SWIZZLE_NOOP;
3084 r.negate = 0;
3085
3086 param_rval->accept(this);
3087 st_dst_reg l = st_dst_reg(this->result);
3088
3089 for (i = 0; i < type_size(param->type); i++) {
3090 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3091 l.index++;
3092 r.index++;
3093 }
3094 }
3095 }
3096
3097 /* Process return value. */
3098 this->result = entry->return_reg;
3099 }
3100
3101 void
3102 glsl_to_tgsi_visitor::visit(ir_texture *ir)
3103 {
3104 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
3105 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
3106 st_src_reg levels_src;
3107 st_dst_reg result_dst, coord_dst, cube_sc_dst;
3108 glsl_to_tgsi_instruction *inst = NULL;
3109 unsigned opcode = TGSI_OPCODE_NOP;
3110 const glsl_type *sampler_type = ir->sampler->type;
3111 ir_rvalue *sampler_index =
3112 _mesa_get_sampler_array_nonconst_index(ir->sampler);
3113 bool is_cube_array = false;
3114 unsigned i;
3115
3116 /* if we are a cube array sampler */
3117 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3118 sampler_type->sampler_array)) {
3119 is_cube_array = true;
3120 }
3121
3122 if (ir->coordinate) {
3123 ir->coordinate->accept(this);
3124
3125 /* Put our coords in a temp. We'll need to modify them for shadow,
3126 * projection, or LOD, so the only case we'd use it as is is if
3127 * we're doing plain old texturing. The optimization passes on
3128 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
3129 */
3130 coord = get_temp(glsl_type::vec4_type);
3131 coord_dst = st_dst_reg(coord);
3132 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
3133 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3134 }
3135
3136 if (ir->projector) {
3137 ir->projector->accept(this);
3138 projector = this->result;
3139 }
3140
3141 /* Storage for our result. Ideally for an assignment we'd be using
3142 * the actual storage for the result here, instead.
3143 */
3144 result_src = get_temp(ir->type);
3145 result_dst = st_dst_reg(result_src);
3146
3147 switch (ir->op) {
3148 case ir_tex:
3149 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
3150 if (ir->offset) {
3151 ir->offset->accept(this);
3152 offset[0] = this->result;
3153 }
3154 break;
3155 case ir_txb:
3156 if (is_cube_array ||
3157 sampler_type == glsl_type::samplerCubeShadow_type) {
3158 opcode = TGSI_OPCODE_TXB2;
3159 }
3160 else {
3161 opcode = TGSI_OPCODE_TXB;
3162 }
3163 ir->lod_info.bias->accept(this);
3164 lod_info = this->result;
3165 if (ir->offset) {
3166 ir->offset->accept(this);
3167 offset[0] = this->result;
3168 }
3169 break;
3170 case ir_txl:
3171 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
3172 ir->lod_info.lod->accept(this);
3173 lod_info = this->result;
3174 if (ir->offset) {
3175 ir->offset->accept(this);
3176 offset[0] = this->result;
3177 }
3178 break;
3179 case ir_txd:
3180 opcode = TGSI_OPCODE_TXD;
3181 ir->lod_info.grad.dPdx->accept(this);
3182 dx = this->result;
3183 ir->lod_info.grad.dPdy->accept(this);
3184 dy = this->result;
3185 if (ir->offset) {
3186 ir->offset->accept(this);
3187 offset[0] = this->result;
3188 }
3189 break;
3190 case ir_txs:
3191 opcode = TGSI_OPCODE_TXQ;
3192 ir->lod_info.lod->accept(this);
3193 lod_info = this->result;
3194 break;
3195 case ir_query_levels:
3196 opcode = TGSI_OPCODE_TXQ;
3197 lod_info = undef_src;
3198 levels_src = get_temp(ir->type);
3199 break;
3200 case ir_txf:
3201 opcode = TGSI_OPCODE_TXF;
3202 ir->lod_info.lod->accept(this);
3203 lod_info = this->result;
3204 if (ir->offset) {
3205 ir->offset->accept(this);
3206 offset[0] = this->result;
3207 }
3208 break;
3209 case ir_txf_ms:
3210 opcode = TGSI_OPCODE_TXF;
3211 ir->lod_info.sample_index->accept(this);
3212 sample_index = this->result;
3213 break;
3214 case ir_tg4:
3215 opcode = TGSI_OPCODE_TG4;
3216 ir->lod_info.component->accept(this);
3217 component = this->result;
3218 if (ir->offset) {
3219 ir->offset->accept(this);
3220 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
3221 const glsl_type *elt_type = ir->offset->type->fields.array;
3222 for (i = 0; i < ir->offset->type->length; i++) {
3223 offset[i] = this->result;
3224 offset[i].index += i * type_size(elt_type);
3225 offset[i].type = elt_type->base_type;
3226 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
3227 }
3228 } else {
3229 offset[0] = this->result;
3230 }
3231 }
3232 break;
3233 case ir_lod:
3234 opcode = TGSI_OPCODE_LODQ;
3235 break;
3236 case ir_texture_samples:
3237 opcode = TGSI_OPCODE_TXQS;
3238 break;
3239 case ir_samples_identical:
3240 unreachable("Unexpected ir_samples_identical opcode");
3241 }
3242
3243 if (ir->projector) {
3244 if (opcode == TGSI_OPCODE_TEX) {
3245 /* Slot the projector in as the last component of the coord. */
3246 coord_dst.writemask = WRITEMASK_W;
3247 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
3248 coord_dst.writemask = WRITEMASK_XYZW;
3249 opcode = TGSI_OPCODE_TXP;
3250 } else {
3251 st_src_reg coord_w = coord;
3252 coord_w.swizzle = SWIZZLE_WWWW;
3253
3254 /* For the other TEX opcodes there's no projective version
3255 * since the last slot is taken up by LOD info. Do the
3256 * projective divide now.
3257 */
3258 coord_dst.writemask = WRITEMASK_W;
3259 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
3260
3261 /* In the case where we have to project the coordinates "by hand,"
3262 * the shadow comparator value must also be projected.
3263 */
3264 st_src_reg tmp_src = coord;
3265 if (ir->shadow_comparitor) {
3266 /* Slot the shadow value in as the second to last component of the
3267 * coord.
3268 */
3269 ir->shadow_comparitor->accept(this);
3270
3271 tmp_src = get_temp(glsl_type::vec4_type);
3272 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
3273
3274 /* Projective division not allowed for array samplers. */
3275 assert(!sampler_type->sampler_array);
3276
3277 tmp_dst.writemask = WRITEMASK_Z;
3278 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
3279
3280 tmp_dst.writemask = WRITEMASK_XY;
3281 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
3282 }
3283
3284 coord_dst.writemask = WRITEMASK_XYZ;
3285 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
3286
3287 coord_dst.writemask = WRITEMASK_XYZW;
3288 coord.swizzle = SWIZZLE_XYZW;
3289 }
3290 }
3291
3292 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
3293 * comparator was put in the correct place (and projected) by the code,
3294 * above, that handles by-hand projection.
3295 */
3296 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
3297 /* Slot the shadow value in as the second to last component of the
3298 * coord.
3299 */
3300 ir->shadow_comparitor->accept(this);
3301
3302 if (is_cube_array) {
3303 cube_sc = get_temp(glsl_type::float_type);
3304 cube_sc_dst = st_dst_reg(cube_sc);
3305 cube_sc_dst.writemask = WRITEMASK_X;
3306 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
3307 cube_sc_dst.writemask = WRITEMASK_X;
3308 }
3309 else {
3310 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
3311 sampler_type->sampler_array) ||
3312 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
3313 coord_dst.writemask = WRITEMASK_W;
3314 } else {
3315 coord_dst.writemask = WRITEMASK_Z;
3316 }
3317 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3318 coord_dst.writemask = WRITEMASK_XYZW;
3319 }
3320 }
3321
3322 if (ir->op == ir_txf_ms) {
3323 coord_dst.writemask = WRITEMASK_W;
3324 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
3325 coord_dst.writemask = WRITEMASK_XYZW;
3326 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
3327 opcode == TGSI_OPCODE_TXF) {
3328 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
3329 coord_dst.writemask = WRITEMASK_W;
3330 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
3331 coord_dst.writemask = WRITEMASK_XYZW;
3332 }
3333
3334 if (sampler_index) {
3335 sampler_index->accept(this);
3336 emit_arl(ir, sampler_reladdr, this->result);
3337 }
3338
3339 if (opcode == TGSI_OPCODE_TXD)
3340 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
3341 else if (opcode == TGSI_OPCODE_TXQ) {
3342 if (ir->op == ir_query_levels) {
3343 /* the level is stored in W */
3344 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
3345 result_dst.writemask = WRITEMASK_X;
3346 levels_src.swizzle = SWIZZLE_WWWW;
3347 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
3348 } else
3349 inst = emit_asm(ir, opcode, result_dst, lod_info);
3350 } else if (opcode == TGSI_OPCODE_TXQS) {
3351 inst = emit_asm(ir, opcode, result_dst);
3352 } else if (opcode == TGSI_OPCODE_TXF) {
3353 inst = emit_asm(ir, opcode, result_dst, coord);
3354 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
3355 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
3356 } else if (opcode == TGSI_OPCODE_TEX2) {
3357 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
3358 } else if (opcode == TGSI_OPCODE_TG4) {
3359 if (is_cube_array && ir->shadow_comparitor) {
3360 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
3361 } else {
3362 inst = emit_asm(ir, opcode, result_dst, coord, component);
3363 }
3364 } else
3365 inst = emit_asm(ir, opcode, result_dst, coord);
3366
3367 if (ir->shadow_comparitor)
3368 inst->tex_shadow = GL_TRUE;
3369
3370 inst->sampler.index = _mesa_get_sampler_uniform_value(ir->sampler,
3371 this->shader_program,
3372 this->prog);
3373 if (sampler_index) {
3374 inst->sampler.reladdr = ralloc(mem_ctx, st_src_reg);
3375 memcpy(inst->sampler.reladdr, &sampler_reladdr, sizeof(sampler_reladdr));
3376 inst->sampler_array_size =
3377 ir->sampler->as_dereference_array()->array->type->array_size();
3378 } else {
3379 inst->sampler_array_size = 1;
3380 }
3381
3382 if (ir->offset) {
3383 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
3384 inst->tex_offsets[i] = offset[i];
3385 inst->tex_offset_num_offset = i;
3386 }
3387
3388 switch (sampler_type->sampler_dimensionality) {
3389 case GLSL_SAMPLER_DIM_1D:
3390 inst->tex_target = (sampler_type->sampler_array)
3391 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
3392 break;
3393 case GLSL_SAMPLER_DIM_2D:
3394 inst->tex_target = (sampler_type->sampler_array)
3395 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
3396 break;
3397 case GLSL_SAMPLER_DIM_3D:
3398 inst->tex_target = TEXTURE_3D_INDEX;
3399 break;
3400 case GLSL_SAMPLER_DIM_CUBE:
3401 inst->tex_target = (sampler_type->sampler_array)
3402 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
3403 break;
3404 case GLSL_SAMPLER_DIM_RECT:
3405 inst->tex_target = TEXTURE_RECT_INDEX;
3406 break;
3407 case GLSL_SAMPLER_DIM_BUF:
3408 inst->tex_target = TEXTURE_BUFFER_INDEX;
3409 break;
3410 case GLSL_SAMPLER_DIM_EXTERNAL:
3411 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3412 break;
3413 case GLSL_SAMPLER_DIM_MS:
3414 inst->tex_target = (sampler_type->sampler_array)
3415 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3416 break;
3417 default:
3418 assert(!"Should not get here.");
3419 }
3420
3421 inst->tex_type = ir->type->base_type;
3422
3423 this->result = result_src;
3424 }
3425
3426 void
3427 glsl_to_tgsi_visitor::visit(ir_return *ir)
3428 {
3429 if (ir->get_value()) {
3430 st_dst_reg l;
3431 int i;
3432
3433 assert(current_function);
3434
3435 ir->get_value()->accept(this);
3436 st_src_reg r = this->result;
3437
3438 l = st_dst_reg(current_function->return_reg);
3439
3440 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
3441 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3442 l.index++;
3443 r.index++;
3444 }
3445 }
3446
3447 emit_asm(ir, TGSI_OPCODE_RET);
3448 }
3449
3450 void
3451 glsl_to_tgsi_visitor::visit(ir_discard *ir)
3452 {
3453 if (ir->condition) {
3454 ir->condition->accept(this);
3455 st_src_reg condition = this->result;
3456
3457 /* Convert the bool condition to a float so we can negate. */
3458 if (native_integers) {
3459 st_src_reg temp = get_temp(ir->condition->type);
3460 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
3461 condition, st_src_reg_for_float(1.0));
3462 condition = temp;
3463 }
3464
3465 condition.negate = ~condition.negate;
3466 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
3467 } else {
3468 /* unconditional kil */
3469 emit_asm(ir, TGSI_OPCODE_KILL);
3470 }
3471 }
3472
3473 void
3474 glsl_to_tgsi_visitor::visit(ir_if *ir)
3475 {
3476 unsigned if_opcode;
3477 glsl_to_tgsi_instruction *if_inst;
3478
3479 ir->condition->accept(this);
3480 assert(this->result.file != PROGRAM_UNDEFINED);
3481
3482 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
3483
3484 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
3485
3486 this->instructions.push_tail(if_inst);
3487
3488 visit_exec_list(&ir->then_instructions, this);
3489
3490 if (!ir->else_instructions.is_empty()) {
3491 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
3492 visit_exec_list(&ir->else_instructions, this);
3493 }
3494
3495 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
3496 }
3497
3498
3499 void
3500 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
3501 {
3502 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3503
3504 ir->stream->accept(this);
3505 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
3506 }
3507
3508 void
3509 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
3510 {
3511 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3512
3513 ir->stream->accept(this);
3514 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
3515 }
3516
3517 void
3518 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
3519 {
3520 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
3521 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
3522
3523 emit_asm(ir, TGSI_OPCODE_BARRIER);
3524 }
3525
3526 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
3527 {
3528 result.file = PROGRAM_UNDEFINED;
3529 next_temp = 1;
3530 array_sizes = NULL;
3531 max_num_arrays = 0;
3532 next_array = 0;
3533 num_input_arrays = 0;
3534 num_output_arrays = 0;
3535 next_signature_id = 1;
3536 num_immediates = 0;
3537 current_function = NULL;
3538 num_address_regs = 0;
3539 samplers_used = 0;
3540 indirect_addr_consts = false;
3541 wpos_transform_const = -1;
3542 glsl_version = 0;
3543 native_integers = false;
3544 mem_ctx = ralloc_context(NULL);
3545 ctx = NULL;
3546 prog = NULL;
3547 shader_program = NULL;
3548 shader = NULL;
3549 options = NULL;
3550 have_sqrt = false;
3551 have_fma = false;
3552 }
3553
3554 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
3555 {
3556 free(array_sizes);
3557 ralloc_free(mem_ctx);
3558 }
3559
3560 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
3561 {
3562 delete v;
3563 }
3564
3565
3566 /**
3567 * Count resources used by the given gpu program (number of texture
3568 * samplers, etc).
3569 */
3570 static void
3571 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
3572 {
3573 v->samplers_used = 0;
3574
3575 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
3576 if (inst->info->is_tex) {
3577 for (int i = 0; i < inst->sampler_array_size; i++) {
3578 unsigned idx = inst->sampler.index + i;
3579 v->samplers_used |= 1 << idx;
3580
3581 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
3582 v->sampler_types[idx] = inst->tex_type;
3583 v->sampler_targets[idx] =
3584 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
3585
3586 if (inst->tex_shadow) {
3587 prog->ShadowSamplers |= 1 << (inst->sampler.index + i);
3588 }
3589 }
3590 }
3591 }
3592 prog->SamplersUsed = v->samplers_used;
3593
3594 if (v->shader_program != NULL)
3595 _mesa_update_shader_textures_used(v->shader_program, prog);
3596 }
3597
3598 /**
3599 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3600 * are read from the given src in this instruction
3601 */
3602 static int
3603 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3604 {
3605 int read_mask = 0, comp;
3606
3607 /* Now, given the src swizzle and the written channels, find which
3608 * components are actually read
3609 */
3610 for (comp = 0; comp < 4; ++comp) {
3611 const unsigned coord = GET_SWZ(src.swizzle, comp);
3612 assert(coord < 4);
3613 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3614 read_mask |= 1 << coord;
3615 }
3616
3617 return read_mask;
3618 }
3619
3620 /**
3621 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3622 * instruction is the first instruction to write to register T0. There are
3623 * several lowering passes done in GLSL IR (e.g. branches and
3624 * relative addressing) that create a large number of conditional assignments
3625 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3626 *
3627 * Here is why this conversion is safe:
3628 * CMP T0, T1 T2 T0 can be expanded to:
3629 * if (T1 < 0.0)
3630 * MOV T0, T2;
3631 * else
3632 * MOV T0, T0;
3633 *
3634 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3635 * as the original program. If (T1 < 0.0) evaluates to false, executing
3636 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3637 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3638 * because any instruction that was going to read from T0 after this was going
3639 * to read a garbage value anyway.
3640 */
3641 void
3642 glsl_to_tgsi_visitor::simplify_cmp(void)
3643 {
3644 int tempWritesSize = 0;
3645 unsigned *tempWrites = NULL;
3646 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
3647
3648 memset(outputWrites, 0, sizeof(outputWrites));
3649
3650 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3651 unsigned prevWriteMask = 0;
3652
3653 /* Give up if we encounter relative addressing or flow control. */
3654 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
3655 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
3656 tgsi_get_opcode_info(inst->op)->is_branch ||
3657 inst->op == TGSI_OPCODE_BGNSUB ||
3658 inst->op == TGSI_OPCODE_CONT ||
3659 inst->op == TGSI_OPCODE_END ||
3660 inst->op == TGSI_OPCODE_ENDSUB ||
3661 inst->op == TGSI_OPCODE_RET) {
3662 break;
3663 }
3664
3665 if (inst->dst[0].file == PROGRAM_OUTPUT) {
3666 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
3667 prevWriteMask = outputWrites[inst->dst[0].index];
3668 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
3669 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
3670 if (inst->dst[0].index >= tempWritesSize) {
3671 const int inc = 4096;
3672
3673 tempWrites = (unsigned*)
3674 realloc(tempWrites,
3675 (tempWritesSize + inc) * sizeof(unsigned));
3676 if (!tempWrites)
3677 return;
3678
3679 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
3680 tempWritesSize += inc;
3681 }
3682
3683 prevWriteMask = tempWrites[inst->dst[0].index];
3684 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
3685 } else
3686 continue;
3687
3688 /* For a CMP to be considered a conditional write, the destination
3689 * register and source register two must be the same. */
3690 if (inst->op == TGSI_OPCODE_CMP
3691 && !(inst->dst[0].writemask & prevWriteMask)
3692 && inst->src[2].file == inst->dst[0].file
3693 && inst->src[2].index == inst->dst[0].index
3694 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
3695
3696 inst->op = TGSI_OPCODE_MOV;
3697 inst->src[0] = inst->src[1];
3698 }
3699 }
3700
3701 free(tempWrites);
3702 }
3703
3704 /* Replaces all references to a temporary register index with another index. */
3705 void
3706 glsl_to_tgsi_visitor::rename_temp_registers(int num_renames, struct rename_reg_pair *renames)
3707 {
3708 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3709 unsigned j;
3710 int k;
3711 for (j = 0; j < num_inst_src_regs(inst); j++) {
3712 if (inst->src[j].file == PROGRAM_TEMPORARY)
3713 for (k = 0; k < num_renames; k++)
3714 if (inst->src[j].index == renames[k].old_reg)
3715 inst->src[j].index = renames[k].new_reg;
3716 }
3717
3718 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3719 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
3720 for (k = 0; k < num_renames; k++)
3721 if (inst->tex_offsets[j].index == renames[k].old_reg)
3722 inst->tex_offsets[j].index = renames[k].new_reg;
3723 }
3724
3725 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3726 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3727 for (k = 0; k < num_renames; k++)
3728 if (inst->dst[j].index == renames[k].old_reg)
3729 inst->dst[j].index = renames[k].new_reg;
3730 }
3731 }
3732 }
3733
3734 void
3735 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
3736 {
3737 int depth = 0; /* loop depth */
3738 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3739 unsigned i = 0, j;
3740
3741 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3742 for (j = 0; j < num_inst_src_regs(inst); j++) {
3743 if (inst->src[j].file == PROGRAM_TEMPORARY) {
3744 if (first_reads[inst->src[j].index] == -1)
3745 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
3746 }
3747 }
3748 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3749 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
3750 if (first_reads[inst->tex_offsets[j].index] == -1)
3751 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
3752 }
3753 }
3754 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3755 if(depth++ == 0)
3756 loop_start = i;
3757 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3758 if (--depth == 0)
3759 loop_start = -1;
3760 }
3761 assert(depth >= 0);
3762 i++;
3763 }
3764 }
3765
3766 void
3767 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
3768 {
3769 int depth = 0; /* loop depth */
3770 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3771 unsigned i = 0, j;
3772 int k;
3773 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3774 for (j = 0; j < num_inst_src_regs(inst); j++) {
3775 if (inst->src[j].file == PROGRAM_TEMPORARY)
3776 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
3777 }
3778 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3779 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3780 if (first_writes[inst->dst[j].index] == -1)
3781 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
3782 }
3783 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3784 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
3785 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
3786 }
3787 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3788 if(depth++ == 0)
3789 loop_start = i;
3790 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3791 if (--depth == 0) {
3792 loop_start = -1;
3793 for (k = 0; k < this->next_temp; k++) {
3794 if (last_reads[k] == -2) {
3795 last_reads[k] = i;
3796 }
3797 }
3798 }
3799 }
3800 assert(depth >= 0);
3801 i++;
3802 }
3803 }
3804
3805 void
3806 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
3807 {
3808 int depth = 0; /* loop depth */
3809 int i = 0, k;
3810 unsigned j;
3811
3812 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3813 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3814 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3815 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
3816 }
3817
3818 if (inst->op == TGSI_OPCODE_BGNLOOP)
3819 depth++;
3820 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3821 if (--depth == 0) {
3822 for (k = 0; k < this->next_temp; k++) {
3823 if (last_writes[k] == -2) {
3824 last_writes[k] = i;
3825 }
3826 }
3827 }
3828 assert(depth >= 0);
3829 i++;
3830 }
3831 }
3832
3833 /*
3834 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3835 * channels for copy propagation and updates following instructions to
3836 * use the original versions.
3837 *
3838 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3839 * will occur. As an example, a TXP production before this pass:
3840 *
3841 * 0: MOV TEMP[1], INPUT[4].xyyy;
3842 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3843 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3844 *
3845 * and after:
3846 *
3847 * 0: MOV TEMP[1], INPUT[4].xyyy;
3848 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3849 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3850 *
3851 * which allows for dead code elimination on TEMP[1]'s writes.
3852 */
3853 void
3854 glsl_to_tgsi_visitor::copy_propagate(void)
3855 {
3856 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3857 glsl_to_tgsi_instruction *,
3858 this->next_temp * 4);
3859 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3860 int level = 0;
3861
3862 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3863 assert(inst->dst[0].file != PROGRAM_TEMPORARY
3864 || inst->dst[0].index < this->next_temp);
3865
3866 /* First, do any copy propagation possible into the src regs. */
3867 for (int r = 0; r < 3; r++) {
3868 glsl_to_tgsi_instruction *first = NULL;
3869 bool good = true;
3870 int acp_base = inst->src[r].index * 4;
3871
3872 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3873 inst->src[r].reladdr ||
3874 inst->src[r].reladdr2)
3875 continue;
3876
3877 /* See if we can find entries in the ACP consisting of MOVs
3878 * from the same src register for all the swizzled channels
3879 * of this src register reference.
3880 */
3881 for (int i = 0; i < 4; i++) {
3882 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3883 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3884
3885 if (!copy_chan) {
3886 good = false;
3887 break;
3888 }
3889
3890 assert(acp_level[acp_base + src_chan] <= level);
3891
3892 if (!first) {
3893 first = copy_chan;
3894 } else {
3895 if (first->src[0].file != copy_chan->src[0].file ||
3896 first->src[0].index != copy_chan->src[0].index ||
3897 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
3898 first->src[0].index2D != copy_chan->src[0].index2D) {
3899 good = false;
3900 break;
3901 }
3902 }
3903 }
3904
3905 if (good) {
3906 /* We've now validated that we can copy-propagate to
3907 * replace this src register reference. Do it.
3908 */
3909 inst->src[r].file = first->src[0].file;
3910 inst->src[r].index = first->src[0].index;
3911 inst->src[r].index2D = first->src[0].index2D;
3912 inst->src[r].has_index2 = first->src[0].has_index2;
3913 inst->src[r].double_reg2 = first->src[0].double_reg2;
3914 inst->src[r].array_id = first->src[0].array_id;
3915
3916 int swizzle = 0;
3917 for (int i = 0; i < 4; i++) {
3918 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3919 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3920 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
3921 }
3922 inst->src[r].swizzle = swizzle;
3923 }
3924 }
3925
3926 switch (inst->op) {
3927 case TGSI_OPCODE_BGNLOOP:
3928 case TGSI_OPCODE_ENDLOOP:
3929 /* End of a basic block, clear the ACP entirely. */
3930 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3931 break;
3932
3933 case TGSI_OPCODE_IF:
3934 case TGSI_OPCODE_UIF:
3935 ++level;
3936 break;
3937
3938 case TGSI_OPCODE_ENDIF:
3939 case TGSI_OPCODE_ELSE:
3940 /* Clear all channels written inside the block from the ACP, but
3941 * leaving those that were not touched.
3942 */
3943 for (int r = 0; r < this->next_temp; r++) {
3944 for (int c = 0; c < 4; c++) {
3945 if (!acp[4 * r + c])
3946 continue;
3947
3948 if (acp_level[4 * r + c] >= level)
3949 acp[4 * r + c] = NULL;
3950 }
3951 }
3952 if (inst->op == TGSI_OPCODE_ENDIF)
3953 --level;
3954 break;
3955
3956 default:
3957 /* Continuing the block, clear any written channels from
3958 * the ACP.
3959 */
3960 for (int d = 0; d < 2; d++) {
3961 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
3962 /* Any temporary might be written, so no copy propagation
3963 * across this instruction.
3964 */
3965 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3966 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
3967 inst->dst[d].reladdr) {
3968 /* Any output might be written, so no copy propagation
3969 * from outputs across this instruction.
3970 */
3971 for (int r = 0; r < this->next_temp; r++) {
3972 for (int c = 0; c < 4; c++) {
3973 if (!acp[4 * r + c])
3974 continue;
3975
3976 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3977 acp[4 * r + c] = NULL;
3978 }
3979 }
3980 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
3981 inst->dst[d].file == PROGRAM_OUTPUT) {
3982 /* Clear where it's used as dst. */
3983 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
3984 for (int c = 0; c < 4; c++) {
3985 if (inst->dst[d].writemask & (1 << c))
3986 acp[4 * inst->dst[d].index + c] = NULL;
3987 }
3988 }
3989
3990 /* Clear where it's used as src. */
3991 for (int r = 0; r < this->next_temp; r++) {
3992 for (int c = 0; c < 4; c++) {
3993 if (!acp[4 * r + c])
3994 continue;
3995
3996 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3997
3998 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
3999 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
4000 inst->dst[d].writemask & (1 << src_chan)) {
4001 acp[4 * r + c] = NULL;
4002 }
4003 }
4004 }
4005 }
4006 }
4007 break;
4008 }
4009
4010 /* If this is a copy, add it to the ACP. */
4011 if (inst->op == TGSI_OPCODE_MOV &&
4012 inst->dst[0].file == PROGRAM_TEMPORARY &&
4013 !(inst->dst[0].file == inst->src[0].file &&
4014 inst->dst[0].index == inst->src[0].index) &&
4015 !inst->dst[0].reladdr &&
4016 !inst->dst[0].reladdr2 &&
4017 !inst->saturate &&
4018 inst->src[0].file != PROGRAM_ARRAY &&
4019 !inst->src[0].reladdr &&
4020 !inst->src[0].reladdr2 &&
4021 !inst->src[0].negate) {
4022 for (int i = 0; i < 4; i++) {
4023 if (inst->dst[0].writemask & (1 << i)) {
4024 acp[4 * inst->dst[0].index + i] = inst;
4025 acp_level[4 * inst->dst[0].index + i] = level;
4026 }
4027 }
4028 }
4029 }
4030
4031 ralloc_free(acp_level);
4032 ralloc_free(acp);
4033 }
4034
4035 /*
4036 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
4037 * code elimination.
4038 *
4039 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4040 * will occur. As an example, a TXP production after copy propagation but
4041 * before this pass:
4042 *
4043 * 0: MOV TEMP[1], INPUT[4].xyyy;
4044 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4045 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4046 *
4047 * and after this pass:
4048 *
4049 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4050 */
4051 int
4052 glsl_to_tgsi_visitor::eliminate_dead_code(void)
4053 {
4054 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
4055 glsl_to_tgsi_instruction *,
4056 this->next_temp * 4);
4057 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4058 int level = 0;
4059 int removed = 0;
4060
4061 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4062 assert(inst->dst[0].file != PROGRAM_TEMPORARY
4063 || inst->dst[0].index < this->next_temp);
4064
4065 switch (inst->op) {
4066 case TGSI_OPCODE_BGNLOOP:
4067 case TGSI_OPCODE_ENDLOOP:
4068 case TGSI_OPCODE_CONT:
4069 case TGSI_OPCODE_BRK:
4070 /* End of a basic block, clear the write array entirely.
4071 *
4072 * This keeps us from killing dead code when the writes are
4073 * on either side of a loop, even when the register isn't touched
4074 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
4075 * dead code of this type, so it shouldn't make a difference as long as
4076 * the dead code elimination pass in the GLSL compiler does its job.
4077 */
4078 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4079 break;
4080
4081 case TGSI_OPCODE_ENDIF:
4082 case TGSI_OPCODE_ELSE:
4083 /* Promote the recorded level of all channels written inside the
4084 * preceding if or else block to the level above the if/else block.
4085 */
4086 for (int r = 0; r < this->next_temp; r++) {
4087 for (int c = 0; c < 4; c++) {
4088 if (!writes[4 * r + c])
4089 continue;
4090
4091 if (write_level[4 * r + c] == level)
4092 write_level[4 * r + c] = level-1;
4093 }
4094 }
4095 if(inst->op == TGSI_OPCODE_ENDIF)
4096 --level;
4097 break;
4098
4099 case TGSI_OPCODE_IF:
4100 case TGSI_OPCODE_UIF:
4101 ++level;
4102 /* fallthrough to default case to mark the condition as read */
4103 default:
4104 /* Continuing the block, clear any channels from the write array that
4105 * are read by this instruction.
4106 */
4107 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
4108 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
4109 /* Any temporary might be read, so no dead code elimination
4110 * across this instruction.
4111 */
4112 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4113 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
4114 /* Clear where it's used as src. */
4115 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
4116 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
4117 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
4118 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
4119
4120 for (int c = 0; c < 4; c++) {
4121 if (src_chans & (1 << c))
4122 writes[4 * inst->src[i].index + c] = NULL;
4123 }
4124 }
4125 }
4126 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
4127 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
4128 /* Any temporary might be read, so no dead code elimination
4129 * across this instruction.
4130 */
4131 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4132 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
4133 /* Clear where it's used as src. */
4134 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
4135 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
4136 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
4137 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
4138
4139 for (int c = 0; c < 4; c++) {
4140 if (src_chans & (1 << c))
4141 writes[4 * inst->tex_offsets[i].index + c] = NULL;
4142 }
4143 }
4144 }
4145 break;
4146 }
4147
4148 /* If this instruction writes to a temporary, add it to the write array.
4149 * If there is already an instruction in the write array for one or more
4150 * of the channels, flag that channel write as dead.
4151 */
4152 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
4153 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
4154 !inst->dst[i].reladdr) {
4155 for (int c = 0; c < 4; c++) {
4156 if (inst->dst[i].writemask & (1 << c)) {
4157 if (writes[4 * inst->dst[i].index + c]) {
4158 if (write_level[4 * inst->dst[i].index + c] < level)
4159 continue;
4160 else
4161 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
4162 }
4163 writes[4 * inst->dst[i].index + c] = inst;
4164 write_level[4 * inst->dst[i].index + c] = level;
4165 }
4166 }
4167 }
4168 }
4169 }
4170
4171 /* Anything still in the write array at this point is dead code. */
4172 for (int r = 0; r < this->next_temp; r++) {
4173 for (int c = 0; c < 4; c++) {
4174 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
4175 if (inst)
4176 inst->dead_mask |= (1 << c);
4177 }
4178 }
4179
4180 /* Now actually remove the instructions that are completely dead and update
4181 * the writemask of other instructions with dead channels.
4182 */
4183 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4184 if (!inst->dead_mask || !inst->dst[0].writemask)
4185 continue;
4186 else if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
4187 inst->remove();
4188 delete inst;
4189 removed++;
4190 } else {
4191 if (inst->dst[0].type == GLSL_TYPE_DOUBLE) {
4192 if (inst->dead_mask == WRITEMASK_XY ||
4193 inst->dead_mask == WRITEMASK_ZW)
4194 inst->dst[0].writemask &= ~(inst->dead_mask);
4195 } else
4196 inst->dst[0].writemask &= ~(inst->dead_mask);
4197 }
4198 }
4199
4200 ralloc_free(write_level);
4201 ralloc_free(writes);
4202
4203 return removed;
4204 }
4205
4206 /* merge DFRACEXP instructions into one. */
4207 void
4208 glsl_to_tgsi_visitor::merge_two_dsts(void)
4209 {
4210 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4211 glsl_to_tgsi_instruction *inst2;
4212 bool merged;
4213 if (num_inst_dst_regs(inst) != 2)
4214 continue;
4215
4216 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
4217 inst->dst[1].file != PROGRAM_UNDEFINED)
4218 continue;
4219
4220 inst2 = (glsl_to_tgsi_instruction *) inst->next;
4221 do {
4222
4223 if (inst->src[0].file == inst2->src[0].file &&
4224 inst->src[0].index == inst2->src[0].index &&
4225 inst->src[0].type == inst2->src[0].type &&
4226 inst->src[0].swizzle == inst2->src[0].swizzle)
4227 break;
4228 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
4229 } while (inst2);
4230
4231 if (!inst2)
4232 continue;
4233 merged = false;
4234 if (inst->dst[0].file == PROGRAM_UNDEFINED) {
4235 merged = true;
4236 inst->dst[0] = inst2->dst[0];
4237 } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
4238 inst->dst[1] = inst2->dst[1];
4239 merged = true;
4240 }
4241
4242 if (merged) {
4243 inst2->remove();
4244 delete inst2;
4245 }
4246 }
4247 }
4248
4249 /* Merges temporary registers together where possible to reduce the number of
4250 * registers needed to run a program.
4251 *
4252 * Produces optimal code only after copy propagation and dead code elimination
4253 * have been run. */
4254 void
4255 glsl_to_tgsi_visitor::merge_registers(void)
4256 {
4257 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
4258 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
4259 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
4260 int i, j;
4261 int num_renames = 0;
4262
4263 /* Read the indices of the last read and first write to each temp register
4264 * into an array so that we don't have to traverse the instruction list as
4265 * much. */
4266 for (i = 0; i < this->next_temp; i++) {
4267 last_reads[i] = -1;
4268 first_writes[i] = -1;
4269 }
4270 get_last_temp_read_first_temp_write(last_reads, first_writes);
4271
4272 /* Start looking for registers with non-overlapping usages that can be
4273 * merged together. */
4274 for (i = 0; i < this->next_temp; i++) {
4275 /* Don't touch unused registers. */
4276 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
4277
4278 for (j = 0; j < this->next_temp; j++) {
4279 /* Don't touch unused registers. */
4280 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
4281
4282 /* We can merge the two registers if the first write to j is after or
4283 * in the same instruction as the last read from i. Note that the
4284 * register at index i will always be used earlier or at the same time
4285 * as the register at index j. */
4286 if (first_writes[i] <= first_writes[j] &&
4287 last_reads[i] <= first_writes[j]) {
4288 renames[num_renames].old_reg = j;
4289 renames[num_renames].new_reg = i;
4290 num_renames++;
4291
4292 /* Update the first_writes and last_reads arrays with the new
4293 * values for the merged register index, and mark the newly unused
4294 * register index as such. */
4295 last_reads[i] = last_reads[j];
4296 first_writes[j] = -1;
4297 last_reads[j] = -1;
4298 }
4299 }
4300 }
4301
4302 rename_temp_registers(num_renames, renames);
4303 ralloc_free(renames);
4304 ralloc_free(last_reads);
4305 ralloc_free(first_writes);
4306 }
4307
4308 /* Reassign indices to temporary registers by reusing unused indices created
4309 * by optimization passes. */
4310 void
4311 glsl_to_tgsi_visitor::renumber_registers(void)
4312 {
4313 int i = 0;
4314 int new_index = 0;
4315 int *first_reads = rzalloc_array(mem_ctx, int, this->next_temp);
4316 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
4317 int num_renames = 0;
4318 for (i = 0; i < this->next_temp; i++) {
4319 first_reads[i] = -1;
4320 }
4321 get_first_temp_read(first_reads);
4322
4323 for (i = 0; i < this->next_temp; i++) {
4324 if (first_reads[i] < 0) continue;
4325 if (i != new_index) {
4326 renames[num_renames].old_reg = i;
4327 renames[num_renames].new_reg = new_index;
4328 num_renames++;
4329 }
4330 new_index++;
4331 }
4332
4333 rename_temp_registers(num_renames, renames);
4334 this->next_temp = new_index;
4335 ralloc_free(renames);
4336 ralloc_free(first_reads);
4337 }
4338
4339 /* ------------------------- TGSI conversion stuff -------------------------- */
4340 struct label {
4341 unsigned branch_target;
4342 unsigned token;
4343 };
4344
4345 /**
4346 * Intermediate state used during shader translation.
4347 */
4348 struct st_translate {
4349 struct ureg_program *ureg;
4350
4351 unsigned temps_size;
4352 struct ureg_dst *temps;
4353
4354 struct ureg_dst *arrays;
4355 unsigned num_temp_arrays;
4356 struct ureg_src *constants;
4357 int num_constants;
4358 struct ureg_src *immediates;
4359 int num_immediates;
4360 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4361 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4362 struct ureg_dst address[3];
4363 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4364 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4365 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
4366 unsigned *array_sizes;
4367 struct array_decl *input_arrays;
4368 struct array_decl *output_arrays;
4369
4370 const GLuint *inputMapping;
4371 const GLuint *outputMapping;
4372
4373 /* For every instruction that contains a label (eg CALL), keep
4374 * details so that we can go back afterwards and emit the correct
4375 * tgsi instruction number for each label.
4376 */
4377 struct label *labels;
4378 unsigned labels_size;
4379 unsigned labels_count;
4380
4381 /* Keep a record of the tgsi instruction number that each mesa
4382 * instruction starts at, will be used to fix up labels after
4383 * translation.
4384 */
4385 unsigned *insn;
4386 unsigned insn_size;
4387 unsigned insn_count;
4388
4389 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4390
4391 boolean error;
4392 };
4393
4394 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4395 const unsigned _mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4396 /* Vertex shader
4397 */
4398 TGSI_SEMANTIC_VERTEXID,
4399 TGSI_SEMANTIC_INSTANCEID,
4400 TGSI_SEMANTIC_VERTEXID_NOBASE,
4401 TGSI_SEMANTIC_BASEVERTEX,
4402
4403 /* Geometry shader
4404 */
4405 TGSI_SEMANTIC_INVOCATIONID,
4406
4407 /* Fragment shader
4408 */
4409 TGSI_SEMANTIC_FACE,
4410 TGSI_SEMANTIC_SAMPLEID,
4411 TGSI_SEMANTIC_SAMPLEPOS,
4412 TGSI_SEMANTIC_SAMPLEMASK,
4413 TGSI_SEMANTIC_HELPER_INVOCATION,
4414
4415 /* Tessellation shaders
4416 */
4417 TGSI_SEMANTIC_TESSCOORD,
4418 TGSI_SEMANTIC_VERTICESIN,
4419 TGSI_SEMANTIC_PRIMID,
4420 TGSI_SEMANTIC_TESSOUTER,
4421 TGSI_SEMANTIC_TESSINNER,
4422 };
4423
4424 /**
4425 * Make note of a branch to a label in the TGSI code.
4426 * After we've emitted all instructions, we'll go over the list
4427 * of labels built here and patch the TGSI code with the actual
4428 * location of each label.
4429 */
4430 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4431 {
4432 unsigned i;
4433
4434 if (t->labels_count + 1 >= t->labels_size) {
4435 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4436 t->labels = (struct label *)realloc(t->labels,
4437 t->labels_size * sizeof(struct label));
4438 if (t->labels == NULL) {
4439 static unsigned dummy;
4440 t->error = TRUE;
4441 return &dummy;
4442 }
4443 }
4444
4445 i = t->labels_count++;
4446 t->labels[i].branch_target = branch_target;
4447 return &t->labels[i].token;
4448 }
4449
4450 /**
4451 * Called prior to emitting the TGSI code for each instruction.
4452 * Allocate additional space for instructions if needed.
4453 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4454 * the next TGSI instruction.
4455 */
4456 static void set_insn_start(struct st_translate *t, unsigned start)
4457 {
4458 if (t->insn_count + 1 >= t->insn_size) {
4459 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4460 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4461 if (t->insn == NULL) {
4462 t->error = TRUE;
4463 return;
4464 }
4465 }
4466
4467 t->insn[t->insn_count++] = start;
4468 }
4469
4470 /**
4471 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4472 */
4473 static struct ureg_src
4474 emit_immediate(struct st_translate *t,
4475 gl_constant_value values[4],
4476 int type, int size)
4477 {
4478 struct ureg_program *ureg = t->ureg;
4479
4480 switch(type)
4481 {
4482 case GL_FLOAT:
4483 return ureg_DECL_immediate(ureg, &values[0].f, size);
4484 case GL_DOUBLE:
4485 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
4486 case GL_INT:
4487 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4488 case GL_UNSIGNED_INT:
4489 case GL_BOOL:
4490 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4491 default:
4492 assert(!"should not get here - type must be float, int, uint, or bool");
4493 return ureg_src_undef();
4494 }
4495 }
4496
4497 /**
4498 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4499 */
4500 static struct ureg_dst
4501 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
4502 unsigned array_id)
4503 {
4504 unsigned array;
4505
4506 switch(file) {
4507 case PROGRAM_UNDEFINED:
4508 return ureg_dst_undef();
4509
4510 case PROGRAM_TEMPORARY:
4511 /* Allocate space for temporaries on demand. */
4512 if (index >= t->temps_size) {
4513 const int inc = 4096;
4514
4515 t->temps = (struct ureg_dst*)
4516 realloc(t->temps,
4517 (t->temps_size + inc) * sizeof(struct ureg_dst));
4518 if (!t->temps)
4519 return ureg_dst_undef();
4520
4521 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
4522 t->temps_size += inc;
4523 }
4524
4525 if (ureg_dst_is_undef(t->temps[index]))
4526 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4527
4528 return t->temps[index];
4529
4530 case PROGRAM_ARRAY:
4531 array = index >> 16;
4532
4533 assert(array < t->num_temp_arrays);
4534
4535 if (ureg_dst_is_undef(t->arrays[array]))
4536 t->arrays[array] = ureg_DECL_array_temporary(
4537 t->ureg, t->array_sizes[array], TRUE);
4538
4539 return ureg_dst_array_offset(t->arrays[array],
4540 (int)(index & 0xFFFF) - 0x8000);
4541
4542 case PROGRAM_OUTPUT:
4543 if (!array_id) {
4544 if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4545 assert(index < FRAG_RESULT_MAX);
4546 else if (t->procType == TGSI_PROCESSOR_TESS_CTRL ||
4547 t->procType == TGSI_PROCESSOR_TESS_EVAL)
4548 assert(index < VARYING_SLOT_TESS_MAX);
4549 else
4550 assert(index < VARYING_SLOT_MAX);
4551
4552 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
4553 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
4554 return t->outputs[t->outputMapping[index]];
4555 }
4556 else {
4557 struct array_decl *decl = &t->output_arrays[array_id-1];
4558 unsigned mesa_index = decl->mesa_index;
4559 int slot = t->outputMapping[mesa_index];
4560
4561 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
4562 assert(t->outputs[slot].ArrayID == array_id);
4563 return ureg_dst_array_offset(t->outputs[slot], index - mesa_index);
4564 }
4565
4566 case PROGRAM_ADDRESS:
4567 return t->address[index];
4568
4569 default:
4570 assert(!"unknown dst register file");
4571 return ureg_dst_undef();
4572 }
4573 }
4574
4575 /**
4576 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4577 */
4578 static struct ureg_src
4579 src_register(struct st_translate *t, const st_src_reg *reg)
4580 {
4581 int index = reg->index;
4582 int double_reg2 = reg->double_reg2 ? 1 : 0;
4583
4584 switch(reg->file) {
4585 case PROGRAM_UNDEFINED:
4586 return ureg_imm4f(t->ureg, 0, 0, 0, 0);
4587
4588 case PROGRAM_TEMPORARY:
4589 case PROGRAM_ARRAY:
4590 case PROGRAM_OUTPUT:
4591 return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
4592
4593 case PROGRAM_UNIFORM:
4594 assert(reg->index >= 0);
4595 return reg->index < t->num_constants ?
4596 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
4597 case PROGRAM_STATE_VAR:
4598 case PROGRAM_CONSTANT: /* ie, immediate */
4599 if (reg->has_index2)
4600 return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
4601 else
4602 return reg->index >= 0 && reg->index < t->num_constants ?
4603 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
4604
4605 case PROGRAM_IMMEDIATE:
4606 assert(reg->index >= 0 && reg->index < t->num_immediates);
4607 return t->immediates[reg->index];
4608
4609 case PROGRAM_INPUT:
4610 /* GLSL inputs are 64-bit containers, so we have to
4611 * map back to the original index and add the offset after
4612 * mapping. */
4613 index -= double_reg2;
4614 if (!reg->array_id) {
4615 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
4616 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
4617 return t->inputs[t->inputMapping[index]];
4618 }
4619 else {
4620 struct array_decl *decl = &t->input_arrays[reg->array_id-1];
4621 unsigned mesa_index = decl->mesa_index;
4622 int slot = t->inputMapping[mesa_index];
4623
4624 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
4625 assert(t->inputs[slot].ArrayID == reg->array_id);
4626 return ureg_src_array_offset(t->inputs[slot], index - mesa_index);
4627 }
4628
4629 case PROGRAM_ADDRESS:
4630 return ureg_src(t->address[reg->index]);
4631
4632 case PROGRAM_SYSTEM_VALUE:
4633 assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
4634 return t->systemValues[reg->index];
4635
4636 default:
4637 assert(!"unknown src register file");
4638 return ureg_src_undef();
4639 }
4640 }
4641
4642 /**
4643 * Create a TGSI ureg_dst register from an st_dst_reg.
4644 */
4645 static struct ureg_dst
4646 translate_dst(struct st_translate *t,
4647 const st_dst_reg *dst_reg,
4648 bool saturate)
4649 {
4650 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
4651 dst_reg->array_id);
4652
4653 if (dst.File == TGSI_FILE_NULL)
4654 return dst;
4655
4656 dst = ureg_writemask(dst, dst_reg->writemask);
4657
4658 if (saturate)
4659 dst = ureg_saturate(dst);
4660
4661 if (dst_reg->reladdr != NULL) {
4662 assert(dst_reg->file != PROGRAM_TEMPORARY);
4663 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4664 }
4665
4666 if (dst_reg->has_index2) {
4667 if (dst_reg->reladdr2)
4668 dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
4669 dst_reg->index2D);
4670 else
4671 dst = ureg_dst_dimension(dst, dst_reg->index2D);
4672 }
4673
4674 return dst;
4675 }
4676
4677 /**
4678 * Create a TGSI ureg_src register from an st_src_reg.
4679 */
4680 static struct ureg_src
4681 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4682 {
4683 struct ureg_src src = src_register(t, src_reg);
4684
4685 if (src_reg->has_index2) {
4686 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
4687 * and UBO constant buffers (buffer, position).
4688 */
4689 if (src_reg->reladdr2)
4690 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
4691 src_reg->index2D);
4692 else
4693 src = ureg_src_dimension(src, src_reg->index2D);
4694 }
4695
4696 src = ureg_swizzle(src,
4697 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4698 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4699 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4700 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4701
4702 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4703 src = ureg_negate(src);
4704
4705 if (src_reg->reladdr != NULL) {
4706 assert(src_reg->file != PROGRAM_TEMPORARY);
4707 src = ureg_src_indirect(src, ureg_src(t->address[0]));
4708 }
4709
4710 return src;
4711 }
4712
4713 static struct tgsi_texture_offset
4714 translate_tex_offset(struct st_translate *t,
4715 const st_src_reg *in_offset, int idx)
4716 {
4717 struct tgsi_texture_offset offset;
4718 struct ureg_src imm_src;
4719 struct ureg_dst dst;
4720 int array;
4721
4722 switch (in_offset->file) {
4723 case PROGRAM_IMMEDIATE:
4724 assert(in_offset->index >= 0 && in_offset->index < t->num_immediates);
4725 imm_src = t->immediates[in_offset->index];
4726
4727 offset.File = imm_src.File;
4728 offset.Index = imm_src.Index;
4729 offset.SwizzleX = imm_src.SwizzleX;
4730 offset.SwizzleY = imm_src.SwizzleY;
4731 offset.SwizzleZ = imm_src.SwizzleZ;
4732 offset.Padding = 0;
4733 break;
4734 case PROGRAM_TEMPORARY:
4735 imm_src = ureg_src(t->temps[in_offset->index]);
4736 offset.File = imm_src.File;
4737 offset.Index = imm_src.Index;
4738 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4739 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4740 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4741 offset.Padding = 0;
4742 break;
4743 case PROGRAM_ARRAY:
4744 array = in_offset->index >> 16;
4745
4746 assert(array >= 0);
4747 assert(array < (int)t->num_temp_arrays);
4748
4749 dst = t->arrays[array];
4750 offset.File = dst.File;
4751 offset.Index = dst.Index + (in_offset->index & 0xFFFF) - 0x8000;
4752 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4753 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4754 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4755 offset.Padding = 0;
4756 break;
4757 default:
4758 break;
4759 }
4760 return offset;
4761 }
4762
4763 static void
4764 compile_tgsi_instruction(struct st_translate *t,
4765 const glsl_to_tgsi_instruction *inst)
4766 {
4767 struct ureg_program *ureg = t->ureg;
4768 GLuint i;
4769 struct ureg_dst dst[2];
4770 struct ureg_src src[4];
4771 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4772
4773 unsigned num_dst;
4774 unsigned num_src;
4775 unsigned tex_target;
4776
4777 num_dst = num_inst_dst_regs(inst);
4778 num_src = num_inst_src_regs(inst);
4779
4780 for (i = 0; i < num_dst; i++)
4781 dst[i] = translate_dst(t,
4782 &inst->dst[i],
4783 inst->saturate);
4784
4785 for (i = 0; i < num_src; i++)
4786 src[i] = translate_src(t, &inst->src[i]);
4787
4788 switch(inst->op) {
4789 case TGSI_OPCODE_BGNLOOP:
4790 case TGSI_OPCODE_CAL:
4791 case TGSI_OPCODE_ELSE:
4792 case TGSI_OPCODE_ENDLOOP:
4793 case TGSI_OPCODE_IF:
4794 case TGSI_OPCODE_UIF:
4795 assert(num_dst == 0);
4796 ureg_label_insn(ureg,
4797 inst->op,
4798 src, num_src,
4799 get_label(t,
4800 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4801 return;
4802
4803 case TGSI_OPCODE_TEX:
4804 case TGSI_OPCODE_TXB:
4805 case TGSI_OPCODE_TXD:
4806 case TGSI_OPCODE_TXL:
4807 case TGSI_OPCODE_TXP:
4808 case TGSI_OPCODE_TXQ:
4809 case TGSI_OPCODE_TXQS:
4810 case TGSI_OPCODE_TXF:
4811 case TGSI_OPCODE_TEX2:
4812 case TGSI_OPCODE_TXB2:
4813 case TGSI_OPCODE_TXL2:
4814 case TGSI_OPCODE_TG4:
4815 case TGSI_OPCODE_LODQ:
4816 src[num_src] = t->samplers[inst->sampler.index];
4817 assert(src[num_src].File != TGSI_FILE_NULL);
4818 if (inst->sampler.reladdr)
4819 src[num_src] =
4820 ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
4821 num_src++;
4822 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4823 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i], i);
4824 }
4825 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4826
4827 ureg_tex_insn(ureg,
4828 inst->op,
4829 dst, num_dst,
4830 tex_target,
4831 texoffsets, inst->tex_offset_num_offset,
4832 src, num_src);
4833 return;
4834
4835 case TGSI_OPCODE_SCS:
4836 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4837 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4838 break;
4839
4840 default:
4841 ureg_insn(ureg,
4842 inst->op,
4843 dst, num_dst,
4844 src, num_src);
4845 break;
4846 }
4847 }
4848
4849 /**
4850 * Emit the TGSI instructions for inverting and adjusting WPOS.
4851 * This code is unavoidable because it also depends on whether
4852 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4853 */
4854 static void
4855 emit_wpos_adjustment( struct st_translate *t,
4856 int wpos_transform_const,
4857 boolean invert,
4858 GLfloat adjX, GLfloat adjY[2])
4859 {
4860 struct ureg_program *ureg = t->ureg;
4861
4862 assert(wpos_transform_const >= 0);
4863
4864 /* Fragment program uses fragment position input.
4865 * Need to replace instances of INPUT[WPOS] with temp T
4866 * where T = INPUT[WPOS] is inverted by Y.
4867 */
4868 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
4869 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4870 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
4871
4872 /* First, apply the coordinate shift: */
4873 if (adjX || adjY[0] || adjY[1]) {
4874 if (adjY[0] != adjY[1]) {
4875 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4876 * depending on whether inversion is actually going to be applied
4877 * or not, which is determined by testing against the inversion
4878 * state variable used below, which will be either +1 or -1.
4879 */
4880 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4881
4882 ureg_CMP(ureg, adj_temp,
4883 ureg_scalar(wpostrans, invert ? 2 : 0),
4884 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4885 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4886 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4887 } else {
4888 ureg_ADD(ureg, wpos_temp, wpos_input,
4889 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4890 }
4891 wpos_input = ureg_src(wpos_temp);
4892 } else {
4893 /* MOV wpos_temp, input[wpos]
4894 */
4895 ureg_MOV( ureg, wpos_temp, wpos_input );
4896 }
4897
4898 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4899 * inversion/identity, or the other way around if we're drawing to an FBO.
4900 */
4901 if (invert) {
4902 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4903 */
4904 ureg_MAD( ureg,
4905 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4906 wpos_input,
4907 ureg_scalar(wpostrans, 0),
4908 ureg_scalar(wpostrans, 1));
4909 } else {
4910 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4911 */
4912 ureg_MAD( ureg,
4913 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4914 wpos_input,
4915 ureg_scalar(wpostrans, 2),
4916 ureg_scalar(wpostrans, 3));
4917 }
4918
4919 /* Use wpos_temp as position input from here on:
4920 */
4921 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
4922 }
4923
4924
4925 /**
4926 * Emit fragment position/ooordinate code.
4927 */
4928 static void
4929 emit_wpos(struct st_context *st,
4930 struct st_translate *t,
4931 const struct gl_program *program,
4932 struct ureg_program *ureg,
4933 int wpos_transform_const)
4934 {
4935 const struct gl_fragment_program *fp =
4936 (const struct gl_fragment_program *) program;
4937 struct pipe_screen *pscreen = st->pipe->screen;
4938 GLfloat adjX = 0.0f;
4939 GLfloat adjY[2] = { 0.0f, 0.0f };
4940 boolean invert = FALSE;
4941
4942 /* Query the pixel center conventions supported by the pipe driver and set
4943 * adjX, adjY to help out if it cannot handle the requested one internally.
4944 *
4945 * The bias of the y-coordinate depends on whether y-inversion takes place
4946 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4947 * drawing to an FBO (causes additional inversion), and whether the the pipe
4948 * driver origin and the requested origin differ (the latter condition is
4949 * stored in the 'invert' variable).
4950 *
4951 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4952 *
4953 * center shift only:
4954 * i -> h: +0.5
4955 * h -> i: -0.5
4956 *
4957 * inversion only:
4958 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4959 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4960 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4961 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4962 *
4963 * inversion and center shift:
4964 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4965 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4966 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4967 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4968 */
4969 if (fp->OriginUpperLeft) {
4970 /* Fragment shader wants origin in upper-left */
4971 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4972 /* the driver supports upper-left origin */
4973 }
4974 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4975 /* the driver supports lower-left origin, need to invert Y */
4976 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
4977 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4978 invert = TRUE;
4979 }
4980 else
4981 assert(0);
4982 }
4983 else {
4984 /* Fragment shader wants origin in lower-left */
4985 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4986 /* the driver supports lower-left origin */
4987 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
4988 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4989 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4990 /* the driver supports upper-left origin, need to invert Y */
4991 invert = TRUE;
4992 else
4993 assert(0);
4994 }
4995
4996 if (fp->PixelCenterInteger) {
4997 /* Fragment shader wants pixel center integer */
4998 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4999 /* the driver supports pixel center integer */
5000 adjY[1] = 1.0f;
5001 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
5002 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5003 }
5004 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5005 /* the driver supports pixel center half integer, need to bias X,Y */
5006 adjX = -0.5f;
5007 adjY[0] = -0.5f;
5008 adjY[1] = 0.5f;
5009 }
5010 else
5011 assert(0);
5012 }
5013 else {
5014 /* Fragment shader wants pixel center half integer */
5015 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5016 /* the driver supports pixel center half integer */
5017 }
5018 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
5019 /* the driver supports pixel center integer, need to bias X,Y */
5020 adjX = adjY[0] = adjY[1] = 0.5f;
5021 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
5022 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5023 }
5024 else
5025 assert(0);
5026 }
5027
5028 /* we invert after adjustment so that we avoid the MOV to temporary,
5029 * and reuse the adjustment ADD instead */
5030 emit_wpos_adjustment(t, wpos_transform_const, invert, adjX, adjY);
5031 }
5032
5033 /**
5034 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
5035 * TGSI uses +1 for front, -1 for back.
5036 * This function converts the TGSI value to the GL value. Simply clamping/
5037 * saturating the value to [0,1] does the job.
5038 */
5039 static void
5040 emit_face_var(struct gl_context *ctx, struct st_translate *t)
5041 {
5042 struct ureg_program *ureg = t->ureg;
5043 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
5044 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
5045
5046 if (ctx->Const.NativeIntegers) {
5047 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
5048 }
5049 else {
5050 /* MOV_SAT face_temp, input[face] */
5051 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
5052 }
5053
5054 /* Use face_temp as face input from here on: */
5055 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
5056 }
5057
5058 static bool
5059 find_array(unsigned attr, struct array_decl *arrays, unsigned count,
5060 unsigned *array_id, unsigned *array_size)
5061 {
5062 unsigned i;
5063
5064 for (i = 0; i < count; i++) {
5065 struct array_decl *decl = &arrays[i];
5066
5067 if (attr == decl->mesa_index) {
5068 *array_id = decl->array_id;
5069 *array_size = decl->array_size;
5070 assert(*array_size);
5071 return true;
5072 }
5073 }
5074 return false;
5075 }
5076
5077 /**
5078 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
5079 * \param program the program to translate
5080 * \param numInputs number of input registers used
5081 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
5082 * input indexes
5083 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
5084 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
5085 * each input
5086 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
5087 * \param interpLocation the TGSI_INTERPOLATE_LOC_* location for each input
5088 * \param numOutputs number of output registers used
5089 * \param outputMapping maps Mesa fragment program outputs to TGSI
5090 * generic outputs
5091 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
5092 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
5093 * each output
5094 *
5095 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
5096 */
5097 extern "C" enum pipe_error
5098 st_translate_program(
5099 struct gl_context *ctx,
5100 uint procType,
5101 struct ureg_program *ureg,
5102 glsl_to_tgsi_visitor *program,
5103 const struct gl_program *proginfo,
5104 GLuint numInputs,
5105 const GLuint inputMapping[],
5106 const GLuint inputSlotToAttr[],
5107 const ubyte inputSemanticName[],
5108 const ubyte inputSemanticIndex[],
5109 const GLuint interpMode[],
5110 const GLuint interpLocation[],
5111 GLuint numOutputs,
5112 const GLuint outputMapping[],
5113 const GLuint outputSlotToAttr[],
5114 const ubyte outputSemanticName[],
5115 const ubyte outputSemanticIndex[])
5116 {
5117 struct st_translate *t;
5118 unsigned i;
5119 enum pipe_error ret = PIPE_OK;
5120
5121 assert(numInputs <= ARRAY_SIZE(t->inputs));
5122 assert(numOutputs <= ARRAY_SIZE(t->outputs));
5123
5124 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_FRONT_FACE] ==
5125 TGSI_SEMANTIC_FACE);
5126 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_VERTEX_ID] ==
5127 TGSI_SEMANTIC_VERTEXID);
5128 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INSTANCE_ID] ==
5129 TGSI_SEMANTIC_INSTANCEID);
5130 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_ID] ==
5131 TGSI_SEMANTIC_SAMPLEID);
5132 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_POS] ==
5133 TGSI_SEMANTIC_SAMPLEPOS);
5134 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_MASK_IN] ==
5135 TGSI_SEMANTIC_SAMPLEMASK);
5136 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INVOCATION_ID] ==
5137 TGSI_SEMANTIC_INVOCATIONID);
5138 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE] ==
5139 TGSI_SEMANTIC_VERTEXID_NOBASE);
5140 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_BASE_VERTEX] ==
5141 TGSI_SEMANTIC_BASEVERTEX);
5142 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_TESS_COORD] ==
5143 TGSI_SEMANTIC_TESSCOORD);
5144 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_HELPER_INVOCATION] ==
5145 TGSI_SEMANTIC_HELPER_INVOCATION);
5146
5147 t = CALLOC_STRUCT(st_translate);
5148 if (!t) {
5149 ret = PIPE_ERROR_OUT_OF_MEMORY;
5150 goto out;
5151 }
5152
5153 t->procType = procType;
5154 t->inputMapping = inputMapping;
5155 t->outputMapping = outputMapping;
5156 t->ureg = ureg;
5157 t->num_temp_arrays = program->next_array;
5158 if (t->num_temp_arrays)
5159 t->arrays = (struct ureg_dst*)
5160 calloc(1, sizeof(t->arrays[0]) * t->num_temp_arrays);
5161
5162 /*
5163 * Declare input attributes.
5164 */
5165 switch (procType) {
5166 case TGSI_PROCESSOR_FRAGMENT:
5167 for (i = 0; i < numInputs; i++) {
5168 unsigned array_id = 0;
5169 unsigned array_size;
5170
5171 if (find_array(inputSlotToAttr[i], program->input_arrays,
5172 program->num_input_arrays, &array_id, &array_size)) {
5173 /* We've found an array. Declare it so. */
5174 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
5175 inputSemanticName[i], inputSemanticIndex[i],
5176 interpMode[i], 0, interpLocation[i],
5177 array_id, array_size);
5178 i += array_size - 1;
5179 }
5180 else {
5181 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
5182 inputSemanticName[i], inputSemanticIndex[i],
5183 interpMode[i], 0, interpLocation[i], 0, 1);
5184 }
5185 }
5186 break;
5187 case TGSI_PROCESSOR_GEOMETRY:
5188 case TGSI_PROCESSOR_TESS_EVAL:
5189 case TGSI_PROCESSOR_TESS_CTRL:
5190 for (i = 0; i < numInputs; i++) {
5191 unsigned array_id = 0;
5192 unsigned array_size;
5193
5194 if (find_array(inputSlotToAttr[i], program->input_arrays,
5195 program->num_input_arrays, &array_id, &array_size)) {
5196 /* We've found an array. Declare it so. */
5197 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
5198 inputSemanticIndex[i],
5199 array_id, array_size);
5200 i += array_size - 1;
5201 }
5202 else {
5203 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
5204 inputSemanticIndex[i], 0, 1);
5205 }
5206 }
5207 break;
5208 case TGSI_PROCESSOR_VERTEX:
5209 for (i = 0; i < numInputs; i++) {
5210 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
5211 }
5212 break;
5213 default:
5214 assert(0);
5215 }
5216
5217 /*
5218 * Declare output attributes.
5219 */
5220 switch (procType) {
5221 case TGSI_PROCESSOR_FRAGMENT:
5222 break;
5223 case TGSI_PROCESSOR_GEOMETRY:
5224 case TGSI_PROCESSOR_TESS_EVAL:
5225 case TGSI_PROCESSOR_TESS_CTRL:
5226 case TGSI_PROCESSOR_VERTEX:
5227 for (i = 0; i < numOutputs; i++) {
5228 unsigned array_id = 0;
5229 unsigned array_size;
5230
5231 if (find_array(outputSlotToAttr[i], program->output_arrays,
5232 program->num_output_arrays, &array_id, &array_size)) {
5233 /* We've found an array. Declare it so. */
5234 t->outputs[i] = ureg_DECL_output_array(ureg,
5235 outputSemanticName[i],
5236 outputSemanticIndex[i],
5237 array_id, array_size);
5238 i += array_size - 1;
5239 }
5240 else {
5241 t->outputs[i] = ureg_DECL_output(ureg,
5242 outputSemanticName[i],
5243 outputSemanticIndex[i]);
5244 }
5245 }
5246 break;
5247 default:
5248 assert(0);
5249 }
5250
5251 if (procType == TGSI_PROCESSOR_FRAGMENT) {
5252 if (proginfo->InputsRead & VARYING_BIT_POS) {
5253 /* Must do this after setting up t->inputs. */
5254 emit_wpos(st_context(ctx), t, proginfo, ureg,
5255 program->wpos_transform_const);
5256 }
5257
5258 if (proginfo->InputsRead & VARYING_BIT_FACE)
5259 emit_face_var(ctx, t);
5260
5261 for (i = 0; i < numOutputs; i++) {
5262 switch (outputSemanticName[i]) {
5263 case TGSI_SEMANTIC_POSITION:
5264 t->outputs[i] = ureg_DECL_output(ureg,
5265 TGSI_SEMANTIC_POSITION, /* Z/Depth */
5266 outputSemanticIndex[i]);
5267 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
5268 break;
5269 case TGSI_SEMANTIC_STENCIL:
5270 t->outputs[i] = ureg_DECL_output(ureg,
5271 TGSI_SEMANTIC_STENCIL, /* Stencil */
5272 outputSemanticIndex[i]);
5273 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
5274 break;
5275 case TGSI_SEMANTIC_COLOR:
5276 t->outputs[i] = ureg_DECL_output(ureg,
5277 TGSI_SEMANTIC_COLOR,
5278 outputSemanticIndex[i]);
5279 break;
5280 case TGSI_SEMANTIC_SAMPLEMASK:
5281 t->outputs[i] = ureg_DECL_output(ureg,
5282 TGSI_SEMANTIC_SAMPLEMASK,
5283 outputSemanticIndex[i]);
5284 /* TODO: If we ever support more than 32 samples, this will have
5285 * to become an array.
5286 */
5287 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5288 break;
5289 default:
5290 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
5291 ret = PIPE_ERROR_BAD_INPUT;
5292 goto out;
5293 }
5294 }
5295 }
5296 else if (procType == TGSI_PROCESSOR_VERTEX) {
5297 for (i = 0; i < numOutputs; i++) {
5298 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
5299 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
5300 ureg_MOV(ureg,
5301 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
5302 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
5303 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5304 }
5305 }
5306 }
5307
5308 /* Declare address register.
5309 */
5310 if (program->num_address_regs > 0) {
5311 assert(program->num_address_regs <= 3);
5312 for (int i = 0; i < program->num_address_regs; i++)
5313 t->address[i] = ureg_DECL_address(ureg);
5314 }
5315
5316 /* Declare misc input registers
5317 */
5318 {
5319 GLbitfield sysInputs = proginfo->SystemValuesRead;
5320 unsigned numSys = 0;
5321 for (i = 0; sysInputs; i++) {
5322 if (sysInputs & (1 << i)) {
5323 unsigned semName = _mesa_sysval_to_semantic[i];
5324 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
5325 if (semName == TGSI_SEMANTIC_INSTANCEID ||
5326 semName == TGSI_SEMANTIC_VERTEXID) {
5327 /* From Gallium perspective, these system values are always
5328 * integer, and require native integer support. However, if
5329 * native integer is supported on the vertex stage but not the
5330 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
5331 * assumes these system values are floats. To resolve the
5332 * inconsistency, we insert a U2F.
5333 */
5334 struct st_context *st = st_context(ctx);
5335 struct pipe_screen *pscreen = st->pipe->screen;
5336 assert(procType == TGSI_PROCESSOR_VERTEX);
5337 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
5338 (void) pscreen;
5339 if (!ctx->Const.NativeIntegers) {
5340 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
5341 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
5342 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
5343 }
5344 }
5345 numSys++;
5346 sysInputs &= ~(1 << i);
5347 }
5348 }
5349 }
5350
5351 t->array_sizes = program->array_sizes;
5352 t->input_arrays = program->input_arrays;
5353 t->output_arrays = program->output_arrays;
5354
5355 /* Emit constants and uniforms. TGSI uses a single index space for these,
5356 * so we put all the translated regs in t->constants.
5357 */
5358 if (proginfo->Parameters) {
5359 t->constants = (struct ureg_src *)
5360 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
5361 if (t->constants == NULL) {
5362 ret = PIPE_ERROR_OUT_OF_MEMORY;
5363 goto out;
5364 }
5365 t->num_constants = proginfo->Parameters->NumParameters;
5366
5367 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
5368 switch (proginfo->Parameters->Parameters[i].Type) {
5369 case PROGRAM_STATE_VAR:
5370 case PROGRAM_UNIFORM:
5371 t->constants[i] = ureg_DECL_constant(ureg, i);
5372 break;
5373
5374 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
5375 * addressing of the const buffer.
5376 * FIXME: Be smarter and recognize param arrays:
5377 * indirect addressing is only valid within the referenced
5378 * array.
5379 */
5380 case PROGRAM_CONSTANT:
5381 if (program->indirect_addr_consts)
5382 t->constants[i] = ureg_DECL_constant(ureg, i);
5383 else
5384 t->constants[i] = emit_immediate(t,
5385 proginfo->Parameters->ParameterValues[i],
5386 proginfo->Parameters->Parameters[i].DataType,
5387 4);
5388 break;
5389 default:
5390 break;
5391 }
5392 }
5393 }
5394
5395 if (program->shader) {
5396 unsigned num_ubos = program->shader->NumUniformBlocks;
5397
5398 for (i = 0; i < num_ubos; i++) {
5399 unsigned size = program->shader->UniformBlocks[i]->UniformBufferSize;
5400 unsigned num_const_vecs = (size + 15) / 16;
5401 unsigned first, last;
5402 assert(num_const_vecs > 0);
5403 first = 0;
5404 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
5405 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
5406 }
5407 }
5408
5409 /* Emit immediate values.
5410 */
5411 t->immediates = (struct ureg_src *)
5412 calloc(program->num_immediates, sizeof(struct ureg_src));
5413 if (t->immediates == NULL) {
5414 ret = PIPE_ERROR_OUT_OF_MEMORY;
5415 goto out;
5416 }
5417 t->num_immediates = program->num_immediates;
5418
5419 i = 0;
5420 foreach_in_list(immediate_storage, imm, &program->immediates) {
5421 assert(i < program->num_immediates);
5422 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
5423 }
5424 assert(i == program->num_immediates);
5425
5426 /* texture samplers */
5427 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
5428 if (program->samplers_used & (1 << i)) {
5429 unsigned type;
5430
5431 t->samplers[i] = ureg_DECL_sampler(ureg, i);
5432
5433 switch (program->sampler_types[i]) {
5434 case GLSL_TYPE_INT:
5435 type = TGSI_RETURN_TYPE_SINT;
5436 break;
5437 case GLSL_TYPE_UINT:
5438 type = TGSI_RETURN_TYPE_UINT;
5439 break;
5440 case GLSL_TYPE_FLOAT:
5441 type = TGSI_RETURN_TYPE_FLOAT;
5442 break;
5443 default:
5444 unreachable("not reached");
5445 }
5446
5447 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
5448 type, type, type, type );
5449 }
5450 }
5451
5452 /* Emit each instruction in turn:
5453 */
5454 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions) {
5455 set_insn_start(t, ureg_get_instruction_number(ureg));
5456 compile_tgsi_instruction(t, inst);
5457 }
5458
5459 /* Fix up all emitted labels:
5460 */
5461 for (i = 0; i < t->labels_count; i++) {
5462 ureg_fixup_label(ureg, t->labels[i].token,
5463 t->insn[t->labels[i].branch_target]);
5464 }
5465
5466 out:
5467 if (t) {
5468 free(t->arrays);
5469 free(t->temps);
5470 free(t->insn);
5471 free(t->labels);
5472 free(t->constants);
5473 t->num_constants = 0;
5474 free(t->immediates);
5475 t->num_immediates = 0;
5476
5477 if (t->error) {
5478 debug_printf("%s: translate error flag set\n", __func__);
5479 }
5480
5481 FREE(t);
5482 }
5483
5484 return ret;
5485 }
5486 /* ----------------------------- End TGSI code ------------------------------ */
5487
5488
5489 /**
5490 * Convert a shader's GLSL IR into a Mesa gl_program, although without
5491 * generating Mesa IR.
5492 */
5493 static struct gl_program *
5494 get_mesa_program(struct gl_context *ctx,
5495 struct gl_shader_program *shader_program,
5496 struct gl_shader *shader)
5497 {
5498 glsl_to_tgsi_visitor* v;
5499 struct gl_program *prog;
5500 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
5501 bool progress;
5502 struct gl_shader_compiler_options *options =
5503 &ctx->Const.ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(shader->Type)];
5504 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5505 unsigned ptarget = st_shader_stage_to_ptarget(shader->Stage);
5506
5507 validate_ir_tree(shader->ir);
5508
5509 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
5510 if (!prog)
5511 return NULL;
5512 prog->Parameters = _mesa_new_parameter_list();
5513 v = new glsl_to_tgsi_visitor();
5514 v->ctx = ctx;
5515 v->prog = prog;
5516 v->shader_program = shader_program;
5517 v->shader = shader;
5518 v->options = options;
5519 v->glsl_version = ctx->Const.GLSLVersion;
5520 v->native_integers = ctx->Const.NativeIntegers;
5521
5522 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
5523 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
5524 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
5525 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
5526
5527 _mesa_copy_linked_program_data(shader->Stage, shader_program, prog);
5528 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
5529 prog->Parameters);
5530
5531 /* Remove reads from output registers. */
5532 lower_output_reads(shader->Stage, shader->ir);
5533
5534 /* Emit intermediate IR for main(). */
5535 visit_exec_list(shader->ir, v);
5536
5537 /* Now emit bodies for any functions that were used. */
5538 do {
5539 progress = GL_FALSE;
5540
5541 foreach_in_list(function_entry, entry, &v->function_signatures) {
5542 if (!entry->bgn_inst) {
5543 v->current_function = entry;
5544
5545 entry->bgn_inst = v->emit_asm(NULL, TGSI_OPCODE_BGNSUB);
5546 entry->bgn_inst->function = entry;
5547
5548 visit_exec_list(&entry->sig->body, v);
5549
5550 glsl_to_tgsi_instruction *last;
5551 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
5552 if (last->op != TGSI_OPCODE_RET)
5553 v->emit_asm(NULL, TGSI_OPCODE_RET);
5554
5555 glsl_to_tgsi_instruction *end;
5556 end = v->emit_asm(NULL, TGSI_OPCODE_ENDSUB);
5557 end->function = entry;
5558
5559 progress = GL_TRUE;
5560 }
5561 }
5562 } while (progress);
5563
5564 #if 0
5565 /* Print out some information (for debugging purposes) used by the
5566 * optimization passes. */
5567 {
5568 int i;
5569 int *first_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
5570 int *first_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
5571 int *last_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
5572 int *last_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
5573
5574 for (i = 0; i < v->next_temp; i++) {
5575 first_writes[i] = -1;
5576 first_reads[i] = -1;
5577 last_writes[i] = -1;
5578 last_reads[i] = -1;
5579 }
5580 v->get_first_temp_read(first_reads);
5581 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
5582 v->get_last_temp_write(last_writes);
5583 for (i = 0; i < v->next_temp; i++)
5584 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
5585 first_writes[i],
5586 last_reads[i],
5587 last_writes[i]);
5588 ralloc_free(first_writes);
5589 ralloc_free(first_reads);
5590 ralloc_free(last_writes);
5591 ralloc_free(last_reads);
5592 }
5593 #endif
5594
5595 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5596 v->simplify_cmp();
5597
5598 if (shader->Type != GL_TESS_CONTROL_SHADER &&
5599 shader->Type != GL_TESS_EVALUATION_SHADER)
5600 v->copy_propagate();
5601
5602 while (v->eliminate_dead_code());
5603
5604 v->merge_two_dsts();
5605 v->merge_registers();
5606 v->renumber_registers();
5607
5608 /* Write the END instruction. */
5609 v->emit_asm(NULL, TGSI_OPCODE_END);
5610
5611 if (ctx->_Shader->Flags & GLSL_DUMP) {
5612 _mesa_log("\n");
5613 _mesa_log("GLSL IR for linked %s program %d:\n",
5614 _mesa_shader_stage_to_string(shader->Stage),
5615 shader_program->Name);
5616 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
5617 _mesa_log("\n\n");
5618 }
5619
5620 prog->Instructions = NULL;
5621 prog->NumInstructions = 0;
5622
5623 do_set_program_inouts(shader->ir, prog, shader->Stage);
5624 shrink_array_declarations(v->input_arrays, v->num_input_arrays,
5625 prog->InputsRead, prog->PatchInputsRead);
5626 shrink_array_declarations(v->output_arrays, v->num_output_arrays,
5627 prog->OutputsWritten, prog->PatchOutputsWritten);
5628 count_resources(v, prog);
5629
5630 /* This must be done before the uniform storage is associated. */
5631 if (shader->Type == GL_FRAGMENT_SHADER &&
5632 prog->InputsRead & VARYING_BIT_POS){
5633 static const gl_state_index wposTransformState[STATE_LENGTH] = {
5634 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
5635 };
5636
5637 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
5638 wposTransformState);
5639 }
5640
5641 _mesa_reference_program(ctx, &shader->Program, prog);
5642
5643 /* This has to be done last. Any operation the can cause
5644 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5645 * program constant) has to happen before creating this linkage.
5646 */
5647 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5648 if (!shader_program->LinkStatus) {
5649 free_glsl_to_tgsi_visitor(v);
5650 return NULL;
5651 }
5652
5653 struct st_vertex_program *stvp;
5654 struct st_fragment_program *stfp;
5655 struct st_geometry_program *stgp;
5656 struct st_tessctrl_program *sttcp;
5657 struct st_tesseval_program *sttep;
5658
5659 switch (shader->Type) {
5660 case GL_VERTEX_SHADER:
5661 stvp = (struct st_vertex_program *)prog;
5662 stvp->glsl_to_tgsi = v;
5663 break;
5664 case GL_FRAGMENT_SHADER:
5665 stfp = (struct st_fragment_program *)prog;
5666 stfp->glsl_to_tgsi = v;
5667 break;
5668 case GL_GEOMETRY_SHADER:
5669 stgp = (struct st_geometry_program *)prog;
5670 stgp->glsl_to_tgsi = v;
5671 break;
5672 case GL_TESS_CONTROL_SHADER:
5673 sttcp = (struct st_tessctrl_program *)prog;
5674 sttcp->glsl_to_tgsi = v;
5675 break;
5676 case GL_TESS_EVALUATION_SHADER:
5677 sttep = (struct st_tesseval_program *)prog;
5678 sttep->glsl_to_tgsi = v;
5679 break;
5680 default:
5681 assert(!"should not be reached");
5682 return NULL;
5683 }
5684
5685 return prog;
5686 }
5687
5688 extern "C" {
5689
5690 static void
5691 st_dump_program_for_shader_db(struct gl_context *ctx,
5692 struct gl_shader_program *prog)
5693 {
5694 /* Dump only successfully compiled and linked shaders to the specified
5695 * file. This is for shader-db.
5696 *
5697 * These options allow some pre-processing of shaders while dumping,
5698 * because some apps have ill-formed shaders.
5699 */
5700 const char *dump_filename = os_get_option("ST_DUMP_SHADERS");
5701 const char *insert_directives = os_get_option("ST_DUMP_INSERT");
5702
5703 if (dump_filename && prog->Name != 0) {
5704 FILE *f = fopen(dump_filename, "a");
5705
5706 if (f) {
5707 for (unsigned i = 0; i < prog->NumShaders; i++) {
5708 const struct gl_shader *sh = prog->Shaders[i];
5709 const char *source;
5710 bool skip_version = false;
5711
5712 if (!sh)
5713 continue;
5714
5715 source = sh->Source;
5716
5717 /* This string mustn't be changed. shader-db uses it to find
5718 * where the shader begins.
5719 */
5720 fprintf(f, "GLSL %s shader %d source for linked program %d:\n",
5721 _mesa_shader_stage_to_string(sh->Stage),
5722 i, prog->Name);
5723
5724 /* Dump the forced version if set. */
5725 if (ctx->Const.ForceGLSLVersion) {
5726 fprintf(f, "#version %i\n", ctx->Const.ForceGLSLVersion);
5727 skip_version = true;
5728 }
5729
5730 /* Insert directives (optional). */
5731 if (insert_directives) {
5732 if (!ctx->Const.ForceGLSLVersion && prog->Version)
5733 fprintf(f, "#version %i\n", prog->Version);
5734 fprintf(f, "%s\n", insert_directives);
5735 skip_version = true;
5736 }
5737
5738 if (skip_version && strncmp(source, "#version ", 9) == 0) {
5739 const char *next_line = strstr(source, "\n");
5740
5741 if (next_line)
5742 source = next_line + 1;
5743 else
5744 continue;
5745 }
5746
5747 fprintf(f, "%s", source);
5748 fprintf(f, "\n");
5749 }
5750 fclose(f);
5751 }
5752 }
5753 }
5754
5755 /**
5756 * Link a shader.
5757 * Called via ctx->Driver.LinkShader()
5758 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5759 * with code lowering and other optimizations.
5760 */
5761 GLboolean
5762 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5763 {
5764 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5765 assert(prog->LinkStatus);
5766
5767 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5768 if (prog->_LinkedShaders[i] == NULL)
5769 continue;
5770
5771 bool progress;
5772 exec_list *ir = prog->_LinkedShaders[i]->ir;
5773 gl_shader_stage stage = _mesa_shader_enum_to_shader_stage(prog->_LinkedShaders[i]->Type);
5774 const struct gl_shader_compiler_options *options =
5775 &ctx->Const.ShaderCompilerOptions[stage];
5776 unsigned ptarget = st_shader_stage_to_ptarget(stage);
5777 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
5778 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
5779 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
5780 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
5781
5782 /* If there are forms of indirect addressing that the driver
5783 * cannot handle, perform the lowering pass.
5784 */
5785 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
5786 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
5787 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
5788 options->EmitNoIndirectInput,
5789 options->EmitNoIndirectOutput,
5790 options->EmitNoIndirectTemp,
5791 options->EmitNoIndirectUniform);
5792 }
5793
5794 if (ctx->Extensions.ARB_shading_language_packing) {
5795 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
5796 LOWER_UNPACK_SNORM_2x16 |
5797 LOWER_PACK_UNORM_2x16 |
5798 LOWER_UNPACK_UNORM_2x16 |
5799 LOWER_PACK_SNORM_4x8 |
5800 LOWER_UNPACK_SNORM_4x8 |
5801 LOWER_UNPACK_UNORM_4x8 |
5802 LOWER_PACK_UNORM_4x8 |
5803 LOWER_PACK_HALF_2x16 |
5804 LOWER_UNPACK_HALF_2x16;
5805
5806 if (ctx->Extensions.ARB_gpu_shader5)
5807 lower_inst |= LOWER_PACK_USE_BFI |
5808 LOWER_PACK_USE_BFE;
5809
5810 lower_packing_builtins(ir, lower_inst);
5811 }
5812
5813 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
5814 lower_offset_arrays(ir);
5815 do_mat_op_to_vec(ir);
5816 lower_instructions(ir,
5817 MOD_TO_FLOOR |
5818 DIV_TO_MUL_RCP |
5819 EXP_TO_EXP2 |
5820 LOG_TO_LOG2 |
5821 LDEXP_TO_ARITH |
5822 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
5823 CARRY_TO_ARITH |
5824 BORROW_TO_ARITH |
5825 (have_dround ? 0 : DOPS_TO_DFRAC) |
5826 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
5827 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
5828 (options->EmitNoSat ? SAT_TO_CLAMP : 0));
5829
5830 do_vec_index_to_cond_assign(ir);
5831 lower_vector_insert(ir, true);
5832 lower_quadop_vector(ir, false);
5833 lower_noise(ir);
5834 if (options->MaxIfDepth == 0) {
5835 lower_discard(ir);
5836 }
5837
5838 do {
5839 progress = false;
5840
5841 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5842
5843 progress = do_common_optimization(ir, true, true, options,
5844 ctx->Const.NativeIntegers)
5845 || progress;
5846
5847 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5848
5849 } while (progress);
5850
5851 validate_ir_tree(ir);
5852 }
5853
5854 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5855 struct gl_program *linked_prog;
5856
5857 if (prog->_LinkedShaders[i] == NULL)
5858 continue;
5859
5860 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5861
5862 if (linked_prog) {
5863 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5864 linked_prog);
5865 if (!ctx->Driver.ProgramStringNotify(ctx,
5866 _mesa_shader_stage_to_program(i),
5867 linked_prog)) {
5868 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5869 NULL);
5870 _mesa_reference_program(ctx, &linked_prog, NULL);
5871 return GL_FALSE;
5872 }
5873 }
5874
5875 _mesa_reference_program(ctx, &linked_prog, NULL);
5876 }
5877
5878 st_dump_program_for_shader_db(ctx, prog);
5879 return GL_TRUE;
5880 }
5881
5882 void
5883 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5884 const GLuint outputMapping[],
5885 struct pipe_stream_output_info *so)
5886 {
5887 unsigned i;
5888 struct gl_transform_feedback_info *info =
5889 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5890
5891 for (i = 0; i < info->NumOutputs; i++) {
5892 so->output[i].register_index =
5893 outputMapping[info->Outputs[i].OutputRegister];
5894 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5895 so->output[i].num_components = info->Outputs[i].NumComponents;
5896 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5897 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5898 so->output[i].stream = info->Outputs[i].StreamId;
5899 }
5900
5901 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5902 so->stride[i] = info->BufferStride[i];
5903 }
5904 so->num_outputs = info->NumOutputs;
5905 }
5906
5907 } /* extern "C" */