6cbc26acf79cfec8df781db5a409ed33bf464e22
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "glsl_parser_extras.h"
36 #include "ir_optimization.h"
37
38 #include "main/errors.h"
39 #include "main/shaderobj.h"
40 #include "main/uniforms.h"
41 #include "main/shaderapi.h"
42 #include "program/prog_instruction.h"
43 #include "program/sampler.h"
44
45 #include "pipe/p_context.h"
46 #include "pipe/p_screen.h"
47 #include "tgsi/tgsi_ureg.h"
48 #include "tgsi/tgsi_info.h"
49 #include "util/u_math.h"
50 #include "util/u_memory.h"
51 #include "st_program.h"
52 #include "st_mesa_to_tgsi.h"
53
54
55 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
56 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
57 (1 << PROGRAM_CONSTANT) | \
58 (1 << PROGRAM_UNIFORM))
59
60 #define MAX_GLSL_TEXTURE_OFFSET 4
61
62 class st_src_reg;
63 class st_dst_reg;
64
65 static int swizzle_for_size(int size);
66
67 /**
68 * This struct is a corresponding struct to TGSI ureg_src.
69 */
70 class st_src_reg {
71 public:
72 st_src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->index2D = 0;
82 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
83 this->reladdr = NULL;
84 this->reladdr2 = NULL;
85 this->has_index2 = false;
86 this->double_reg2 = false;
87 this->array_id = 0;
88 this->is_double_vertex_input = false;
89 }
90
91 st_src_reg(gl_register_file file, int index, int type)
92 {
93 this->type = type;
94 this->file = file;
95 this->index = index;
96 this->index2D = 0;
97 this->swizzle = SWIZZLE_XYZW;
98 this->negate = 0;
99 this->reladdr = NULL;
100 this->reladdr2 = NULL;
101 this->has_index2 = false;
102 this->double_reg2 = false;
103 this->array_id = 0;
104 this->is_double_vertex_input = false;
105 }
106
107 st_src_reg(gl_register_file file, int index, int type, int index2D)
108 {
109 this->type = type;
110 this->file = file;
111 this->index = index;
112 this->index2D = index2D;
113 this->swizzle = SWIZZLE_XYZW;
114 this->negate = 0;
115 this->reladdr = NULL;
116 this->reladdr2 = NULL;
117 this->has_index2 = false;
118 this->double_reg2 = false;
119 this->array_id = 0;
120 this->is_double_vertex_input = false;
121 }
122
123 st_src_reg()
124 {
125 this->type = GLSL_TYPE_ERROR;
126 this->file = PROGRAM_UNDEFINED;
127 this->index = 0;
128 this->index2D = 0;
129 this->swizzle = 0;
130 this->negate = 0;
131 this->reladdr = NULL;
132 this->reladdr2 = NULL;
133 this->has_index2 = false;
134 this->double_reg2 = false;
135 this->array_id = 0;
136 this->is_double_vertex_input = false;
137 }
138
139 explicit st_src_reg(st_dst_reg reg);
140
141 gl_register_file file; /**< PROGRAM_* from Mesa */
142 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
143 int index2D;
144 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
145 int negate; /**< NEGATE_XYZW mask from mesa */
146 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
147 /** Register index should be offset by the integer in this reg. */
148 st_src_reg *reladdr;
149 st_src_reg *reladdr2;
150 bool has_index2;
151 /*
152 * Is this the second half of a double register pair?
153 * currently used for input mapping only.
154 */
155 bool double_reg2;
156 unsigned array_id;
157 bool is_double_vertex_input;
158 };
159
160 class st_dst_reg {
161 public:
162 st_dst_reg(gl_register_file file, int writemask, int type, int index)
163 {
164 this->file = file;
165 this->index = index;
166 this->index2D = 0;
167 this->writemask = writemask;
168 this->cond_mask = COND_TR;
169 this->reladdr = NULL;
170 this->reladdr2 = NULL;
171 this->has_index2 = false;
172 this->type = type;
173 this->array_id = 0;
174 }
175
176 st_dst_reg(gl_register_file file, int writemask, int type)
177 {
178 this->file = file;
179 this->index = 0;
180 this->index2D = 0;
181 this->writemask = writemask;
182 this->cond_mask = COND_TR;
183 this->reladdr = NULL;
184 this->reladdr2 = NULL;
185 this->has_index2 = false;
186 this->type = type;
187 this->array_id = 0;
188 }
189
190 st_dst_reg()
191 {
192 this->type = GLSL_TYPE_ERROR;
193 this->file = PROGRAM_UNDEFINED;
194 this->index = 0;
195 this->index2D = 0;
196 this->writemask = 0;
197 this->cond_mask = COND_TR;
198 this->reladdr = NULL;
199 this->reladdr2 = NULL;
200 this->has_index2 = false;
201 this->array_id = 0;
202 }
203
204 explicit st_dst_reg(st_src_reg reg);
205
206 gl_register_file file; /**< PROGRAM_* from Mesa */
207 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
208 int index2D;
209 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
210 GLuint cond_mask:4;
211 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
212 /** Register index should be offset by the integer in this reg. */
213 st_src_reg *reladdr;
214 st_src_reg *reladdr2;
215 bool has_index2;
216 unsigned array_id;
217 };
218
219 st_src_reg::st_src_reg(st_dst_reg reg)
220 {
221 this->type = reg.type;
222 this->file = reg.file;
223 this->index = reg.index;
224 this->swizzle = SWIZZLE_XYZW;
225 this->negate = 0;
226 this->reladdr = reg.reladdr;
227 this->index2D = reg.index2D;
228 this->reladdr2 = reg.reladdr2;
229 this->has_index2 = reg.has_index2;
230 this->double_reg2 = false;
231 this->array_id = reg.array_id;
232 this->is_double_vertex_input = false;
233 }
234
235 st_dst_reg::st_dst_reg(st_src_reg reg)
236 {
237 this->type = reg.type;
238 this->file = reg.file;
239 this->index = reg.index;
240 this->writemask = WRITEMASK_XYZW;
241 this->cond_mask = COND_TR;
242 this->reladdr = reg.reladdr;
243 this->index2D = reg.index2D;
244 this->reladdr2 = reg.reladdr2;
245 this->has_index2 = reg.has_index2;
246 this->array_id = reg.array_id;
247 }
248
249 class glsl_to_tgsi_instruction : public exec_node {
250 public:
251 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
252
253 unsigned op;
254 st_dst_reg dst[2];
255 st_src_reg src[4];
256 /** Pointer to the ir source this tree came from for debugging */
257 ir_instruction *ir;
258 GLboolean cond_update;
259 bool saturate;
260 st_src_reg sampler; /**< sampler register */
261 int sampler_array_size; /**< 1-based size of sampler array, 1 if not array */
262 int tex_target; /**< One of TEXTURE_*_INDEX */
263 glsl_base_type tex_type;
264 GLboolean tex_shadow;
265
266 st_src_reg tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
267 unsigned tex_offset_num_offset;
268 int dead_mask; /**< Used in dead code elimination */
269
270 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
271 const struct tgsi_opcode_info *info;
272 };
273
274 class variable_storage : public exec_node {
275 public:
276 variable_storage(ir_variable *var, gl_register_file file, int index,
277 unsigned array_id = 0)
278 : file(file), index(index), var(var), array_id(array_id)
279 {
280 /* empty */
281 }
282
283 gl_register_file file;
284 int index;
285 ir_variable *var; /* variable that maps to this, if any */
286 unsigned array_id;
287 };
288
289 class immediate_storage : public exec_node {
290 public:
291 immediate_storage(gl_constant_value *values, int size32, int type)
292 {
293 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
294 this->size32 = size32;
295 this->type = type;
296 }
297
298 /* doubles are stored across 2 gl_constant_values */
299 gl_constant_value values[4];
300 int size32; /**< Number of 32-bit components (1-4) */
301 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
302 };
303
304 class function_entry : public exec_node {
305 public:
306 ir_function_signature *sig;
307
308 /**
309 * identifier of this function signature used by the program.
310 *
311 * At the point that TGSI instructions for function calls are
312 * generated, we don't know the address of the first instruction of
313 * the function body. So we make the BranchTarget that is called a
314 * small integer and rewrite them during set_branchtargets().
315 */
316 int sig_id;
317
318 /**
319 * Pointer to first instruction of the function body.
320 *
321 * Set during function body emits after main() is processed.
322 */
323 glsl_to_tgsi_instruction *bgn_inst;
324
325 /**
326 * Index of the first instruction of the function body in actual TGSI.
327 *
328 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
329 */
330 int inst;
331
332 /** Storage for the return value. */
333 st_src_reg return_reg;
334 };
335
336 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
337 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
338
339 struct array_decl {
340 unsigned mesa_index;
341 unsigned array_id;
342 unsigned array_size;
343 unsigned array_type;
344 };
345
346 static unsigned
347 find_array_type(struct array_decl *arrays, unsigned count, unsigned array_id)
348 {
349 unsigned i;
350
351 for (i = 0; i < count; i++) {
352 struct array_decl *decl = &arrays[i];
353
354 if (array_id == decl->array_id) {
355 return decl->array_type;
356 }
357 }
358 return GLSL_TYPE_ERROR;
359 }
360
361 struct rename_reg_pair {
362 int old_reg;
363 int new_reg;
364 };
365
366 struct glsl_to_tgsi_visitor : public ir_visitor {
367 public:
368 glsl_to_tgsi_visitor();
369 ~glsl_to_tgsi_visitor();
370
371 function_entry *current_function;
372
373 struct gl_context *ctx;
374 struct gl_program *prog;
375 struct gl_shader_program *shader_program;
376 struct gl_shader *shader;
377 struct gl_shader_compiler_options *options;
378
379 int next_temp;
380
381 unsigned *array_sizes;
382 unsigned max_num_arrays;
383 unsigned next_array;
384
385 struct array_decl input_arrays[PIPE_MAX_SHADER_INPUTS];
386 unsigned num_input_arrays;
387 struct array_decl output_arrays[PIPE_MAX_SHADER_OUTPUTS];
388 unsigned num_output_arrays;
389
390 int num_address_regs;
391 int samplers_used;
392 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
393 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
394 bool indirect_addr_consts;
395 int wpos_transform_const;
396
397 int glsl_version;
398 bool native_integers;
399 bool have_sqrt;
400 bool have_fma;
401
402 variable_storage *find_variable_storage(ir_variable *var);
403
404 int add_constant(gl_register_file file, gl_constant_value values[8],
405 int size, int datatype, GLuint *swizzle_out);
406
407 function_entry *get_function_signature(ir_function_signature *sig);
408
409 st_src_reg get_temp(const glsl_type *type);
410 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
411
412 st_src_reg st_src_reg_for_double(double val);
413 st_src_reg st_src_reg_for_float(float val);
414 st_src_reg st_src_reg_for_int(int val);
415 st_src_reg st_src_reg_for_type(int type, int val);
416
417 /**
418 * \name Visit methods
419 *
420 * As typical for the visitor pattern, there must be one \c visit method for
421 * each concrete subclass of \c ir_instruction. Virtual base classes within
422 * the hierarchy should not have \c visit methods.
423 */
424 /*@{*/
425 virtual void visit(ir_variable *);
426 virtual void visit(ir_loop *);
427 virtual void visit(ir_loop_jump *);
428 virtual void visit(ir_function_signature *);
429 virtual void visit(ir_function *);
430 virtual void visit(ir_expression *);
431 virtual void visit(ir_swizzle *);
432 virtual void visit(ir_dereference_variable *);
433 virtual void visit(ir_dereference_array *);
434 virtual void visit(ir_dereference_record *);
435 virtual void visit(ir_assignment *);
436 virtual void visit(ir_constant *);
437 virtual void visit(ir_call *);
438 virtual void visit(ir_return *);
439 virtual void visit(ir_discard *);
440 virtual void visit(ir_texture *);
441 virtual void visit(ir_if *);
442 virtual void visit(ir_emit_vertex *);
443 virtual void visit(ir_end_primitive *);
444 virtual void visit(ir_barrier *);
445 /*@}*/
446
447 st_src_reg result;
448
449 /** List of variable_storage */
450 exec_list variables;
451
452 /** List of immediate_storage */
453 exec_list immediates;
454 unsigned num_immediates;
455
456 /** List of function_entry */
457 exec_list function_signatures;
458 int next_signature_id;
459
460 /** List of glsl_to_tgsi_instruction */
461 exec_list instructions;
462
463 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
464 st_dst_reg dst = undef_dst,
465 st_src_reg src0 = undef_src,
466 st_src_reg src1 = undef_src,
467 st_src_reg src2 = undef_src,
468 st_src_reg src3 = undef_src);
469
470 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
471 st_dst_reg dst, st_dst_reg dst1,
472 st_src_reg src0 = undef_src,
473 st_src_reg src1 = undef_src,
474 st_src_reg src2 = undef_src,
475 st_src_reg src3 = undef_src);
476
477 unsigned get_opcode(ir_instruction *ir, unsigned op,
478 st_dst_reg dst,
479 st_src_reg src0, st_src_reg src1);
480
481 /**
482 * Emit the correct dot-product instruction for the type of arguments
483 */
484 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
485 st_dst_reg dst,
486 st_src_reg src0,
487 st_src_reg src1,
488 unsigned elements);
489
490 void emit_scalar(ir_instruction *ir, unsigned op,
491 st_dst_reg dst, st_src_reg src0);
492
493 void emit_scalar(ir_instruction *ir, unsigned op,
494 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
495
496 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
497
498 bool try_emit_mad(ir_expression *ir,
499 int mul_operand);
500 bool try_emit_mad_for_and_not(ir_expression *ir,
501 int mul_operand);
502
503 void emit_swz(ir_expression *ir);
504
505 bool process_move_condition(ir_rvalue *ir);
506
507 void simplify_cmp(void);
508
509 void rename_temp_registers(int num_renames, struct rename_reg_pair *renames);
510 void get_first_temp_read(int *first_reads);
511 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
512 void get_last_temp_write(int *last_writes);
513
514 void copy_propagate(void);
515 int eliminate_dead_code(void);
516
517 void merge_two_dsts(void);
518 void merge_registers(void);
519 void renumber_registers(void);
520
521 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
522 st_dst_reg *l, st_src_reg *r,
523 st_src_reg *cond, bool cond_swap);
524
525 void *mem_ctx;
526 };
527
528 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
529 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
530 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
531
532 static void
533 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
534
535 static void
536 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
537 {
538 va_list args;
539 va_start(args, fmt);
540 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
541 va_end(args);
542
543 prog->LinkStatus = GL_FALSE;
544 }
545
546 static int
547 swizzle_for_size(int size)
548 {
549 static const int size_swizzles[4] = {
550 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
551 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
552 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
553 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
554 };
555
556 assert((size >= 1) && (size <= 4));
557 return size_swizzles[size - 1];
558 }
559
560 static unsigned
561 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
562 {
563 return op->info->num_dst;
564 }
565
566 static unsigned
567 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
568 {
569 return op->info->is_tex ? op->info->num_src - 1 : op->info->num_src;
570 }
571
572 glsl_to_tgsi_instruction *
573 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
574 st_dst_reg dst, st_dst_reg dst1,
575 st_src_reg src0, st_src_reg src1,
576 st_src_reg src2, st_src_reg src3)
577 {
578 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
579 int num_reladdr = 0, i, j;
580 bool dst_is_double[2];
581
582 op = get_opcode(ir, op, dst, src0, src1);
583
584 /* If we have to do relative addressing, we want to load the ARL
585 * reg directly for one of the regs, and preload the other reladdr
586 * sources into temps.
587 */
588 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
589 num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
590 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
591 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
592 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
593 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
594
595 reladdr_to_temp(ir, &src3, &num_reladdr);
596 reladdr_to_temp(ir, &src2, &num_reladdr);
597 reladdr_to_temp(ir, &src1, &num_reladdr);
598 reladdr_to_temp(ir, &src0, &num_reladdr);
599
600 if (dst.reladdr || dst.reladdr2) {
601 if (dst.reladdr)
602 emit_arl(ir, address_reg, *dst.reladdr);
603 if (dst.reladdr2)
604 emit_arl(ir, address_reg2, *dst.reladdr2);
605 num_reladdr--;
606 }
607 if (dst1.reladdr) {
608 emit_arl(ir, address_reg, *dst1.reladdr);
609 num_reladdr--;
610 }
611 assert(num_reladdr == 0);
612
613 inst->op = op;
614 inst->info = tgsi_get_opcode_info(op);
615 inst->dst[0] = dst;
616 inst->dst[1] = dst1;
617 inst->src[0] = src0;
618 inst->src[1] = src1;
619 inst->src[2] = src2;
620 inst->src[3] = src3;
621 inst->ir = ir;
622 inst->dead_mask = 0;
623 /* default to float, for paths where this is not initialized
624 * (since 0==UINT which is likely wrong):
625 */
626 inst->tex_type = GLSL_TYPE_FLOAT;
627
628 inst->function = NULL;
629
630 /* Update indirect addressing status used by TGSI */
631 if (dst.reladdr || dst.reladdr2) {
632 switch(dst.file) {
633 case PROGRAM_STATE_VAR:
634 case PROGRAM_CONSTANT:
635 case PROGRAM_UNIFORM:
636 this->indirect_addr_consts = true;
637 break;
638 case PROGRAM_IMMEDIATE:
639 assert(!"immediates should not have indirect addressing");
640 break;
641 default:
642 break;
643 }
644 }
645 else {
646 for (i = 0; i < 4; i++) {
647 if(inst->src[i].reladdr) {
648 switch(inst->src[i].file) {
649 case PROGRAM_STATE_VAR:
650 case PROGRAM_CONSTANT:
651 case PROGRAM_UNIFORM:
652 this->indirect_addr_consts = true;
653 break;
654 case PROGRAM_IMMEDIATE:
655 assert(!"immediates should not have indirect addressing");
656 break;
657 default:
658 break;
659 }
660 }
661 }
662 }
663
664 this->instructions.push_tail(inst);
665
666 /*
667 * This section contains the double processing.
668 * GLSL just represents doubles as single channel values,
669 * however most HW and TGSI represent doubles as pairs of register channels.
670 *
671 * so we have to fixup destination writemask/index and src swizzle/indexes.
672 * dest writemasks need to translate from single channel write mask
673 * to a dual-channel writemask, but also need to modify the index,
674 * if we are touching the Z,W fields in the pre-translated writemask.
675 *
676 * src channels have similiar index modifications along with swizzle
677 * changes to we pick the XY, ZW pairs from the correct index.
678 *
679 * GLSL [0].x -> TGSI [0].xy
680 * GLSL [0].y -> TGSI [0].zw
681 * GLSL [0].z -> TGSI [1].xy
682 * GLSL [0].w -> TGSI [1].zw
683 */
684 for (j = 0; j < 2; j++) {
685 dst_is_double[j] = false;
686 if (inst->dst[j].type == GLSL_TYPE_DOUBLE)
687 dst_is_double[j] = true;
688 else if (inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
689 unsigned type = find_array_type(this->output_arrays, this->num_output_arrays, inst->dst[j].array_id);
690 if (type == GLSL_TYPE_DOUBLE)
691 dst_is_double[j] = true;
692 }
693 }
694
695 if (dst_is_double[0] || dst_is_double[1] ||
696 inst->src[0].type == GLSL_TYPE_DOUBLE) {
697 glsl_to_tgsi_instruction *dinst = NULL;
698 int initial_src_swz[4], initial_src_idx[4];
699 int initial_dst_idx[2], initial_dst_writemask[2];
700 /* select the writemask for dst0 or dst1 */
701 unsigned writemask = inst->dst[0].file == PROGRAM_UNDEFINED ? inst->dst[1].writemask : inst->dst[0].writemask;
702
703 /* copy out the writemask, index and swizzles for all src/dsts. */
704 for (j = 0; j < 2; j++) {
705 initial_dst_writemask[j] = inst->dst[j].writemask;
706 initial_dst_idx[j] = inst->dst[j].index;
707 }
708
709 for (j = 0; j < 4; j++) {
710 initial_src_swz[j] = inst->src[j].swizzle;
711 initial_src_idx[j] = inst->src[j].index;
712 }
713
714 /*
715 * scan all the components in the dst writemask
716 * generate an instruction for each of them if required.
717 */
718 while (writemask) {
719
720 int i = u_bit_scan(&writemask);
721
722 /* first time use previous instruction */
723 if (dinst == NULL) {
724 dinst = inst;
725 } else {
726 /* create a new instructions for subsequent attempts */
727 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
728 *dinst = *inst;
729 dinst->next = NULL;
730 dinst->prev = NULL;
731 this->instructions.push_tail(dinst);
732 }
733
734 /* modify the destination if we are splitting */
735 for (j = 0; j < 2; j++) {
736 if (dst_is_double[j]) {
737 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
738 dinst->dst[j].index = initial_dst_idx[j];
739 if (i > 1)
740 dinst->dst[j].index++;
741 } else {
742 /* if we aren't writing to a double, just get the bit of the initial writemask
743 for this channel */
744 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
745 }
746 }
747
748 /* modify the src registers */
749 for (j = 0; j < 4; j++) {
750 int swz = GET_SWZ(initial_src_swz[j], i);
751
752 if (dinst->src[j].type == GLSL_TYPE_DOUBLE) {
753 dinst->src[j].index = initial_src_idx[j];
754 if (swz > 1) {
755 dinst->src[j].double_reg2 = true;
756 dinst->src[j].index++;
757 }
758
759 if (swz & 1)
760 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
761 else
762 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
763
764 } else {
765 /* some opcodes are special case in what they use as sources
766 - F2D is a float src0, DLDEXP is integer src1 */
767 if (op == TGSI_OPCODE_F2D ||
768 op == TGSI_OPCODE_DLDEXP ||
769 (op == TGSI_OPCODE_UCMP && dst_is_double[0])) {
770 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
771 }
772 }
773 }
774 }
775 inst = dinst;
776 }
777
778
779 return inst;
780 }
781
782 glsl_to_tgsi_instruction *
783 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
784 st_dst_reg dst,
785 st_src_reg src0, st_src_reg src1,
786 st_src_reg src2, st_src_reg src3)
787 {
788 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
789 }
790
791 /**
792 * Determines whether to use an integer, unsigned integer, or float opcode
793 * based on the operands and input opcode, then emits the result.
794 */
795 unsigned
796 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
797 st_dst_reg dst,
798 st_src_reg src0, st_src_reg src1)
799 {
800 int type = GLSL_TYPE_FLOAT;
801
802 if (op == TGSI_OPCODE_MOV)
803 return op;
804
805 assert(src0.type != GLSL_TYPE_ARRAY);
806 assert(src0.type != GLSL_TYPE_STRUCT);
807 assert(src1.type != GLSL_TYPE_ARRAY);
808 assert(src1.type != GLSL_TYPE_STRUCT);
809
810 if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
811 type = GLSL_TYPE_DOUBLE;
812 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
813 type = GLSL_TYPE_FLOAT;
814 else if (native_integers)
815 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
816
817 #define case5(c, f, i, u, d) \
818 case TGSI_OPCODE_##c: \
819 if (type == GLSL_TYPE_DOUBLE) \
820 op = TGSI_OPCODE_##d; \
821 else if (type == GLSL_TYPE_INT) \
822 op = TGSI_OPCODE_##i; \
823 else if (type == GLSL_TYPE_UINT) \
824 op = TGSI_OPCODE_##u; \
825 else \
826 op = TGSI_OPCODE_##f; \
827 break;
828
829 #define case4(c, f, i, u) \
830 case TGSI_OPCODE_##c: \
831 if (type == GLSL_TYPE_INT) \
832 op = TGSI_OPCODE_##i; \
833 else if (type == GLSL_TYPE_UINT) \
834 op = TGSI_OPCODE_##u; \
835 else \
836 op = TGSI_OPCODE_##f; \
837 break;
838
839 #define case3(f, i, u) case4(f, f, i, u)
840 #define case4d(f, i, u, d) case5(f, f, i, u, d)
841 #define case3fid(f, i, d) case5(f, f, i, i, d)
842 #define case2fi(f, i) case4(f, f, i, i)
843 #define case2iu(i, u) case4(i, LAST, i, u)
844
845 #define casecomp(c, f, i, u, d) \
846 case TGSI_OPCODE_##c: \
847 if (type == GLSL_TYPE_DOUBLE) \
848 op = TGSI_OPCODE_##d; \
849 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
850 op = TGSI_OPCODE_##i; \
851 else if (type == GLSL_TYPE_UINT) \
852 op = TGSI_OPCODE_##u; \
853 else if (native_integers) \
854 op = TGSI_OPCODE_##f; \
855 else \
856 op = TGSI_OPCODE_##c; \
857 break;
858
859 switch(op) {
860 case3fid(ADD, UADD, DADD);
861 case3fid(MUL, UMUL, DMUL);
862 case3fid(MAD, UMAD, DMAD);
863 case3fid(FMA, UMAD, DFMA);
864 case3(DIV, IDIV, UDIV);
865 case4d(MAX, IMAX, UMAX, DMAX);
866 case4d(MIN, IMIN, UMIN, DMIN);
867 case2iu(MOD, UMOD);
868
869 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ);
870 casecomp(SNE, FSNE, USNE, USNE, DSNE);
871 casecomp(SGE, FSGE, ISGE, USGE, DSGE);
872 casecomp(SLT, FSLT, ISLT, USLT, DSLT);
873
874 case2iu(ISHR, USHR);
875
876 case3fid(SSG, ISSG, DSSG);
877 case3fid(ABS, IABS, DABS);
878
879 case2iu(IBFE, UBFE);
880 case2iu(IMSB, UMSB);
881 case2iu(IMUL_HI, UMUL_HI);
882
883 case3fid(SQRT, SQRT, DSQRT);
884
885 case3fid(RCP, RCP, DRCP);
886 case3fid(RSQ, RSQ, DRSQ);
887
888 case3fid(FRC, FRC, DFRAC);
889 case3fid(TRUNC, TRUNC, DTRUNC);
890 case3fid(CEIL, CEIL, DCEIL);
891 case3fid(FLR, FLR, DFLR);
892 case3fid(ROUND, ROUND, DROUND);
893
894 default: break;
895 }
896
897 assert(op != TGSI_OPCODE_LAST);
898 return op;
899 }
900
901 glsl_to_tgsi_instruction *
902 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
903 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
904 unsigned elements)
905 {
906 static const unsigned dot_opcodes[] = {
907 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
908 };
909
910 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
911 }
912
913 /**
914 * Emits TGSI scalar opcodes to produce unique answers across channels.
915 *
916 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
917 * channel determines the result across all channels. So to do a vec4
918 * of this operation, we want to emit a scalar per source channel used
919 * to produce dest channels.
920 */
921 void
922 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
923 st_dst_reg dst,
924 st_src_reg orig_src0, st_src_reg orig_src1)
925 {
926 int i, j;
927 int done_mask = ~dst.writemask;
928
929 /* TGSI RCP is a scalar operation splatting results to all channels,
930 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
931 * dst channels.
932 */
933 for (i = 0; i < 4; i++) {
934 GLuint this_mask = (1 << i);
935 st_src_reg src0 = orig_src0;
936 st_src_reg src1 = orig_src1;
937
938 if (done_mask & this_mask)
939 continue;
940
941 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
942 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
943 for (j = i + 1; j < 4; j++) {
944 /* If there is another enabled component in the destination that is
945 * derived from the same inputs, generate its value on this pass as
946 * well.
947 */
948 if (!(done_mask & (1 << j)) &&
949 GET_SWZ(src0.swizzle, j) == src0_swiz &&
950 GET_SWZ(src1.swizzle, j) == src1_swiz) {
951 this_mask |= (1 << j);
952 }
953 }
954 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
955 src0_swiz, src0_swiz);
956 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
957 src1_swiz, src1_swiz);
958
959 dst.writemask = this_mask;
960 emit_asm(ir, op, dst, src0, src1);
961 done_mask |= this_mask;
962 }
963 }
964
965 void
966 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
967 st_dst_reg dst, st_src_reg src0)
968 {
969 st_src_reg undef = undef_src;
970
971 undef.swizzle = SWIZZLE_XXXX;
972
973 emit_scalar(ir, op, dst, src0, undef);
974 }
975
976 void
977 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
978 st_dst_reg dst, st_src_reg src0)
979 {
980 int op = TGSI_OPCODE_ARL;
981
982 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
983 op = TGSI_OPCODE_UARL;
984
985 assert(dst.file == PROGRAM_ADDRESS);
986 if (dst.index >= this->num_address_regs)
987 this->num_address_regs = dst.index + 1;
988
989 emit_asm(NULL, op, dst, src0);
990 }
991
992 int
993 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
994 gl_constant_value values[8], int size, int datatype,
995 GLuint *swizzle_out)
996 {
997 if (file == PROGRAM_CONSTANT) {
998 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
999 size, datatype, swizzle_out);
1000 }
1001
1002 assert(file == PROGRAM_IMMEDIATE);
1003
1004 int index = 0;
1005 immediate_storage *entry;
1006 int size32 = size * (datatype == GL_DOUBLE ? 2 : 1);
1007 int i;
1008
1009 /* Search immediate storage to see if we already have an identical
1010 * immediate that we can use instead of adding a duplicate entry.
1011 */
1012 foreach_in_list(immediate_storage, entry, &this->immediates) {
1013 immediate_storage *tmp = entry;
1014
1015 for (i = 0; i * 4 < size32; i++) {
1016 int slot_size = MIN2(size32 - (i * 4), 4);
1017 if (tmp->type != datatype || tmp->size32 != slot_size)
1018 break;
1019 if (memcmp(tmp->values, &values[i * 4],
1020 slot_size * sizeof(gl_constant_value)))
1021 break;
1022
1023 /* Everything matches, keep going until the full size is matched */
1024 tmp = (immediate_storage *)tmp->next;
1025 }
1026
1027 /* The full value matched */
1028 if (i * 4 >= size32)
1029 return index;
1030
1031 index++;
1032 }
1033
1034 for (i = 0; i * 4 < size32; i++) {
1035 int slot_size = MIN2(size32 - (i * 4), 4);
1036 /* Add this immediate to the list. */
1037 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
1038 this->immediates.push_tail(entry);
1039 this->num_immediates++;
1040 }
1041 return index;
1042 }
1043
1044 st_src_reg
1045 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1046 {
1047 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1048 union gl_constant_value uval;
1049
1050 uval.f = val;
1051 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1052
1053 return src;
1054 }
1055
1056 st_src_reg
1057 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1058 {
1059 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1060 union gl_constant_value uval[2];
1061
1062 uval[0].u = *(uint32_t *)&val;
1063 uval[1].u = *(((uint32_t *)&val) + 1);
1064 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1065
1066 return src;
1067 }
1068
1069 st_src_reg
1070 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1071 {
1072 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1073 union gl_constant_value uval;
1074
1075 assert(native_integers);
1076
1077 uval.i = val;
1078 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1079
1080 return src;
1081 }
1082
1083 st_src_reg
1084 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
1085 {
1086 if (native_integers)
1087 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1088 st_src_reg_for_int(val);
1089 else
1090 return st_src_reg_for_float(val);
1091 }
1092
1093 static int
1094 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
1095 {
1096 unsigned int i;
1097 int size;
1098
1099 switch (type->base_type) {
1100 case GLSL_TYPE_UINT:
1101 case GLSL_TYPE_INT:
1102 case GLSL_TYPE_FLOAT:
1103 case GLSL_TYPE_BOOL:
1104 if (type->is_matrix()) {
1105 return type->matrix_columns;
1106 } else {
1107 /* Regardless of size of vector, it gets a vec4. This is bad
1108 * packing for things like floats, but otherwise arrays become a
1109 * mess. Hopefully a later pass over the code can pack scalars
1110 * down if appropriate.
1111 */
1112 return 1;
1113 }
1114 break;
1115 case GLSL_TYPE_DOUBLE:
1116 if (type->is_matrix()) {
1117 if (type->vector_elements <= 2 || is_vs_input)
1118 return type->matrix_columns;
1119 else
1120 return type->matrix_columns * 2;
1121 } else {
1122 /* For doubles if we have a double or dvec2 they fit in one
1123 * vec4, else they need 2 vec4s.
1124 */
1125 if (type->vector_elements <= 2 || is_vs_input)
1126 return 1;
1127 else
1128 return 2;
1129 }
1130 break;
1131 case GLSL_TYPE_ARRAY:
1132 assert(type->length > 0);
1133 return attrib_type_size(type->fields.array, is_vs_input) * type->length;
1134 case GLSL_TYPE_STRUCT:
1135 size = 0;
1136 for (i = 0; i < type->length; i++) {
1137 size += attrib_type_size(type->fields.structure[i].type, is_vs_input);
1138 }
1139 return size;
1140 case GLSL_TYPE_SAMPLER:
1141 case GLSL_TYPE_IMAGE:
1142 case GLSL_TYPE_SUBROUTINE:
1143 /* Samplers take up one slot in UNIFORMS[], but they're baked in
1144 * at link time.
1145 */
1146 return 1;
1147 case GLSL_TYPE_ATOMIC_UINT:
1148 case GLSL_TYPE_INTERFACE:
1149 case GLSL_TYPE_VOID:
1150 case GLSL_TYPE_ERROR:
1151 assert(!"Invalid type in type_size");
1152 break;
1153 }
1154 return 0;
1155 }
1156
1157 static int
1158 type_size(const struct glsl_type *type)
1159 {
1160 return attrib_type_size(type, false);
1161 }
1162
1163 /**
1164 * If the given GLSL type is an array or matrix or a structure containing
1165 * an array/matrix member, return true. Else return false.
1166 *
1167 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1168 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
1169 * we have an array that might be indexed with a variable, we need to use
1170 * the later storage type.
1171 */
1172 static bool
1173 type_has_array_or_matrix(const glsl_type *type)
1174 {
1175 if (type->is_array() || type->is_matrix())
1176 return true;
1177
1178 if (type->is_record()) {
1179 for (unsigned i = 0; i < type->length; i++) {
1180 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1181 return true;
1182 }
1183 }
1184 }
1185
1186 return false;
1187 }
1188
1189
1190 /**
1191 * In the initial pass of codegen, we assign temporary numbers to
1192 * intermediate results. (not SSA -- variable assignments will reuse
1193 * storage).
1194 */
1195 st_src_reg
1196 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1197 {
1198 st_src_reg src;
1199
1200 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1201 src.reladdr = NULL;
1202 src.negate = 0;
1203
1204 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1205 if (next_array >= max_num_arrays) {
1206 max_num_arrays += 32;
1207 array_sizes = (unsigned*)
1208 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1209 }
1210
1211 src.file = PROGRAM_ARRAY;
1212 src.index = next_array << 16 | 0x8000;
1213 array_sizes[next_array] = type_size(type);
1214 ++next_array;
1215
1216 } else {
1217 src.file = PROGRAM_TEMPORARY;
1218 src.index = next_temp;
1219 next_temp += type_size(type);
1220 }
1221
1222 if (type->is_array() || type->is_record()) {
1223 src.swizzle = SWIZZLE_NOOP;
1224 } else {
1225 src.swizzle = swizzle_for_size(type->vector_elements);
1226 }
1227
1228 return src;
1229 }
1230
1231 variable_storage *
1232 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1233 {
1234
1235 foreach_in_list(variable_storage, entry, &this->variables) {
1236 if (entry->var == var)
1237 return entry;
1238 }
1239
1240 return NULL;
1241 }
1242
1243 void
1244 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1245 {
1246 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1247 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1248
1249 fp->OriginUpperLeft = ir->data.origin_upper_left;
1250 fp->PixelCenterInteger = ir->data.pixel_center_integer;
1251 }
1252
1253 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1254 unsigned int i;
1255 const ir_state_slot *const slots = ir->get_state_slots();
1256 assert(slots != NULL);
1257
1258 /* Check if this statevar's setup in the STATE file exactly
1259 * matches how we'll want to reference it as a
1260 * struct/array/whatever. If not, then we need to move it into
1261 * temporary storage and hope that it'll get copy-propagated
1262 * out.
1263 */
1264 for (i = 0; i < ir->get_num_state_slots(); i++) {
1265 if (slots[i].swizzle != SWIZZLE_XYZW) {
1266 break;
1267 }
1268 }
1269
1270 variable_storage *storage;
1271 st_dst_reg dst;
1272 if (i == ir->get_num_state_slots()) {
1273 /* We'll set the index later. */
1274 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1275 this->variables.push_tail(storage);
1276
1277 dst = undef_dst;
1278 } else {
1279 /* The variable_storage constructor allocates slots based on the size
1280 * of the type. However, this had better match the number of state
1281 * elements that we're going to copy into the new temporary.
1282 */
1283 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1284
1285 dst = st_dst_reg(get_temp(ir->type));
1286
1287 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1288
1289 this->variables.push_tail(storage);
1290 }
1291
1292
1293 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1294 int index = _mesa_add_state_reference(this->prog->Parameters,
1295 (gl_state_index *)slots[i].tokens);
1296
1297 if (storage->file == PROGRAM_STATE_VAR) {
1298 if (storage->index == -1) {
1299 storage->index = index;
1300 } else {
1301 assert(index == storage->index + (int)i);
1302 }
1303 } else {
1304 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1305 * the data being moved since MOV does not care about the type of
1306 * data it is moving, and we don't want to declare registers with
1307 * array or struct types.
1308 */
1309 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1310 src.swizzle = slots[i].swizzle;
1311 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1312 /* even a float takes up a whole vec4 reg in a struct/array. */
1313 dst.index++;
1314 }
1315 }
1316
1317 if (storage->file == PROGRAM_TEMPORARY &&
1318 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1319 fail_link(this->shader_program,
1320 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1321 ir->name, dst.index - storage->index,
1322 type_size(ir->type));
1323 }
1324 }
1325 }
1326
1327 void
1328 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1329 {
1330 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1331
1332 visit_exec_list(&ir->body_instructions, this);
1333
1334 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1335 }
1336
1337 void
1338 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1339 {
1340 switch (ir->mode) {
1341 case ir_loop_jump::jump_break:
1342 emit_asm(NULL, TGSI_OPCODE_BRK);
1343 break;
1344 case ir_loop_jump::jump_continue:
1345 emit_asm(NULL, TGSI_OPCODE_CONT);
1346 break;
1347 }
1348 }
1349
1350
1351 void
1352 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1353 {
1354 assert(0);
1355 (void)ir;
1356 }
1357
1358 void
1359 glsl_to_tgsi_visitor::visit(ir_function *ir)
1360 {
1361 /* Ignore function bodies other than main() -- we shouldn't see calls to
1362 * them since they should all be inlined before we get to glsl_to_tgsi.
1363 */
1364 if (strcmp(ir->name, "main") == 0) {
1365 const ir_function_signature *sig;
1366 exec_list empty;
1367
1368 sig = ir->matching_signature(NULL, &empty, false);
1369
1370 assert(sig);
1371
1372 foreach_in_list(ir_instruction, ir, &sig->body) {
1373 ir->accept(this);
1374 }
1375 }
1376 }
1377
1378 bool
1379 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1380 {
1381 int nonmul_operand = 1 - mul_operand;
1382 st_src_reg a, b, c;
1383 st_dst_reg result_dst;
1384
1385 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1386 if (!expr || expr->operation != ir_binop_mul)
1387 return false;
1388
1389 expr->operands[0]->accept(this);
1390 a = this->result;
1391 expr->operands[1]->accept(this);
1392 b = this->result;
1393 ir->operands[nonmul_operand]->accept(this);
1394 c = this->result;
1395
1396 this->result = get_temp(ir->type);
1397 result_dst = st_dst_reg(this->result);
1398 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1399 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1400
1401 return true;
1402 }
1403
1404 /**
1405 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1406 *
1407 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1408 * implemented using multiplication, and logical-or is implemented using
1409 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1410 * As result, the logical expression (a & !b) can be rewritten as:
1411 *
1412 * - a * !b
1413 * - a * (1 - b)
1414 * - (a * 1) - (a * b)
1415 * - a + -(a * b)
1416 * - a + (a * -b)
1417 *
1418 * This final expression can be implemented as a single MAD(a, -b, a)
1419 * instruction.
1420 */
1421 bool
1422 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1423 {
1424 const int other_operand = 1 - try_operand;
1425 st_src_reg a, b;
1426
1427 ir_expression *expr = ir->operands[try_operand]->as_expression();
1428 if (!expr || expr->operation != ir_unop_logic_not)
1429 return false;
1430
1431 ir->operands[other_operand]->accept(this);
1432 a = this->result;
1433 expr->operands[0]->accept(this);
1434 b = this->result;
1435
1436 b.negate = ~b.negate;
1437
1438 this->result = get_temp(ir->type);
1439 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1440
1441 return true;
1442 }
1443
1444 void
1445 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1446 st_src_reg *reg, int *num_reladdr)
1447 {
1448 if (!reg->reladdr && !reg->reladdr2)
1449 return;
1450
1451 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1452 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1453
1454 if (*num_reladdr != 1) {
1455 st_src_reg temp = get_temp(reg->type == GLSL_TYPE_DOUBLE ? glsl_type::dvec4_type : glsl_type::vec4_type);
1456
1457 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1458 *reg = temp;
1459 }
1460
1461 (*num_reladdr)--;
1462 }
1463
1464 void
1465 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1466 {
1467 unsigned int operand;
1468 st_src_reg op[ARRAY_SIZE(ir->operands)];
1469 st_src_reg result_src;
1470 st_dst_reg result_dst;
1471
1472 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1473 */
1474 if (ir->operation == ir_binop_add) {
1475 if (try_emit_mad(ir, 1))
1476 return;
1477 if (try_emit_mad(ir, 0))
1478 return;
1479 }
1480
1481 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1482 */
1483 if (!native_integers && ir->operation == ir_binop_logic_and) {
1484 if (try_emit_mad_for_and_not(ir, 1))
1485 return;
1486 if (try_emit_mad_for_and_not(ir, 0))
1487 return;
1488 }
1489
1490 if (ir->operation == ir_quadop_vector)
1491 assert(!"ir_quadop_vector should have been lowered");
1492
1493 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1494 this->result.file = PROGRAM_UNDEFINED;
1495 ir->operands[operand]->accept(this);
1496 if (this->result.file == PROGRAM_UNDEFINED) {
1497 printf("Failed to get tree for expression operand:\n");
1498 ir->operands[operand]->print();
1499 printf("\n");
1500 exit(1);
1501 }
1502 op[operand] = this->result;
1503
1504 /* Matrix expression operands should have been broken down to vector
1505 * operations already.
1506 */
1507 assert(!ir->operands[operand]->type->is_matrix());
1508 }
1509
1510 int vector_elements = ir->operands[0]->type->vector_elements;
1511 if (ir->operands[1]) {
1512 vector_elements = MAX2(vector_elements,
1513 ir->operands[1]->type->vector_elements);
1514 }
1515
1516 this->result.file = PROGRAM_UNDEFINED;
1517
1518 /* Storage for our result. Ideally for an assignment we'd be using
1519 * the actual storage for the result here, instead.
1520 */
1521 result_src = get_temp(ir->type);
1522 /* convenience for the emit functions below. */
1523 result_dst = st_dst_reg(result_src);
1524 /* Limit writes to the channels that will be used by result_src later.
1525 * This does limit this temp's use as a temporary for multi-instruction
1526 * sequences.
1527 */
1528 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1529
1530 switch (ir->operation) {
1531 case ir_unop_logic_not:
1532 if (result_dst.type != GLSL_TYPE_FLOAT)
1533 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1534 else {
1535 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1536 * older GPUs implement SEQ using multiple instructions (i915 uses two
1537 * SGE instructions and a MUL instruction). Since our logic values are
1538 * 0.0 and 1.0, 1-x also implements !x.
1539 */
1540 op[0].negate = ~op[0].negate;
1541 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1542 }
1543 break;
1544 case ir_unop_neg:
1545 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1546 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1547 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1548 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1549 else {
1550 op[0].negate = ~op[0].negate;
1551 result_src = op[0];
1552 }
1553 break;
1554 case ir_unop_subroutine_to_int:
1555 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1556 break;
1557 case ir_unop_abs:
1558 emit_asm(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1559 break;
1560 case ir_unop_sign:
1561 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1562 break;
1563 case ir_unop_rcp:
1564 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1565 break;
1566
1567 case ir_unop_exp2:
1568 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1569 break;
1570 case ir_unop_exp:
1571 case ir_unop_log:
1572 assert(!"not reached: should be handled by ir_explog_to_explog2");
1573 break;
1574 case ir_unop_log2:
1575 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1576 break;
1577 case ir_unop_sin:
1578 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1579 break;
1580 case ir_unop_cos:
1581 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1582 break;
1583 case ir_unop_saturate: {
1584 glsl_to_tgsi_instruction *inst;
1585 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1586 inst->saturate = true;
1587 break;
1588 }
1589
1590 case ir_unop_dFdx:
1591 case ir_unop_dFdx_coarse:
1592 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1593 break;
1594 case ir_unop_dFdx_fine:
1595 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1596 break;
1597 case ir_unop_dFdy:
1598 case ir_unop_dFdy_coarse:
1599 case ir_unop_dFdy_fine:
1600 {
1601 /* The X component contains 1 or -1 depending on whether the framebuffer
1602 * is a FBO or the window system buffer, respectively.
1603 * It is then multiplied with the source operand of DDY.
1604 */
1605 static const gl_state_index transform_y_state[STATE_LENGTH]
1606 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1607
1608 unsigned transform_y_index =
1609 _mesa_add_state_reference(this->prog->Parameters,
1610 transform_y_state);
1611
1612 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1613 transform_y_index,
1614 glsl_type::vec4_type);
1615 transform_y.swizzle = SWIZZLE_XXXX;
1616
1617 st_src_reg temp = get_temp(glsl_type::vec4_type);
1618
1619 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1620 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1621 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1622 break;
1623 }
1624
1625 case ir_unop_frexp_sig:
1626 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1627 break;
1628
1629 case ir_unop_frexp_exp:
1630 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1631 break;
1632
1633 case ir_unop_noise: {
1634 /* At some point, a motivated person could add a better
1635 * implementation of noise. Currently not even the nvidia
1636 * binary drivers do anything more than this. In any case, the
1637 * place to do this is in the GL state tracker, not the poor
1638 * driver.
1639 */
1640 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1641 break;
1642 }
1643
1644 case ir_binop_add:
1645 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1646 break;
1647 case ir_binop_sub:
1648 emit_asm(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1649 break;
1650
1651 case ir_binop_mul:
1652 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1653 break;
1654 case ir_binop_div:
1655 if (result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_DOUBLE)
1656 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1657 else
1658 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1659 break;
1660 case ir_binop_mod:
1661 if (result_dst.type == GLSL_TYPE_FLOAT)
1662 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1663 else
1664 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1665 break;
1666
1667 case ir_binop_less:
1668 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1669 break;
1670 case ir_binop_greater:
1671 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1672 break;
1673 case ir_binop_lequal:
1674 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1675 break;
1676 case ir_binop_gequal:
1677 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1678 break;
1679 case ir_binop_equal:
1680 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1681 break;
1682 case ir_binop_nequal:
1683 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1684 break;
1685 case ir_binop_all_equal:
1686 /* "==" operator producing a scalar boolean. */
1687 if (ir->operands[0]->type->is_vector() ||
1688 ir->operands[1]->type->is_vector()) {
1689 st_src_reg temp = get_temp(native_integers ?
1690 glsl_type::uvec4_type :
1691 glsl_type::vec4_type);
1692
1693 if (native_integers) {
1694 st_dst_reg temp_dst = st_dst_reg(temp);
1695 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1696
1697 if (ir->operands[0]->type->is_boolean() &&
1698 ir->operands[1]->as_constant() &&
1699 ir->operands[1]->as_constant()->is_one()) {
1700 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1701 } else {
1702 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1703 }
1704
1705 /* Emit 1-3 AND operations to combine the SEQ results. */
1706 switch (ir->operands[0]->type->vector_elements) {
1707 case 2:
1708 break;
1709 case 3:
1710 temp_dst.writemask = WRITEMASK_Y;
1711 temp1.swizzle = SWIZZLE_YYYY;
1712 temp2.swizzle = SWIZZLE_ZZZZ;
1713 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1714 break;
1715 case 4:
1716 temp_dst.writemask = WRITEMASK_X;
1717 temp1.swizzle = SWIZZLE_XXXX;
1718 temp2.swizzle = SWIZZLE_YYYY;
1719 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1720 temp_dst.writemask = WRITEMASK_Y;
1721 temp1.swizzle = SWIZZLE_ZZZZ;
1722 temp2.swizzle = SWIZZLE_WWWW;
1723 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1724 }
1725
1726 temp1.swizzle = SWIZZLE_XXXX;
1727 temp2.swizzle = SWIZZLE_YYYY;
1728 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1729 } else {
1730 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1731
1732 /* After the dot-product, the value will be an integer on the
1733 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1734 */
1735 emit_dp(ir, result_dst, temp, temp, vector_elements);
1736
1737 /* Negating the result of the dot-product gives values on the range
1738 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1739 * This is achieved using SGE.
1740 */
1741 st_src_reg sge_src = result_src;
1742 sge_src.negate = ~sge_src.negate;
1743 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1744 }
1745 } else {
1746 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1747 }
1748 break;
1749 case ir_binop_any_nequal:
1750 /* "!=" operator producing a scalar boolean. */
1751 if (ir->operands[0]->type->is_vector() ||
1752 ir->operands[1]->type->is_vector()) {
1753 st_src_reg temp = get_temp(native_integers ?
1754 glsl_type::uvec4_type :
1755 glsl_type::vec4_type);
1756 if (ir->operands[0]->type->is_boolean() &&
1757 ir->operands[1]->as_constant() &&
1758 ir->operands[1]->as_constant()->is_zero()) {
1759 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1760 } else {
1761 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1762 }
1763
1764 if (native_integers) {
1765 st_dst_reg temp_dst = st_dst_reg(temp);
1766 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1767
1768 /* Emit 1-3 OR operations to combine the SNE results. */
1769 switch (ir->operands[0]->type->vector_elements) {
1770 case 2:
1771 break;
1772 case 3:
1773 temp_dst.writemask = WRITEMASK_Y;
1774 temp1.swizzle = SWIZZLE_YYYY;
1775 temp2.swizzle = SWIZZLE_ZZZZ;
1776 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1777 break;
1778 case 4:
1779 temp_dst.writemask = WRITEMASK_X;
1780 temp1.swizzle = SWIZZLE_XXXX;
1781 temp2.swizzle = SWIZZLE_YYYY;
1782 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1783 temp_dst.writemask = WRITEMASK_Y;
1784 temp1.swizzle = SWIZZLE_ZZZZ;
1785 temp2.swizzle = SWIZZLE_WWWW;
1786 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1787 }
1788
1789 temp1.swizzle = SWIZZLE_XXXX;
1790 temp2.swizzle = SWIZZLE_YYYY;
1791 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1792 } else {
1793 /* After the dot-product, the value will be an integer on the
1794 * range [0,4]. Zero stays zero, and positive values become 1.0.
1795 */
1796 glsl_to_tgsi_instruction *const dp =
1797 emit_dp(ir, result_dst, temp, temp, vector_elements);
1798 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1799 /* The clamping to [0,1] can be done for free in the fragment
1800 * shader with a saturate.
1801 */
1802 dp->saturate = true;
1803 } else {
1804 /* Negating the result of the dot-product gives values on the range
1805 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1806 * achieved using SLT.
1807 */
1808 st_src_reg slt_src = result_src;
1809 slt_src.negate = ~slt_src.negate;
1810 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1811 }
1812 }
1813 } else {
1814 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1815 }
1816 break;
1817
1818 case ir_binop_logic_xor:
1819 if (native_integers)
1820 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1821 else
1822 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1823 break;
1824
1825 case ir_binop_logic_or: {
1826 if (native_integers) {
1827 /* If integers are used as booleans, we can use an actual "or"
1828 * instruction.
1829 */
1830 assert(native_integers);
1831 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1832 } else {
1833 /* After the addition, the value will be an integer on the
1834 * range [0,2]. Zero stays zero, and positive values become 1.0.
1835 */
1836 glsl_to_tgsi_instruction *add =
1837 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1838 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1839 /* The clamping to [0,1] can be done for free in the fragment
1840 * shader with a saturate if floats are being used as boolean values.
1841 */
1842 add->saturate = true;
1843 } else {
1844 /* Negating the result of the addition gives values on the range
1845 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1846 * is achieved using SLT.
1847 */
1848 st_src_reg slt_src = result_src;
1849 slt_src.negate = ~slt_src.negate;
1850 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1851 }
1852 }
1853 break;
1854 }
1855
1856 case ir_binop_logic_and:
1857 /* If native integers are disabled, the bool args are stored as float 0.0
1858 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1859 * actual AND opcode.
1860 */
1861 if (native_integers)
1862 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1863 else
1864 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1865 break;
1866
1867 case ir_binop_dot:
1868 assert(ir->operands[0]->type->is_vector());
1869 assert(ir->operands[0]->type == ir->operands[1]->type);
1870 emit_dp(ir, result_dst, op[0], op[1],
1871 ir->operands[0]->type->vector_elements);
1872 break;
1873
1874 case ir_unop_sqrt:
1875 if (have_sqrt) {
1876 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1877 } else {
1878 /* sqrt(x) = x * rsq(x). */
1879 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1880 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1881 /* For incoming channels <= 0, set the result to 0. */
1882 op[0].negate = ~op[0].negate;
1883 emit_asm(ir, TGSI_OPCODE_CMP, result_dst,
1884 op[0], result_src, st_src_reg_for_float(0.0));
1885 }
1886 break;
1887 case ir_unop_rsq:
1888 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1889 break;
1890 case ir_unop_i2f:
1891 if (native_integers) {
1892 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1893 break;
1894 }
1895 /* fallthrough to next case otherwise */
1896 case ir_unop_b2f:
1897 if (native_integers) {
1898 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1899 break;
1900 }
1901 /* fallthrough to next case otherwise */
1902 case ir_unop_i2u:
1903 case ir_unop_u2i:
1904 /* Converting between signed and unsigned integers is a no-op. */
1905 result_src = op[0];
1906 break;
1907 case ir_unop_b2i:
1908 if (native_integers) {
1909 /* Booleans are stored as integers using ~0 for true and 0 for false.
1910 * GLSL requires that int(bool) return 1 for true and 0 for false.
1911 * This conversion is done with AND, but it could be done with NEG.
1912 */
1913 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1914 } else {
1915 /* Booleans and integers are both stored as floats when native
1916 * integers are disabled.
1917 */
1918 result_src = op[0];
1919 }
1920 break;
1921 case ir_unop_f2i:
1922 if (native_integers)
1923 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1924 else
1925 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1926 break;
1927 case ir_unop_f2u:
1928 if (native_integers)
1929 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1930 else
1931 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1932 break;
1933 case ir_unop_bitcast_f2i:
1934 result_src = op[0];
1935 result_src.type = GLSL_TYPE_INT;
1936 break;
1937 case ir_unop_bitcast_f2u:
1938 result_src = op[0];
1939 result_src.type = GLSL_TYPE_UINT;
1940 break;
1941 case ir_unop_bitcast_i2f:
1942 case ir_unop_bitcast_u2f:
1943 result_src = op[0];
1944 result_src.type = GLSL_TYPE_FLOAT;
1945 break;
1946 case ir_unop_f2b:
1947 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1948 break;
1949 case ir_unop_d2b:
1950 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
1951 break;
1952 case ir_unop_i2b:
1953 if (native_integers)
1954 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
1955 else
1956 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1957 break;
1958 case ir_unop_trunc:
1959 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1960 break;
1961 case ir_unop_ceil:
1962 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1963 break;
1964 case ir_unop_floor:
1965 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1966 break;
1967 case ir_unop_round_even:
1968 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1969 break;
1970 case ir_unop_fract:
1971 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1972 break;
1973
1974 case ir_binop_min:
1975 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1976 break;
1977 case ir_binop_max:
1978 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1979 break;
1980 case ir_binop_pow:
1981 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1982 break;
1983
1984 case ir_unop_bit_not:
1985 if (native_integers) {
1986 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1987 break;
1988 }
1989 case ir_unop_u2f:
1990 if (native_integers) {
1991 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1992 break;
1993 }
1994 case ir_binop_lshift:
1995 if (native_integers) {
1996 emit_asm(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1997 break;
1998 }
1999 case ir_binop_rshift:
2000 if (native_integers) {
2001 emit_asm(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
2002 break;
2003 }
2004 case ir_binop_bit_and:
2005 if (native_integers) {
2006 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2007 break;
2008 }
2009 case ir_binop_bit_xor:
2010 if (native_integers) {
2011 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
2012 break;
2013 }
2014 case ir_binop_bit_or:
2015 if (native_integers) {
2016 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
2017 break;
2018 }
2019
2020 assert(!"GLSL 1.30 features unsupported");
2021 break;
2022
2023 case ir_binop_ubo_load: {
2024 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2025 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2026 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
2027 unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
2028 st_src_reg index_reg = get_temp(glsl_type::uint_type);
2029 st_src_reg cbuf;
2030
2031 cbuf.type = ir->type->base_type;
2032 cbuf.file = PROGRAM_CONSTANT;
2033 cbuf.index = 0;
2034 cbuf.reladdr = NULL;
2035 cbuf.negate = 0;
2036
2037 assert(ir->type->is_vector() || ir->type->is_scalar());
2038
2039 if (const_offset_ir) {
2040 /* Constant index into constant buffer */
2041 cbuf.reladdr = NULL;
2042 cbuf.index = const_offset / 16;
2043 }
2044 else {
2045 /* Relative/variable index into constant buffer */
2046 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1],
2047 st_src_reg_for_int(4));
2048 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2049 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
2050 }
2051
2052 if (const_uniform_block) {
2053 /* Constant constant buffer */
2054 cbuf.reladdr2 = NULL;
2055 cbuf.index2D = const_block;
2056 cbuf.has_index2 = true;
2057 }
2058 else {
2059 /* Relative/variable constant buffer */
2060 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2061 cbuf.index2D = 1;
2062 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
2063 cbuf.has_index2 = true;
2064 }
2065
2066 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2067 if (cbuf.type == GLSL_TYPE_DOUBLE)
2068 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2069 const_offset % 16 / 8,
2070 const_offset % 16 / 8,
2071 const_offset % 16 / 8);
2072 else
2073 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2074 const_offset % 16 / 4,
2075 const_offset % 16 / 4,
2076 const_offset % 16 / 4);
2077
2078 if (ir->type->base_type == GLSL_TYPE_BOOL) {
2079 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2080 } else {
2081 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2082 }
2083 break;
2084 }
2085 case ir_triop_lrp:
2086 /* note: we have to reorder the three args here */
2087 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2088 break;
2089 case ir_triop_csel:
2090 if (this->ctx->Const.NativeIntegers)
2091 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2092 else {
2093 op[0].negate = ~op[0].negate;
2094 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2095 }
2096 break;
2097 case ir_triop_bitfield_extract:
2098 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2099 break;
2100 case ir_quadop_bitfield_insert:
2101 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2102 break;
2103 case ir_unop_bitfield_reverse:
2104 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2105 break;
2106 case ir_unop_bit_count:
2107 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2108 break;
2109 case ir_unop_find_msb:
2110 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2111 break;
2112 case ir_unop_find_lsb:
2113 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2114 break;
2115 case ir_binop_imul_high:
2116 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2117 break;
2118 case ir_triop_fma:
2119 /* In theory, MAD is incorrect here. */
2120 if (have_fma)
2121 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2122 else
2123 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2124 break;
2125 case ir_unop_interpolate_at_centroid:
2126 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2127 break;
2128 case ir_binop_interpolate_at_offset:
2129 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], op[1]);
2130 break;
2131 case ir_binop_interpolate_at_sample:
2132 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2133 break;
2134
2135 case ir_unop_d2f:
2136 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2137 break;
2138 case ir_unop_f2d:
2139 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2140 break;
2141 case ir_unop_d2i:
2142 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2143 break;
2144 case ir_unop_i2d:
2145 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2146 break;
2147 case ir_unop_d2u:
2148 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2149 break;
2150 case ir_unop_u2d:
2151 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2152 break;
2153 case ir_unop_unpack_double_2x32:
2154 case ir_unop_pack_double_2x32:
2155 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2156 break;
2157
2158 case ir_binop_ldexp:
2159 if (ir->operands[0]->type->base_type == GLSL_TYPE_DOUBLE) {
2160 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2161 } else {
2162 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2163 }
2164 break;
2165
2166 case ir_unop_pack_half_2x16:
2167 emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2168 break;
2169 case ir_unop_unpack_half_2x16:
2170 emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2171 break;
2172
2173 case ir_unop_pack_snorm_2x16:
2174 case ir_unop_pack_unorm_2x16:
2175 case ir_unop_pack_snorm_4x8:
2176 case ir_unop_pack_unorm_4x8:
2177
2178 case ir_unop_unpack_snorm_2x16:
2179 case ir_unop_unpack_unorm_2x16:
2180 case ir_unop_unpack_half_2x16_split_x:
2181 case ir_unop_unpack_half_2x16_split_y:
2182 case ir_unop_unpack_snorm_4x8:
2183 case ir_unop_unpack_unorm_4x8:
2184
2185 case ir_binop_pack_half_2x16_split:
2186 case ir_binop_bfm:
2187 case ir_triop_bfi:
2188 case ir_quadop_vector:
2189 case ir_binop_vector_extract:
2190 case ir_triop_vector_insert:
2191 case ir_binop_carry:
2192 case ir_binop_borrow:
2193 case ir_unop_ssbo_unsized_array_length:
2194 /* This operation is not supported, or should have already been handled.
2195 */
2196 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2197 break;
2198
2199 case ir_unop_get_buffer_size:
2200 assert(!"Not implemented yet");
2201 break;
2202 }
2203
2204 this->result = result_src;
2205 }
2206
2207
2208 void
2209 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2210 {
2211 st_src_reg src;
2212 int i;
2213 int swizzle[4];
2214
2215 /* Note that this is only swizzles in expressions, not those on the left
2216 * hand side of an assignment, which do write masking. See ir_assignment
2217 * for that.
2218 */
2219
2220 ir->val->accept(this);
2221 src = this->result;
2222 assert(src.file != PROGRAM_UNDEFINED);
2223 assert(ir->type->vector_elements > 0);
2224
2225 for (i = 0; i < 4; i++) {
2226 if (i < ir->type->vector_elements) {
2227 switch (i) {
2228 case 0:
2229 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2230 break;
2231 case 1:
2232 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2233 break;
2234 case 2:
2235 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2236 break;
2237 case 3:
2238 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2239 break;
2240 }
2241 } else {
2242 /* If the type is smaller than a vec4, replicate the last
2243 * channel out.
2244 */
2245 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2246 }
2247 }
2248
2249 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2250
2251 this->result = src;
2252 }
2253
2254 /* Test if the variable is an array. Note that geometry and
2255 * tessellation shader inputs are outputs are always arrays (except
2256 * for patch inputs), so only the array element type is considered.
2257 */
2258 static bool
2259 is_inout_array(unsigned stage, ir_variable *var, bool *is_2d)
2260 {
2261 const glsl_type *type = var->type;
2262
2263 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2264 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2265 return false;
2266
2267 *is_2d = false;
2268
2269 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2270 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2271 stage == MESA_SHADER_TESS_CTRL) &&
2272 !var->data.patch) {
2273 if (!var->type->is_array())
2274 return false; /* a system value probably */
2275
2276 type = var->type->fields.array;
2277 *is_2d = true;
2278 }
2279
2280 return type->is_array() || type->is_matrix();
2281 }
2282
2283 void
2284 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2285 {
2286 variable_storage *entry = find_variable_storage(ir->var);
2287 ir_variable *var = ir->var;
2288 bool is_2d;
2289
2290 if (!entry) {
2291 switch (var->data.mode) {
2292 case ir_var_uniform:
2293 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2294 var->data.location);
2295 this->variables.push_tail(entry);
2296 break;
2297 case ir_var_shader_in:
2298 /* The linker assigns locations for varyings and attributes,
2299 * including deprecated builtins (like gl_Color), user-assign
2300 * generic attributes (glBindVertexLocation), and
2301 * user-defined varyings.
2302 */
2303 assert(var->data.location != -1);
2304
2305 if (is_inout_array(shader->Stage, var, &is_2d)) {
2306 struct array_decl *decl = &input_arrays[num_input_arrays];
2307
2308 decl->mesa_index = var->data.location;
2309 decl->array_id = num_input_arrays + 1;
2310 if (is_2d) {
2311 decl->array_size = type_size(var->type->fields.array);
2312 decl->array_type = var->type->fields.array->without_array()->base_type;
2313 } else {
2314 decl->array_size = type_size(var->type);
2315 decl->array_type = var->type->without_array()->base_type;
2316 }
2317 num_input_arrays++;
2318
2319 entry = new(mem_ctx) variable_storage(var,
2320 PROGRAM_INPUT,
2321 var->data.location,
2322 decl->array_id);
2323 }
2324 else {
2325 entry = new(mem_ctx) variable_storage(var,
2326 PROGRAM_INPUT,
2327 var->data.location);
2328 }
2329 this->variables.push_tail(entry);
2330 break;
2331 case ir_var_shader_out:
2332 assert(var->data.location != -1);
2333
2334 if (is_inout_array(shader->Stage, var, &is_2d)) {
2335 struct array_decl *decl = &output_arrays[num_output_arrays];
2336
2337 decl->mesa_index = var->data.location;
2338 decl->array_id = num_output_arrays + 1;
2339 if (is_2d) {
2340 decl->array_size = type_size(var->type->fields.array);
2341 decl->array_type = var->type->fields.array->without_array()->base_type;
2342 } else {
2343 decl->array_size = type_size(var->type);
2344 decl->array_type = var->type->without_array()->base_type;
2345 }
2346 num_output_arrays++;
2347
2348 entry = new(mem_ctx) variable_storage(var,
2349 PROGRAM_OUTPUT,
2350 var->data.location,
2351 decl->array_id);
2352 }
2353 else {
2354 entry = new(mem_ctx) variable_storage(var,
2355 PROGRAM_OUTPUT,
2356 var->data.location
2357 + var->data.index);
2358 }
2359 this->variables.push_tail(entry);
2360 break;
2361 case ir_var_system_value:
2362 entry = new(mem_ctx) variable_storage(var,
2363 PROGRAM_SYSTEM_VALUE,
2364 var->data.location);
2365 break;
2366 case ir_var_auto:
2367 case ir_var_temporary:
2368 st_src_reg src = get_temp(var->type);
2369
2370 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2371 this->variables.push_tail(entry);
2372
2373 break;
2374 }
2375
2376 if (!entry) {
2377 printf("Failed to make storage for %s\n", var->name);
2378 exit(1);
2379 }
2380 }
2381
2382 this->result = st_src_reg(entry->file, entry->index, var->type);
2383 this->result.array_id = entry->array_id;
2384 if (this->shader->Stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in && var->type->is_double())
2385 this->result.is_double_vertex_input = true;
2386 if (!native_integers)
2387 this->result.type = GLSL_TYPE_FLOAT;
2388 }
2389
2390 static void
2391 shrink_array_declarations(struct array_decl *arrays, unsigned count,
2392 GLbitfield64 usage_mask,
2393 GLbitfield64 double_usage_mask,
2394 GLbitfield patch_usage_mask)
2395 {
2396 unsigned i, j;
2397
2398 /* Fix array declarations by removing unused array elements at both ends
2399 * of the arrays. For example, mat4[3] where only mat[1] is used.
2400 */
2401 for (i = 0; i < count; i++) {
2402 struct array_decl *decl = &arrays[i];
2403
2404 /* Shrink the beginning. */
2405 for (j = 0; j < decl->array_size; j++) {
2406 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2407 if (patch_usage_mask &
2408 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2409 break;
2410 }
2411 else {
2412 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2413 break;
2414 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2415 break;
2416 }
2417
2418 decl->mesa_index++;
2419 decl->array_size--;
2420 j--;
2421 }
2422
2423 /* Shrink the end. */
2424 for (j = decl->array_size-1; j >= 0; j--) {
2425 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2426 if (patch_usage_mask &
2427 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2428 break;
2429 }
2430 else {
2431 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2432 break;
2433 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2434 break;
2435 }
2436
2437 decl->array_size--;
2438 }
2439 }
2440 }
2441
2442 void
2443 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2444 {
2445 ir_constant *index;
2446 st_src_reg src;
2447 int element_size = type_size(ir->type);
2448 bool is_2D = false;
2449
2450 index = ir->array_index->constant_expression_value();
2451
2452 ir->array->accept(this);
2453 src = this->result;
2454
2455 if (ir->array->ir_type != ir_type_dereference_array) {
2456 switch (this->prog->Target) {
2457 case GL_TESS_CONTROL_PROGRAM_NV:
2458 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2459 !ir->variable_referenced()->data.patch;
2460 break;
2461 case GL_TESS_EVALUATION_PROGRAM_NV:
2462 is_2D = src.file == PROGRAM_INPUT &&
2463 !ir->variable_referenced()->data.patch;
2464 break;
2465 case GL_GEOMETRY_PROGRAM_NV:
2466 is_2D = src.file == PROGRAM_INPUT;
2467 break;
2468 }
2469 }
2470
2471 if (is_2D)
2472 element_size = 1;
2473
2474 if (index) {
2475
2476 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
2477 src.file == PROGRAM_INPUT)
2478 element_size = attrib_type_size(ir->type, true);
2479 if (is_2D) {
2480 src.index2D = index->value.i[0];
2481 src.has_index2 = true;
2482 } else
2483 src.index += index->value.i[0] * element_size;
2484 } else {
2485 /* Variable index array dereference. It eats the "vec4" of the
2486 * base of the array and an index that offsets the TGSI register
2487 * index.
2488 */
2489 ir->array_index->accept(this);
2490
2491 st_src_reg index_reg;
2492
2493 if (element_size == 1) {
2494 index_reg = this->result;
2495 } else {
2496 index_reg = get_temp(native_integers ?
2497 glsl_type::int_type : glsl_type::float_type);
2498
2499 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2500 this->result, st_src_reg_for_type(index_reg.type, element_size));
2501 }
2502
2503 /* If there was already a relative address register involved, add the
2504 * new and the old together to get the new offset.
2505 */
2506 if (!is_2D && src.reladdr != NULL) {
2507 st_src_reg accum_reg = get_temp(native_integers ?
2508 glsl_type::int_type : glsl_type::float_type);
2509
2510 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2511 index_reg, *src.reladdr);
2512
2513 index_reg = accum_reg;
2514 }
2515
2516 if (is_2D) {
2517 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2518 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2519 src.index2D = 0;
2520 src.has_index2 = true;
2521 } else {
2522 src.reladdr = ralloc(mem_ctx, st_src_reg);
2523 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2524 }
2525 }
2526
2527 /* If the type is smaller than a vec4, replicate the last channel out. */
2528 if (ir->type->is_scalar() || ir->type->is_vector())
2529 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2530 else
2531 src.swizzle = SWIZZLE_NOOP;
2532
2533 /* Change the register type to the element type of the array. */
2534 src.type = ir->type->base_type;
2535
2536 this->result = src;
2537 }
2538
2539 void
2540 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2541 {
2542 unsigned int i;
2543 const glsl_type *struct_type = ir->record->type;
2544 int offset = 0;
2545
2546 ir->record->accept(this);
2547
2548 for (i = 0; i < struct_type->length; i++) {
2549 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2550 break;
2551 offset += type_size(struct_type->fields.structure[i].type);
2552 }
2553
2554 /* If the type is smaller than a vec4, replicate the last channel out. */
2555 if (ir->type->is_scalar() || ir->type->is_vector())
2556 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2557 else
2558 this->result.swizzle = SWIZZLE_NOOP;
2559
2560 this->result.index += offset;
2561 this->result.type = ir->type->base_type;
2562 }
2563
2564 /**
2565 * We want to be careful in assignment setup to hit the actual storage
2566 * instead of potentially using a temporary like we might with the
2567 * ir_dereference handler.
2568 */
2569 static st_dst_reg
2570 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2571 {
2572 /* The LHS must be a dereference. If the LHS is a variable indexed array
2573 * access of a vector, it must be separated into a series conditional moves
2574 * before reaching this point (see ir_vec_index_to_cond_assign).
2575 */
2576 assert(ir->as_dereference());
2577 ir_dereference_array *deref_array = ir->as_dereference_array();
2578 if (deref_array) {
2579 assert(!deref_array->array->type->is_vector());
2580 }
2581
2582 /* Use the rvalue deref handler for the most part. We'll ignore
2583 * swizzles in it and write swizzles using writemask, though.
2584 */
2585 ir->accept(v);
2586 return st_dst_reg(v->result);
2587 }
2588
2589 /**
2590 * Process the condition of a conditional assignment
2591 *
2592 * Examines the condition of a conditional assignment to generate the optimal
2593 * first operand of a \c CMP instruction. If the condition is a relational
2594 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2595 * used as the source for the \c CMP instruction. Otherwise the comparison
2596 * is processed to a boolean result, and the boolean result is used as the
2597 * operand to the CMP instruction.
2598 */
2599 bool
2600 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2601 {
2602 ir_rvalue *src_ir = ir;
2603 bool negate = true;
2604 bool switch_order = false;
2605
2606 ir_expression *const expr = ir->as_expression();
2607
2608 if (native_integers) {
2609 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2610 enum glsl_base_type type = expr->operands[0]->type->base_type;
2611 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2612 type == GLSL_TYPE_BOOL) {
2613 if (expr->operation == ir_binop_equal) {
2614 if (expr->operands[0]->is_zero()) {
2615 src_ir = expr->operands[1];
2616 switch_order = true;
2617 }
2618 else if (expr->operands[1]->is_zero()) {
2619 src_ir = expr->operands[0];
2620 switch_order = true;
2621 }
2622 }
2623 else if (expr->operation == ir_binop_nequal) {
2624 if (expr->operands[0]->is_zero()) {
2625 src_ir = expr->operands[1];
2626 }
2627 else if (expr->operands[1]->is_zero()) {
2628 src_ir = expr->operands[0];
2629 }
2630 }
2631 }
2632 }
2633
2634 src_ir->accept(this);
2635 return switch_order;
2636 }
2637
2638 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2639 bool zero_on_left = false;
2640
2641 if (expr->operands[0]->is_zero()) {
2642 src_ir = expr->operands[1];
2643 zero_on_left = true;
2644 } else if (expr->operands[1]->is_zero()) {
2645 src_ir = expr->operands[0];
2646 zero_on_left = false;
2647 }
2648
2649 /* a is - 0 + - 0 +
2650 * (a < 0) T F F ( a < 0) T F F
2651 * (0 < a) F F T (-a < 0) F F T
2652 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2653 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2654 * (a > 0) F F T (-a < 0) F F T
2655 * (0 > a) T F F ( a < 0) T F F
2656 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2657 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2658 *
2659 * Note that exchanging the order of 0 and 'a' in the comparison simply
2660 * means that the value of 'a' should be negated.
2661 */
2662 if (src_ir != ir) {
2663 switch (expr->operation) {
2664 case ir_binop_less:
2665 switch_order = false;
2666 negate = zero_on_left;
2667 break;
2668
2669 case ir_binop_greater:
2670 switch_order = false;
2671 negate = !zero_on_left;
2672 break;
2673
2674 case ir_binop_lequal:
2675 switch_order = true;
2676 negate = !zero_on_left;
2677 break;
2678
2679 case ir_binop_gequal:
2680 switch_order = true;
2681 negate = zero_on_left;
2682 break;
2683
2684 default:
2685 /* This isn't the right kind of comparison afterall, so make sure
2686 * the whole condition is visited.
2687 */
2688 src_ir = ir;
2689 break;
2690 }
2691 }
2692 }
2693
2694 src_ir->accept(this);
2695
2696 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2697 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2698 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2699 * computing the condition.
2700 */
2701 if (negate)
2702 this->result.negate = ~this->result.negate;
2703
2704 return switch_order;
2705 }
2706
2707 void
2708 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2709 st_dst_reg *l, st_src_reg *r,
2710 st_src_reg *cond, bool cond_swap)
2711 {
2712 if (type->base_type == GLSL_TYPE_STRUCT) {
2713 for (unsigned int i = 0; i < type->length; i++) {
2714 emit_block_mov(ir, type->fields.structure[i].type, l, r,
2715 cond, cond_swap);
2716 }
2717 return;
2718 }
2719
2720 if (type->is_array()) {
2721 for (unsigned int i = 0; i < type->length; i++) {
2722 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
2723 }
2724 return;
2725 }
2726
2727 if (type->is_matrix()) {
2728 const struct glsl_type *vec_type;
2729
2730 vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
2731 type->vector_elements, 1);
2732
2733 for (int i = 0; i < type->matrix_columns; i++) {
2734 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
2735 }
2736 return;
2737 }
2738
2739 assert(type->is_scalar() || type->is_vector());
2740
2741 r->type = type->base_type;
2742 if (cond) {
2743 st_src_reg l_src = st_src_reg(*l);
2744 l_src.swizzle = swizzle_for_size(type->vector_elements);
2745
2746 if (native_integers) {
2747 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
2748 cond_swap ? l_src : *r,
2749 cond_swap ? *r : l_src);
2750 } else {
2751 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
2752 cond_swap ? l_src : *r,
2753 cond_swap ? *r : l_src);
2754 }
2755 } else {
2756 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
2757 }
2758 l->index++;
2759 r->index++;
2760 if (type->is_dual_slot_double()) {
2761 l->index++;
2762 if (r->is_double_vertex_input == false)
2763 r->index++;
2764 }
2765 }
2766
2767 void
2768 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2769 {
2770 st_dst_reg l;
2771 st_src_reg r;
2772
2773 ir->rhs->accept(this);
2774 r = this->result;
2775
2776 l = get_assignment_lhs(ir->lhs, this);
2777
2778 /* FINISHME: This should really set to the correct maximal writemask for each
2779 * FINISHME: component written (in the loops below). This case can only
2780 * FINISHME: occur for matrices, arrays, and structures.
2781 */
2782 if (ir->write_mask == 0) {
2783 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2784
2785 if (ir->lhs->type->is_array() || ir->lhs->type->without_array()->is_matrix()) {
2786 if (ir->lhs->type->without_array()->is_double()) {
2787 switch (ir->lhs->type->without_array()->vector_elements) {
2788 case 1:
2789 l.writemask = WRITEMASK_X;
2790 break;
2791 case 2:
2792 l.writemask = WRITEMASK_XY;
2793 break;
2794 case 3:
2795 l.writemask = WRITEMASK_XYZ;
2796 break;
2797 case 4:
2798 l.writemask = WRITEMASK_XYZW;
2799 break;
2800 }
2801 } else
2802 l.writemask = WRITEMASK_XYZW;
2803 }
2804 } else if (ir->lhs->type->is_scalar() &&
2805 !ir->lhs->type->is_double() &&
2806 ir->lhs->variable_referenced()->data.mode == ir_var_shader_out) {
2807 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2808 * FINISHME: W component of fragment shader output zero, work correctly.
2809 */
2810 l.writemask = WRITEMASK_XYZW;
2811 } else {
2812 int swizzles[4];
2813 int first_enabled_chan = 0;
2814 int rhs_chan = 0;
2815
2816 l.writemask = ir->write_mask;
2817
2818 for (int i = 0; i < 4; i++) {
2819 if (l.writemask & (1 << i)) {
2820 first_enabled_chan = GET_SWZ(r.swizzle, i);
2821 break;
2822 }
2823 }
2824
2825 /* Swizzle a small RHS vector into the channels being written.
2826 *
2827 * glsl ir treats write_mask as dictating how many channels are
2828 * present on the RHS while TGSI treats write_mask as just
2829 * showing which channels of the vec4 RHS get written.
2830 */
2831 for (int i = 0; i < 4; i++) {
2832 if (l.writemask & (1 << i))
2833 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2834 else
2835 swizzles[i] = first_enabled_chan;
2836 }
2837 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2838 swizzles[2], swizzles[3]);
2839 }
2840
2841 assert(l.file != PROGRAM_UNDEFINED);
2842 assert(r.file != PROGRAM_UNDEFINED);
2843
2844 if (ir->condition) {
2845 const bool switch_order = this->process_move_condition(ir->condition);
2846 st_src_reg condition = this->result;
2847
2848 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
2849 } else if (ir->rhs->as_expression() &&
2850 this->instructions.get_tail() &&
2851 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2852 type_size(ir->lhs->type) == 1 &&
2853 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
2854 /* To avoid emitting an extra MOV when assigning an expression to a
2855 * variable, emit the last instruction of the expression again, but
2856 * replace the destination register with the target of the assignment.
2857 * Dead code elimination will remove the original instruction.
2858 */
2859 glsl_to_tgsi_instruction *inst, *new_inst;
2860 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2861 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
2862 new_inst->saturate = inst->saturate;
2863 inst->dead_mask = inst->dst[0].writemask;
2864 } else {
2865 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
2866 }
2867 }
2868
2869
2870 void
2871 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2872 {
2873 st_src_reg src;
2874 GLdouble stack_vals[4] = { 0 };
2875 gl_constant_value *values = (gl_constant_value *) stack_vals;
2876 GLenum gl_type = GL_NONE;
2877 unsigned int i;
2878 static int in_array = 0;
2879 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2880
2881 /* Unfortunately, 4 floats is all we can get into
2882 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2883 * aggregate constant and move each constant value into it. If we
2884 * get lucky, copy propagation will eliminate the extra moves.
2885 */
2886 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2887 st_src_reg temp_base = get_temp(ir->type);
2888 st_dst_reg temp = st_dst_reg(temp_base);
2889
2890 foreach_in_list(ir_constant, field_value, &ir->components) {
2891 int size = type_size(field_value->type);
2892
2893 assert(size > 0);
2894
2895 field_value->accept(this);
2896 src = this->result;
2897
2898 for (i = 0; i < (unsigned int)size; i++) {
2899 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2900
2901 src.index++;
2902 temp.index++;
2903 }
2904 }
2905 this->result = temp_base;
2906 return;
2907 }
2908
2909 if (ir->type->is_array()) {
2910 st_src_reg temp_base = get_temp(ir->type);
2911 st_dst_reg temp = st_dst_reg(temp_base);
2912 int size = type_size(ir->type->fields.array);
2913
2914 assert(size > 0);
2915 in_array++;
2916
2917 for (i = 0; i < ir->type->length; i++) {
2918 ir->array_elements[i]->accept(this);
2919 src = this->result;
2920 for (int j = 0; j < size; j++) {
2921 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2922
2923 src.index++;
2924 temp.index++;
2925 }
2926 }
2927 this->result = temp_base;
2928 in_array--;
2929 return;
2930 }
2931
2932 if (ir->type->is_matrix()) {
2933 st_src_reg mat = get_temp(ir->type);
2934 st_dst_reg mat_column = st_dst_reg(mat);
2935
2936 for (i = 0; i < ir->type->matrix_columns; i++) {
2937 switch (ir->type->base_type) {
2938 case GLSL_TYPE_FLOAT:
2939 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2940
2941 src = st_src_reg(file, -1, ir->type->base_type);
2942 src.index = add_constant(file,
2943 values,
2944 ir->type->vector_elements,
2945 GL_FLOAT,
2946 &src.swizzle);
2947 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
2948 break;
2949 case GLSL_TYPE_DOUBLE:
2950 values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
2951 src = st_src_reg(file, -1, ir->type->base_type);
2952 src.index = add_constant(file,
2953 values,
2954 ir->type->vector_elements,
2955 GL_DOUBLE,
2956 &src.swizzle);
2957 if (ir->type->vector_elements >= 2) {
2958 mat_column.writemask = WRITEMASK_XY;
2959 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
2960 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
2961 } else {
2962 mat_column.writemask = WRITEMASK_X;
2963 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
2964 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
2965 }
2966 src.index++;
2967 if (ir->type->vector_elements > 2) {
2968 if (ir->type->vector_elements == 4) {
2969 mat_column.writemask = WRITEMASK_ZW;
2970 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
2971 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
2972 } else {
2973 mat_column.writemask = WRITEMASK_Z;
2974 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
2975 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
2976 mat_column.writemask = WRITEMASK_XYZW;
2977 src.swizzle = SWIZZLE_XYZW;
2978 }
2979 mat_column.index++;
2980 }
2981 break;
2982 default:
2983 unreachable("Illegal matrix constant type.\n");
2984 break;
2985 }
2986 mat_column.index++;
2987 }
2988 this->result = mat;
2989 return;
2990 }
2991
2992 switch (ir->type->base_type) {
2993 case GLSL_TYPE_FLOAT:
2994 gl_type = GL_FLOAT;
2995 for (i = 0; i < ir->type->vector_elements; i++) {
2996 values[i].f = ir->value.f[i];
2997 }
2998 break;
2999 case GLSL_TYPE_DOUBLE:
3000 gl_type = GL_DOUBLE;
3001 for (i = 0; i < ir->type->vector_elements; i++) {
3002 values[i * 2].i = *(uint32_t *)&ir->value.d[i];
3003 values[i * 2 + 1].i = *(((uint32_t *)&ir->value.d[i]) + 1);
3004 }
3005 break;
3006 case GLSL_TYPE_UINT:
3007 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3008 for (i = 0; i < ir->type->vector_elements; i++) {
3009 if (native_integers)
3010 values[i].u = ir->value.u[i];
3011 else
3012 values[i].f = ir->value.u[i];
3013 }
3014 break;
3015 case GLSL_TYPE_INT:
3016 gl_type = native_integers ? GL_INT : GL_FLOAT;
3017 for (i = 0; i < ir->type->vector_elements; i++) {
3018 if (native_integers)
3019 values[i].i = ir->value.i[i];
3020 else
3021 values[i].f = ir->value.i[i];
3022 }
3023 break;
3024 case GLSL_TYPE_BOOL:
3025 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3026 for (i = 0; i < ir->type->vector_elements; i++) {
3027 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3028 }
3029 break;
3030 default:
3031 assert(!"Non-float/uint/int/bool constant");
3032 }
3033
3034 this->result = st_src_reg(file, -1, ir->type);
3035 this->result.index = add_constant(file,
3036 values,
3037 ir->type->vector_elements,
3038 gl_type,
3039 &this->result.swizzle);
3040 }
3041
3042 function_entry *
3043 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
3044 {
3045 foreach_in_list_use_after(function_entry, entry, &this->function_signatures) {
3046 if (entry->sig == sig)
3047 return entry;
3048 }
3049
3050 entry = ralloc(mem_ctx, function_entry);
3051 entry->sig = sig;
3052 entry->sig_id = this->next_signature_id++;
3053 entry->bgn_inst = NULL;
3054
3055 /* Allocate storage for all the parameters. */
3056 foreach_in_list(ir_variable, param, &sig->parameters) {
3057 variable_storage *storage;
3058
3059 storage = find_variable_storage(param);
3060 assert(!storage);
3061
3062 st_src_reg src = get_temp(param->type);
3063
3064 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
3065 this->variables.push_tail(storage);
3066 }
3067
3068 if (!sig->return_type->is_void()) {
3069 entry->return_reg = get_temp(sig->return_type);
3070 } else {
3071 entry->return_reg = undef_src;
3072 }
3073
3074 this->function_signatures.push_tail(entry);
3075 return entry;
3076 }
3077
3078 void
3079 glsl_to_tgsi_visitor::visit(ir_call *ir)
3080 {
3081 glsl_to_tgsi_instruction *call_inst;
3082 ir_function_signature *sig = ir->callee;
3083 function_entry *entry = get_function_signature(sig);
3084 int i;
3085
3086 /* Process in parameters. */
3087 foreach_two_lists(formal_node, &sig->parameters,
3088 actual_node, &ir->actual_parameters) {
3089 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
3090 ir_variable *param = (ir_variable *) formal_node;
3091
3092 if (param->data.mode == ir_var_function_in ||
3093 param->data.mode == ir_var_function_inout) {
3094 variable_storage *storage = find_variable_storage(param);
3095 assert(storage);
3096
3097 param_rval->accept(this);
3098 st_src_reg r = this->result;
3099
3100 st_dst_reg l;
3101 l.file = storage->file;
3102 l.index = storage->index;
3103 l.reladdr = NULL;
3104 l.writemask = WRITEMASK_XYZW;
3105 l.cond_mask = COND_TR;
3106
3107 for (i = 0; i < type_size(param->type); i++) {
3108 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3109 l.index++;
3110 r.index++;
3111 }
3112 }
3113 }
3114
3115 /* Emit call instruction */
3116 call_inst = emit_asm(ir, TGSI_OPCODE_CAL);
3117 call_inst->function = entry;
3118
3119 /* Process out parameters. */
3120 foreach_two_lists(formal_node, &sig->parameters,
3121 actual_node, &ir->actual_parameters) {
3122 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
3123 ir_variable *param = (ir_variable *) formal_node;
3124
3125 if (param->data.mode == ir_var_function_out ||
3126 param->data.mode == ir_var_function_inout) {
3127 variable_storage *storage = find_variable_storage(param);
3128 assert(storage);
3129
3130 st_src_reg r;
3131 r.file = storage->file;
3132 r.index = storage->index;
3133 r.reladdr = NULL;
3134 r.swizzle = SWIZZLE_NOOP;
3135 r.negate = 0;
3136
3137 param_rval->accept(this);
3138 st_dst_reg l = st_dst_reg(this->result);
3139
3140 for (i = 0; i < type_size(param->type); i++) {
3141 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3142 l.index++;
3143 r.index++;
3144 }
3145 }
3146 }
3147
3148 /* Process return value. */
3149 this->result = entry->return_reg;
3150 }
3151
3152 void
3153 glsl_to_tgsi_visitor::visit(ir_texture *ir)
3154 {
3155 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
3156 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
3157 st_src_reg levels_src;
3158 st_dst_reg result_dst, coord_dst, cube_sc_dst;
3159 glsl_to_tgsi_instruction *inst = NULL;
3160 unsigned opcode = TGSI_OPCODE_NOP;
3161 const glsl_type *sampler_type = ir->sampler->type;
3162 ir_rvalue *sampler_index =
3163 _mesa_get_sampler_array_nonconst_index(ir->sampler);
3164 bool is_cube_array = false;
3165 unsigned i;
3166
3167 /* if we are a cube array sampler */
3168 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3169 sampler_type->sampler_array)) {
3170 is_cube_array = true;
3171 }
3172
3173 if (ir->coordinate) {
3174 ir->coordinate->accept(this);
3175
3176 /* Put our coords in a temp. We'll need to modify them for shadow,
3177 * projection, or LOD, so the only case we'd use it as is is if
3178 * we're doing plain old texturing. The optimization passes on
3179 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
3180 */
3181 coord = get_temp(glsl_type::vec4_type);
3182 coord_dst = st_dst_reg(coord);
3183 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
3184 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3185 }
3186
3187 if (ir->projector) {
3188 ir->projector->accept(this);
3189 projector = this->result;
3190 }
3191
3192 /* Storage for our result. Ideally for an assignment we'd be using
3193 * the actual storage for the result here, instead.
3194 */
3195 result_src = get_temp(ir->type);
3196 result_dst = st_dst_reg(result_src);
3197
3198 switch (ir->op) {
3199 case ir_tex:
3200 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
3201 if (ir->offset) {
3202 ir->offset->accept(this);
3203 offset[0] = this->result;
3204 }
3205 break;
3206 case ir_txb:
3207 if (is_cube_array ||
3208 sampler_type == glsl_type::samplerCubeShadow_type) {
3209 opcode = TGSI_OPCODE_TXB2;
3210 }
3211 else {
3212 opcode = TGSI_OPCODE_TXB;
3213 }
3214 ir->lod_info.bias->accept(this);
3215 lod_info = this->result;
3216 if (ir->offset) {
3217 ir->offset->accept(this);
3218 offset[0] = this->result;
3219 }
3220 break;
3221 case ir_txl:
3222 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
3223 ir->lod_info.lod->accept(this);
3224 lod_info = this->result;
3225 if (ir->offset) {
3226 ir->offset->accept(this);
3227 offset[0] = this->result;
3228 }
3229 break;
3230 case ir_txd:
3231 opcode = TGSI_OPCODE_TXD;
3232 ir->lod_info.grad.dPdx->accept(this);
3233 dx = this->result;
3234 ir->lod_info.grad.dPdy->accept(this);
3235 dy = this->result;
3236 if (ir->offset) {
3237 ir->offset->accept(this);
3238 offset[0] = this->result;
3239 }
3240 break;
3241 case ir_txs:
3242 opcode = TGSI_OPCODE_TXQ;
3243 ir->lod_info.lod->accept(this);
3244 lod_info = this->result;
3245 break;
3246 case ir_query_levels:
3247 opcode = TGSI_OPCODE_TXQ;
3248 lod_info = undef_src;
3249 levels_src = get_temp(ir->type);
3250 break;
3251 case ir_txf:
3252 opcode = TGSI_OPCODE_TXF;
3253 ir->lod_info.lod->accept(this);
3254 lod_info = this->result;
3255 if (ir->offset) {
3256 ir->offset->accept(this);
3257 offset[0] = this->result;
3258 }
3259 break;
3260 case ir_txf_ms:
3261 opcode = TGSI_OPCODE_TXF;
3262 ir->lod_info.sample_index->accept(this);
3263 sample_index = this->result;
3264 break;
3265 case ir_tg4:
3266 opcode = TGSI_OPCODE_TG4;
3267 ir->lod_info.component->accept(this);
3268 component = this->result;
3269 if (ir->offset) {
3270 ir->offset->accept(this);
3271 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
3272 const glsl_type *elt_type = ir->offset->type->fields.array;
3273 for (i = 0; i < ir->offset->type->length; i++) {
3274 offset[i] = this->result;
3275 offset[i].index += i * type_size(elt_type);
3276 offset[i].type = elt_type->base_type;
3277 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
3278 }
3279 } else {
3280 offset[0] = this->result;
3281 }
3282 }
3283 break;
3284 case ir_lod:
3285 opcode = TGSI_OPCODE_LODQ;
3286 break;
3287 case ir_texture_samples:
3288 opcode = TGSI_OPCODE_TXQS;
3289 break;
3290 case ir_samples_identical:
3291 unreachable("Unexpected ir_samples_identical opcode");
3292 }
3293
3294 if (ir->projector) {
3295 if (opcode == TGSI_OPCODE_TEX) {
3296 /* Slot the projector in as the last component of the coord. */
3297 coord_dst.writemask = WRITEMASK_W;
3298 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
3299 coord_dst.writemask = WRITEMASK_XYZW;
3300 opcode = TGSI_OPCODE_TXP;
3301 } else {
3302 st_src_reg coord_w = coord;
3303 coord_w.swizzle = SWIZZLE_WWWW;
3304
3305 /* For the other TEX opcodes there's no projective version
3306 * since the last slot is taken up by LOD info. Do the
3307 * projective divide now.
3308 */
3309 coord_dst.writemask = WRITEMASK_W;
3310 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
3311
3312 /* In the case where we have to project the coordinates "by hand,"
3313 * the shadow comparator value must also be projected.
3314 */
3315 st_src_reg tmp_src = coord;
3316 if (ir->shadow_comparitor) {
3317 /* Slot the shadow value in as the second to last component of the
3318 * coord.
3319 */
3320 ir->shadow_comparitor->accept(this);
3321
3322 tmp_src = get_temp(glsl_type::vec4_type);
3323 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
3324
3325 /* Projective division not allowed for array samplers. */
3326 assert(!sampler_type->sampler_array);
3327
3328 tmp_dst.writemask = WRITEMASK_Z;
3329 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
3330
3331 tmp_dst.writemask = WRITEMASK_XY;
3332 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
3333 }
3334
3335 coord_dst.writemask = WRITEMASK_XYZ;
3336 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
3337
3338 coord_dst.writemask = WRITEMASK_XYZW;
3339 coord.swizzle = SWIZZLE_XYZW;
3340 }
3341 }
3342
3343 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
3344 * comparator was put in the correct place (and projected) by the code,
3345 * above, that handles by-hand projection.
3346 */
3347 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
3348 /* Slot the shadow value in as the second to last component of the
3349 * coord.
3350 */
3351 ir->shadow_comparitor->accept(this);
3352
3353 if (is_cube_array) {
3354 cube_sc = get_temp(glsl_type::float_type);
3355 cube_sc_dst = st_dst_reg(cube_sc);
3356 cube_sc_dst.writemask = WRITEMASK_X;
3357 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
3358 cube_sc_dst.writemask = WRITEMASK_X;
3359 }
3360 else {
3361 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
3362 sampler_type->sampler_array) ||
3363 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
3364 coord_dst.writemask = WRITEMASK_W;
3365 } else {
3366 coord_dst.writemask = WRITEMASK_Z;
3367 }
3368 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3369 coord_dst.writemask = WRITEMASK_XYZW;
3370 }
3371 }
3372
3373 if (ir->op == ir_txf_ms) {
3374 coord_dst.writemask = WRITEMASK_W;
3375 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
3376 coord_dst.writemask = WRITEMASK_XYZW;
3377 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
3378 opcode == TGSI_OPCODE_TXF) {
3379 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
3380 coord_dst.writemask = WRITEMASK_W;
3381 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
3382 coord_dst.writemask = WRITEMASK_XYZW;
3383 }
3384
3385 if (sampler_index) {
3386 sampler_index->accept(this);
3387 emit_arl(ir, sampler_reladdr, this->result);
3388 }
3389
3390 if (opcode == TGSI_OPCODE_TXD)
3391 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
3392 else if (opcode == TGSI_OPCODE_TXQ) {
3393 if (ir->op == ir_query_levels) {
3394 /* the level is stored in W */
3395 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
3396 result_dst.writemask = WRITEMASK_X;
3397 levels_src.swizzle = SWIZZLE_WWWW;
3398 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
3399 } else
3400 inst = emit_asm(ir, opcode, result_dst, lod_info);
3401 } else if (opcode == TGSI_OPCODE_TXQS) {
3402 inst = emit_asm(ir, opcode, result_dst);
3403 } else if (opcode == TGSI_OPCODE_TXF) {
3404 inst = emit_asm(ir, opcode, result_dst, coord);
3405 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
3406 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
3407 } else if (opcode == TGSI_OPCODE_TEX2) {
3408 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
3409 } else if (opcode == TGSI_OPCODE_TG4) {
3410 if (is_cube_array && ir->shadow_comparitor) {
3411 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
3412 } else {
3413 inst = emit_asm(ir, opcode, result_dst, coord, component);
3414 }
3415 } else
3416 inst = emit_asm(ir, opcode, result_dst, coord);
3417
3418 if (ir->shadow_comparitor)
3419 inst->tex_shadow = GL_TRUE;
3420
3421 inst->sampler.index = _mesa_get_sampler_uniform_value(ir->sampler,
3422 this->shader_program,
3423 this->prog);
3424 if (sampler_index) {
3425 inst->sampler.reladdr = ralloc(mem_ctx, st_src_reg);
3426 memcpy(inst->sampler.reladdr, &sampler_reladdr, sizeof(sampler_reladdr));
3427 inst->sampler_array_size =
3428 ir->sampler->as_dereference_array()->array->type->array_size();
3429 } else {
3430 inst->sampler_array_size = 1;
3431 }
3432
3433 if (ir->offset) {
3434 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
3435 inst->tex_offsets[i] = offset[i];
3436 inst->tex_offset_num_offset = i;
3437 }
3438
3439 switch (sampler_type->sampler_dimensionality) {
3440 case GLSL_SAMPLER_DIM_1D:
3441 inst->tex_target = (sampler_type->sampler_array)
3442 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
3443 break;
3444 case GLSL_SAMPLER_DIM_2D:
3445 inst->tex_target = (sampler_type->sampler_array)
3446 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
3447 break;
3448 case GLSL_SAMPLER_DIM_3D:
3449 inst->tex_target = TEXTURE_3D_INDEX;
3450 break;
3451 case GLSL_SAMPLER_DIM_CUBE:
3452 inst->tex_target = (sampler_type->sampler_array)
3453 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
3454 break;
3455 case GLSL_SAMPLER_DIM_RECT:
3456 inst->tex_target = TEXTURE_RECT_INDEX;
3457 break;
3458 case GLSL_SAMPLER_DIM_BUF:
3459 inst->tex_target = TEXTURE_BUFFER_INDEX;
3460 break;
3461 case GLSL_SAMPLER_DIM_EXTERNAL:
3462 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3463 break;
3464 case GLSL_SAMPLER_DIM_MS:
3465 inst->tex_target = (sampler_type->sampler_array)
3466 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3467 break;
3468 default:
3469 assert(!"Should not get here.");
3470 }
3471
3472 inst->tex_type = ir->type->base_type;
3473
3474 this->result = result_src;
3475 }
3476
3477 void
3478 glsl_to_tgsi_visitor::visit(ir_return *ir)
3479 {
3480 if (ir->get_value()) {
3481 st_dst_reg l;
3482 int i;
3483
3484 assert(current_function);
3485
3486 ir->get_value()->accept(this);
3487 st_src_reg r = this->result;
3488
3489 l = st_dst_reg(current_function->return_reg);
3490
3491 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
3492 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3493 l.index++;
3494 r.index++;
3495 }
3496 }
3497
3498 emit_asm(ir, TGSI_OPCODE_RET);
3499 }
3500
3501 void
3502 glsl_to_tgsi_visitor::visit(ir_discard *ir)
3503 {
3504 if (ir->condition) {
3505 ir->condition->accept(this);
3506 st_src_reg condition = this->result;
3507
3508 /* Convert the bool condition to a float so we can negate. */
3509 if (native_integers) {
3510 st_src_reg temp = get_temp(ir->condition->type);
3511 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
3512 condition, st_src_reg_for_float(1.0));
3513 condition = temp;
3514 }
3515
3516 condition.negate = ~condition.negate;
3517 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
3518 } else {
3519 /* unconditional kil */
3520 emit_asm(ir, TGSI_OPCODE_KILL);
3521 }
3522 }
3523
3524 void
3525 glsl_to_tgsi_visitor::visit(ir_if *ir)
3526 {
3527 unsigned if_opcode;
3528 glsl_to_tgsi_instruction *if_inst;
3529
3530 ir->condition->accept(this);
3531 assert(this->result.file != PROGRAM_UNDEFINED);
3532
3533 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
3534
3535 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
3536
3537 this->instructions.push_tail(if_inst);
3538
3539 visit_exec_list(&ir->then_instructions, this);
3540
3541 if (!ir->else_instructions.is_empty()) {
3542 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
3543 visit_exec_list(&ir->else_instructions, this);
3544 }
3545
3546 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
3547 }
3548
3549
3550 void
3551 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
3552 {
3553 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3554
3555 ir->stream->accept(this);
3556 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
3557 }
3558
3559 void
3560 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
3561 {
3562 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3563
3564 ir->stream->accept(this);
3565 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
3566 }
3567
3568 void
3569 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
3570 {
3571 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
3572 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
3573
3574 emit_asm(ir, TGSI_OPCODE_BARRIER);
3575 }
3576
3577 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
3578 {
3579 result.file = PROGRAM_UNDEFINED;
3580 next_temp = 1;
3581 array_sizes = NULL;
3582 max_num_arrays = 0;
3583 next_array = 0;
3584 num_input_arrays = 0;
3585 num_output_arrays = 0;
3586 next_signature_id = 1;
3587 num_immediates = 0;
3588 current_function = NULL;
3589 num_address_regs = 0;
3590 samplers_used = 0;
3591 indirect_addr_consts = false;
3592 wpos_transform_const = -1;
3593 glsl_version = 0;
3594 native_integers = false;
3595 mem_ctx = ralloc_context(NULL);
3596 ctx = NULL;
3597 prog = NULL;
3598 shader_program = NULL;
3599 shader = NULL;
3600 options = NULL;
3601 have_sqrt = false;
3602 have_fma = false;
3603 }
3604
3605 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
3606 {
3607 free(array_sizes);
3608 ralloc_free(mem_ctx);
3609 }
3610
3611 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
3612 {
3613 delete v;
3614 }
3615
3616
3617 /**
3618 * Count resources used by the given gpu program (number of texture
3619 * samplers, etc).
3620 */
3621 static void
3622 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
3623 {
3624 v->samplers_used = 0;
3625
3626 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
3627 if (inst->info->is_tex) {
3628 for (int i = 0; i < inst->sampler_array_size; i++) {
3629 unsigned idx = inst->sampler.index + i;
3630 v->samplers_used |= 1 << idx;
3631
3632 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
3633 v->sampler_types[idx] = inst->tex_type;
3634 v->sampler_targets[idx] =
3635 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
3636
3637 if (inst->tex_shadow) {
3638 prog->ShadowSamplers |= 1 << (inst->sampler.index + i);
3639 }
3640 }
3641 }
3642 }
3643 prog->SamplersUsed = v->samplers_used;
3644
3645 if (v->shader_program != NULL)
3646 _mesa_update_shader_textures_used(v->shader_program, prog);
3647 }
3648
3649 /**
3650 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3651 * are read from the given src in this instruction
3652 */
3653 static int
3654 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3655 {
3656 int read_mask = 0, comp;
3657
3658 /* Now, given the src swizzle and the written channels, find which
3659 * components are actually read
3660 */
3661 for (comp = 0; comp < 4; ++comp) {
3662 const unsigned coord = GET_SWZ(src.swizzle, comp);
3663 assert(coord < 4);
3664 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3665 read_mask |= 1 << coord;
3666 }
3667
3668 return read_mask;
3669 }
3670
3671 /**
3672 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3673 * instruction is the first instruction to write to register T0. There are
3674 * several lowering passes done in GLSL IR (e.g. branches and
3675 * relative addressing) that create a large number of conditional assignments
3676 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3677 *
3678 * Here is why this conversion is safe:
3679 * CMP T0, T1 T2 T0 can be expanded to:
3680 * if (T1 < 0.0)
3681 * MOV T0, T2;
3682 * else
3683 * MOV T0, T0;
3684 *
3685 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3686 * as the original program. If (T1 < 0.0) evaluates to false, executing
3687 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3688 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3689 * because any instruction that was going to read from T0 after this was going
3690 * to read a garbage value anyway.
3691 */
3692 void
3693 glsl_to_tgsi_visitor::simplify_cmp(void)
3694 {
3695 int tempWritesSize = 0;
3696 unsigned *tempWrites = NULL;
3697 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
3698
3699 memset(outputWrites, 0, sizeof(outputWrites));
3700
3701 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3702 unsigned prevWriteMask = 0;
3703
3704 /* Give up if we encounter relative addressing or flow control. */
3705 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
3706 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
3707 tgsi_get_opcode_info(inst->op)->is_branch ||
3708 inst->op == TGSI_OPCODE_BGNSUB ||
3709 inst->op == TGSI_OPCODE_CONT ||
3710 inst->op == TGSI_OPCODE_END ||
3711 inst->op == TGSI_OPCODE_ENDSUB ||
3712 inst->op == TGSI_OPCODE_RET) {
3713 break;
3714 }
3715
3716 if (inst->dst[0].file == PROGRAM_OUTPUT) {
3717 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
3718 prevWriteMask = outputWrites[inst->dst[0].index];
3719 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
3720 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
3721 if (inst->dst[0].index >= tempWritesSize) {
3722 const int inc = 4096;
3723
3724 tempWrites = (unsigned*)
3725 realloc(tempWrites,
3726 (tempWritesSize + inc) * sizeof(unsigned));
3727 if (!tempWrites)
3728 return;
3729
3730 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
3731 tempWritesSize += inc;
3732 }
3733
3734 prevWriteMask = tempWrites[inst->dst[0].index];
3735 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
3736 } else
3737 continue;
3738
3739 /* For a CMP to be considered a conditional write, the destination
3740 * register and source register two must be the same. */
3741 if (inst->op == TGSI_OPCODE_CMP
3742 && !(inst->dst[0].writemask & prevWriteMask)
3743 && inst->src[2].file == inst->dst[0].file
3744 && inst->src[2].index == inst->dst[0].index
3745 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
3746
3747 inst->op = TGSI_OPCODE_MOV;
3748 inst->src[0] = inst->src[1];
3749 }
3750 }
3751
3752 free(tempWrites);
3753 }
3754
3755 /* Replaces all references to a temporary register index with another index. */
3756 void
3757 glsl_to_tgsi_visitor::rename_temp_registers(int num_renames, struct rename_reg_pair *renames)
3758 {
3759 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3760 unsigned j;
3761 int k;
3762 for (j = 0; j < num_inst_src_regs(inst); j++) {
3763 if (inst->src[j].file == PROGRAM_TEMPORARY)
3764 for (k = 0; k < num_renames; k++)
3765 if (inst->src[j].index == renames[k].old_reg)
3766 inst->src[j].index = renames[k].new_reg;
3767 }
3768
3769 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3770 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
3771 for (k = 0; k < num_renames; k++)
3772 if (inst->tex_offsets[j].index == renames[k].old_reg)
3773 inst->tex_offsets[j].index = renames[k].new_reg;
3774 }
3775
3776 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3777 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3778 for (k = 0; k < num_renames; k++)
3779 if (inst->dst[j].index == renames[k].old_reg)
3780 inst->dst[j].index = renames[k].new_reg;
3781 }
3782 }
3783 }
3784
3785 void
3786 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
3787 {
3788 int depth = 0; /* loop depth */
3789 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3790 unsigned i = 0, j;
3791
3792 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3793 for (j = 0; j < num_inst_src_regs(inst); j++) {
3794 if (inst->src[j].file == PROGRAM_TEMPORARY) {
3795 if (first_reads[inst->src[j].index] == -1)
3796 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
3797 }
3798 }
3799 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3800 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
3801 if (first_reads[inst->tex_offsets[j].index] == -1)
3802 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
3803 }
3804 }
3805 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3806 if(depth++ == 0)
3807 loop_start = i;
3808 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3809 if (--depth == 0)
3810 loop_start = -1;
3811 }
3812 assert(depth >= 0);
3813 i++;
3814 }
3815 }
3816
3817 void
3818 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
3819 {
3820 int depth = 0; /* loop depth */
3821 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3822 unsigned i = 0, j;
3823 int k;
3824 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3825 for (j = 0; j < num_inst_src_regs(inst); j++) {
3826 if (inst->src[j].file == PROGRAM_TEMPORARY)
3827 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
3828 }
3829 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3830 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3831 if (first_writes[inst->dst[j].index] == -1)
3832 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
3833 }
3834 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3835 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
3836 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
3837 }
3838 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3839 if(depth++ == 0)
3840 loop_start = i;
3841 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3842 if (--depth == 0) {
3843 loop_start = -1;
3844 for (k = 0; k < this->next_temp; k++) {
3845 if (last_reads[k] == -2) {
3846 last_reads[k] = i;
3847 }
3848 }
3849 }
3850 }
3851 assert(depth >= 0);
3852 i++;
3853 }
3854 }
3855
3856 void
3857 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
3858 {
3859 int depth = 0; /* loop depth */
3860 int i = 0, k;
3861 unsigned j;
3862
3863 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3864 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3865 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3866 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
3867 }
3868
3869 if (inst->op == TGSI_OPCODE_BGNLOOP)
3870 depth++;
3871 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3872 if (--depth == 0) {
3873 for (k = 0; k < this->next_temp; k++) {
3874 if (last_writes[k] == -2) {
3875 last_writes[k] = i;
3876 }
3877 }
3878 }
3879 assert(depth >= 0);
3880 i++;
3881 }
3882 }
3883
3884 /*
3885 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3886 * channels for copy propagation and updates following instructions to
3887 * use the original versions.
3888 *
3889 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3890 * will occur. As an example, a TXP production before this pass:
3891 *
3892 * 0: MOV TEMP[1], INPUT[4].xyyy;
3893 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3894 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3895 *
3896 * and after:
3897 *
3898 * 0: MOV TEMP[1], INPUT[4].xyyy;
3899 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3900 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3901 *
3902 * which allows for dead code elimination on TEMP[1]'s writes.
3903 */
3904 void
3905 glsl_to_tgsi_visitor::copy_propagate(void)
3906 {
3907 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3908 glsl_to_tgsi_instruction *,
3909 this->next_temp * 4);
3910 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3911 int level = 0;
3912
3913 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3914 assert(inst->dst[0].file != PROGRAM_TEMPORARY
3915 || inst->dst[0].index < this->next_temp);
3916
3917 /* First, do any copy propagation possible into the src regs. */
3918 for (int r = 0; r < 3; r++) {
3919 glsl_to_tgsi_instruction *first = NULL;
3920 bool good = true;
3921 int acp_base = inst->src[r].index * 4;
3922
3923 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3924 inst->src[r].reladdr ||
3925 inst->src[r].reladdr2)
3926 continue;
3927
3928 /* See if we can find entries in the ACP consisting of MOVs
3929 * from the same src register for all the swizzled channels
3930 * of this src register reference.
3931 */
3932 for (int i = 0; i < 4; i++) {
3933 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3934 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3935
3936 if (!copy_chan) {
3937 good = false;
3938 break;
3939 }
3940
3941 assert(acp_level[acp_base + src_chan] <= level);
3942
3943 if (!first) {
3944 first = copy_chan;
3945 } else {
3946 if (first->src[0].file != copy_chan->src[0].file ||
3947 first->src[0].index != copy_chan->src[0].index ||
3948 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
3949 first->src[0].index2D != copy_chan->src[0].index2D) {
3950 good = false;
3951 break;
3952 }
3953 }
3954 }
3955
3956 if (good) {
3957 /* We've now validated that we can copy-propagate to
3958 * replace this src register reference. Do it.
3959 */
3960 inst->src[r].file = first->src[0].file;
3961 inst->src[r].index = first->src[0].index;
3962 inst->src[r].index2D = first->src[0].index2D;
3963 inst->src[r].has_index2 = first->src[0].has_index2;
3964 inst->src[r].double_reg2 = first->src[0].double_reg2;
3965 inst->src[r].array_id = first->src[0].array_id;
3966
3967 int swizzle = 0;
3968 for (int i = 0; i < 4; i++) {
3969 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3970 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3971 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
3972 }
3973 inst->src[r].swizzle = swizzle;
3974 }
3975 }
3976
3977 switch (inst->op) {
3978 case TGSI_OPCODE_BGNLOOP:
3979 case TGSI_OPCODE_ENDLOOP:
3980 /* End of a basic block, clear the ACP entirely. */
3981 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3982 break;
3983
3984 case TGSI_OPCODE_IF:
3985 case TGSI_OPCODE_UIF:
3986 ++level;
3987 break;
3988
3989 case TGSI_OPCODE_ENDIF:
3990 case TGSI_OPCODE_ELSE:
3991 /* Clear all channels written inside the block from the ACP, but
3992 * leaving those that were not touched.
3993 */
3994 for (int r = 0; r < this->next_temp; r++) {
3995 for (int c = 0; c < 4; c++) {
3996 if (!acp[4 * r + c])
3997 continue;
3998
3999 if (acp_level[4 * r + c] >= level)
4000 acp[4 * r + c] = NULL;
4001 }
4002 }
4003 if (inst->op == TGSI_OPCODE_ENDIF)
4004 --level;
4005 break;
4006
4007 default:
4008 /* Continuing the block, clear any written channels from
4009 * the ACP.
4010 */
4011 for (int d = 0; d < 2; d++) {
4012 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
4013 /* Any temporary might be written, so no copy propagation
4014 * across this instruction.
4015 */
4016 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4017 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
4018 inst->dst[d].reladdr) {
4019 /* Any output might be written, so no copy propagation
4020 * from outputs across this instruction.
4021 */
4022 for (int r = 0; r < this->next_temp; r++) {
4023 for (int c = 0; c < 4; c++) {
4024 if (!acp[4 * r + c])
4025 continue;
4026
4027 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
4028 acp[4 * r + c] = NULL;
4029 }
4030 }
4031 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
4032 inst->dst[d].file == PROGRAM_OUTPUT) {
4033 /* Clear where it's used as dst. */
4034 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
4035 for (int c = 0; c < 4; c++) {
4036 if (inst->dst[d].writemask & (1 << c))
4037 acp[4 * inst->dst[d].index + c] = NULL;
4038 }
4039 }
4040
4041 /* Clear where it's used as src. */
4042 for (int r = 0; r < this->next_temp; r++) {
4043 for (int c = 0; c < 4; c++) {
4044 if (!acp[4 * r + c])
4045 continue;
4046
4047 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
4048
4049 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
4050 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
4051 inst->dst[d].writemask & (1 << src_chan)) {
4052 acp[4 * r + c] = NULL;
4053 }
4054 }
4055 }
4056 }
4057 }
4058 break;
4059 }
4060
4061 /* If this is a copy, add it to the ACP. */
4062 if (inst->op == TGSI_OPCODE_MOV &&
4063 inst->dst[0].file == PROGRAM_TEMPORARY &&
4064 !(inst->dst[0].file == inst->src[0].file &&
4065 inst->dst[0].index == inst->src[0].index) &&
4066 !inst->dst[0].reladdr &&
4067 !inst->dst[0].reladdr2 &&
4068 !inst->saturate &&
4069 inst->src[0].file != PROGRAM_ARRAY &&
4070 !inst->src[0].reladdr &&
4071 !inst->src[0].reladdr2 &&
4072 !inst->src[0].negate) {
4073 for (int i = 0; i < 4; i++) {
4074 if (inst->dst[0].writemask & (1 << i)) {
4075 acp[4 * inst->dst[0].index + i] = inst;
4076 acp_level[4 * inst->dst[0].index + i] = level;
4077 }
4078 }
4079 }
4080 }
4081
4082 ralloc_free(acp_level);
4083 ralloc_free(acp);
4084 }
4085
4086 /*
4087 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
4088 * code elimination.
4089 *
4090 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4091 * will occur. As an example, a TXP production after copy propagation but
4092 * before this pass:
4093 *
4094 * 0: MOV TEMP[1], INPUT[4].xyyy;
4095 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4096 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4097 *
4098 * and after this pass:
4099 *
4100 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4101 */
4102 int
4103 glsl_to_tgsi_visitor::eliminate_dead_code(void)
4104 {
4105 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
4106 glsl_to_tgsi_instruction *,
4107 this->next_temp * 4);
4108 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4109 int level = 0;
4110 int removed = 0;
4111
4112 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4113 assert(inst->dst[0].file != PROGRAM_TEMPORARY
4114 || inst->dst[0].index < this->next_temp);
4115
4116 switch (inst->op) {
4117 case TGSI_OPCODE_BGNLOOP:
4118 case TGSI_OPCODE_ENDLOOP:
4119 case TGSI_OPCODE_CONT:
4120 case TGSI_OPCODE_BRK:
4121 /* End of a basic block, clear the write array entirely.
4122 *
4123 * This keeps us from killing dead code when the writes are
4124 * on either side of a loop, even when the register isn't touched
4125 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
4126 * dead code of this type, so it shouldn't make a difference as long as
4127 * the dead code elimination pass in the GLSL compiler does its job.
4128 */
4129 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4130 break;
4131
4132 case TGSI_OPCODE_ENDIF:
4133 case TGSI_OPCODE_ELSE:
4134 /* Promote the recorded level of all channels written inside the
4135 * preceding if or else block to the level above the if/else block.
4136 */
4137 for (int r = 0; r < this->next_temp; r++) {
4138 for (int c = 0; c < 4; c++) {
4139 if (!writes[4 * r + c])
4140 continue;
4141
4142 if (write_level[4 * r + c] == level)
4143 write_level[4 * r + c] = level-1;
4144 }
4145 }
4146 if(inst->op == TGSI_OPCODE_ENDIF)
4147 --level;
4148 break;
4149
4150 case TGSI_OPCODE_IF:
4151 case TGSI_OPCODE_UIF:
4152 ++level;
4153 /* fallthrough to default case to mark the condition as read */
4154 default:
4155 /* Continuing the block, clear any channels from the write array that
4156 * are read by this instruction.
4157 */
4158 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
4159 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
4160 /* Any temporary might be read, so no dead code elimination
4161 * across this instruction.
4162 */
4163 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4164 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
4165 /* Clear where it's used as src. */
4166 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
4167 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
4168 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
4169 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
4170
4171 for (int c = 0; c < 4; c++) {
4172 if (src_chans & (1 << c))
4173 writes[4 * inst->src[i].index + c] = NULL;
4174 }
4175 }
4176 }
4177 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
4178 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
4179 /* Any temporary might be read, so no dead code elimination
4180 * across this instruction.
4181 */
4182 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4183 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
4184 /* Clear where it's used as src. */
4185 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
4186 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
4187 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
4188 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
4189
4190 for (int c = 0; c < 4; c++) {
4191 if (src_chans & (1 << c))
4192 writes[4 * inst->tex_offsets[i].index + c] = NULL;
4193 }
4194 }
4195 }
4196 break;
4197 }
4198
4199 /* If this instruction writes to a temporary, add it to the write array.
4200 * If there is already an instruction in the write array for one or more
4201 * of the channels, flag that channel write as dead.
4202 */
4203 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
4204 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
4205 !inst->dst[i].reladdr) {
4206 for (int c = 0; c < 4; c++) {
4207 if (inst->dst[i].writemask & (1 << c)) {
4208 if (writes[4 * inst->dst[i].index + c]) {
4209 if (write_level[4 * inst->dst[i].index + c] < level)
4210 continue;
4211 else
4212 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
4213 }
4214 writes[4 * inst->dst[i].index + c] = inst;
4215 write_level[4 * inst->dst[i].index + c] = level;
4216 }
4217 }
4218 }
4219 }
4220 }
4221
4222 /* Anything still in the write array at this point is dead code. */
4223 for (int r = 0; r < this->next_temp; r++) {
4224 for (int c = 0; c < 4; c++) {
4225 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
4226 if (inst)
4227 inst->dead_mask |= (1 << c);
4228 }
4229 }
4230
4231 /* Now actually remove the instructions that are completely dead and update
4232 * the writemask of other instructions with dead channels.
4233 */
4234 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4235 if (!inst->dead_mask || !inst->dst[0].writemask)
4236 continue;
4237 else if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
4238 inst->remove();
4239 delete inst;
4240 removed++;
4241 } else {
4242 if (inst->dst[0].type == GLSL_TYPE_DOUBLE) {
4243 if (inst->dead_mask == WRITEMASK_XY ||
4244 inst->dead_mask == WRITEMASK_ZW)
4245 inst->dst[0].writemask &= ~(inst->dead_mask);
4246 } else
4247 inst->dst[0].writemask &= ~(inst->dead_mask);
4248 }
4249 }
4250
4251 ralloc_free(write_level);
4252 ralloc_free(writes);
4253
4254 return removed;
4255 }
4256
4257 /* merge DFRACEXP instructions into one. */
4258 void
4259 glsl_to_tgsi_visitor::merge_two_dsts(void)
4260 {
4261 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4262 glsl_to_tgsi_instruction *inst2;
4263 bool merged;
4264 if (num_inst_dst_regs(inst) != 2)
4265 continue;
4266
4267 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
4268 inst->dst[1].file != PROGRAM_UNDEFINED)
4269 continue;
4270
4271 inst2 = (glsl_to_tgsi_instruction *) inst->next;
4272 do {
4273
4274 if (inst->src[0].file == inst2->src[0].file &&
4275 inst->src[0].index == inst2->src[0].index &&
4276 inst->src[0].type == inst2->src[0].type &&
4277 inst->src[0].swizzle == inst2->src[0].swizzle)
4278 break;
4279 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
4280 } while (inst2);
4281
4282 if (!inst2)
4283 continue;
4284 merged = false;
4285 if (inst->dst[0].file == PROGRAM_UNDEFINED) {
4286 merged = true;
4287 inst->dst[0] = inst2->dst[0];
4288 } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
4289 inst->dst[1] = inst2->dst[1];
4290 merged = true;
4291 }
4292
4293 if (merged) {
4294 inst2->remove();
4295 delete inst2;
4296 }
4297 }
4298 }
4299
4300 /* Merges temporary registers together where possible to reduce the number of
4301 * registers needed to run a program.
4302 *
4303 * Produces optimal code only after copy propagation and dead code elimination
4304 * have been run. */
4305 void
4306 glsl_to_tgsi_visitor::merge_registers(void)
4307 {
4308 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
4309 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
4310 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
4311 int i, j;
4312 int num_renames = 0;
4313
4314 /* Read the indices of the last read and first write to each temp register
4315 * into an array so that we don't have to traverse the instruction list as
4316 * much. */
4317 for (i = 0; i < this->next_temp; i++) {
4318 last_reads[i] = -1;
4319 first_writes[i] = -1;
4320 }
4321 get_last_temp_read_first_temp_write(last_reads, first_writes);
4322
4323 /* Start looking for registers with non-overlapping usages that can be
4324 * merged together. */
4325 for (i = 0; i < this->next_temp; i++) {
4326 /* Don't touch unused registers. */
4327 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
4328
4329 for (j = 0; j < this->next_temp; j++) {
4330 /* Don't touch unused registers. */
4331 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
4332
4333 /* We can merge the two registers if the first write to j is after or
4334 * in the same instruction as the last read from i. Note that the
4335 * register at index i will always be used earlier or at the same time
4336 * as the register at index j. */
4337 if (first_writes[i] <= first_writes[j] &&
4338 last_reads[i] <= first_writes[j]) {
4339 renames[num_renames].old_reg = j;
4340 renames[num_renames].new_reg = i;
4341 num_renames++;
4342
4343 /* Update the first_writes and last_reads arrays with the new
4344 * values for the merged register index, and mark the newly unused
4345 * register index as such. */
4346 last_reads[i] = last_reads[j];
4347 first_writes[j] = -1;
4348 last_reads[j] = -1;
4349 }
4350 }
4351 }
4352
4353 rename_temp_registers(num_renames, renames);
4354 ralloc_free(renames);
4355 ralloc_free(last_reads);
4356 ralloc_free(first_writes);
4357 }
4358
4359 /* Reassign indices to temporary registers by reusing unused indices created
4360 * by optimization passes. */
4361 void
4362 glsl_to_tgsi_visitor::renumber_registers(void)
4363 {
4364 int i = 0;
4365 int new_index = 0;
4366 int *first_reads = rzalloc_array(mem_ctx, int, this->next_temp);
4367 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
4368 int num_renames = 0;
4369 for (i = 0; i < this->next_temp; i++) {
4370 first_reads[i] = -1;
4371 }
4372 get_first_temp_read(first_reads);
4373
4374 for (i = 0; i < this->next_temp; i++) {
4375 if (first_reads[i] < 0) continue;
4376 if (i != new_index) {
4377 renames[num_renames].old_reg = i;
4378 renames[num_renames].new_reg = new_index;
4379 num_renames++;
4380 }
4381 new_index++;
4382 }
4383
4384 rename_temp_registers(num_renames, renames);
4385 this->next_temp = new_index;
4386 ralloc_free(renames);
4387 ralloc_free(first_reads);
4388 }
4389
4390 /* ------------------------- TGSI conversion stuff -------------------------- */
4391 struct label {
4392 unsigned branch_target;
4393 unsigned token;
4394 };
4395
4396 /**
4397 * Intermediate state used during shader translation.
4398 */
4399 struct st_translate {
4400 struct ureg_program *ureg;
4401
4402 unsigned temps_size;
4403 struct ureg_dst *temps;
4404
4405 struct ureg_dst *arrays;
4406 unsigned num_temp_arrays;
4407 struct ureg_src *constants;
4408 int num_constants;
4409 struct ureg_src *immediates;
4410 int num_immediates;
4411 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4412 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4413 struct ureg_dst address[3];
4414 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4415 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4416 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
4417 unsigned *array_sizes;
4418 struct array_decl *input_arrays;
4419 struct array_decl *output_arrays;
4420
4421 const GLuint *inputMapping;
4422 const GLuint *outputMapping;
4423
4424 /* For every instruction that contains a label (eg CALL), keep
4425 * details so that we can go back afterwards and emit the correct
4426 * tgsi instruction number for each label.
4427 */
4428 struct label *labels;
4429 unsigned labels_size;
4430 unsigned labels_count;
4431
4432 /* Keep a record of the tgsi instruction number that each mesa
4433 * instruction starts at, will be used to fix up labels after
4434 * translation.
4435 */
4436 unsigned *insn;
4437 unsigned insn_size;
4438 unsigned insn_count;
4439
4440 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4441
4442 boolean error;
4443 };
4444
4445 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4446 const unsigned _mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4447 /* Vertex shader
4448 */
4449 TGSI_SEMANTIC_VERTEXID,
4450 TGSI_SEMANTIC_INSTANCEID,
4451 TGSI_SEMANTIC_VERTEXID_NOBASE,
4452 TGSI_SEMANTIC_BASEVERTEX,
4453 TGSI_SEMANTIC_BASEINSTANCE,
4454 TGSI_SEMANTIC_DRAWID,
4455
4456 /* Geometry shader
4457 */
4458 TGSI_SEMANTIC_INVOCATIONID,
4459
4460 /* Fragment shader
4461 */
4462 TGSI_SEMANTIC_FACE,
4463 TGSI_SEMANTIC_SAMPLEID,
4464 TGSI_SEMANTIC_SAMPLEPOS,
4465 TGSI_SEMANTIC_SAMPLEMASK,
4466 TGSI_SEMANTIC_HELPER_INVOCATION,
4467
4468 /* Tessellation shaders
4469 */
4470 TGSI_SEMANTIC_TESSCOORD,
4471 TGSI_SEMANTIC_VERTICESIN,
4472 TGSI_SEMANTIC_PRIMID,
4473 TGSI_SEMANTIC_TESSOUTER,
4474 TGSI_SEMANTIC_TESSINNER,
4475 };
4476
4477 /**
4478 * Make note of a branch to a label in the TGSI code.
4479 * After we've emitted all instructions, we'll go over the list
4480 * of labels built here and patch the TGSI code with the actual
4481 * location of each label.
4482 */
4483 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4484 {
4485 unsigned i;
4486
4487 if (t->labels_count + 1 >= t->labels_size) {
4488 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4489 t->labels = (struct label *)realloc(t->labels,
4490 t->labels_size * sizeof(struct label));
4491 if (t->labels == NULL) {
4492 static unsigned dummy;
4493 t->error = TRUE;
4494 return &dummy;
4495 }
4496 }
4497
4498 i = t->labels_count++;
4499 t->labels[i].branch_target = branch_target;
4500 return &t->labels[i].token;
4501 }
4502
4503 /**
4504 * Called prior to emitting the TGSI code for each instruction.
4505 * Allocate additional space for instructions if needed.
4506 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4507 * the next TGSI instruction.
4508 */
4509 static void set_insn_start(struct st_translate *t, unsigned start)
4510 {
4511 if (t->insn_count + 1 >= t->insn_size) {
4512 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4513 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4514 if (t->insn == NULL) {
4515 t->error = TRUE;
4516 return;
4517 }
4518 }
4519
4520 t->insn[t->insn_count++] = start;
4521 }
4522
4523 /**
4524 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4525 */
4526 static struct ureg_src
4527 emit_immediate(struct st_translate *t,
4528 gl_constant_value values[4],
4529 int type, int size)
4530 {
4531 struct ureg_program *ureg = t->ureg;
4532
4533 switch(type)
4534 {
4535 case GL_FLOAT:
4536 return ureg_DECL_immediate(ureg, &values[0].f, size);
4537 case GL_DOUBLE:
4538 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
4539 case GL_INT:
4540 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4541 case GL_UNSIGNED_INT:
4542 case GL_BOOL:
4543 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4544 default:
4545 assert(!"should not get here - type must be float, int, uint, or bool");
4546 return ureg_src_undef();
4547 }
4548 }
4549
4550 /**
4551 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4552 */
4553 static struct ureg_dst
4554 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
4555 unsigned array_id)
4556 {
4557 unsigned array;
4558
4559 switch(file) {
4560 case PROGRAM_UNDEFINED:
4561 return ureg_dst_undef();
4562
4563 case PROGRAM_TEMPORARY:
4564 /* Allocate space for temporaries on demand. */
4565 if (index >= t->temps_size) {
4566 const int inc = 4096;
4567
4568 t->temps = (struct ureg_dst*)
4569 realloc(t->temps,
4570 (t->temps_size + inc) * sizeof(struct ureg_dst));
4571 if (!t->temps)
4572 return ureg_dst_undef();
4573
4574 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
4575 t->temps_size += inc;
4576 }
4577
4578 if (ureg_dst_is_undef(t->temps[index]))
4579 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4580
4581 return t->temps[index];
4582
4583 case PROGRAM_ARRAY:
4584 array = index >> 16;
4585
4586 assert(array < t->num_temp_arrays);
4587
4588 if (ureg_dst_is_undef(t->arrays[array]))
4589 t->arrays[array] = ureg_DECL_array_temporary(
4590 t->ureg, t->array_sizes[array], TRUE);
4591
4592 return ureg_dst_array_offset(t->arrays[array],
4593 (int)(index & 0xFFFF) - 0x8000);
4594
4595 case PROGRAM_OUTPUT:
4596 if (!array_id) {
4597 if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4598 assert(index < FRAG_RESULT_MAX);
4599 else if (t->procType == TGSI_PROCESSOR_TESS_CTRL ||
4600 t->procType == TGSI_PROCESSOR_TESS_EVAL)
4601 assert(index < VARYING_SLOT_TESS_MAX);
4602 else
4603 assert(index < VARYING_SLOT_MAX);
4604
4605 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
4606 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
4607 return t->outputs[t->outputMapping[index]];
4608 }
4609 else {
4610 struct array_decl *decl = &t->output_arrays[array_id-1];
4611 unsigned mesa_index = decl->mesa_index;
4612 int slot = t->outputMapping[mesa_index];
4613
4614 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
4615 assert(t->outputs[slot].ArrayID == array_id);
4616 return ureg_dst_array_offset(t->outputs[slot], index - mesa_index);
4617 }
4618
4619 case PROGRAM_ADDRESS:
4620 return t->address[index];
4621
4622 default:
4623 assert(!"unknown dst register file");
4624 return ureg_dst_undef();
4625 }
4626 }
4627
4628 /**
4629 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4630 */
4631 static struct ureg_src
4632 src_register(struct st_translate *t, const st_src_reg *reg)
4633 {
4634 int index = reg->index;
4635 int double_reg2 = reg->double_reg2 ? 1 : 0;
4636
4637 switch(reg->file) {
4638 case PROGRAM_UNDEFINED:
4639 return ureg_imm4f(t->ureg, 0, 0, 0, 0);
4640
4641 case PROGRAM_TEMPORARY:
4642 case PROGRAM_ARRAY:
4643 case PROGRAM_OUTPUT:
4644 return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
4645
4646 case PROGRAM_UNIFORM:
4647 assert(reg->index >= 0);
4648 return reg->index < t->num_constants ?
4649 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
4650 case PROGRAM_STATE_VAR:
4651 case PROGRAM_CONSTANT: /* ie, immediate */
4652 if (reg->has_index2)
4653 return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
4654 else
4655 return reg->index >= 0 && reg->index < t->num_constants ?
4656 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
4657
4658 case PROGRAM_IMMEDIATE:
4659 assert(reg->index >= 0 && reg->index < t->num_immediates);
4660 return t->immediates[reg->index];
4661
4662 case PROGRAM_INPUT:
4663 /* GLSL inputs are 64-bit containers, so we have to
4664 * map back to the original index and add the offset after
4665 * mapping. */
4666 index -= double_reg2;
4667 if (!reg->array_id) {
4668 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
4669 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
4670 return t->inputs[t->inputMapping[index] + double_reg2];
4671 }
4672 else {
4673 struct array_decl *decl = &t->input_arrays[reg->array_id-1];
4674 unsigned mesa_index = decl->mesa_index;
4675 int slot = t->inputMapping[mesa_index];
4676
4677 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
4678 assert(t->inputs[slot].ArrayID == reg->array_id);
4679 return ureg_src_array_offset(t->inputs[slot], index + double_reg2 - mesa_index);
4680 }
4681
4682 case PROGRAM_ADDRESS:
4683 return ureg_src(t->address[reg->index]);
4684
4685 case PROGRAM_SYSTEM_VALUE:
4686 assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
4687 return t->systemValues[reg->index];
4688
4689 default:
4690 assert(!"unknown src register file");
4691 return ureg_src_undef();
4692 }
4693 }
4694
4695 /**
4696 * Create a TGSI ureg_dst register from an st_dst_reg.
4697 */
4698 static struct ureg_dst
4699 translate_dst(struct st_translate *t,
4700 const st_dst_reg *dst_reg,
4701 bool saturate)
4702 {
4703 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
4704 dst_reg->array_id);
4705
4706 if (dst.File == TGSI_FILE_NULL)
4707 return dst;
4708
4709 dst = ureg_writemask(dst, dst_reg->writemask);
4710
4711 if (saturate)
4712 dst = ureg_saturate(dst);
4713
4714 if (dst_reg->reladdr != NULL) {
4715 assert(dst_reg->file != PROGRAM_TEMPORARY);
4716 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4717 }
4718
4719 if (dst_reg->has_index2) {
4720 if (dst_reg->reladdr2)
4721 dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
4722 dst_reg->index2D);
4723 else
4724 dst = ureg_dst_dimension(dst, dst_reg->index2D);
4725 }
4726
4727 return dst;
4728 }
4729
4730 /**
4731 * Create a TGSI ureg_src register from an st_src_reg.
4732 */
4733 static struct ureg_src
4734 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4735 {
4736 struct ureg_src src = src_register(t, src_reg);
4737
4738 if (src_reg->has_index2) {
4739 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
4740 * and UBO constant buffers (buffer, position).
4741 */
4742 if (src_reg->reladdr2)
4743 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
4744 src_reg->index2D);
4745 else
4746 src = ureg_src_dimension(src, src_reg->index2D);
4747 }
4748
4749 src = ureg_swizzle(src,
4750 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4751 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4752 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4753 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4754
4755 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4756 src = ureg_negate(src);
4757
4758 if (src_reg->reladdr != NULL) {
4759 assert(src_reg->file != PROGRAM_TEMPORARY);
4760 src = ureg_src_indirect(src, ureg_src(t->address[0]));
4761 }
4762
4763 return src;
4764 }
4765
4766 static struct tgsi_texture_offset
4767 translate_tex_offset(struct st_translate *t,
4768 const st_src_reg *in_offset, int idx)
4769 {
4770 struct tgsi_texture_offset offset;
4771 struct ureg_src imm_src;
4772 struct ureg_dst dst;
4773 int array;
4774
4775 switch (in_offset->file) {
4776 case PROGRAM_IMMEDIATE:
4777 assert(in_offset->index >= 0 && in_offset->index < t->num_immediates);
4778 imm_src = t->immediates[in_offset->index];
4779
4780 offset.File = imm_src.File;
4781 offset.Index = imm_src.Index;
4782 offset.SwizzleX = imm_src.SwizzleX;
4783 offset.SwizzleY = imm_src.SwizzleY;
4784 offset.SwizzleZ = imm_src.SwizzleZ;
4785 offset.Padding = 0;
4786 break;
4787 case PROGRAM_TEMPORARY:
4788 imm_src = ureg_src(t->temps[in_offset->index]);
4789 offset.File = imm_src.File;
4790 offset.Index = imm_src.Index;
4791 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4792 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4793 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4794 offset.Padding = 0;
4795 break;
4796 case PROGRAM_ARRAY:
4797 array = in_offset->index >> 16;
4798
4799 assert(array >= 0);
4800 assert(array < (int)t->num_temp_arrays);
4801
4802 dst = t->arrays[array];
4803 offset.File = dst.File;
4804 offset.Index = dst.Index + (in_offset->index & 0xFFFF) - 0x8000;
4805 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4806 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4807 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4808 offset.Padding = 0;
4809 break;
4810 default:
4811 break;
4812 }
4813 return offset;
4814 }
4815
4816 static void
4817 compile_tgsi_instruction(struct st_translate *t,
4818 const glsl_to_tgsi_instruction *inst)
4819 {
4820 struct ureg_program *ureg = t->ureg;
4821 GLuint i;
4822 struct ureg_dst dst[2];
4823 struct ureg_src src[4];
4824 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4825
4826 unsigned num_dst;
4827 unsigned num_src;
4828 unsigned tex_target;
4829
4830 num_dst = num_inst_dst_regs(inst);
4831 num_src = num_inst_src_regs(inst);
4832
4833 for (i = 0; i < num_dst; i++)
4834 dst[i] = translate_dst(t,
4835 &inst->dst[i],
4836 inst->saturate);
4837
4838 for (i = 0; i < num_src; i++)
4839 src[i] = translate_src(t, &inst->src[i]);
4840
4841 switch(inst->op) {
4842 case TGSI_OPCODE_BGNLOOP:
4843 case TGSI_OPCODE_CAL:
4844 case TGSI_OPCODE_ELSE:
4845 case TGSI_OPCODE_ENDLOOP:
4846 case TGSI_OPCODE_IF:
4847 case TGSI_OPCODE_UIF:
4848 assert(num_dst == 0);
4849 ureg_label_insn(ureg,
4850 inst->op,
4851 src, num_src,
4852 get_label(t,
4853 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4854 return;
4855
4856 case TGSI_OPCODE_TEX:
4857 case TGSI_OPCODE_TXB:
4858 case TGSI_OPCODE_TXD:
4859 case TGSI_OPCODE_TXL:
4860 case TGSI_OPCODE_TXP:
4861 case TGSI_OPCODE_TXQ:
4862 case TGSI_OPCODE_TXQS:
4863 case TGSI_OPCODE_TXF:
4864 case TGSI_OPCODE_TEX2:
4865 case TGSI_OPCODE_TXB2:
4866 case TGSI_OPCODE_TXL2:
4867 case TGSI_OPCODE_TG4:
4868 case TGSI_OPCODE_LODQ:
4869 src[num_src] = t->samplers[inst->sampler.index];
4870 assert(src[num_src].File != TGSI_FILE_NULL);
4871 if (inst->sampler.reladdr)
4872 src[num_src] =
4873 ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
4874 num_src++;
4875 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4876 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i], i);
4877 }
4878 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4879
4880 ureg_tex_insn(ureg,
4881 inst->op,
4882 dst, num_dst,
4883 tex_target,
4884 texoffsets, inst->tex_offset_num_offset,
4885 src, num_src);
4886 return;
4887
4888 case TGSI_OPCODE_SCS:
4889 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4890 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4891 break;
4892
4893 default:
4894 ureg_insn(ureg,
4895 inst->op,
4896 dst, num_dst,
4897 src, num_src);
4898 break;
4899 }
4900 }
4901
4902 /**
4903 * Emit the TGSI instructions for inverting and adjusting WPOS.
4904 * This code is unavoidable because it also depends on whether
4905 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4906 */
4907 static void
4908 emit_wpos_adjustment( struct st_translate *t,
4909 int wpos_transform_const,
4910 boolean invert,
4911 GLfloat adjX, GLfloat adjY[2])
4912 {
4913 struct ureg_program *ureg = t->ureg;
4914
4915 assert(wpos_transform_const >= 0);
4916
4917 /* Fragment program uses fragment position input.
4918 * Need to replace instances of INPUT[WPOS] with temp T
4919 * where T = INPUT[WPOS] is inverted by Y.
4920 */
4921 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
4922 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4923 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
4924
4925 /* First, apply the coordinate shift: */
4926 if (adjX || adjY[0] || adjY[1]) {
4927 if (adjY[0] != adjY[1]) {
4928 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4929 * depending on whether inversion is actually going to be applied
4930 * or not, which is determined by testing against the inversion
4931 * state variable used below, which will be either +1 or -1.
4932 */
4933 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4934
4935 ureg_CMP(ureg, adj_temp,
4936 ureg_scalar(wpostrans, invert ? 2 : 0),
4937 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4938 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4939 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4940 } else {
4941 ureg_ADD(ureg, wpos_temp, wpos_input,
4942 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4943 }
4944 wpos_input = ureg_src(wpos_temp);
4945 } else {
4946 /* MOV wpos_temp, input[wpos]
4947 */
4948 ureg_MOV( ureg, wpos_temp, wpos_input );
4949 }
4950
4951 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4952 * inversion/identity, or the other way around if we're drawing to an FBO.
4953 */
4954 if (invert) {
4955 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4956 */
4957 ureg_MAD( ureg,
4958 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4959 wpos_input,
4960 ureg_scalar(wpostrans, 0),
4961 ureg_scalar(wpostrans, 1));
4962 } else {
4963 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4964 */
4965 ureg_MAD( ureg,
4966 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4967 wpos_input,
4968 ureg_scalar(wpostrans, 2),
4969 ureg_scalar(wpostrans, 3));
4970 }
4971
4972 /* Use wpos_temp as position input from here on:
4973 */
4974 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
4975 }
4976
4977
4978 /**
4979 * Emit fragment position/ooordinate code.
4980 */
4981 static void
4982 emit_wpos(struct st_context *st,
4983 struct st_translate *t,
4984 const struct gl_program *program,
4985 struct ureg_program *ureg,
4986 int wpos_transform_const)
4987 {
4988 const struct gl_fragment_program *fp =
4989 (const struct gl_fragment_program *) program;
4990 struct pipe_screen *pscreen = st->pipe->screen;
4991 GLfloat adjX = 0.0f;
4992 GLfloat adjY[2] = { 0.0f, 0.0f };
4993 boolean invert = FALSE;
4994
4995 /* Query the pixel center conventions supported by the pipe driver and set
4996 * adjX, adjY to help out if it cannot handle the requested one internally.
4997 *
4998 * The bias of the y-coordinate depends on whether y-inversion takes place
4999 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
5000 * drawing to an FBO (causes additional inversion), and whether the the pipe
5001 * driver origin and the requested origin differ (the latter condition is
5002 * stored in the 'invert' variable).
5003 *
5004 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
5005 *
5006 * center shift only:
5007 * i -> h: +0.5
5008 * h -> i: -0.5
5009 *
5010 * inversion only:
5011 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
5012 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
5013 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
5014 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
5015 *
5016 * inversion and center shift:
5017 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
5018 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
5019 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
5020 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
5021 */
5022 if (fp->OriginUpperLeft) {
5023 /* Fragment shader wants origin in upper-left */
5024 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
5025 /* the driver supports upper-left origin */
5026 }
5027 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
5028 /* the driver supports lower-left origin, need to invert Y */
5029 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
5030 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
5031 invert = TRUE;
5032 }
5033 else
5034 assert(0);
5035 }
5036 else {
5037 /* Fragment shader wants origin in lower-left */
5038 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
5039 /* the driver supports lower-left origin */
5040 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
5041 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
5042 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
5043 /* the driver supports upper-left origin, need to invert Y */
5044 invert = TRUE;
5045 else
5046 assert(0);
5047 }
5048
5049 if (fp->PixelCenterInteger) {
5050 /* Fragment shader wants pixel center integer */
5051 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
5052 /* the driver supports pixel center integer */
5053 adjY[1] = 1.0f;
5054 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
5055 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5056 }
5057 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5058 /* the driver supports pixel center half integer, need to bias X,Y */
5059 adjX = -0.5f;
5060 adjY[0] = -0.5f;
5061 adjY[1] = 0.5f;
5062 }
5063 else
5064 assert(0);
5065 }
5066 else {
5067 /* Fragment shader wants pixel center half integer */
5068 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5069 /* the driver supports pixel center half integer */
5070 }
5071 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
5072 /* the driver supports pixel center integer, need to bias X,Y */
5073 adjX = adjY[0] = adjY[1] = 0.5f;
5074 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
5075 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5076 }
5077 else
5078 assert(0);
5079 }
5080
5081 /* we invert after adjustment so that we avoid the MOV to temporary,
5082 * and reuse the adjustment ADD instead */
5083 emit_wpos_adjustment(t, wpos_transform_const, invert, adjX, adjY);
5084 }
5085
5086 /**
5087 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
5088 * TGSI uses +1 for front, -1 for back.
5089 * This function converts the TGSI value to the GL value. Simply clamping/
5090 * saturating the value to [0,1] does the job.
5091 */
5092 static void
5093 emit_face_var(struct gl_context *ctx, struct st_translate *t)
5094 {
5095 struct ureg_program *ureg = t->ureg;
5096 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
5097 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
5098
5099 if (ctx->Const.NativeIntegers) {
5100 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
5101 }
5102 else {
5103 /* MOV_SAT face_temp, input[face] */
5104 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
5105 }
5106
5107 /* Use face_temp as face input from here on: */
5108 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
5109 }
5110
5111 static bool
5112 find_array(unsigned attr, struct array_decl *arrays, unsigned count,
5113 unsigned *array_id, unsigned *array_size)
5114 {
5115 unsigned i;
5116
5117 for (i = 0; i < count; i++) {
5118 struct array_decl *decl = &arrays[i];
5119
5120 if (attr == decl->mesa_index) {
5121 *array_id = decl->array_id;
5122 *array_size = decl->array_size;
5123 assert(*array_size);
5124 return true;
5125 }
5126 }
5127 return false;
5128 }
5129
5130 /**
5131 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
5132 * \param program the program to translate
5133 * \param numInputs number of input registers used
5134 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
5135 * input indexes
5136 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
5137 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
5138 * each input
5139 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
5140 * \param interpLocation the TGSI_INTERPOLATE_LOC_* location for each input
5141 * \param numOutputs number of output registers used
5142 * \param outputMapping maps Mesa fragment program outputs to TGSI
5143 * generic outputs
5144 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
5145 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
5146 * each output
5147 *
5148 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
5149 */
5150 extern "C" enum pipe_error
5151 st_translate_program(
5152 struct gl_context *ctx,
5153 uint procType,
5154 struct ureg_program *ureg,
5155 glsl_to_tgsi_visitor *program,
5156 const struct gl_program *proginfo,
5157 GLuint numInputs,
5158 const GLuint inputMapping[],
5159 const GLuint inputSlotToAttr[],
5160 const ubyte inputSemanticName[],
5161 const ubyte inputSemanticIndex[],
5162 const GLuint interpMode[],
5163 const GLuint interpLocation[],
5164 GLuint numOutputs,
5165 const GLuint outputMapping[],
5166 const GLuint outputSlotToAttr[],
5167 const ubyte outputSemanticName[],
5168 const ubyte outputSemanticIndex[])
5169 {
5170 struct st_translate *t;
5171 unsigned i;
5172 enum pipe_error ret = PIPE_OK;
5173
5174 assert(numInputs <= ARRAY_SIZE(t->inputs));
5175 assert(numOutputs <= ARRAY_SIZE(t->outputs));
5176
5177 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_FRONT_FACE] ==
5178 TGSI_SEMANTIC_FACE);
5179 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_VERTEX_ID] ==
5180 TGSI_SEMANTIC_VERTEXID);
5181 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INSTANCE_ID] ==
5182 TGSI_SEMANTIC_INSTANCEID);
5183 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_ID] ==
5184 TGSI_SEMANTIC_SAMPLEID);
5185 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_POS] ==
5186 TGSI_SEMANTIC_SAMPLEPOS);
5187 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_MASK_IN] ==
5188 TGSI_SEMANTIC_SAMPLEMASK);
5189 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INVOCATION_ID] ==
5190 TGSI_SEMANTIC_INVOCATIONID);
5191 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE] ==
5192 TGSI_SEMANTIC_VERTEXID_NOBASE);
5193 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_BASE_VERTEX] ==
5194 TGSI_SEMANTIC_BASEVERTEX);
5195 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_TESS_COORD] ==
5196 TGSI_SEMANTIC_TESSCOORD);
5197 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_HELPER_INVOCATION] ==
5198 TGSI_SEMANTIC_HELPER_INVOCATION);
5199
5200 t = CALLOC_STRUCT(st_translate);
5201 if (!t) {
5202 ret = PIPE_ERROR_OUT_OF_MEMORY;
5203 goto out;
5204 }
5205
5206 t->procType = procType;
5207 t->inputMapping = inputMapping;
5208 t->outputMapping = outputMapping;
5209 t->ureg = ureg;
5210 t->num_temp_arrays = program->next_array;
5211 if (t->num_temp_arrays)
5212 t->arrays = (struct ureg_dst*)
5213 calloc(1, sizeof(t->arrays[0]) * t->num_temp_arrays);
5214
5215 /*
5216 * Declare input attributes.
5217 */
5218 switch (procType) {
5219 case TGSI_PROCESSOR_FRAGMENT:
5220 for (i = 0; i < numInputs; i++) {
5221 unsigned array_id = 0;
5222 unsigned array_size;
5223
5224 if (find_array(inputSlotToAttr[i], program->input_arrays,
5225 program->num_input_arrays, &array_id, &array_size)) {
5226 /* We've found an array. Declare it so. */
5227 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
5228 inputSemanticName[i], inputSemanticIndex[i],
5229 interpMode[i], 0, interpLocation[i],
5230 array_id, array_size);
5231 i += array_size - 1;
5232 }
5233 else {
5234 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
5235 inputSemanticName[i], inputSemanticIndex[i],
5236 interpMode[i], 0, interpLocation[i], 0, 1);
5237 }
5238 }
5239 break;
5240 case TGSI_PROCESSOR_GEOMETRY:
5241 case TGSI_PROCESSOR_TESS_EVAL:
5242 case TGSI_PROCESSOR_TESS_CTRL:
5243 for (i = 0; i < numInputs; i++) {
5244 unsigned array_id = 0;
5245 unsigned array_size;
5246
5247 if (find_array(inputSlotToAttr[i], program->input_arrays,
5248 program->num_input_arrays, &array_id, &array_size)) {
5249 /* We've found an array. Declare it so. */
5250 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
5251 inputSemanticIndex[i],
5252 array_id, array_size);
5253 i += array_size - 1;
5254 }
5255 else {
5256 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
5257 inputSemanticIndex[i], 0, 1);
5258 }
5259 }
5260 break;
5261 case TGSI_PROCESSOR_VERTEX:
5262 for (i = 0; i < numInputs; i++) {
5263 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
5264 }
5265 break;
5266 default:
5267 assert(0);
5268 }
5269
5270 /*
5271 * Declare output attributes.
5272 */
5273 switch (procType) {
5274 case TGSI_PROCESSOR_FRAGMENT:
5275 break;
5276 case TGSI_PROCESSOR_GEOMETRY:
5277 case TGSI_PROCESSOR_TESS_EVAL:
5278 case TGSI_PROCESSOR_TESS_CTRL:
5279 case TGSI_PROCESSOR_VERTEX:
5280 for (i = 0; i < numOutputs; i++) {
5281 unsigned array_id = 0;
5282 unsigned array_size;
5283
5284 if (find_array(outputSlotToAttr[i], program->output_arrays,
5285 program->num_output_arrays, &array_id, &array_size)) {
5286 /* We've found an array. Declare it so. */
5287 t->outputs[i] = ureg_DECL_output_array(ureg,
5288 outputSemanticName[i],
5289 outputSemanticIndex[i],
5290 array_id, array_size);
5291 i += array_size - 1;
5292 }
5293 else {
5294 t->outputs[i] = ureg_DECL_output(ureg,
5295 outputSemanticName[i],
5296 outputSemanticIndex[i]);
5297 }
5298 }
5299 break;
5300 default:
5301 assert(0);
5302 }
5303
5304 if (procType == TGSI_PROCESSOR_FRAGMENT) {
5305 if (proginfo->InputsRead & VARYING_BIT_POS) {
5306 /* Must do this after setting up t->inputs. */
5307 emit_wpos(st_context(ctx), t, proginfo, ureg,
5308 program->wpos_transform_const);
5309 }
5310
5311 if (proginfo->InputsRead & VARYING_BIT_FACE)
5312 emit_face_var(ctx, t);
5313
5314 for (i = 0; i < numOutputs; i++) {
5315 switch (outputSemanticName[i]) {
5316 case TGSI_SEMANTIC_POSITION:
5317 t->outputs[i] = ureg_DECL_output(ureg,
5318 TGSI_SEMANTIC_POSITION, /* Z/Depth */
5319 outputSemanticIndex[i]);
5320 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
5321 break;
5322 case TGSI_SEMANTIC_STENCIL:
5323 t->outputs[i] = ureg_DECL_output(ureg,
5324 TGSI_SEMANTIC_STENCIL, /* Stencil */
5325 outputSemanticIndex[i]);
5326 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
5327 break;
5328 case TGSI_SEMANTIC_COLOR:
5329 t->outputs[i] = ureg_DECL_output(ureg,
5330 TGSI_SEMANTIC_COLOR,
5331 outputSemanticIndex[i]);
5332 break;
5333 case TGSI_SEMANTIC_SAMPLEMASK:
5334 t->outputs[i] = ureg_DECL_output(ureg,
5335 TGSI_SEMANTIC_SAMPLEMASK,
5336 outputSemanticIndex[i]);
5337 /* TODO: If we ever support more than 32 samples, this will have
5338 * to become an array.
5339 */
5340 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5341 break;
5342 default:
5343 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
5344 ret = PIPE_ERROR_BAD_INPUT;
5345 goto out;
5346 }
5347 }
5348 }
5349 else if (procType == TGSI_PROCESSOR_VERTEX) {
5350 for (i = 0; i < numOutputs; i++) {
5351 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
5352 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
5353 ureg_MOV(ureg,
5354 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
5355 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
5356 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5357 }
5358 }
5359 }
5360
5361 /* Declare address register.
5362 */
5363 if (program->num_address_regs > 0) {
5364 assert(program->num_address_regs <= 3);
5365 for (int i = 0; i < program->num_address_regs; i++)
5366 t->address[i] = ureg_DECL_address(ureg);
5367 }
5368
5369 /* Declare misc input registers
5370 */
5371 {
5372 GLbitfield sysInputs = proginfo->SystemValuesRead;
5373
5374 for (i = 0; sysInputs; i++) {
5375 if (sysInputs & (1 << i)) {
5376 unsigned semName = _mesa_sysval_to_semantic[i];
5377
5378 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
5379
5380 if (semName == TGSI_SEMANTIC_INSTANCEID ||
5381 semName == TGSI_SEMANTIC_VERTEXID) {
5382 /* From Gallium perspective, these system values are always
5383 * integer, and require native integer support. However, if
5384 * native integer is supported on the vertex stage but not the
5385 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
5386 * assumes these system values are floats. To resolve the
5387 * inconsistency, we insert a U2F.
5388 */
5389 struct st_context *st = st_context(ctx);
5390 struct pipe_screen *pscreen = st->pipe->screen;
5391 assert(procType == TGSI_PROCESSOR_VERTEX);
5392 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
5393 (void) pscreen;
5394 if (!ctx->Const.NativeIntegers) {
5395 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
5396 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
5397 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
5398 }
5399 }
5400
5401 sysInputs &= ~(1 << i);
5402 }
5403 }
5404 }
5405
5406 t->array_sizes = program->array_sizes;
5407 t->input_arrays = program->input_arrays;
5408 t->output_arrays = program->output_arrays;
5409
5410 /* Emit constants and uniforms. TGSI uses a single index space for these,
5411 * so we put all the translated regs in t->constants.
5412 */
5413 if (proginfo->Parameters) {
5414 t->constants = (struct ureg_src *)
5415 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
5416 if (t->constants == NULL) {
5417 ret = PIPE_ERROR_OUT_OF_MEMORY;
5418 goto out;
5419 }
5420 t->num_constants = proginfo->Parameters->NumParameters;
5421
5422 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
5423 switch (proginfo->Parameters->Parameters[i].Type) {
5424 case PROGRAM_STATE_VAR:
5425 case PROGRAM_UNIFORM:
5426 t->constants[i] = ureg_DECL_constant(ureg, i);
5427 break;
5428
5429 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
5430 * addressing of the const buffer.
5431 * FIXME: Be smarter and recognize param arrays:
5432 * indirect addressing is only valid within the referenced
5433 * array.
5434 */
5435 case PROGRAM_CONSTANT:
5436 if (program->indirect_addr_consts)
5437 t->constants[i] = ureg_DECL_constant(ureg, i);
5438 else
5439 t->constants[i] = emit_immediate(t,
5440 proginfo->Parameters->ParameterValues[i],
5441 proginfo->Parameters->Parameters[i].DataType,
5442 4);
5443 break;
5444 default:
5445 break;
5446 }
5447 }
5448 }
5449
5450 if (program->shader) {
5451 unsigned num_ubos = program->shader->NumUniformBlocks;
5452
5453 for (i = 0; i < num_ubos; i++) {
5454 unsigned size = program->shader->UniformBlocks[i]->UniformBufferSize;
5455 unsigned num_const_vecs = (size + 15) / 16;
5456 unsigned first, last;
5457 assert(num_const_vecs > 0);
5458 first = 0;
5459 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
5460 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
5461 }
5462 }
5463
5464 /* Emit immediate values.
5465 */
5466 t->immediates = (struct ureg_src *)
5467 calloc(program->num_immediates, sizeof(struct ureg_src));
5468 if (t->immediates == NULL) {
5469 ret = PIPE_ERROR_OUT_OF_MEMORY;
5470 goto out;
5471 }
5472 t->num_immediates = program->num_immediates;
5473
5474 i = 0;
5475 foreach_in_list(immediate_storage, imm, &program->immediates) {
5476 assert(i < program->num_immediates);
5477 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
5478 }
5479 assert(i == program->num_immediates);
5480
5481 /* texture samplers */
5482 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
5483 if (program->samplers_used & (1 << i)) {
5484 unsigned type;
5485
5486 t->samplers[i] = ureg_DECL_sampler(ureg, i);
5487
5488 switch (program->sampler_types[i]) {
5489 case GLSL_TYPE_INT:
5490 type = TGSI_RETURN_TYPE_SINT;
5491 break;
5492 case GLSL_TYPE_UINT:
5493 type = TGSI_RETURN_TYPE_UINT;
5494 break;
5495 case GLSL_TYPE_FLOAT:
5496 type = TGSI_RETURN_TYPE_FLOAT;
5497 break;
5498 default:
5499 unreachable("not reached");
5500 }
5501
5502 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
5503 type, type, type, type );
5504 }
5505 }
5506
5507 /* Emit each instruction in turn:
5508 */
5509 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions) {
5510 set_insn_start(t, ureg_get_instruction_number(ureg));
5511 compile_tgsi_instruction(t, inst);
5512 }
5513
5514 /* Fix up all emitted labels:
5515 */
5516 for (i = 0; i < t->labels_count; i++) {
5517 ureg_fixup_label(ureg, t->labels[i].token,
5518 t->insn[t->labels[i].branch_target]);
5519 }
5520
5521 out:
5522 if (t) {
5523 free(t->arrays);
5524 free(t->temps);
5525 free(t->insn);
5526 free(t->labels);
5527 free(t->constants);
5528 t->num_constants = 0;
5529 free(t->immediates);
5530 t->num_immediates = 0;
5531
5532 if (t->error) {
5533 debug_printf("%s: translate error flag set\n", __func__);
5534 }
5535
5536 FREE(t);
5537 }
5538
5539 return ret;
5540 }
5541 /* ----------------------------- End TGSI code ------------------------------ */
5542
5543
5544 /**
5545 * Convert a shader's GLSL IR into a Mesa gl_program, although without
5546 * generating Mesa IR.
5547 */
5548 static struct gl_program *
5549 get_mesa_program(struct gl_context *ctx,
5550 struct gl_shader_program *shader_program,
5551 struct gl_shader *shader)
5552 {
5553 glsl_to_tgsi_visitor* v;
5554 struct gl_program *prog;
5555 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
5556 bool progress;
5557 struct gl_shader_compiler_options *options =
5558 &ctx->Const.ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(shader->Type)];
5559 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5560 unsigned ptarget = st_shader_stage_to_ptarget(shader->Stage);
5561
5562 validate_ir_tree(shader->ir);
5563
5564 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
5565 if (!prog)
5566 return NULL;
5567 prog->Parameters = _mesa_new_parameter_list();
5568 v = new glsl_to_tgsi_visitor();
5569 v->ctx = ctx;
5570 v->prog = prog;
5571 v->shader_program = shader_program;
5572 v->shader = shader;
5573 v->options = options;
5574 v->glsl_version = ctx->Const.GLSLVersion;
5575 v->native_integers = ctx->Const.NativeIntegers;
5576
5577 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
5578 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
5579 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
5580 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
5581
5582 _mesa_copy_linked_program_data(shader->Stage, shader_program, prog);
5583 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
5584 prog->Parameters);
5585
5586 /* Remove reads from output registers. */
5587 lower_output_reads(shader->Stage, shader->ir);
5588
5589 /* Emit intermediate IR for main(). */
5590 visit_exec_list(shader->ir, v);
5591
5592 /* Now emit bodies for any functions that were used. */
5593 do {
5594 progress = GL_FALSE;
5595
5596 foreach_in_list(function_entry, entry, &v->function_signatures) {
5597 if (!entry->bgn_inst) {
5598 v->current_function = entry;
5599
5600 entry->bgn_inst = v->emit_asm(NULL, TGSI_OPCODE_BGNSUB);
5601 entry->bgn_inst->function = entry;
5602
5603 visit_exec_list(&entry->sig->body, v);
5604
5605 glsl_to_tgsi_instruction *last;
5606 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
5607 if (last->op != TGSI_OPCODE_RET)
5608 v->emit_asm(NULL, TGSI_OPCODE_RET);
5609
5610 glsl_to_tgsi_instruction *end;
5611 end = v->emit_asm(NULL, TGSI_OPCODE_ENDSUB);
5612 end->function = entry;
5613
5614 progress = GL_TRUE;
5615 }
5616 }
5617 } while (progress);
5618
5619 #if 0
5620 /* Print out some information (for debugging purposes) used by the
5621 * optimization passes. */
5622 {
5623 int i;
5624 int *first_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
5625 int *first_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
5626 int *last_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
5627 int *last_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
5628
5629 for (i = 0; i < v->next_temp; i++) {
5630 first_writes[i] = -1;
5631 first_reads[i] = -1;
5632 last_writes[i] = -1;
5633 last_reads[i] = -1;
5634 }
5635 v->get_first_temp_read(first_reads);
5636 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
5637 v->get_last_temp_write(last_writes);
5638 for (i = 0; i < v->next_temp; i++)
5639 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
5640 first_writes[i],
5641 last_reads[i],
5642 last_writes[i]);
5643 ralloc_free(first_writes);
5644 ralloc_free(first_reads);
5645 ralloc_free(last_writes);
5646 ralloc_free(last_reads);
5647 }
5648 #endif
5649
5650 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5651 v->simplify_cmp();
5652
5653 if (shader->Type != GL_TESS_CONTROL_SHADER &&
5654 shader->Type != GL_TESS_EVALUATION_SHADER)
5655 v->copy_propagate();
5656
5657 while (v->eliminate_dead_code());
5658
5659 v->merge_two_dsts();
5660 v->merge_registers();
5661 v->renumber_registers();
5662
5663 /* Write the END instruction. */
5664 v->emit_asm(NULL, TGSI_OPCODE_END);
5665
5666 if (ctx->_Shader->Flags & GLSL_DUMP) {
5667 _mesa_log("\n");
5668 _mesa_log("GLSL IR for linked %s program %d:\n",
5669 _mesa_shader_stage_to_string(shader->Stage),
5670 shader_program->Name);
5671 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
5672 _mesa_log("\n\n");
5673 }
5674
5675 prog->Instructions = NULL;
5676 prog->NumInstructions = 0;
5677
5678 do_set_program_inouts(shader->ir, prog, shader->Stage);
5679 shrink_array_declarations(v->input_arrays, v->num_input_arrays,
5680 prog->InputsRead, prog->DoubleInputsRead, prog->PatchInputsRead);
5681 shrink_array_declarations(v->output_arrays, v->num_output_arrays,
5682 prog->OutputsWritten, 0ULL, prog->PatchOutputsWritten);
5683 count_resources(v, prog);
5684
5685 /* This must be done before the uniform storage is associated. */
5686 if (shader->Type == GL_FRAGMENT_SHADER &&
5687 prog->InputsRead & VARYING_BIT_POS){
5688 static const gl_state_index wposTransformState[STATE_LENGTH] = {
5689 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
5690 };
5691
5692 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
5693 wposTransformState);
5694 }
5695
5696 _mesa_reference_program(ctx, &shader->Program, prog);
5697
5698 /* Avoid reallocation of the program parameter list, because the uniform
5699 * storage is only associated with the original parameter list.
5700 * This should be enough for Bitmap and DrawPixels constants.
5701 */
5702 _mesa_reserve_parameter_storage(prog->Parameters, 8);
5703
5704 /* This has to be done last. Any operation the can cause
5705 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5706 * program constant) has to happen before creating this linkage.
5707 */
5708 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5709 if (!shader_program->LinkStatus) {
5710 free_glsl_to_tgsi_visitor(v);
5711 return NULL;
5712 }
5713
5714 struct st_vertex_program *stvp;
5715 struct st_fragment_program *stfp;
5716 struct st_geometry_program *stgp;
5717 struct st_tessctrl_program *sttcp;
5718 struct st_tesseval_program *sttep;
5719
5720 switch (shader->Type) {
5721 case GL_VERTEX_SHADER:
5722 stvp = (struct st_vertex_program *)prog;
5723 stvp->glsl_to_tgsi = v;
5724 break;
5725 case GL_FRAGMENT_SHADER:
5726 stfp = (struct st_fragment_program *)prog;
5727 stfp->glsl_to_tgsi = v;
5728 break;
5729 case GL_GEOMETRY_SHADER:
5730 stgp = (struct st_geometry_program *)prog;
5731 stgp->glsl_to_tgsi = v;
5732 break;
5733 case GL_TESS_CONTROL_SHADER:
5734 sttcp = (struct st_tessctrl_program *)prog;
5735 sttcp->glsl_to_tgsi = v;
5736 break;
5737 case GL_TESS_EVALUATION_SHADER:
5738 sttep = (struct st_tesseval_program *)prog;
5739 sttep->glsl_to_tgsi = v;
5740 break;
5741 default:
5742 assert(!"should not be reached");
5743 return NULL;
5744 }
5745
5746 return prog;
5747 }
5748
5749 extern "C" {
5750
5751 static void
5752 st_dump_program_for_shader_db(struct gl_context *ctx,
5753 struct gl_shader_program *prog)
5754 {
5755 /* Dump only successfully compiled and linked shaders to the specified
5756 * file. This is for shader-db.
5757 *
5758 * These options allow some pre-processing of shaders while dumping,
5759 * because some apps have ill-formed shaders.
5760 */
5761 const char *dump_filename = os_get_option("ST_DUMP_SHADERS");
5762 const char *insert_directives = os_get_option("ST_DUMP_INSERT");
5763
5764 if (dump_filename && prog->Name != 0) {
5765 FILE *f = fopen(dump_filename, "a");
5766
5767 if (f) {
5768 for (unsigned i = 0; i < prog->NumShaders; i++) {
5769 const struct gl_shader *sh = prog->Shaders[i];
5770 const char *source;
5771 bool skip_version = false;
5772
5773 if (!sh)
5774 continue;
5775
5776 source = sh->Source;
5777
5778 /* This string mustn't be changed. shader-db uses it to find
5779 * where the shader begins.
5780 */
5781 fprintf(f, "GLSL %s shader %d source for linked program %d:\n",
5782 _mesa_shader_stage_to_string(sh->Stage),
5783 i, prog->Name);
5784
5785 /* Dump the forced version if set. */
5786 if (ctx->Const.ForceGLSLVersion) {
5787 fprintf(f, "#version %i\n", ctx->Const.ForceGLSLVersion);
5788 skip_version = true;
5789 }
5790
5791 /* Insert directives (optional). */
5792 if (insert_directives) {
5793 if (!ctx->Const.ForceGLSLVersion && prog->Version)
5794 fprintf(f, "#version %i\n", prog->Version);
5795 fprintf(f, "%s\n", insert_directives);
5796 skip_version = true;
5797 }
5798
5799 if (skip_version && strncmp(source, "#version ", 9) == 0) {
5800 const char *next_line = strstr(source, "\n");
5801
5802 if (next_line)
5803 source = next_line + 1;
5804 else
5805 continue;
5806 }
5807
5808 fprintf(f, "%s", source);
5809 fprintf(f, "\n");
5810 }
5811 fclose(f);
5812 }
5813 }
5814 }
5815
5816 /**
5817 * Link a shader.
5818 * Called via ctx->Driver.LinkShader()
5819 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5820 * with code lowering and other optimizations.
5821 */
5822 GLboolean
5823 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5824 {
5825 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5826 assert(prog->LinkStatus);
5827
5828 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5829 if (prog->_LinkedShaders[i] == NULL)
5830 continue;
5831
5832 bool progress;
5833 exec_list *ir = prog->_LinkedShaders[i]->ir;
5834 gl_shader_stage stage = _mesa_shader_enum_to_shader_stage(prog->_LinkedShaders[i]->Type);
5835 const struct gl_shader_compiler_options *options =
5836 &ctx->Const.ShaderCompilerOptions[stage];
5837 unsigned ptarget = st_shader_stage_to_ptarget(stage);
5838 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
5839 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
5840 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
5841 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
5842
5843 /* If there are forms of indirect addressing that the driver
5844 * cannot handle, perform the lowering pass.
5845 */
5846 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
5847 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
5848 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
5849 options->EmitNoIndirectInput,
5850 options->EmitNoIndirectOutput,
5851 options->EmitNoIndirectTemp,
5852 options->EmitNoIndirectUniform);
5853 }
5854
5855 if (ctx->Extensions.ARB_shading_language_packing) {
5856 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
5857 LOWER_UNPACK_SNORM_2x16 |
5858 LOWER_PACK_UNORM_2x16 |
5859 LOWER_UNPACK_UNORM_2x16 |
5860 LOWER_PACK_SNORM_4x8 |
5861 LOWER_UNPACK_SNORM_4x8 |
5862 LOWER_UNPACK_UNORM_4x8 |
5863 LOWER_PACK_UNORM_4x8;
5864
5865 if (ctx->Extensions.ARB_gpu_shader5)
5866 lower_inst |= LOWER_PACK_USE_BFI |
5867 LOWER_PACK_USE_BFE;
5868 if (!ctx->st->has_half_float_packing)
5869 lower_inst |= LOWER_PACK_HALF_2x16 |
5870 LOWER_UNPACK_HALF_2x16;
5871
5872 lower_packing_builtins(ir, lower_inst);
5873 }
5874
5875 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
5876 lower_offset_arrays(ir);
5877 do_mat_op_to_vec(ir);
5878 lower_instructions(ir,
5879 MOD_TO_FLOOR |
5880 DIV_TO_MUL_RCP |
5881 EXP_TO_EXP2 |
5882 LOG_TO_LOG2 |
5883 LDEXP_TO_ARITH |
5884 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
5885 CARRY_TO_ARITH |
5886 BORROW_TO_ARITH |
5887 (have_dround ? 0 : DOPS_TO_DFRAC) |
5888 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
5889 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
5890 (options->EmitNoSat ? SAT_TO_CLAMP : 0));
5891
5892 do_vec_index_to_cond_assign(ir);
5893 lower_vector_insert(ir, true);
5894 lower_quadop_vector(ir, false);
5895 lower_noise(ir);
5896 if (options->MaxIfDepth == 0) {
5897 lower_discard(ir);
5898 }
5899
5900 do {
5901 progress = false;
5902
5903 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5904
5905 progress = do_common_optimization(ir, true, true, options,
5906 ctx->Const.NativeIntegers)
5907 || progress;
5908
5909 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5910
5911 } while (progress);
5912
5913 validate_ir_tree(ir);
5914 }
5915
5916 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5917 struct gl_program *linked_prog;
5918
5919 if (prog->_LinkedShaders[i] == NULL)
5920 continue;
5921
5922 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5923
5924 if (linked_prog) {
5925 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5926 linked_prog);
5927 if (!ctx->Driver.ProgramStringNotify(ctx,
5928 _mesa_shader_stage_to_program(i),
5929 linked_prog)) {
5930 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5931 NULL);
5932 _mesa_reference_program(ctx, &linked_prog, NULL);
5933 return GL_FALSE;
5934 }
5935 }
5936
5937 _mesa_reference_program(ctx, &linked_prog, NULL);
5938 }
5939
5940 st_dump_program_for_shader_db(ctx, prog);
5941 return GL_TRUE;
5942 }
5943
5944 void
5945 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5946 const GLuint outputMapping[],
5947 struct pipe_stream_output_info *so)
5948 {
5949 unsigned i;
5950 struct gl_transform_feedback_info *info =
5951 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5952
5953 for (i = 0; i < info->NumOutputs; i++) {
5954 so->output[i].register_index =
5955 outputMapping[info->Outputs[i].OutputRegister];
5956 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5957 so->output[i].num_components = info->Outputs[i].NumComponents;
5958 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5959 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5960 so->output[i].stream = info->Outputs[i].StreamId;
5961 }
5962
5963 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5964 so->stride[i] = info->BufferStride[i];
5965 }
5966 so->num_outputs = info->NumOutputs;
5967 }
5968
5969 } /* extern "C" */