glsl: remove the shader_group_vote and shader_ballot expression ops
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "compiler/glsl/glsl_parser_extras.h"
36 #include "compiler/glsl/ir_optimization.h"
37 #include "compiler/glsl/program.h"
38
39 #include "main/errors.h"
40 #include "main/shaderobj.h"
41 #include "main/uniforms.h"
42 #include "main/shaderapi.h"
43 #include "main/shaderimage.h"
44 #include "program/prog_instruction.h"
45
46 #include "pipe/p_context.h"
47 #include "pipe/p_screen.h"
48 #include "tgsi/tgsi_ureg.h"
49 #include "tgsi/tgsi_info.h"
50 #include "util/u_math.h"
51 #include "util/u_memory.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "st_format.h"
55 #include "st_glsl_types.h"
56 #include "st_nir.h"
57 #include "st_shader_cache.h"
58
59 #include <algorithm>
60
61 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
62 (1 << PROGRAM_CONSTANT) | \
63 (1 << PROGRAM_UNIFORM))
64
65 #define MAX_GLSL_TEXTURE_OFFSET 4
66
67 class st_src_reg;
68 class st_dst_reg;
69
70 static int swizzle_for_size(int size);
71
72 static int swizzle_for_type(const glsl_type *type, int component = 0)
73 {
74 unsigned num_elements = 4;
75
76 if (type) {
77 type = type->without_array();
78 if (type->is_scalar() || type->is_vector() || type->is_matrix())
79 num_elements = type->vector_elements;
80 }
81
82 int swizzle = swizzle_for_size(num_elements);
83 assert(num_elements + component <= 4);
84
85 swizzle += component * MAKE_SWIZZLE4(1, 1, 1, 1);
86 return swizzle;
87 }
88
89 /**
90 * This struct is a corresponding struct to TGSI ureg_src.
91 */
92 class st_src_reg {
93 public:
94 st_src_reg(gl_register_file file, int index, const glsl_type *type,
95 int component = 0, unsigned array_id = 0)
96 {
97 assert(file != PROGRAM_ARRAY || array_id != 0);
98 this->file = file;
99 this->index = index;
100 this->swizzle = swizzle_for_type(type, component);
101 this->negate = 0;
102 this->abs = 0;
103 this->index2D = 0;
104 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
105 this->reladdr = NULL;
106 this->reladdr2 = NULL;
107 this->has_index2 = false;
108 this->double_reg2 = false;
109 this->array_id = array_id;
110 this->is_double_vertex_input = false;
111 }
112
113 st_src_reg(gl_register_file file, int index, enum glsl_base_type type)
114 {
115 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
116 this->type = type;
117 this->file = file;
118 this->index = index;
119 this->index2D = 0;
120 this->swizzle = SWIZZLE_XYZW;
121 this->negate = 0;
122 this->abs = 0;
123 this->reladdr = NULL;
124 this->reladdr2 = NULL;
125 this->has_index2 = false;
126 this->double_reg2 = false;
127 this->array_id = 0;
128 this->is_double_vertex_input = false;
129 }
130
131 st_src_reg(gl_register_file file, int index, enum glsl_base_type type, int index2D)
132 {
133 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
134 this->type = type;
135 this->file = file;
136 this->index = index;
137 this->index2D = index2D;
138 this->swizzle = SWIZZLE_XYZW;
139 this->negate = 0;
140 this->abs = 0;
141 this->reladdr = NULL;
142 this->reladdr2 = NULL;
143 this->has_index2 = false;
144 this->double_reg2 = false;
145 this->array_id = 0;
146 this->is_double_vertex_input = false;
147 }
148
149 st_src_reg()
150 {
151 this->type = GLSL_TYPE_ERROR;
152 this->file = PROGRAM_UNDEFINED;
153 this->index = 0;
154 this->index2D = 0;
155 this->swizzle = 0;
156 this->negate = 0;
157 this->abs = 0;
158 this->reladdr = NULL;
159 this->reladdr2 = NULL;
160 this->has_index2 = false;
161 this->double_reg2 = false;
162 this->array_id = 0;
163 this->is_double_vertex_input = false;
164 }
165
166 explicit st_src_reg(st_dst_reg reg);
167
168 int16_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
169 int16_t index2D;
170 uint16_t swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
171 int negate:4; /**< NEGATE_XYZW mask from mesa */
172 unsigned abs:1;
173 enum glsl_base_type type:5; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
174 unsigned has_index2:1;
175 gl_register_file file:5; /**< PROGRAM_* from Mesa */
176 /*
177 * Is this the second half of a double register pair?
178 * currently used for input mapping only.
179 */
180 unsigned double_reg2:1;
181 unsigned is_double_vertex_input:1;
182 unsigned array_id:10;
183
184 /** Register index should be offset by the integer in this reg. */
185 st_src_reg *reladdr;
186 st_src_reg *reladdr2;
187
188 st_src_reg get_abs()
189 {
190 st_src_reg reg = *this;
191 reg.negate = 0;
192 reg.abs = 1;
193 return reg;
194 }
195 };
196
197 class st_dst_reg {
198 public:
199 st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type, int index)
200 {
201 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
202 this->file = file;
203 this->index = index;
204 this->index2D = 0;
205 this->writemask = writemask;
206 this->reladdr = NULL;
207 this->reladdr2 = NULL;
208 this->has_index2 = false;
209 this->type = type;
210 this->array_id = 0;
211 }
212
213 st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type)
214 {
215 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
216 this->file = file;
217 this->index = 0;
218 this->index2D = 0;
219 this->writemask = writemask;
220 this->reladdr = NULL;
221 this->reladdr2 = NULL;
222 this->has_index2 = false;
223 this->type = type;
224 this->array_id = 0;
225 }
226
227 st_dst_reg()
228 {
229 this->type = GLSL_TYPE_ERROR;
230 this->file = PROGRAM_UNDEFINED;
231 this->index = 0;
232 this->index2D = 0;
233 this->writemask = 0;
234 this->reladdr = NULL;
235 this->reladdr2 = NULL;
236 this->has_index2 = false;
237 this->array_id = 0;
238 }
239
240 explicit st_dst_reg(st_src_reg reg);
241
242 int16_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
243 int16_t index2D;
244 gl_register_file file:5; /**< PROGRAM_* from Mesa */
245 unsigned writemask:4; /**< Bitfield of WRITEMASK_[XYZW] */
246 enum glsl_base_type type:5; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
247 unsigned has_index2:1;
248 unsigned array_id:10;
249
250 /** Register index should be offset by the integer in this reg. */
251 st_src_reg *reladdr;
252 st_src_reg *reladdr2;
253 };
254
255 st_src_reg::st_src_reg(st_dst_reg reg)
256 {
257 this->type = reg.type;
258 this->file = reg.file;
259 this->index = reg.index;
260 this->swizzle = SWIZZLE_XYZW;
261 this->negate = 0;
262 this->abs = 0;
263 this->reladdr = reg.reladdr;
264 this->index2D = reg.index2D;
265 this->reladdr2 = reg.reladdr2;
266 this->has_index2 = reg.has_index2;
267 this->double_reg2 = false;
268 this->array_id = reg.array_id;
269 this->is_double_vertex_input = false;
270 }
271
272 st_dst_reg::st_dst_reg(st_src_reg reg)
273 {
274 this->type = reg.type;
275 this->file = reg.file;
276 this->index = reg.index;
277 this->writemask = WRITEMASK_XYZW;
278 this->reladdr = reg.reladdr;
279 this->index2D = reg.index2D;
280 this->reladdr2 = reg.reladdr2;
281 this->has_index2 = reg.has_index2;
282 this->array_id = reg.array_id;
283 }
284
285 class glsl_to_tgsi_instruction : public exec_node {
286 public:
287 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
288
289 st_dst_reg dst[2];
290 st_src_reg src[4];
291 st_src_reg resource; /**< sampler or buffer register */
292 st_src_reg *tex_offsets;
293
294 /** Pointer to the ir source this tree came from for debugging */
295 ir_instruction *ir;
296
297 unsigned op:8; /**< TGSI opcode */
298 unsigned saturate:1;
299 unsigned is_64bit_expanded:1;
300 unsigned sampler_base:5;
301 unsigned sampler_array_size:6; /**< 1-based size of sampler array, 1 if not array */
302 unsigned tex_target:4; /**< One of TEXTURE_*_INDEX */
303 glsl_base_type tex_type:5;
304 unsigned tex_shadow:1;
305 unsigned image_format:9;
306 unsigned tex_offset_num_offset:3;
307 unsigned dead_mask:4; /**< Used in dead code elimination */
308 unsigned buffer_access:3; /**< buffer access type */
309
310 const struct tgsi_opcode_info *info;
311 };
312
313 class variable_storage : public exec_node {
314 public:
315 variable_storage(ir_variable *var, gl_register_file file, int index,
316 unsigned array_id = 0)
317 : file(file), index(index), component(0), var(var), array_id(array_id)
318 {
319 assert(file != PROGRAM_ARRAY || array_id != 0);
320 }
321
322 gl_register_file file;
323 int index;
324
325 /* Explicit component location. This is given in terms of the GLSL-style
326 * swizzles where each double is a single component, i.e. for 64-bit types
327 * it can only be 0 or 1.
328 */
329 int component;
330 ir_variable *var; /* variable that maps to this, if any */
331 unsigned array_id;
332 };
333
334 class immediate_storage : public exec_node {
335 public:
336 immediate_storage(gl_constant_value *values, int size32, int type)
337 {
338 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
339 this->size32 = size32;
340 this->type = type;
341 }
342
343 /* doubles are stored across 2 gl_constant_values */
344 gl_constant_value values[4];
345 int size32; /**< Number of 32-bit components (1-4) */
346 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
347 };
348
349 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
350 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
351
352 struct inout_decl {
353 unsigned mesa_index;
354 unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
355 unsigned size;
356 unsigned interp_loc;
357 unsigned gs_out_streams;
358 enum glsl_interp_mode interp;
359 enum glsl_base_type base_type;
360 ubyte usage_mask; /* GLSL-style usage-mask, i.e. single bit per double */
361 };
362
363 static struct inout_decl *
364 find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
365 {
366 assert(array_id != 0);
367
368 for (unsigned i = 0; i < count; i++) {
369 struct inout_decl *decl = &decls[i];
370
371 if (array_id == decl->array_id) {
372 return decl;
373 }
374 }
375
376 return NULL;
377 }
378
379 static enum glsl_base_type
380 find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
381 {
382 if (!array_id)
383 return GLSL_TYPE_ERROR;
384 struct inout_decl *decl = find_inout_array(decls, count, array_id);
385 if (decl)
386 return decl->base_type;
387 return GLSL_TYPE_ERROR;
388 }
389
390 struct rename_reg_pair {
391 int old_reg;
392 int new_reg;
393 };
394
395 struct glsl_to_tgsi_visitor : public ir_visitor {
396 public:
397 glsl_to_tgsi_visitor();
398 ~glsl_to_tgsi_visitor();
399
400 struct gl_context *ctx;
401 struct gl_program *prog;
402 struct gl_shader_program *shader_program;
403 struct gl_linked_shader *shader;
404 struct gl_shader_compiler_options *options;
405
406 int next_temp;
407
408 unsigned *array_sizes;
409 unsigned max_num_arrays;
410 unsigned next_array;
411
412 struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
413 unsigned num_inputs;
414 unsigned num_input_arrays;
415 struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
416 unsigned num_outputs;
417 unsigned num_output_arrays;
418
419 int num_address_regs;
420 uint32_t samplers_used;
421 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
422 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
423 int buffers_used;
424 int images_used;
425 int image_targets[PIPE_MAX_SHADER_IMAGES];
426 unsigned image_formats[PIPE_MAX_SHADER_IMAGES];
427 bool indirect_addr_consts;
428 int wpos_transform_const;
429
430 int glsl_version;
431 bool native_integers;
432 bool have_sqrt;
433 bool have_fma;
434 bool use_shared_memory;
435 bool has_tex_txf_lz;
436
437 variable_storage *find_variable_storage(ir_variable *var);
438
439 int add_constant(gl_register_file file, gl_constant_value values[8],
440 int size, int datatype, uint16_t *swizzle_out);
441
442 st_src_reg get_temp(const glsl_type *type);
443 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
444
445 st_src_reg st_src_reg_for_double(double val);
446 st_src_reg st_src_reg_for_float(float val);
447 st_src_reg st_src_reg_for_int(int val);
448 st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
449
450 /**
451 * \name Visit methods
452 *
453 * As typical for the visitor pattern, there must be one \c visit method for
454 * each concrete subclass of \c ir_instruction. Virtual base classes within
455 * the hierarchy should not have \c visit methods.
456 */
457 /*@{*/
458 virtual void visit(ir_variable *);
459 virtual void visit(ir_loop *);
460 virtual void visit(ir_loop_jump *);
461 virtual void visit(ir_function_signature *);
462 virtual void visit(ir_function *);
463 virtual void visit(ir_expression *);
464 virtual void visit(ir_swizzle *);
465 virtual void visit(ir_dereference_variable *);
466 virtual void visit(ir_dereference_array *);
467 virtual void visit(ir_dereference_record *);
468 virtual void visit(ir_assignment *);
469 virtual void visit(ir_constant *);
470 virtual void visit(ir_call *);
471 virtual void visit(ir_return *);
472 virtual void visit(ir_discard *);
473 virtual void visit(ir_texture *);
474 virtual void visit(ir_if *);
475 virtual void visit(ir_emit_vertex *);
476 virtual void visit(ir_end_primitive *);
477 virtual void visit(ir_barrier *);
478 /*@}*/
479
480 void visit_expression(ir_expression *, st_src_reg *) ATTRIBUTE_NOINLINE;
481
482 void visit_atomic_counter_intrinsic(ir_call *);
483 void visit_ssbo_intrinsic(ir_call *);
484 void visit_membar_intrinsic(ir_call *);
485 void visit_shared_intrinsic(ir_call *);
486 void visit_image_intrinsic(ir_call *);
487 void visit_generic_intrinsic(ir_call *, unsigned op);
488
489 st_src_reg result;
490
491 /** List of variable_storage */
492 exec_list variables;
493
494 /** List of immediate_storage */
495 exec_list immediates;
496 unsigned num_immediates;
497
498 /** List of glsl_to_tgsi_instruction */
499 exec_list instructions;
500
501 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
502 st_dst_reg dst = undef_dst,
503 st_src_reg src0 = undef_src,
504 st_src_reg src1 = undef_src,
505 st_src_reg src2 = undef_src,
506 st_src_reg src3 = undef_src);
507
508 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
509 st_dst_reg dst, st_dst_reg dst1,
510 st_src_reg src0 = undef_src,
511 st_src_reg src1 = undef_src,
512 st_src_reg src2 = undef_src,
513 st_src_reg src3 = undef_src);
514
515 unsigned get_opcode(unsigned op,
516 st_dst_reg dst,
517 st_src_reg src0, st_src_reg src1);
518
519 /**
520 * Emit the correct dot-product instruction for the type of arguments
521 */
522 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
523 st_dst_reg dst,
524 st_src_reg src0,
525 st_src_reg src1,
526 unsigned elements);
527
528 void emit_scalar(ir_instruction *ir, unsigned op,
529 st_dst_reg dst, st_src_reg src0);
530
531 void emit_scalar(ir_instruction *ir, unsigned op,
532 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
533
534 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
535
536 void get_deref_offsets(ir_dereference *ir,
537 unsigned *array_size,
538 unsigned *base,
539 uint16_t *index,
540 st_src_reg *reladdr,
541 bool opaque);
542 void calc_deref_offsets(ir_dereference *tail,
543 unsigned *array_elements,
544 uint16_t *index,
545 st_src_reg *indirect,
546 unsigned *location);
547 st_src_reg canonicalize_gather_offset(st_src_reg offset);
548
549 bool try_emit_mad(ir_expression *ir,
550 int mul_operand);
551 bool try_emit_mad_for_and_not(ir_expression *ir,
552 int mul_operand);
553
554 void emit_swz(ir_expression *ir);
555
556 bool process_move_condition(ir_rvalue *ir);
557
558 void simplify_cmp(void);
559
560 void rename_temp_registers(int num_renames, struct rename_reg_pair *renames);
561 void get_first_temp_read(int *first_reads);
562 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
563 void get_last_temp_write(int *last_writes);
564
565 void copy_propagate(void);
566 int eliminate_dead_code(void);
567
568 void merge_two_dsts(void);
569 void merge_registers(void);
570 void renumber_registers(void);
571
572 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
573 st_dst_reg *l, st_src_reg *r,
574 st_src_reg *cond, bool cond_swap);
575
576 void *mem_ctx;
577 };
578
579 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
580 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
581 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
582
583 static void
584 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
585
586 static void
587 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
588 {
589 va_list args;
590 va_start(args, fmt);
591 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
592 va_end(args);
593
594 prog->data->LinkStatus = linking_failure;
595 }
596
597 static int
598 swizzle_for_size(int size)
599 {
600 static const int size_swizzles[4] = {
601 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
602 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
603 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
604 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
605 };
606
607 assert((size >= 1) && (size <= 4));
608 return size_swizzles[size - 1];
609 }
610
611 static bool
612 is_resource_instruction(unsigned opcode)
613 {
614 switch (opcode) {
615 case TGSI_OPCODE_RESQ:
616 case TGSI_OPCODE_LOAD:
617 case TGSI_OPCODE_ATOMUADD:
618 case TGSI_OPCODE_ATOMXCHG:
619 case TGSI_OPCODE_ATOMCAS:
620 case TGSI_OPCODE_ATOMAND:
621 case TGSI_OPCODE_ATOMOR:
622 case TGSI_OPCODE_ATOMXOR:
623 case TGSI_OPCODE_ATOMUMIN:
624 case TGSI_OPCODE_ATOMUMAX:
625 case TGSI_OPCODE_ATOMIMIN:
626 case TGSI_OPCODE_ATOMIMAX:
627 return true;
628 default:
629 return false;
630 }
631 }
632
633 static unsigned
634 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
635 {
636 return op->info->num_dst;
637 }
638
639 static unsigned
640 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
641 {
642 return op->info->is_tex || is_resource_instruction(op->op) ?
643 op->info->num_src - 1 : op->info->num_src;
644 }
645
646 glsl_to_tgsi_instruction *
647 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
648 st_dst_reg dst, st_dst_reg dst1,
649 st_src_reg src0, st_src_reg src1,
650 st_src_reg src2, st_src_reg src3)
651 {
652 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
653 int num_reladdr = 0, i, j;
654 bool dst_is_64bit[2];
655
656 op = get_opcode(op, dst, src0, src1);
657
658 /* If we have to do relative addressing, we want to load the ARL
659 * reg directly for one of the regs, and preload the other reladdr
660 * sources into temps.
661 */
662 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
663 num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
664 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
665 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
666 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
667 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
668
669 reladdr_to_temp(ir, &src3, &num_reladdr);
670 reladdr_to_temp(ir, &src2, &num_reladdr);
671 reladdr_to_temp(ir, &src1, &num_reladdr);
672 reladdr_to_temp(ir, &src0, &num_reladdr);
673
674 if (dst.reladdr || dst.reladdr2) {
675 if (dst.reladdr)
676 emit_arl(ir, address_reg, *dst.reladdr);
677 if (dst.reladdr2)
678 emit_arl(ir, address_reg2, *dst.reladdr2);
679 num_reladdr--;
680 }
681 if (dst1.reladdr) {
682 emit_arl(ir, address_reg, *dst1.reladdr);
683 num_reladdr--;
684 }
685 assert(num_reladdr == 0);
686
687 /* inst->op has only 8 bits. */
688 STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
689
690 inst->op = op;
691 inst->info = tgsi_get_opcode_info(op);
692 inst->dst[0] = dst;
693 inst->dst[1] = dst1;
694 inst->src[0] = src0;
695 inst->src[1] = src1;
696 inst->src[2] = src2;
697 inst->src[3] = src3;
698 inst->is_64bit_expanded = false;
699 inst->ir = ir;
700 inst->dead_mask = 0;
701 inst->tex_offsets = NULL;
702 inst->tex_offset_num_offset = 0;
703 inst->saturate = 0;
704 inst->tex_shadow = 0;
705 /* default to float, for paths where this is not initialized
706 * (since 0==UINT which is likely wrong):
707 */
708 inst->tex_type = GLSL_TYPE_FLOAT;
709
710 /* Update indirect addressing status used by TGSI */
711 if (dst.reladdr || dst.reladdr2) {
712 switch(dst.file) {
713 case PROGRAM_STATE_VAR:
714 case PROGRAM_CONSTANT:
715 case PROGRAM_UNIFORM:
716 this->indirect_addr_consts = true;
717 break;
718 case PROGRAM_IMMEDIATE:
719 assert(!"immediates should not have indirect addressing");
720 break;
721 default:
722 break;
723 }
724 }
725 else {
726 for (i = 0; i < 4; i++) {
727 if(inst->src[i].reladdr) {
728 switch(inst->src[i].file) {
729 case PROGRAM_STATE_VAR:
730 case PROGRAM_CONSTANT:
731 case PROGRAM_UNIFORM:
732 this->indirect_addr_consts = true;
733 break;
734 case PROGRAM_IMMEDIATE:
735 assert(!"immediates should not have indirect addressing");
736 break;
737 default:
738 break;
739 }
740 }
741 }
742 }
743
744 /*
745 * This section contains the double processing.
746 * GLSL just represents doubles as single channel values,
747 * however most HW and TGSI represent doubles as pairs of register channels.
748 *
749 * so we have to fixup destination writemask/index and src swizzle/indexes.
750 * dest writemasks need to translate from single channel write mask
751 * to a dual-channel writemask, but also need to modify the index,
752 * if we are touching the Z,W fields in the pre-translated writemask.
753 *
754 * src channels have similiar index modifications along with swizzle
755 * changes to we pick the XY, ZW pairs from the correct index.
756 *
757 * GLSL [0].x -> TGSI [0].xy
758 * GLSL [0].y -> TGSI [0].zw
759 * GLSL [0].z -> TGSI [1].xy
760 * GLSL [0].w -> TGSI [1].zw
761 */
762 for (j = 0; j < 2; j++) {
763 dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
764 if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
765 enum glsl_base_type type = find_array_type(this->outputs, this->num_outputs, inst->dst[j].array_id);
766 if (glsl_base_type_is_64bit(type))
767 dst_is_64bit[j] = true;
768 }
769 }
770
771 if (dst_is_64bit[0] || dst_is_64bit[1] ||
772 glsl_base_type_is_64bit(inst->src[0].type)) {
773 glsl_to_tgsi_instruction *dinst = NULL;
774 int initial_src_swz[4], initial_src_idx[4];
775 int initial_dst_idx[2], initial_dst_writemask[2];
776 /* select the writemask for dst0 or dst1 */
777 unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED ? inst->dst[0].writemask : inst->dst[1].writemask;
778
779 /* copy out the writemask, index and swizzles for all src/dsts. */
780 for (j = 0; j < 2; j++) {
781 initial_dst_writemask[j] = inst->dst[j].writemask;
782 initial_dst_idx[j] = inst->dst[j].index;
783 }
784
785 for (j = 0; j < 4; j++) {
786 initial_src_swz[j] = inst->src[j].swizzle;
787 initial_src_idx[j] = inst->src[j].index;
788 }
789
790 /*
791 * scan all the components in the dst writemask
792 * generate an instruction for each of them if required.
793 */
794 st_src_reg addr;
795 while (writemask) {
796
797 int i = u_bit_scan(&writemask);
798
799 /* before emitting the instruction, see if we have to adjust load / store
800 * address */
801 if (i > 1 && (inst->op == TGSI_OPCODE_LOAD || inst->op == TGSI_OPCODE_STORE) &&
802 addr.file == PROGRAM_UNDEFINED) {
803 /* We have to advance the buffer address by 16 */
804 addr = get_temp(glsl_type::uint_type);
805 emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
806 inst->src[0], st_src_reg_for_int(16));
807 }
808
809 /* first time use previous instruction */
810 if (dinst == NULL) {
811 dinst = inst;
812 } else {
813 /* create a new instructions for subsequent attempts */
814 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
815 *dinst = *inst;
816 dinst->next = NULL;
817 dinst->prev = NULL;
818 }
819 this->instructions.push_tail(dinst);
820 dinst->is_64bit_expanded = true;
821
822 /* modify the destination if we are splitting */
823 for (j = 0; j < 2; j++) {
824 if (dst_is_64bit[j]) {
825 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
826 dinst->dst[j].index = initial_dst_idx[j];
827 if (i > 1) {
828 if (dinst->op == TGSI_OPCODE_LOAD || dinst->op == TGSI_OPCODE_STORE)
829 dinst->src[0] = addr;
830 if (dinst->op != TGSI_OPCODE_STORE)
831 dinst->dst[j].index++;
832 }
833 } else {
834 /* if we aren't writing to a double, just get the bit of the initial writemask
835 for this channel */
836 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
837 }
838 }
839
840 /* modify the src registers */
841 for (j = 0; j < 4; j++) {
842 int swz = GET_SWZ(initial_src_swz[j], i);
843
844 if (glsl_base_type_is_64bit(dinst->src[j].type)) {
845 dinst->src[j].index = initial_src_idx[j];
846 if (swz > 1) {
847 dinst->src[j].double_reg2 = true;
848 dinst->src[j].index++;
849 }
850
851 if (swz & 1)
852 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
853 else
854 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
855
856 } else {
857 /* some opcodes are special case in what they use as sources
858 - [FUI]2D/[UI]2I64 is a float/[u]int src0, DLDEXP is integer src1 */
859 if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D || op == TGSI_OPCODE_I2D ||
860 op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
861 op == TGSI_OPCODE_DLDEXP ||
862 (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
863 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
864 }
865 }
866 }
867 }
868 inst = dinst;
869 } else {
870 this->instructions.push_tail(inst);
871 }
872
873
874 return inst;
875 }
876
877 glsl_to_tgsi_instruction *
878 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
879 st_dst_reg dst,
880 st_src_reg src0, st_src_reg src1,
881 st_src_reg src2, st_src_reg src3)
882 {
883 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
884 }
885
886 /**
887 * Determines whether to use an integer, unsigned integer, or float opcode
888 * based on the operands and input opcode, then emits the result.
889 */
890 unsigned
891 glsl_to_tgsi_visitor::get_opcode(unsigned op,
892 st_dst_reg dst,
893 st_src_reg src0, st_src_reg src1)
894 {
895 enum glsl_base_type type = GLSL_TYPE_FLOAT;
896
897 if (op == TGSI_OPCODE_MOV)
898 return op;
899
900 assert(src0.type != GLSL_TYPE_ARRAY);
901 assert(src0.type != GLSL_TYPE_STRUCT);
902 assert(src1.type != GLSL_TYPE_ARRAY);
903 assert(src1.type != GLSL_TYPE_STRUCT);
904
905 if (is_resource_instruction(op))
906 type = src1.type;
907 else if (src0.type == GLSL_TYPE_INT64 || src1.type == GLSL_TYPE_INT64)
908 type = GLSL_TYPE_INT64;
909 else if (src0.type == GLSL_TYPE_UINT64 || src1.type == GLSL_TYPE_UINT64)
910 type = GLSL_TYPE_UINT64;
911 else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
912 type = GLSL_TYPE_DOUBLE;
913 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
914 type = GLSL_TYPE_FLOAT;
915 else if (native_integers)
916 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
917
918 #define case7(c, f, i, u, d, i64, ui64) \
919 case TGSI_OPCODE_##c: \
920 if (type == GLSL_TYPE_UINT64) \
921 op = TGSI_OPCODE_##ui64; \
922 else if (type == GLSL_TYPE_INT64) \
923 op = TGSI_OPCODE_##i64; \
924 else if (type == GLSL_TYPE_DOUBLE) \
925 op = TGSI_OPCODE_##d; \
926 else if (type == GLSL_TYPE_INT) \
927 op = TGSI_OPCODE_##i; \
928 else if (type == GLSL_TYPE_UINT) \
929 op = TGSI_OPCODE_##u; \
930 else \
931 op = TGSI_OPCODE_##f; \
932 break;
933 #define case5(c, f, i, u, d) \
934 case TGSI_OPCODE_##c: \
935 if (type == GLSL_TYPE_DOUBLE) \
936 op = TGSI_OPCODE_##d; \
937 else if (type == GLSL_TYPE_INT) \
938 op = TGSI_OPCODE_##i; \
939 else if (type == GLSL_TYPE_UINT) \
940 op = TGSI_OPCODE_##u; \
941 else \
942 op = TGSI_OPCODE_##f; \
943 break;
944
945 #define case4(c, f, i, u) \
946 case TGSI_OPCODE_##c: \
947 if (type == GLSL_TYPE_INT) \
948 op = TGSI_OPCODE_##i; \
949 else if (type == GLSL_TYPE_UINT) \
950 op = TGSI_OPCODE_##u; \
951 else \
952 op = TGSI_OPCODE_##f; \
953 break;
954
955 #define case3(f, i, u) case4(f, f, i, u)
956 #define case6d(f, i, u, d, i64, u64) case7(f, f, i, u, d, i64, u64)
957 #define case3fid(f, i, d) case5(f, f, i, i, d)
958 #define case3fid64(f, i, d, i64) case7(f, f, i, i, d, i64, i64)
959 #define case2fi(f, i) case4(f, f, i, i)
960 #define case2iu(i, u) case4(i, LAST, i, u)
961
962 #define case2iu64(i, i64) case7(i, LAST, i, i, LAST, i64, i64)
963 #define case4iu64(i, u, i64, u64) case7(i, LAST, i, u, LAST, i64, u64)
964
965 #define casecomp(c, f, i, u, d, i64, ui64) \
966 case TGSI_OPCODE_##c: \
967 if (type == GLSL_TYPE_INT64) \
968 op = TGSI_OPCODE_##i64; \
969 else if (type == GLSL_TYPE_UINT64) \
970 op = TGSI_OPCODE_##ui64; \
971 else if (type == GLSL_TYPE_DOUBLE) \
972 op = TGSI_OPCODE_##d; \
973 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
974 op = TGSI_OPCODE_##i; \
975 else if (type == GLSL_TYPE_UINT) \
976 op = TGSI_OPCODE_##u; \
977 else if (native_integers) \
978 op = TGSI_OPCODE_##f; \
979 else \
980 op = TGSI_OPCODE_##c; \
981 break;
982
983 switch(op) {
984 case3fid64(ADD, UADD, DADD, U64ADD);
985 case3fid64(MUL, UMUL, DMUL, U64MUL);
986 case3fid(MAD, UMAD, DMAD);
987 case3fid(FMA, UMAD, DFMA);
988 case6d(DIV, IDIV, UDIV, DDIV, I64DIV, U64DIV);
989 case6d(MAX, IMAX, UMAX, DMAX, I64MAX, U64MAX);
990 case6d(MIN, IMIN, UMIN, DMIN, I64MIN, U64MIN);
991 case4iu64(MOD, UMOD, I64MOD, U64MOD);
992
993 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ, U64SEQ, U64SEQ);
994 casecomp(SNE, FSNE, USNE, USNE, DSNE, U64SNE, U64SNE);
995 casecomp(SGE, FSGE, ISGE, USGE, DSGE, I64SGE, U64SGE);
996 casecomp(SLT, FSLT, ISLT, USLT, DSLT, I64SLT, U64SLT);
997
998 case2iu64(SHL, U64SHL);
999 case4iu64(ISHR, USHR, I64SHR, U64SHR);
1000
1001 case3fid64(SSG, ISSG, DSSG, I64SSG);
1002
1003 case2iu(IBFE, UBFE);
1004 case2iu(IMSB, UMSB);
1005 case2iu(IMUL_HI, UMUL_HI);
1006
1007 case3fid(SQRT, SQRT, DSQRT);
1008
1009 case3fid(RCP, RCP, DRCP);
1010 case3fid(RSQ, RSQ, DRSQ);
1011
1012 case3fid(FRC, FRC, DFRAC);
1013 case3fid(TRUNC, TRUNC, DTRUNC);
1014 case3fid(CEIL, CEIL, DCEIL);
1015 case3fid(FLR, FLR, DFLR);
1016 case3fid(ROUND, ROUND, DROUND);
1017
1018 case2iu(ATOMIMAX, ATOMUMAX);
1019 case2iu(ATOMIMIN, ATOMUMIN);
1020
1021 default: break;
1022 }
1023
1024 assert(op != TGSI_OPCODE_LAST);
1025 return op;
1026 }
1027
1028 glsl_to_tgsi_instruction *
1029 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
1030 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
1031 unsigned elements)
1032 {
1033 static const unsigned dot_opcodes[] = {
1034 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
1035 };
1036
1037 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
1038 }
1039
1040 /**
1041 * Emits TGSI scalar opcodes to produce unique answers across channels.
1042 *
1043 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
1044 * channel determines the result across all channels. So to do a vec4
1045 * of this operation, we want to emit a scalar per source channel used
1046 * to produce dest channels.
1047 */
1048 void
1049 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
1050 st_dst_reg dst,
1051 st_src_reg orig_src0, st_src_reg orig_src1)
1052 {
1053 int i, j;
1054 int done_mask = ~dst.writemask;
1055
1056 /* TGSI RCP is a scalar operation splatting results to all channels,
1057 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
1058 * dst channels.
1059 */
1060 for (i = 0; i < 4; i++) {
1061 GLuint this_mask = (1 << i);
1062 st_src_reg src0 = orig_src0;
1063 st_src_reg src1 = orig_src1;
1064
1065 if (done_mask & this_mask)
1066 continue;
1067
1068 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
1069 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
1070 for (j = i + 1; j < 4; j++) {
1071 /* If there is another enabled component in the destination that is
1072 * derived from the same inputs, generate its value on this pass as
1073 * well.
1074 */
1075 if (!(done_mask & (1 << j)) &&
1076 GET_SWZ(src0.swizzle, j) == src0_swiz &&
1077 GET_SWZ(src1.swizzle, j) == src1_swiz) {
1078 this_mask |= (1 << j);
1079 }
1080 }
1081 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
1082 src0_swiz, src0_swiz);
1083 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
1084 src1_swiz, src1_swiz);
1085
1086 dst.writemask = this_mask;
1087 emit_asm(ir, op, dst, src0, src1);
1088 done_mask |= this_mask;
1089 }
1090 }
1091
1092 void
1093 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
1094 st_dst_reg dst, st_src_reg src0)
1095 {
1096 st_src_reg undef = undef_src;
1097
1098 undef.swizzle = SWIZZLE_XXXX;
1099
1100 emit_scalar(ir, op, dst, src0, undef);
1101 }
1102
1103 void
1104 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
1105 st_dst_reg dst, st_src_reg src0)
1106 {
1107 int op = TGSI_OPCODE_ARL;
1108
1109 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
1110 op = TGSI_OPCODE_UARL;
1111
1112 assert(dst.file == PROGRAM_ADDRESS);
1113 if (dst.index >= this->num_address_regs)
1114 this->num_address_regs = dst.index + 1;
1115
1116 emit_asm(NULL, op, dst, src0);
1117 }
1118
1119 int
1120 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
1121 gl_constant_value values[8], int size, int datatype,
1122 uint16_t *swizzle_out)
1123 {
1124 if (file == PROGRAM_CONSTANT) {
1125 GLuint swizzle = swizzle_out ? *swizzle_out : 0;
1126 int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
1127 size, datatype, &swizzle);
1128 if (swizzle_out)
1129 *swizzle_out = swizzle;
1130 return result;
1131 }
1132
1133 assert(file == PROGRAM_IMMEDIATE);
1134
1135 int index = 0;
1136 immediate_storage *entry;
1137 int size32 = size * ((datatype == GL_DOUBLE ||
1138 datatype == GL_INT64_ARB ||
1139 datatype == GL_UNSIGNED_INT64_ARB)? 2 : 1);
1140 int i;
1141
1142 /* Search immediate storage to see if we already have an identical
1143 * immediate that we can use instead of adding a duplicate entry.
1144 */
1145 foreach_in_list(immediate_storage, entry, &this->immediates) {
1146 immediate_storage *tmp = entry;
1147
1148 for (i = 0; i * 4 < size32; i++) {
1149 int slot_size = MIN2(size32 - (i * 4), 4);
1150 if (tmp->type != datatype || tmp->size32 != slot_size)
1151 break;
1152 if (memcmp(tmp->values, &values[i * 4],
1153 slot_size * sizeof(gl_constant_value)))
1154 break;
1155
1156 /* Everything matches, keep going until the full size is matched */
1157 tmp = (immediate_storage *)tmp->next;
1158 }
1159
1160 /* The full value matched */
1161 if (i * 4 >= size32)
1162 return index;
1163
1164 index++;
1165 }
1166
1167 for (i = 0; i * 4 < size32; i++) {
1168 int slot_size = MIN2(size32 - (i * 4), 4);
1169 /* Add this immediate to the list. */
1170 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
1171 this->immediates.push_tail(entry);
1172 this->num_immediates++;
1173 }
1174 return index;
1175 }
1176
1177 st_src_reg
1178 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1179 {
1180 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1181 union gl_constant_value uval;
1182
1183 uval.f = val;
1184 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1185
1186 return src;
1187 }
1188
1189 st_src_reg
1190 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1191 {
1192 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1193 union gl_constant_value uval[2];
1194
1195 memcpy(uval, &val, sizeof(uval));
1196 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1197 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
1198 return src;
1199 }
1200
1201 st_src_reg
1202 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1203 {
1204 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1205 union gl_constant_value uval;
1206
1207 assert(native_integers);
1208
1209 uval.i = val;
1210 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1211
1212 return src;
1213 }
1214
1215 st_src_reg
1216 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
1217 {
1218 if (native_integers)
1219 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1220 st_src_reg_for_int(val);
1221 else
1222 return st_src_reg_for_float(val);
1223 }
1224
1225 static int
1226 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
1227 {
1228 return st_glsl_attrib_type_size(type, is_vs_input);
1229 }
1230
1231 static int
1232 type_size(const struct glsl_type *type)
1233 {
1234 return st_glsl_type_size(type);
1235 }
1236
1237 /**
1238 * If the given GLSL type is an array or matrix or a structure containing
1239 * an array/matrix member, return true. Else return false.
1240 *
1241 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1242 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
1243 * we have an array that might be indexed with a variable, we need to use
1244 * the later storage type.
1245 */
1246 static bool
1247 type_has_array_or_matrix(const glsl_type *type)
1248 {
1249 if (type->is_array() || type->is_matrix())
1250 return true;
1251
1252 if (type->is_record()) {
1253 for (unsigned i = 0; i < type->length; i++) {
1254 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1255 return true;
1256 }
1257 }
1258 }
1259
1260 return false;
1261 }
1262
1263
1264 /**
1265 * In the initial pass of codegen, we assign temporary numbers to
1266 * intermediate results. (not SSA -- variable assignments will reuse
1267 * storage).
1268 */
1269 st_src_reg
1270 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1271 {
1272 st_src_reg src;
1273
1274 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1275 src.reladdr = NULL;
1276 src.negate = 0;
1277 src.abs = 0;
1278
1279 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1280 if (next_array >= max_num_arrays) {
1281 max_num_arrays += 32;
1282 array_sizes = (unsigned*)
1283 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1284 }
1285
1286 src.file = PROGRAM_ARRAY;
1287 src.index = 0;
1288 src.array_id = next_array + 1;
1289 array_sizes[next_array] = type_size(type);
1290 ++next_array;
1291
1292 } else {
1293 src.file = PROGRAM_TEMPORARY;
1294 src.index = next_temp;
1295 next_temp += type_size(type);
1296 }
1297
1298 if (type->is_array() || type->is_record()) {
1299 src.swizzle = SWIZZLE_NOOP;
1300 } else {
1301 src.swizzle = swizzle_for_size(type->vector_elements);
1302 }
1303
1304 return src;
1305 }
1306
1307 variable_storage *
1308 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1309 {
1310
1311 foreach_in_list(variable_storage, entry, &this->variables) {
1312 if (entry->var == var)
1313 return entry;
1314 }
1315
1316 return NULL;
1317 }
1318
1319 void
1320 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1321 {
1322 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1323 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
1324 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
1325 }
1326
1327 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1328 unsigned int i;
1329 const ir_state_slot *const slots = ir->get_state_slots();
1330 assert(slots != NULL);
1331
1332 /* Check if this statevar's setup in the STATE file exactly
1333 * matches how we'll want to reference it as a
1334 * struct/array/whatever. If not, then we need to move it into
1335 * temporary storage and hope that it'll get copy-propagated
1336 * out.
1337 */
1338 for (i = 0; i < ir->get_num_state_slots(); i++) {
1339 if (slots[i].swizzle != SWIZZLE_XYZW) {
1340 break;
1341 }
1342 }
1343
1344 variable_storage *storage;
1345 st_dst_reg dst;
1346 if (i == ir->get_num_state_slots()) {
1347 /* We'll set the index later. */
1348 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1349 this->variables.push_tail(storage);
1350
1351 dst = undef_dst;
1352 } else {
1353 /* The variable_storage constructor allocates slots based on the size
1354 * of the type. However, this had better match the number of state
1355 * elements that we're going to copy into the new temporary.
1356 */
1357 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1358
1359 dst = st_dst_reg(get_temp(ir->type));
1360
1361 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
1362 dst.array_id);
1363
1364 this->variables.push_tail(storage);
1365 }
1366
1367
1368 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1369 int index = _mesa_add_state_reference(this->prog->Parameters,
1370 (gl_state_index *)slots[i].tokens);
1371
1372 if (storage->file == PROGRAM_STATE_VAR) {
1373 if (storage->index == -1) {
1374 storage->index = index;
1375 } else {
1376 assert(index == storage->index + (int)i);
1377 }
1378 } else {
1379 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1380 * the data being moved since MOV does not care about the type of
1381 * data it is moving, and we don't want to declare registers with
1382 * array or struct types.
1383 */
1384 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1385 src.swizzle = slots[i].swizzle;
1386 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1387 /* even a float takes up a whole vec4 reg in a struct/array. */
1388 dst.index++;
1389 }
1390 }
1391
1392 if (storage->file == PROGRAM_TEMPORARY &&
1393 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1394 fail_link(this->shader_program,
1395 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1396 ir->name, dst.index - storage->index,
1397 type_size(ir->type));
1398 }
1399 }
1400 }
1401
1402 void
1403 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1404 {
1405 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1406
1407 visit_exec_list(&ir->body_instructions, this);
1408
1409 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1410 }
1411
1412 void
1413 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1414 {
1415 switch (ir->mode) {
1416 case ir_loop_jump::jump_break:
1417 emit_asm(NULL, TGSI_OPCODE_BRK);
1418 break;
1419 case ir_loop_jump::jump_continue:
1420 emit_asm(NULL, TGSI_OPCODE_CONT);
1421 break;
1422 }
1423 }
1424
1425
1426 void
1427 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1428 {
1429 assert(0);
1430 (void)ir;
1431 }
1432
1433 void
1434 glsl_to_tgsi_visitor::visit(ir_function *ir)
1435 {
1436 /* Ignore function bodies other than main() -- we shouldn't see calls to
1437 * them since they should all be inlined before we get to glsl_to_tgsi.
1438 */
1439 if (strcmp(ir->name, "main") == 0) {
1440 const ir_function_signature *sig;
1441 exec_list empty;
1442
1443 sig = ir->matching_signature(NULL, &empty, false);
1444
1445 assert(sig);
1446
1447 foreach_in_list(ir_instruction, ir, &sig->body) {
1448 ir->accept(this);
1449 }
1450 }
1451 }
1452
1453 bool
1454 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1455 {
1456 int nonmul_operand = 1 - mul_operand;
1457 st_src_reg a, b, c;
1458 st_dst_reg result_dst;
1459
1460 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1461 if (!expr || expr->operation != ir_binop_mul)
1462 return false;
1463
1464 expr->operands[0]->accept(this);
1465 a = this->result;
1466 expr->operands[1]->accept(this);
1467 b = this->result;
1468 ir->operands[nonmul_operand]->accept(this);
1469 c = this->result;
1470
1471 this->result = get_temp(ir->type);
1472 result_dst = st_dst_reg(this->result);
1473 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1474 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1475
1476 return true;
1477 }
1478
1479 /**
1480 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1481 *
1482 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1483 * implemented using multiplication, and logical-or is implemented using
1484 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1485 * As result, the logical expression (a & !b) can be rewritten as:
1486 *
1487 * - a * !b
1488 * - a * (1 - b)
1489 * - (a * 1) - (a * b)
1490 * - a + -(a * b)
1491 * - a + (a * -b)
1492 *
1493 * This final expression can be implemented as a single MAD(a, -b, a)
1494 * instruction.
1495 */
1496 bool
1497 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1498 {
1499 const int other_operand = 1 - try_operand;
1500 st_src_reg a, b;
1501
1502 ir_expression *expr = ir->operands[try_operand]->as_expression();
1503 if (!expr || expr->operation != ir_unop_logic_not)
1504 return false;
1505
1506 ir->operands[other_operand]->accept(this);
1507 a = this->result;
1508 expr->operands[0]->accept(this);
1509 b = this->result;
1510
1511 b.negate = ~b.negate;
1512
1513 this->result = get_temp(ir->type);
1514 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1515
1516 return true;
1517 }
1518
1519 void
1520 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1521 st_src_reg *reg, int *num_reladdr)
1522 {
1523 if (!reg->reladdr && !reg->reladdr2)
1524 return;
1525
1526 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1527 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1528
1529 if (*num_reladdr != 1) {
1530 st_src_reg temp = get_temp(reg->type == GLSL_TYPE_DOUBLE ? glsl_type::dvec4_type : glsl_type::vec4_type);
1531
1532 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1533 *reg = temp;
1534 }
1535
1536 (*num_reladdr)--;
1537 }
1538
1539 void
1540 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1541 {
1542 st_src_reg op[ARRAY_SIZE(ir->operands)];
1543
1544 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1545 */
1546 if (ir->operation == ir_binop_add) {
1547 if (try_emit_mad(ir, 1))
1548 return;
1549 if (try_emit_mad(ir, 0))
1550 return;
1551 }
1552
1553 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1554 */
1555 if (!native_integers && ir->operation == ir_binop_logic_and) {
1556 if (try_emit_mad_for_and_not(ir, 1))
1557 return;
1558 if (try_emit_mad_for_and_not(ir, 0))
1559 return;
1560 }
1561
1562 if (ir->operation == ir_quadop_vector)
1563 assert(!"ir_quadop_vector should have been lowered");
1564
1565 for (unsigned int operand = 0; operand < ir->get_num_operands(); operand++) {
1566 this->result.file = PROGRAM_UNDEFINED;
1567 ir->operands[operand]->accept(this);
1568 if (this->result.file == PROGRAM_UNDEFINED) {
1569 printf("Failed to get tree for expression operand:\n");
1570 ir->operands[operand]->print();
1571 printf("\n");
1572 exit(1);
1573 }
1574 op[operand] = this->result;
1575
1576 /* Matrix expression operands should have been broken down to vector
1577 * operations already.
1578 */
1579 assert(!ir->operands[operand]->type->is_matrix());
1580 }
1581
1582 visit_expression(ir, op);
1583 }
1584
1585 /* The non-recursive part of the expression visitor lives in a separate
1586 * function and should be prevented from being inlined, to avoid a stack
1587 * explosion when deeply nested expressions are visited.
1588 */
1589 void
1590 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
1591 {
1592 st_src_reg result_src;
1593 st_dst_reg result_dst;
1594
1595 int vector_elements = ir->operands[0]->type->vector_elements;
1596 if (ir->operands[1]) {
1597 vector_elements = MAX2(vector_elements,
1598 ir->operands[1]->type->vector_elements);
1599 }
1600
1601 this->result.file = PROGRAM_UNDEFINED;
1602
1603 /* Storage for our result. Ideally for an assignment we'd be using
1604 * the actual storage for the result here, instead.
1605 */
1606 result_src = get_temp(ir->type);
1607 /* convenience for the emit functions below. */
1608 result_dst = st_dst_reg(result_src);
1609 /* Limit writes to the channels that will be used by result_src later.
1610 * This does limit this temp's use as a temporary for multi-instruction
1611 * sequences.
1612 */
1613 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1614
1615 switch (ir->operation) {
1616 case ir_unop_logic_not:
1617 if (result_dst.type != GLSL_TYPE_FLOAT)
1618 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1619 else {
1620 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1621 * older GPUs implement SEQ using multiple instructions (i915 uses two
1622 * SGE instructions and a MUL instruction). Since our logic values are
1623 * 0.0 and 1.0, 1-x also implements !x.
1624 */
1625 op[0].negate = ~op[0].negate;
1626 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1627 }
1628 break;
1629 case ir_unop_neg:
1630 if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1631 emit_asm(ir, TGSI_OPCODE_I64NEG, result_dst, op[0]);
1632 else if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1633 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1634 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1635 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1636 else {
1637 op[0].negate = ~op[0].negate;
1638 result_src = op[0];
1639 }
1640 break;
1641 case ir_unop_subroutine_to_int:
1642 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1643 break;
1644 case ir_unop_abs:
1645 if (result_dst.type == GLSL_TYPE_FLOAT)
1646 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
1647 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1648 emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
1649 else if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1650 emit_asm(ir, TGSI_OPCODE_I64ABS, result_dst, op[0]);
1651 else
1652 emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
1653 break;
1654 case ir_unop_sign:
1655 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1656 break;
1657 case ir_unop_rcp:
1658 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1659 break;
1660
1661 case ir_unop_exp2:
1662 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1663 break;
1664 case ir_unop_exp:
1665 assert(!"not reached: should be handled by exp_to_exp2");
1666 break;
1667 case ir_unop_log:
1668 assert(!"not reached: should be handled by log_to_log2");
1669 break;
1670 case ir_unop_log2:
1671 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1672 break;
1673 case ir_unop_sin:
1674 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1675 break;
1676 case ir_unop_cos:
1677 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1678 break;
1679 case ir_unop_saturate: {
1680 glsl_to_tgsi_instruction *inst;
1681 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1682 inst->saturate = true;
1683 break;
1684 }
1685
1686 case ir_unop_dFdx:
1687 case ir_unop_dFdx_coarse:
1688 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1689 break;
1690 case ir_unop_dFdx_fine:
1691 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1692 break;
1693 case ir_unop_dFdy:
1694 case ir_unop_dFdy_coarse:
1695 case ir_unop_dFdy_fine:
1696 {
1697 /* The X component contains 1 or -1 depending on whether the framebuffer
1698 * is a FBO or the window system buffer, respectively.
1699 * It is then multiplied with the source operand of DDY.
1700 */
1701 static const gl_state_index transform_y_state[STATE_LENGTH]
1702 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1703
1704 unsigned transform_y_index =
1705 _mesa_add_state_reference(this->prog->Parameters,
1706 transform_y_state);
1707
1708 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1709 transform_y_index,
1710 glsl_type::vec4_type);
1711 transform_y.swizzle = SWIZZLE_XXXX;
1712
1713 st_src_reg temp = get_temp(glsl_type::vec4_type);
1714
1715 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1716 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1717 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1718 break;
1719 }
1720
1721 case ir_unop_frexp_sig:
1722 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1723 break;
1724
1725 case ir_unop_frexp_exp:
1726 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1727 break;
1728
1729 case ir_unop_noise: {
1730 /* At some point, a motivated person could add a better
1731 * implementation of noise. Currently not even the nvidia
1732 * binary drivers do anything more than this. In any case, the
1733 * place to do this is in the GL state tracker, not the poor
1734 * driver.
1735 */
1736 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1737 break;
1738 }
1739
1740 case ir_binop_add:
1741 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1742 break;
1743 case ir_binop_sub:
1744 op[1].negate = ~op[1].negate;
1745 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1746 break;
1747
1748 case ir_binop_mul:
1749 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1750 break;
1751 case ir_binop_div:
1752 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1753 break;
1754 case ir_binop_mod:
1755 if (result_dst.type == GLSL_TYPE_FLOAT)
1756 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1757 else
1758 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1759 break;
1760
1761 case ir_binop_less:
1762 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1763 break;
1764 case ir_binop_greater:
1765 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1766 break;
1767 case ir_binop_lequal:
1768 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1769 break;
1770 case ir_binop_gequal:
1771 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1772 break;
1773 case ir_binop_equal:
1774 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1775 break;
1776 case ir_binop_nequal:
1777 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1778 break;
1779 case ir_binop_all_equal:
1780 /* "==" operator producing a scalar boolean. */
1781 if (ir->operands[0]->type->is_vector() ||
1782 ir->operands[1]->type->is_vector()) {
1783 st_src_reg temp = get_temp(native_integers ?
1784 glsl_type::uvec4_type :
1785 glsl_type::vec4_type);
1786
1787 if (native_integers) {
1788 st_dst_reg temp_dst = st_dst_reg(temp);
1789 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1790
1791 if (ir->operands[0]->type->is_boolean() &&
1792 ir->operands[1]->as_constant() &&
1793 ir->operands[1]->as_constant()->is_one()) {
1794 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1795 } else {
1796 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1797 }
1798
1799 /* Emit 1-3 AND operations to combine the SEQ results. */
1800 switch (ir->operands[0]->type->vector_elements) {
1801 case 2:
1802 break;
1803 case 3:
1804 temp_dst.writemask = WRITEMASK_Y;
1805 temp1.swizzle = SWIZZLE_YYYY;
1806 temp2.swizzle = SWIZZLE_ZZZZ;
1807 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1808 break;
1809 case 4:
1810 temp_dst.writemask = WRITEMASK_X;
1811 temp1.swizzle = SWIZZLE_XXXX;
1812 temp2.swizzle = SWIZZLE_YYYY;
1813 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1814 temp_dst.writemask = WRITEMASK_Y;
1815 temp1.swizzle = SWIZZLE_ZZZZ;
1816 temp2.swizzle = SWIZZLE_WWWW;
1817 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1818 }
1819
1820 temp1.swizzle = SWIZZLE_XXXX;
1821 temp2.swizzle = SWIZZLE_YYYY;
1822 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1823 } else {
1824 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1825
1826 /* After the dot-product, the value will be an integer on the
1827 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1828 */
1829 emit_dp(ir, result_dst, temp, temp, vector_elements);
1830
1831 /* Negating the result of the dot-product gives values on the range
1832 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1833 * This is achieved using SGE.
1834 */
1835 st_src_reg sge_src = result_src;
1836 sge_src.negate = ~sge_src.negate;
1837 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1838 }
1839 } else {
1840 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1841 }
1842 break;
1843 case ir_binop_any_nequal:
1844 /* "!=" operator producing a scalar boolean. */
1845 if (ir->operands[0]->type->is_vector() ||
1846 ir->operands[1]->type->is_vector()) {
1847 st_src_reg temp = get_temp(native_integers ?
1848 glsl_type::uvec4_type :
1849 glsl_type::vec4_type);
1850 if (ir->operands[0]->type->is_boolean() &&
1851 ir->operands[1]->as_constant() &&
1852 ir->operands[1]->as_constant()->is_zero()) {
1853 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1854 } else {
1855 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1856 }
1857
1858 if (native_integers) {
1859 st_dst_reg temp_dst = st_dst_reg(temp);
1860 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1861
1862 /* Emit 1-3 OR operations to combine the SNE results. */
1863 switch (ir->operands[0]->type->vector_elements) {
1864 case 2:
1865 break;
1866 case 3:
1867 temp_dst.writemask = WRITEMASK_Y;
1868 temp1.swizzle = SWIZZLE_YYYY;
1869 temp2.swizzle = SWIZZLE_ZZZZ;
1870 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1871 break;
1872 case 4:
1873 temp_dst.writemask = WRITEMASK_X;
1874 temp1.swizzle = SWIZZLE_XXXX;
1875 temp2.swizzle = SWIZZLE_YYYY;
1876 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1877 temp_dst.writemask = WRITEMASK_Y;
1878 temp1.swizzle = SWIZZLE_ZZZZ;
1879 temp2.swizzle = SWIZZLE_WWWW;
1880 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1881 }
1882
1883 temp1.swizzle = SWIZZLE_XXXX;
1884 temp2.swizzle = SWIZZLE_YYYY;
1885 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1886 } else {
1887 /* After the dot-product, the value will be an integer on the
1888 * range [0,4]. Zero stays zero, and positive values become 1.0.
1889 */
1890 glsl_to_tgsi_instruction *const dp =
1891 emit_dp(ir, result_dst, temp, temp, vector_elements);
1892 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1893 /* The clamping to [0,1] can be done for free in the fragment
1894 * shader with a saturate.
1895 */
1896 dp->saturate = true;
1897 } else {
1898 /* Negating the result of the dot-product gives values on the range
1899 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1900 * achieved using SLT.
1901 */
1902 st_src_reg slt_src = result_src;
1903 slt_src.negate = ~slt_src.negate;
1904 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1905 }
1906 }
1907 } else {
1908 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1909 }
1910 break;
1911
1912 case ir_binop_logic_xor:
1913 if (native_integers)
1914 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1915 else
1916 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1917 break;
1918
1919 case ir_binop_logic_or: {
1920 if (native_integers) {
1921 /* If integers are used as booleans, we can use an actual "or"
1922 * instruction.
1923 */
1924 assert(native_integers);
1925 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1926 } else {
1927 /* After the addition, the value will be an integer on the
1928 * range [0,2]. Zero stays zero, and positive values become 1.0.
1929 */
1930 glsl_to_tgsi_instruction *add =
1931 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1932 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1933 /* The clamping to [0,1] can be done for free in the fragment
1934 * shader with a saturate if floats are being used as boolean values.
1935 */
1936 add->saturate = true;
1937 } else {
1938 /* Negating the result of the addition gives values on the range
1939 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1940 * is achieved using SLT.
1941 */
1942 st_src_reg slt_src = result_src;
1943 slt_src.negate = ~slt_src.negate;
1944 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1945 }
1946 }
1947 break;
1948 }
1949
1950 case ir_binop_logic_and:
1951 /* If native integers are disabled, the bool args are stored as float 0.0
1952 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1953 * actual AND opcode.
1954 */
1955 if (native_integers)
1956 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1957 else
1958 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1959 break;
1960
1961 case ir_binop_dot:
1962 assert(ir->operands[0]->type->is_vector());
1963 assert(ir->operands[0]->type == ir->operands[1]->type);
1964 emit_dp(ir, result_dst, op[0], op[1],
1965 ir->operands[0]->type->vector_elements);
1966 break;
1967
1968 case ir_unop_sqrt:
1969 if (have_sqrt) {
1970 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1971 } else {
1972 /* This is the only instruction sequence that makes the game "Risen"
1973 * render correctly. ABS is not required for the game, but since GLSL
1974 * declares negative values as "undefined", allowing us to do whatever
1975 * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
1976 * behavior.
1977 */
1978 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
1979 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
1980 }
1981 break;
1982 case ir_unop_rsq:
1983 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1984 break;
1985 case ir_unop_i2f:
1986 if (native_integers) {
1987 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1988 break;
1989 }
1990 /* fallthrough to next case otherwise */
1991 case ir_unop_b2f:
1992 if (native_integers) {
1993 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1994 break;
1995 }
1996 /* fallthrough to next case otherwise */
1997 case ir_unop_i2u:
1998 case ir_unop_u2i:
1999 case ir_unop_i642u64:
2000 case ir_unop_u642i64:
2001 /* Converting between signed and unsigned integers is a no-op. */
2002 result_src = op[0];
2003 result_src.type = result_dst.type;
2004 break;
2005 case ir_unop_b2i:
2006 if (native_integers) {
2007 /* Booleans are stored as integers using ~0 for true and 0 for false.
2008 * GLSL requires that int(bool) return 1 for true and 0 for false.
2009 * This conversion is done with AND, but it could be done with NEG.
2010 */
2011 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
2012 } else {
2013 /* Booleans and integers are both stored as floats when native
2014 * integers are disabled.
2015 */
2016 result_src = op[0];
2017 }
2018 break;
2019 case ir_unop_f2i:
2020 if (native_integers)
2021 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
2022 else
2023 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2024 break;
2025 case ir_unop_f2u:
2026 if (native_integers)
2027 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
2028 else
2029 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2030 break;
2031 case ir_unop_bitcast_f2i:
2032 case ir_unop_bitcast_f2u:
2033 /* Make sure we don't propagate the negate modifier to integer opcodes. */
2034 if (op[0].negate || op[0].abs)
2035 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2036 else
2037 result_src = op[0];
2038 result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
2039 GLSL_TYPE_UINT;
2040 break;
2041 case ir_unop_bitcast_i2f:
2042 case ir_unop_bitcast_u2f:
2043 result_src = op[0];
2044 result_src.type = GLSL_TYPE_FLOAT;
2045 break;
2046 case ir_unop_f2b:
2047 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
2048 break;
2049 case ir_unop_d2b:
2050 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
2051 break;
2052 case ir_unop_i2b:
2053 if (native_integers)
2054 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
2055 else
2056 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
2057 break;
2058 case ir_unop_bitcast_u642d:
2059 case ir_unop_bitcast_i642d:
2060 result_src = op[0];
2061 result_src.type = GLSL_TYPE_DOUBLE;
2062 break;
2063 case ir_unop_bitcast_d2i64:
2064 result_src = op[0];
2065 result_src.type = GLSL_TYPE_INT64;
2066 break;
2067 case ir_unop_bitcast_d2u64:
2068 result_src = op[0];
2069 result_src.type = GLSL_TYPE_UINT64;
2070 break;
2071 case ir_unop_trunc:
2072 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2073 break;
2074 case ir_unop_ceil:
2075 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
2076 break;
2077 case ir_unop_floor:
2078 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
2079 break;
2080 case ir_unop_round_even:
2081 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
2082 break;
2083 case ir_unop_fract:
2084 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
2085 break;
2086
2087 case ir_binop_min:
2088 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
2089 break;
2090 case ir_binop_max:
2091 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
2092 break;
2093 case ir_binop_pow:
2094 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
2095 break;
2096
2097 case ir_unop_bit_not:
2098 if (native_integers) {
2099 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
2100 break;
2101 }
2102 case ir_unop_u2f:
2103 if (native_integers) {
2104 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
2105 break;
2106 }
2107 case ir_binop_lshift:
2108 case ir_binop_rshift:
2109 if (native_integers) {
2110 unsigned opcode = ir->operation == ir_binop_lshift ? TGSI_OPCODE_SHL
2111 : TGSI_OPCODE_ISHR;
2112 st_src_reg count;
2113
2114 if (glsl_base_type_is_64bit(op[0].type)) {
2115 /* GLSL shift operations have 32-bit shift counts, but TGSI uses
2116 * 64 bits.
2117 */
2118 count = get_temp(glsl_type::u64vec(ir->operands[1]->type->components()));
2119 emit_asm(ir, TGSI_OPCODE_U2I64, st_dst_reg(count), op[1]);
2120 } else {
2121 count = op[1];
2122 }
2123
2124 emit_asm(ir, opcode, result_dst, op[0], count);
2125 break;
2126 }
2127 case ir_binop_bit_and:
2128 if (native_integers) {
2129 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2130 break;
2131 }
2132 case ir_binop_bit_xor:
2133 if (native_integers) {
2134 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
2135 break;
2136 }
2137 case ir_binop_bit_or:
2138 if (native_integers) {
2139 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
2140 break;
2141 }
2142
2143 assert(!"GLSL 1.30 features unsupported");
2144 break;
2145
2146 case ir_binop_ubo_load: {
2147 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2148 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2149 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
2150 unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
2151 st_src_reg index_reg = get_temp(glsl_type::uint_type);
2152 st_src_reg cbuf;
2153
2154 cbuf.type = ir->type->base_type;
2155 cbuf.file = PROGRAM_CONSTANT;
2156 cbuf.index = 0;
2157 cbuf.reladdr = NULL;
2158 cbuf.negate = 0;
2159 cbuf.abs = 0;
2160
2161 assert(ir->type->is_vector() || ir->type->is_scalar());
2162
2163 if (const_offset_ir) {
2164 /* Constant index into constant buffer */
2165 cbuf.reladdr = NULL;
2166 cbuf.index = const_offset / 16;
2167 }
2168 else {
2169 ir_expression *offset_expr = ir->operands[1]->as_expression();
2170 st_src_reg offset = op[1];
2171
2172 /* The OpenGL spec is written in such a way that accesses with
2173 * non-constant offset are almost always vec4-aligned. The only
2174 * exception to this are members of structs in arrays of structs:
2175 * each struct in an array of structs is at least vec4-aligned,
2176 * but single-element and [ui]vec2 members of the struct may be at
2177 * an offset that is not a multiple of 16 bytes.
2178 *
2179 * Here, we extract that offset, relying on previous passes to always
2180 * generate offset expressions of the form (+ expr constant_offset).
2181 *
2182 * Note that the std430 layout, which allows more cases of alignment
2183 * less than vec4 in arrays, is not supported for uniform blocks, so
2184 * we do not have to deal with it here.
2185 */
2186 if (offset_expr && offset_expr->operation == ir_binop_add) {
2187 const_offset_ir = offset_expr->operands[1]->as_constant();
2188 if (const_offset_ir) {
2189 const_offset = const_offset_ir->value.u[0];
2190 cbuf.index = const_offset / 16;
2191 offset_expr->operands[0]->accept(this);
2192 offset = this->result;
2193 }
2194 }
2195
2196 /* Relative/variable index into constant buffer */
2197 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
2198 st_src_reg_for_int(4));
2199 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2200 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
2201 }
2202
2203 if (const_uniform_block) {
2204 /* Constant constant buffer */
2205 cbuf.reladdr2 = NULL;
2206 cbuf.index2D = const_block;
2207 cbuf.has_index2 = true;
2208 }
2209 else {
2210 /* Relative/variable constant buffer */
2211 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2212 cbuf.index2D = 1;
2213 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
2214 cbuf.has_index2 = true;
2215 }
2216
2217 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2218 if (glsl_base_type_is_64bit(cbuf.type))
2219 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2220 const_offset % 16 / 8,
2221 const_offset % 16 / 8,
2222 const_offset % 16 / 8);
2223 else
2224 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2225 const_offset % 16 / 4,
2226 const_offset % 16 / 4,
2227 const_offset % 16 / 4);
2228
2229 if (ir->type->is_boolean()) {
2230 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2231 } else {
2232 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2233 }
2234 break;
2235 }
2236 case ir_triop_lrp:
2237 /* note: we have to reorder the three args here */
2238 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2239 break;
2240 case ir_triop_csel:
2241 if (this->ctx->Const.NativeIntegers)
2242 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2243 else {
2244 op[0].negate = ~op[0].negate;
2245 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2246 }
2247 break;
2248 case ir_triop_bitfield_extract:
2249 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2250 break;
2251 case ir_quadop_bitfield_insert:
2252 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2253 break;
2254 case ir_unop_bitfield_reverse:
2255 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2256 break;
2257 case ir_unop_bit_count:
2258 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2259 break;
2260 case ir_unop_find_msb:
2261 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2262 break;
2263 case ir_unop_find_lsb:
2264 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2265 break;
2266 case ir_binop_imul_high:
2267 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2268 break;
2269 case ir_triop_fma:
2270 /* In theory, MAD is incorrect here. */
2271 if (have_fma)
2272 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2273 else
2274 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2275 break;
2276 case ir_unop_interpolate_at_centroid:
2277 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2278 break;
2279 case ir_binop_interpolate_at_offset: {
2280 /* The y coordinate needs to be flipped for the default fb */
2281 static const gl_state_index transform_y_state[STATE_LENGTH]
2282 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
2283
2284 unsigned transform_y_index =
2285 _mesa_add_state_reference(this->prog->Parameters,
2286 transform_y_state);
2287
2288 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
2289 transform_y_index,
2290 glsl_type::vec4_type);
2291 transform_y.swizzle = SWIZZLE_XXXX;
2292
2293 st_src_reg temp = get_temp(glsl_type::vec2_type);
2294 st_dst_reg temp_dst = st_dst_reg(temp);
2295
2296 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
2297 temp_dst.writemask = WRITEMASK_Y;
2298 emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
2299 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
2300 break;
2301 }
2302 case ir_binop_interpolate_at_sample:
2303 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2304 break;
2305
2306 case ir_unop_d2f:
2307 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2308 break;
2309 case ir_unop_f2d:
2310 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2311 break;
2312 case ir_unop_d2i:
2313 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2314 break;
2315 case ir_unop_i2d:
2316 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2317 break;
2318 case ir_unop_d2u:
2319 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2320 break;
2321 case ir_unop_u2d:
2322 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2323 break;
2324 case ir_unop_unpack_double_2x32:
2325 case ir_unop_pack_double_2x32:
2326 case ir_unop_unpack_int_2x32:
2327 case ir_unop_pack_int_2x32:
2328 case ir_unop_unpack_uint_2x32:
2329 case ir_unop_pack_uint_2x32:
2330 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2331 break;
2332
2333 case ir_binop_ldexp:
2334 if (ir->operands[0]->type->is_double()) {
2335 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2336 } else {
2337 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2338 }
2339 break;
2340
2341 case ir_unop_pack_half_2x16:
2342 emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2343 break;
2344 case ir_unop_unpack_half_2x16:
2345 emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2346 break;
2347
2348 case ir_unop_get_buffer_size: {
2349 ir_constant *const_offset = ir->operands[0]->as_constant();
2350 st_src_reg buffer(
2351 PROGRAM_BUFFER,
2352 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
2353 (const_offset ? const_offset->value.u[0] : 0),
2354 GLSL_TYPE_UINT);
2355 if (!const_offset) {
2356 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
2357 *buffer.reladdr = op[0];
2358 emit_arl(ir, sampler_reladdr, op[0]);
2359 }
2360 emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
2361 break;
2362 }
2363
2364 case ir_unop_u2i64:
2365 case ir_unop_u2u64:
2366 case ir_unop_b2i64: {
2367 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2368 st_dst_reg temp_dst = st_dst_reg(temp);
2369 unsigned orig_swz = op[0].swizzle;
2370 /*
2371 * To convert unsigned to 64-bit:
2372 * zero Y channel, copy X channel.
2373 */
2374 temp_dst.writemask = WRITEMASK_Y;
2375 if (vector_elements > 1)
2376 temp_dst.writemask |= WRITEMASK_W;
2377 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2378 temp_dst.writemask = WRITEMASK_X;
2379 if (vector_elements > 1)
2380 temp_dst.writemask |= WRITEMASK_Z;
2381 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 0), GET_SWZ(orig_swz, 0),
2382 GET_SWZ(orig_swz, 1), GET_SWZ(orig_swz, 1));
2383 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2384 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2385 else
2386 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2387 result_src = temp;
2388 result_src.type = GLSL_TYPE_UINT64;
2389 if (vector_elements > 2) {
2390 /* Subtle: We rely on the fact that get_temp here returns the next
2391 * TGSI temporary register directly after the temp register used for
2392 * the first two components, so that the result gets picked up
2393 * automatically.
2394 */
2395 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2396 st_dst_reg temp_dst = st_dst_reg(temp);
2397 temp_dst.writemask = WRITEMASK_Y;
2398 if (vector_elements > 3)
2399 temp_dst.writemask |= WRITEMASK_W;
2400 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2401
2402 temp_dst.writemask = WRITEMASK_X;
2403 if (vector_elements > 3)
2404 temp_dst.writemask |= WRITEMASK_Z;
2405 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 2), GET_SWZ(orig_swz, 2),
2406 GET_SWZ(orig_swz, 3), GET_SWZ(orig_swz, 3));
2407 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2408 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2409 else
2410 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2411 }
2412 break;
2413 }
2414 case ir_unop_i642i:
2415 case ir_unop_u642i:
2416 case ir_unop_u642u:
2417 case ir_unop_i642u: {
2418 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2419 st_dst_reg temp_dst = st_dst_reg(temp);
2420 unsigned orig_swz = op[0].swizzle;
2421 unsigned orig_idx = op[0].index;
2422 int el;
2423 temp_dst.writemask = WRITEMASK_X;
2424
2425 for (el = 0; el < vector_elements; el++) {
2426 unsigned swz = GET_SWZ(orig_swz, el);
2427 if (swz & 1)
2428 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z);
2429 else
2430 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
2431 if (swz > 2)
2432 op[0].index = orig_idx + 1;
2433 op[0].type = GLSL_TYPE_UINT;
2434 temp_dst.writemask = WRITEMASK_X << el;
2435 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2436 }
2437 result_src = temp;
2438 if (ir->operation == ir_unop_u642u || ir->operation == ir_unop_i642u)
2439 result_src.type = GLSL_TYPE_UINT;
2440 else
2441 result_src.type = GLSL_TYPE_INT;
2442 break;
2443 }
2444 case ir_unop_i642b:
2445 emit_asm(ir, TGSI_OPCODE_U64SNE, result_dst, op[0], st_src_reg_for_int(0));
2446 break;
2447 case ir_unop_i642f:
2448 emit_asm(ir, TGSI_OPCODE_I642F, result_dst, op[0]);
2449 break;
2450 case ir_unop_u642f:
2451 emit_asm(ir, TGSI_OPCODE_U642F, result_dst, op[0]);
2452 break;
2453 case ir_unop_i642d:
2454 emit_asm(ir, TGSI_OPCODE_I642D, result_dst, op[0]);
2455 break;
2456 case ir_unop_u642d:
2457 emit_asm(ir, TGSI_OPCODE_U642D, result_dst, op[0]);
2458 break;
2459 case ir_unop_i2i64:
2460 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2461 break;
2462 case ir_unop_f2i64:
2463 emit_asm(ir, TGSI_OPCODE_F2I64, result_dst, op[0]);
2464 break;
2465 case ir_unop_d2i64:
2466 emit_asm(ir, TGSI_OPCODE_D2I64, result_dst, op[0]);
2467 break;
2468 case ir_unop_i2u64:
2469 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2470 break;
2471 case ir_unop_f2u64:
2472 emit_asm(ir, TGSI_OPCODE_F2U64, result_dst, op[0]);
2473 break;
2474 case ir_unop_d2u64:
2475 emit_asm(ir, TGSI_OPCODE_D2U64, result_dst, op[0]);
2476 break;
2477 /* these might be needed */
2478 case ir_unop_pack_snorm_2x16:
2479 case ir_unop_pack_unorm_2x16:
2480 case ir_unop_pack_snorm_4x8:
2481 case ir_unop_pack_unorm_4x8:
2482
2483 case ir_unop_unpack_snorm_2x16:
2484 case ir_unop_unpack_unorm_2x16:
2485 case ir_unop_unpack_snorm_4x8:
2486 case ir_unop_unpack_unorm_4x8:
2487
2488 case ir_quadop_vector:
2489 case ir_binop_vector_extract:
2490 case ir_triop_vector_insert:
2491 case ir_binop_carry:
2492 case ir_binop_borrow:
2493 case ir_unop_ssbo_unsized_array_length:
2494 /* This operation is not supported, or should have already been handled.
2495 */
2496 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2497 break;
2498 }
2499
2500 this->result = result_src;
2501 }
2502
2503
2504 void
2505 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2506 {
2507 st_src_reg src;
2508 int i;
2509 int swizzle[4];
2510
2511 /* Note that this is only swizzles in expressions, not those on the left
2512 * hand side of an assignment, which do write masking. See ir_assignment
2513 * for that.
2514 */
2515
2516 ir->val->accept(this);
2517 src = this->result;
2518 assert(src.file != PROGRAM_UNDEFINED);
2519 assert(ir->type->vector_elements > 0);
2520
2521 for (i = 0; i < 4; i++) {
2522 if (i < ir->type->vector_elements) {
2523 switch (i) {
2524 case 0:
2525 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2526 break;
2527 case 1:
2528 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2529 break;
2530 case 2:
2531 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2532 break;
2533 case 3:
2534 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2535 break;
2536 }
2537 } else {
2538 /* If the type is smaller than a vec4, replicate the last
2539 * channel out.
2540 */
2541 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2542 }
2543 }
2544
2545 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2546
2547 this->result = src;
2548 }
2549
2550 /* Test if the variable is an array. Note that geometry and
2551 * tessellation shader inputs are outputs are always arrays (except
2552 * for patch inputs), so only the array element type is considered.
2553 */
2554 static bool
2555 is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
2556 {
2557 const glsl_type *type = var->type;
2558
2559 *remove_array = false;
2560
2561 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2562 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2563 return false;
2564
2565 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2566 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2567 stage == MESA_SHADER_TESS_CTRL) &&
2568 !var->data.patch) {
2569 if (!var->type->is_array())
2570 return false; /* a system value probably */
2571
2572 type = var->type->fields.array;
2573 *remove_array = true;
2574 }
2575
2576 return type->is_array() || type->is_matrix();
2577 }
2578
2579 static unsigned
2580 st_translate_interp_loc(ir_variable *var)
2581 {
2582 if (var->data.centroid)
2583 return TGSI_INTERPOLATE_LOC_CENTROID;
2584 else if (var->data.sample)
2585 return TGSI_INTERPOLATE_LOC_SAMPLE;
2586 else
2587 return TGSI_INTERPOLATE_LOC_CENTER;
2588 }
2589
2590 void
2591 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2592 {
2593 variable_storage *entry = find_variable_storage(ir->var);
2594 ir_variable *var = ir->var;
2595 bool remove_array;
2596
2597 if (!entry) {
2598 switch (var->data.mode) {
2599 case ir_var_uniform:
2600 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2601 var->data.param_index);
2602 this->variables.push_tail(entry);
2603 break;
2604 case ir_var_shader_in: {
2605 /* The linker assigns locations for varyings and attributes,
2606 * including deprecated builtins (like gl_Color), user-assign
2607 * generic attributes (glBindVertexLocation), and
2608 * user-defined varyings.
2609 */
2610 assert(var->data.location != -1);
2611
2612 const glsl_type *type_without_array = var->type->without_array();
2613 struct inout_decl *decl = &inputs[num_inputs];
2614 unsigned component = var->data.location_frac;
2615 unsigned num_components;
2616 num_inputs++;
2617
2618 if (type_without_array->is_64bit())
2619 component = component / 2;
2620 if (type_without_array->vector_elements)
2621 num_components = type_without_array->vector_elements;
2622 else
2623 num_components = 4;
2624
2625 decl->mesa_index = var->data.location;
2626 decl->interp = (glsl_interp_mode) var->data.interpolation;
2627 decl->interp_loc = st_translate_interp_loc(var);
2628 decl->base_type = type_without_array->base_type;
2629 decl->usage_mask = u_bit_consecutive(component, num_components);
2630
2631 if (is_inout_array(shader->Stage, var, &remove_array)) {
2632 decl->array_id = num_input_arrays + 1;
2633 num_input_arrays++;
2634 } else {
2635 decl->array_id = 0;
2636 }
2637
2638 if (remove_array)
2639 decl->size = type_size(var->type->fields.array);
2640 else
2641 decl->size = type_size(var->type);
2642
2643 entry = new(mem_ctx) variable_storage(var,
2644 PROGRAM_INPUT,
2645 decl->mesa_index,
2646 decl->array_id);
2647 entry->component = component;
2648
2649 this->variables.push_tail(entry);
2650 break;
2651 }
2652 case ir_var_shader_out: {
2653 assert(var->data.location != -1);
2654
2655 const glsl_type *type_without_array = var->type->without_array();
2656 struct inout_decl *decl = &outputs[num_outputs];
2657 unsigned component = var->data.location_frac;
2658 unsigned num_components;
2659 num_outputs++;
2660
2661 if (type_without_array->is_64bit())
2662 component = component / 2;
2663 if (type_without_array->vector_elements)
2664 num_components = type_without_array->vector_elements;
2665 else
2666 num_components = 4;
2667
2668 decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
2669 decl->base_type = type_without_array->base_type;
2670 decl->usage_mask = u_bit_consecutive(component, num_components);
2671 if (var->data.stream & (1u << 31)) {
2672 decl->gs_out_streams = var->data.stream & ~(1u << 31);
2673 } else {
2674 assert(var->data.stream < 4);
2675 decl->gs_out_streams = 0;
2676 for (unsigned i = 0; i < num_components; ++i)
2677 decl->gs_out_streams |= var->data.stream << (2 * (component + i));
2678 }
2679
2680 if (is_inout_array(shader->Stage, var, &remove_array)) {
2681 decl->array_id = num_output_arrays + 1;
2682 num_output_arrays++;
2683 } else {
2684 decl->array_id = 0;
2685 }
2686
2687 if (remove_array)
2688 decl->size = type_size(var->type->fields.array);
2689 else
2690 decl->size = type_size(var->type);
2691
2692 if (var->data.fb_fetch_output) {
2693 st_dst_reg dst = st_dst_reg(get_temp(var->type));
2694 st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
2695 var->type, component, decl->array_id);
2696 emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
2697 entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
2698 dst.array_id);
2699 } else {
2700 entry = new(mem_ctx) variable_storage(var,
2701 PROGRAM_OUTPUT,
2702 decl->mesa_index,
2703 decl->array_id);
2704 }
2705 entry->component = component;
2706
2707 this->variables.push_tail(entry);
2708 break;
2709 }
2710 case ir_var_system_value:
2711 entry = new(mem_ctx) variable_storage(var,
2712 PROGRAM_SYSTEM_VALUE,
2713 var->data.location);
2714 break;
2715 case ir_var_auto:
2716 case ir_var_temporary:
2717 st_src_reg src = get_temp(var->type);
2718
2719 entry = new(mem_ctx) variable_storage(var, src.file, src.index,
2720 src.array_id);
2721 this->variables.push_tail(entry);
2722
2723 break;
2724 }
2725
2726 if (!entry) {
2727 printf("Failed to make storage for %s\n", var->name);
2728 exit(1);
2729 }
2730 }
2731
2732 this->result = st_src_reg(entry->file, entry->index, var->type,
2733 entry->component, entry->array_id);
2734 if (this->shader->Stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in && var->type->is_double())
2735 this->result.is_double_vertex_input = true;
2736 if (!native_integers)
2737 this->result.type = GLSL_TYPE_FLOAT;
2738 }
2739
2740 static void
2741 shrink_array_declarations(struct inout_decl *decls, unsigned count,
2742 GLbitfield64* usage_mask,
2743 GLbitfield64 double_usage_mask,
2744 GLbitfield* patch_usage_mask)
2745 {
2746 unsigned i;
2747 int j;
2748
2749 /* Fix array declarations by removing unused array elements at both ends
2750 * of the arrays. For example, mat4[3] where only mat[1] is used.
2751 */
2752 for (i = 0; i < count; i++) {
2753 struct inout_decl *decl = &decls[i];
2754 if (!decl->array_id)
2755 continue;
2756
2757 /* Shrink the beginning. */
2758 for (j = 0; j < (int)decl->size; j++) {
2759 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2760 if (*patch_usage_mask &
2761 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2762 break;
2763 }
2764 else {
2765 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2766 break;
2767 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2768 break;
2769 }
2770
2771 decl->mesa_index++;
2772 decl->size--;
2773 j--;
2774 }
2775
2776 /* Shrink the end. */
2777 for (j = decl->size-1; j >= 0; j--) {
2778 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2779 if (*patch_usage_mask &
2780 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2781 break;
2782 }
2783 else {
2784 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2785 break;
2786 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2787 break;
2788 }
2789
2790 decl->size--;
2791 }
2792
2793 /* When not all entries of an array are accessed, we mark them as used
2794 * here anyway, to ensure that the input/output mapping logic doesn't get
2795 * confused.
2796 *
2797 * TODO This happens when an array isn't used via indirect access, which
2798 * some game ports do (at least eON-based). There is an optimization
2799 * opportunity here by replacing the array declaration with non-array
2800 * declarations of those slots that are actually used.
2801 */
2802 for (j = 1; j < (int)decl->size; ++j) {
2803 if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2804 *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2805 else
2806 *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2807 }
2808 }
2809 }
2810
2811 void
2812 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2813 {
2814 ir_constant *index;
2815 st_src_reg src;
2816 int element_size = type_size(ir->type);
2817 bool is_2D = false;
2818
2819 index = ir->array_index->constant_expression_value();
2820
2821 ir->array->accept(this);
2822 src = this->result;
2823
2824 if (ir->array->ir_type != ir_type_dereference_array) {
2825 switch (this->prog->Target) {
2826 case GL_TESS_CONTROL_PROGRAM_NV:
2827 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2828 !ir->variable_referenced()->data.patch;
2829 break;
2830 case GL_TESS_EVALUATION_PROGRAM_NV:
2831 is_2D = src.file == PROGRAM_INPUT &&
2832 !ir->variable_referenced()->data.patch;
2833 break;
2834 case GL_GEOMETRY_PROGRAM_NV:
2835 is_2D = src.file == PROGRAM_INPUT;
2836 break;
2837 }
2838 }
2839
2840 if (is_2D)
2841 element_size = 1;
2842
2843 if (index) {
2844
2845 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
2846 src.file == PROGRAM_INPUT)
2847 element_size = attrib_type_size(ir->type, true);
2848 if (is_2D) {
2849 src.index2D = index->value.i[0];
2850 src.has_index2 = true;
2851 } else
2852 src.index += index->value.i[0] * element_size;
2853 } else {
2854 /* Variable index array dereference. It eats the "vec4" of the
2855 * base of the array and an index that offsets the TGSI register
2856 * index.
2857 */
2858 ir->array_index->accept(this);
2859
2860 st_src_reg index_reg;
2861
2862 if (element_size == 1) {
2863 index_reg = this->result;
2864 } else {
2865 index_reg = get_temp(native_integers ?
2866 glsl_type::int_type : glsl_type::float_type);
2867
2868 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2869 this->result, st_src_reg_for_type(index_reg.type, element_size));
2870 }
2871
2872 /* If there was already a relative address register involved, add the
2873 * new and the old together to get the new offset.
2874 */
2875 if (!is_2D && src.reladdr != NULL) {
2876 st_src_reg accum_reg = get_temp(native_integers ?
2877 glsl_type::int_type : glsl_type::float_type);
2878
2879 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2880 index_reg, *src.reladdr);
2881
2882 index_reg = accum_reg;
2883 }
2884
2885 if (is_2D) {
2886 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2887 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2888 src.index2D = 0;
2889 src.has_index2 = true;
2890 } else {
2891 src.reladdr = ralloc(mem_ctx, st_src_reg);
2892 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2893 }
2894 }
2895
2896 /* Change the register type to the element type of the array. */
2897 src.type = ir->type->base_type;
2898
2899 this->result = src;
2900 }
2901
2902 void
2903 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2904 {
2905 unsigned int i;
2906 const glsl_type *struct_type = ir->record->type;
2907 int offset = 0;
2908
2909 ir->record->accept(this);
2910
2911 for (i = 0; i < struct_type->length; i++) {
2912 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2913 break;
2914 offset += type_size(struct_type->fields.structure[i].type);
2915 }
2916
2917 /* If the type is smaller than a vec4, replicate the last channel out. */
2918 if (ir->type->is_scalar() || ir->type->is_vector())
2919 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2920 else
2921 this->result.swizzle = SWIZZLE_NOOP;
2922
2923 this->result.index += offset;
2924 this->result.type = ir->type->base_type;
2925 }
2926
2927 /**
2928 * We want to be careful in assignment setup to hit the actual storage
2929 * instead of potentially using a temporary like we might with the
2930 * ir_dereference handler.
2931 */
2932 static st_dst_reg
2933 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
2934 {
2935 /* The LHS must be a dereference. If the LHS is a variable indexed array
2936 * access of a vector, it must be separated into a series conditional moves
2937 * before reaching this point (see ir_vec_index_to_cond_assign).
2938 */
2939 assert(ir->as_dereference());
2940 ir_dereference_array *deref_array = ir->as_dereference_array();
2941 if (deref_array) {
2942 assert(!deref_array->array->type->is_vector());
2943 }
2944
2945 /* Use the rvalue deref handler for the most part. We write swizzles using
2946 * the writemask, but we do extract the base component for enhanced layouts
2947 * from the source swizzle.
2948 */
2949 ir->accept(v);
2950 *component = GET_SWZ(v->result.swizzle, 0);
2951 return st_dst_reg(v->result);
2952 }
2953
2954 /**
2955 * Process the condition of a conditional assignment
2956 *
2957 * Examines the condition of a conditional assignment to generate the optimal
2958 * first operand of a \c CMP instruction. If the condition is a relational
2959 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2960 * used as the source for the \c CMP instruction. Otherwise the comparison
2961 * is processed to a boolean result, and the boolean result is used as the
2962 * operand to the CMP instruction.
2963 */
2964 bool
2965 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2966 {
2967 ir_rvalue *src_ir = ir;
2968 bool negate = true;
2969 bool switch_order = false;
2970
2971 ir_expression *const expr = ir->as_expression();
2972
2973 if (native_integers) {
2974 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2975 enum glsl_base_type type = expr->operands[0]->type->base_type;
2976 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2977 type == GLSL_TYPE_BOOL) {
2978 if (expr->operation == ir_binop_equal) {
2979 if (expr->operands[0]->is_zero()) {
2980 src_ir = expr->operands[1];
2981 switch_order = true;
2982 }
2983 else if (expr->operands[1]->is_zero()) {
2984 src_ir = expr->operands[0];
2985 switch_order = true;
2986 }
2987 }
2988 else if (expr->operation == ir_binop_nequal) {
2989 if (expr->operands[0]->is_zero()) {
2990 src_ir = expr->operands[1];
2991 }
2992 else if (expr->operands[1]->is_zero()) {
2993 src_ir = expr->operands[0];
2994 }
2995 }
2996 }
2997 }
2998
2999 src_ir->accept(this);
3000 return switch_order;
3001 }
3002
3003 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
3004 bool zero_on_left = false;
3005
3006 if (expr->operands[0]->is_zero()) {
3007 src_ir = expr->operands[1];
3008 zero_on_left = true;
3009 } else if (expr->operands[1]->is_zero()) {
3010 src_ir = expr->operands[0];
3011 zero_on_left = false;
3012 }
3013
3014 /* a is - 0 + - 0 +
3015 * (a < 0) T F F ( a < 0) T F F
3016 * (0 < a) F F T (-a < 0) F F T
3017 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
3018 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
3019 * (a > 0) F F T (-a < 0) F F T
3020 * (0 > a) T F F ( a < 0) T F F
3021 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
3022 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
3023 *
3024 * Note that exchanging the order of 0 and 'a' in the comparison simply
3025 * means that the value of 'a' should be negated.
3026 */
3027 if (src_ir != ir) {
3028 switch (expr->operation) {
3029 case ir_binop_less:
3030 switch_order = false;
3031 negate = zero_on_left;
3032 break;
3033
3034 case ir_binop_greater:
3035 switch_order = false;
3036 negate = !zero_on_left;
3037 break;
3038
3039 case ir_binop_lequal:
3040 switch_order = true;
3041 negate = !zero_on_left;
3042 break;
3043
3044 case ir_binop_gequal:
3045 switch_order = true;
3046 negate = zero_on_left;
3047 break;
3048
3049 default:
3050 /* This isn't the right kind of comparison afterall, so make sure
3051 * the whole condition is visited.
3052 */
3053 src_ir = ir;
3054 break;
3055 }
3056 }
3057 }
3058
3059 src_ir->accept(this);
3060
3061 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
3062 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
3063 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
3064 * computing the condition.
3065 */
3066 if (negate)
3067 this->result.negate = ~this->result.negate;
3068
3069 return switch_order;
3070 }
3071
3072 void
3073 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
3074 st_dst_reg *l, st_src_reg *r,
3075 st_src_reg *cond, bool cond_swap)
3076 {
3077 if (type->is_record()) {
3078 for (unsigned int i = 0; i < type->length; i++) {
3079 emit_block_mov(ir, type->fields.structure[i].type, l, r,
3080 cond, cond_swap);
3081 }
3082 return;
3083 }
3084
3085 if (type->is_array()) {
3086 for (unsigned int i = 0; i < type->length; i++) {
3087 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
3088 }
3089 return;
3090 }
3091
3092 if (type->is_matrix()) {
3093 const struct glsl_type *vec_type;
3094
3095 vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
3096 type->vector_elements, 1);
3097
3098 for (int i = 0; i < type->matrix_columns; i++) {
3099 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
3100 }
3101 return;
3102 }
3103
3104 assert(type->is_scalar() || type->is_vector());
3105
3106 l->type = type->base_type;
3107 r->type = type->base_type;
3108 if (cond) {
3109 st_src_reg l_src = st_src_reg(*l);
3110 l_src.swizzle = swizzle_for_size(type->vector_elements);
3111
3112 if (native_integers) {
3113 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
3114 cond_swap ? l_src : *r,
3115 cond_swap ? *r : l_src);
3116 } else {
3117 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
3118 cond_swap ? l_src : *r,
3119 cond_swap ? *r : l_src);
3120 }
3121 } else {
3122 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
3123 }
3124 l->index++;
3125 r->index++;
3126 if (type->is_dual_slot()) {
3127 l->index++;
3128 if (r->is_double_vertex_input == false)
3129 r->index++;
3130 }
3131 }
3132
3133 void
3134 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
3135 {
3136 int dst_component;
3137 st_dst_reg l;
3138 st_src_reg r;
3139
3140 ir->rhs->accept(this);
3141 r = this->result;
3142
3143 l = get_assignment_lhs(ir->lhs, this, &dst_component);
3144
3145 {
3146 int swizzles[4];
3147 int first_enabled_chan = 0;
3148 int rhs_chan = 0;
3149 ir_variable *variable = ir->lhs->variable_referenced();
3150
3151 if (shader->Stage == MESA_SHADER_FRAGMENT &&
3152 variable->data.mode == ir_var_shader_out &&
3153 (variable->data.location == FRAG_RESULT_DEPTH ||
3154 variable->data.location == FRAG_RESULT_STENCIL)) {
3155 assert(ir->lhs->type->is_scalar());
3156 assert(ir->write_mask == WRITEMASK_X);
3157
3158 if (variable->data.location == FRAG_RESULT_DEPTH)
3159 l.writemask = WRITEMASK_Z;
3160 else {
3161 assert(variable->data.location == FRAG_RESULT_STENCIL);
3162 l.writemask = WRITEMASK_Y;
3163 }
3164 } else if (ir->write_mask == 0) {
3165 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
3166
3167 unsigned num_elements = ir->lhs->type->without_array()->vector_elements;
3168
3169 if (num_elements) {
3170 l.writemask = u_bit_consecutive(0, num_elements);
3171 } else {
3172 /* The type is a struct or an array of (array of) structs. */
3173 l.writemask = WRITEMASK_XYZW;
3174 }
3175 } else {
3176 l.writemask = ir->write_mask;
3177 }
3178
3179 for (int i = 0; i < 4; i++) {
3180 if (l.writemask & (1 << i)) {
3181 first_enabled_chan = GET_SWZ(r.swizzle, i);
3182 break;
3183 }
3184 }
3185
3186 l.writemask = l.writemask << dst_component;
3187
3188 /* Swizzle a small RHS vector into the channels being written.
3189 *
3190 * glsl ir treats write_mask as dictating how many channels are
3191 * present on the RHS while TGSI treats write_mask as just
3192 * showing which channels of the vec4 RHS get written.
3193 */
3194 for (int i = 0; i < 4; i++) {
3195 if (l.writemask & (1 << i))
3196 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
3197 else
3198 swizzles[i] = first_enabled_chan;
3199 }
3200 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
3201 swizzles[2], swizzles[3]);
3202 }
3203
3204 assert(l.file != PROGRAM_UNDEFINED);
3205 assert(r.file != PROGRAM_UNDEFINED);
3206
3207 if (ir->condition) {
3208 const bool switch_order = this->process_move_condition(ir->condition);
3209 st_src_reg condition = this->result;
3210
3211 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
3212 } else if (ir->rhs->as_expression() &&
3213 this->instructions.get_tail() &&
3214 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
3215 !((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
3216 type_size(ir->lhs->type) == 1 &&
3217 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
3218 /* To avoid emitting an extra MOV when assigning an expression to a
3219 * variable, emit the last instruction of the expression again, but
3220 * replace the destination register with the target of the assignment.
3221 * Dead code elimination will remove the original instruction.
3222 */
3223 glsl_to_tgsi_instruction *inst, *new_inst;
3224 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
3225 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
3226 new_inst->saturate = inst->saturate;
3227 inst->dead_mask = inst->dst[0].writemask;
3228 } else {
3229 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
3230 }
3231 }
3232
3233
3234 void
3235 glsl_to_tgsi_visitor::visit(ir_constant *ir)
3236 {
3237 st_src_reg src;
3238 GLdouble stack_vals[4] = { 0 };
3239 gl_constant_value *values = (gl_constant_value *) stack_vals;
3240 GLenum gl_type = GL_NONE;
3241 unsigned int i;
3242 static int in_array = 0;
3243 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
3244
3245 /* Unfortunately, 4 floats is all we can get into
3246 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
3247 * aggregate constant and move each constant value into it. If we
3248 * get lucky, copy propagation will eliminate the extra moves.
3249 */
3250 if (ir->type->is_record()) {
3251 st_src_reg temp_base = get_temp(ir->type);
3252 st_dst_reg temp = st_dst_reg(temp_base);
3253
3254 foreach_in_list(ir_constant, field_value, &ir->components) {
3255 int size = type_size(field_value->type);
3256
3257 assert(size > 0);
3258
3259 field_value->accept(this);
3260 src = this->result;
3261
3262 for (i = 0; i < (unsigned int)size; i++) {
3263 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3264
3265 src.index++;
3266 temp.index++;
3267 }
3268 }
3269 this->result = temp_base;
3270 return;
3271 }
3272
3273 if (ir->type->is_array()) {
3274 st_src_reg temp_base = get_temp(ir->type);
3275 st_dst_reg temp = st_dst_reg(temp_base);
3276 int size = type_size(ir->type->fields.array);
3277
3278 assert(size > 0);
3279 in_array++;
3280
3281 for (i = 0; i < ir->type->length; i++) {
3282 ir->array_elements[i]->accept(this);
3283 src = this->result;
3284 for (int j = 0; j < size; j++) {
3285 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3286
3287 src.index++;
3288 temp.index++;
3289 }
3290 }
3291 this->result = temp_base;
3292 in_array--;
3293 return;
3294 }
3295
3296 if (ir->type->is_matrix()) {
3297 st_src_reg mat = get_temp(ir->type);
3298 st_dst_reg mat_column = st_dst_reg(mat);
3299
3300 for (i = 0; i < ir->type->matrix_columns; i++) {
3301 switch (ir->type->base_type) {
3302 case GLSL_TYPE_FLOAT:
3303 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
3304
3305 src = st_src_reg(file, -1, ir->type->base_type);
3306 src.index = add_constant(file,
3307 values,
3308 ir->type->vector_elements,
3309 GL_FLOAT,
3310 &src.swizzle);
3311 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3312 break;
3313 case GLSL_TYPE_DOUBLE:
3314 values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
3315 src = st_src_reg(file, -1, ir->type->base_type);
3316 src.index = add_constant(file,
3317 values,
3318 ir->type->vector_elements,
3319 GL_DOUBLE,
3320 &src.swizzle);
3321 if (ir->type->vector_elements >= 2) {
3322 mat_column.writemask = WRITEMASK_XY;
3323 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3324 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3325 } else {
3326 mat_column.writemask = WRITEMASK_X;
3327 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
3328 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3329 }
3330 src.index++;
3331 if (ir->type->vector_elements > 2) {
3332 if (ir->type->vector_elements == 4) {
3333 mat_column.writemask = WRITEMASK_ZW;
3334 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3335 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3336 } else {
3337 mat_column.writemask = WRITEMASK_Z;
3338 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
3339 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3340 mat_column.writemask = WRITEMASK_XYZW;
3341 src.swizzle = SWIZZLE_XYZW;
3342 }
3343 mat_column.index++;
3344 }
3345 break;
3346 default:
3347 unreachable("Illegal matrix constant type.\n");
3348 break;
3349 }
3350 mat_column.index++;
3351 }
3352 this->result = mat;
3353 return;
3354 }
3355
3356 switch (ir->type->base_type) {
3357 case GLSL_TYPE_FLOAT:
3358 gl_type = GL_FLOAT;
3359 for (i = 0; i < ir->type->vector_elements; i++) {
3360 values[i].f = ir->value.f[i];
3361 }
3362 break;
3363 case GLSL_TYPE_DOUBLE:
3364 gl_type = GL_DOUBLE;
3365 for (i = 0; i < ir->type->vector_elements; i++) {
3366 memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
3367 }
3368 break;
3369 case GLSL_TYPE_INT64:
3370 gl_type = GL_INT64_ARB;
3371 for (i = 0; i < ir->type->vector_elements; i++) {
3372 memcpy(&values[i * 2], &ir->value.d[i], sizeof(int64_t));
3373 }
3374 break;
3375 case GLSL_TYPE_UINT64:
3376 gl_type = GL_UNSIGNED_INT64_ARB;
3377 for (i = 0; i < ir->type->vector_elements; i++) {
3378 memcpy(&values[i * 2], &ir->value.d[i], sizeof(uint64_t));
3379 }
3380 break;
3381 case GLSL_TYPE_UINT:
3382 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3383 for (i = 0; i < ir->type->vector_elements; i++) {
3384 if (native_integers)
3385 values[i].u = ir->value.u[i];
3386 else
3387 values[i].f = ir->value.u[i];
3388 }
3389 break;
3390 case GLSL_TYPE_INT:
3391 gl_type = native_integers ? GL_INT : GL_FLOAT;
3392 for (i = 0; i < ir->type->vector_elements; i++) {
3393 if (native_integers)
3394 values[i].i = ir->value.i[i];
3395 else
3396 values[i].f = ir->value.i[i];
3397 }
3398 break;
3399 case GLSL_TYPE_BOOL:
3400 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3401 for (i = 0; i < ir->type->vector_elements; i++) {
3402 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3403 }
3404 break;
3405 default:
3406 assert(!"Non-float/uint/int/bool constant");
3407 }
3408
3409 this->result = st_src_reg(file, -1, ir->type);
3410 this->result.index = add_constant(file,
3411 values,
3412 ir->type->vector_elements,
3413 gl_type,
3414 &this->result.swizzle);
3415 }
3416
3417 void
3418 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3419 {
3420 exec_node *param = ir->actual_parameters.get_head();
3421 ir_dereference *deref = static_cast<ir_dereference *>(param);
3422 ir_variable *location = deref->variable_referenced();
3423
3424 st_src_reg buffer(
3425 PROGRAM_BUFFER, location->data.binding, GLSL_TYPE_ATOMIC_UINT);
3426
3427 /* Calculate the surface offset */
3428 st_src_reg offset;
3429 unsigned array_size = 0, base = 0;
3430 uint16_t index = 0;
3431
3432 get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
3433
3434 if (offset.file != PROGRAM_UNDEFINED) {
3435 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
3436 offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
3437 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
3438 offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
3439 } else {
3440 offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
3441 }
3442
3443 ir->return_deref->accept(this);
3444 st_dst_reg dst(this->result);
3445 dst.writemask = WRITEMASK_X;
3446
3447 glsl_to_tgsi_instruction *inst;
3448
3449 if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
3450 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
3451 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
3452 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3453 st_src_reg_for_int(1));
3454 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
3455 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3456 st_src_reg_for_int(-1));
3457 emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
3458 } else {
3459 param = param->get_next();
3460 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3461 val->accept(this);
3462
3463 st_src_reg data = this->result, data2 = undef_src;
3464 unsigned opcode;
3465 switch (ir->callee->intrinsic_id) {
3466 case ir_intrinsic_atomic_counter_add:
3467 opcode = TGSI_OPCODE_ATOMUADD;
3468 break;
3469 case ir_intrinsic_atomic_counter_min:
3470 opcode = TGSI_OPCODE_ATOMIMIN;
3471 break;
3472 case ir_intrinsic_atomic_counter_max:
3473 opcode = TGSI_OPCODE_ATOMIMAX;
3474 break;
3475 case ir_intrinsic_atomic_counter_and:
3476 opcode = TGSI_OPCODE_ATOMAND;
3477 break;
3478 case ir_intrinsic_atomic_counter_or:
3479 opcode = TGSI_OPCODE_ATOMOR;
3480 break;
3481 case ir_intrinsic_atomic_counter_xor:
3482 opcode = TGSI_OPCODE_ATOMXOR;
3483 break;
3484 case ir_intrinsic_atomic_counter_exchange:
3485 opcode = TGSI_OPCODE_ATOMXCHG;
3486 break;
3487 case ir_intrinsic_atomic_counter_comp_swap: {
3488 opcode = TGSI_OPCODE_ATOMCAS;
3489 param = param->get_next();
3490 val = ((ir_instruction *)param)->as_rvalue();
3491 val->accept(this);
3492 data2 = this->result;
3493 break;
3494 }
3495 default:
3496 assert(!"Unexpected intrinsic");
3497 return;
3498 }
3499
3500 inst = emit_asm(ir, opcode, dst, offset, data, data2);
3501 }
3502
3503 inst->resource = buffer;
3504 }
3505
3506 void
3507 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
3508 {
3509 exec_node *param = ir->actual_parameters.get_head();
3510
3511 ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
3512
3513 param = param->get_next();
3514 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3515
3516 ir_constant *const_block = block->as_constant();
3517
3518 st_src_reg buffer(
3519 PROGRAM_BUFFER,
3520 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
3521 (const_block ? const_block->value.u[0] : 0),
3522 GLSL_TYPE_UINT);
3523
3524 if (!const_block) {
3525 block->accept(this);
3526 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3527 *buffer.reladdr = this->result;
3528 emit_arl(ir, sampler_reladdr, this->result);
3529 }
3530
3531 /* Calculate the surface offset */
3532 offset->accept(this);
3533 st_src_reg off = this->result;
3534
3535 st_dst_reg dst = undef_dst;
3536 if (ir->return_deref) {
3537 ir->return_deref->accept(this);
3538 dst = st_dst_reg(this->result);
3539 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3540 }
3541
3542 glsl_to_tgsi_instruction *inst;
3543
3544 if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
3545 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3546 if (dst.type == GLSL_TYPE_BOOL)
3547 emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst), st_src_reg_for_int(0));
3548 } else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
3549 param = param->get_next();
3550 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3551 val->accept(this);
3552
3553 param = param->get_next();
3554 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3555 assert(write_mask);
3556 dst.writemask = write_mask->value.u[0];
3557
3558 dst.type = this->result.type;
3559 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3560 } else {
3561 param = param->get_next();
3562 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3563 val->accept(this);
3564
3565 st_src_reg data = this->result, data2 = undef_src;
3566 unsigned opcode;
3567 switch (ir->callee->intrinsic_id) {
3568 case ir_intrinsic_ssbo_atomic_add:
3569 opcode = TGSI_OPCODE_ATOMUADD;
3570 break;
3571 case ir_intrinsic_ssbo_atomic_min:
3572 opcode = TGSI_OPCODE_ATOMIMIN;
3573 break;
3574 case ir_intrinsic_ssbo_atomic_max:
3575 opcode = TGSI_OPCODE_ATOMIMAX;
3576 break;
3577 case ir_intrinsic_ssbo_atomic_and:
3578 opcode = TGSI_OPCODE_ATOMAND;
3579 break;
3580 case ir_intrinsic_ssbo_atomic_or:
3581 opcode = TGSI_OPCODE_ATOMOR;
3582 break;
3583 case ir_intrinsic_ssbo_atomic_xor:
3584 opcode = TGSI_OPCODE_ATOMXOR;
3585 break;
3586 case ir_intrinsic_ssbo_atomic_exchange:
3587 opcode = TGSI_OPCODE_ATOMXCHG;
3588 break;
3589 case ir_intrinsic_ssbo_atomic_comp_swap:
3590 opcode = TGSI_OPCODE_ATOMCAS;
3591 param = param->get_next();
3592 val = ((ir_instruction *)param)->as_rvalue();
3593 val->accept(this);
3594 data2 = this->result;
3595 break;
3596 default:
3597 assert(!"Unexpected intrinsic");
3598 return;
3599 }
3600
3601 inst = emit_asm(ir, opcode, dst, off, data, data2);
3602 }
3603
3604 param = param->get_next();
3605 ir_constant *access = NULL;
3606 if (!param->is_tail_sentinel()) {
3607 access = ((ir_instruction *)param)->as_constant();
3608 assert(access);
3609 }
3610
3611 /* The emit_asm() might have actually split the op into pieces, e.g. for
3612 * double stores. We have to go back and fix up all the generated ops.
3613 */
3614 unsigned op = inst->op;
3615 do {
3616 inst->resource = buffer;
3617 if (access)
3618 inst->buffer_access = access->value.u[0];
3619
3620 if (inst == this->instructions.get_head_raw())
3621 break;
3622 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3623
3624 if (inst->op == TGSI_OPCODE_UADD) {
3625 if (inst == this->instructions.get_head_raw())
3626 break;
3627 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3628 }
3629 } while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
3630 }
3631
3632 void
3633 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
3634 {
3635 switch (ir->callee->intrinsic_id) {
3636 case ir_intrinsic_memory_barrier:
3637 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3638 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3639 TGSI_MEMBAR_ATOMIC_BUFFER |
3640 TGSI_MEMBAR_SHADER_IMAGE |
3641 TGSI_MEMBAR_SHARED));
3642 break;
3643 case ir_intrinsic_memory_barrier_atomic_counter:
3644 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3645 st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
3646 break;
3647 case ir_intrinsic_memory_barrier_buffer:
3648 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3649 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
3650 break;
3651 case ir_intrinsic_memory_barrier_image:
3652 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3653 st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
3654 break;
3655 case ir_intrinsic_memory_barrier_shared:
3656 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3657 st_src_reg_for_int(TGSI_MEMBAR_SHARED));
3658 break;
3659 case ir_intrinsic_group_memory_barrier:
3660 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3661 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3662 TGSI_MEMBAR_ATOMIC_BUFFER |
3663 TGSI_MEMBAR_SHADER_IMAGE |
3664 TGSI_MEMBAR_SHARED |
3665 TGSI_MEMBAR_THREAD_GROUP));
3666 break;
3667 default:
3668 assert(!"Unexpected memory barrier intrinsic");
3669 }
3670 }
3671
3672 void
3673 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
3674 {
3675 exec_node *param = ir->actual_parameters.get_head();
3676
3677 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3678
3679 st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
3680
3681 /* Calculate the surface offset */
3682 offset->accept(this);
3683 st_src_reg off = this->result;
3684
3685 st_dst_reg dst = undef_dst;
3686 if (ir->return_deref) {
3687 ir->return_deref->accept(this);
3688 dst = st_dst_reg(this->result);
3689 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3690 }
3691
3692 glsl_to_tgsi_instruction *inst;
3693
3694 if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
3695 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3696 inst->resource = buffer;
3697 } else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
3698 param = param->get_next();
3699 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3700 val->accept(this);
3701
3702 param = param->get_next();
3703 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3704 assert(write_mask);
3705 dst.writemask = write_mask->value.u[0];
3706
3707 dst.type = this->result.type;
3708 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3709 inst->resource = buffer;
3710 } else {
3711 param = param->get_next();
3712 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3713 val->accept(this);
3714
3715 st_src_reg data = this->result, data2 = undef_src;
3716 unsigned opcode;
3717 switch (ir->callee->intrinsic_id) {
3718 case ir_intrinsic_shared_atomic_add:
3719 opcode = TGSI_OPCODE_ATOMUADD;
3720 break;
3721 case ir_intrinsic_shared_atomic_min:
3722 opcode = TGSI_OPCODE_ATOMIMIN;
3723 break;
3724 case ir_intrinsic_shared_atomic_max:
3725 opcode = TGSI_OPCODE_ATOMIMAX;
3726 break;
3727 case ir_intrinsic_shared_atomic_and:
3728 opcode = TGSI_OPCODE_ATOMAND;
3729 break;
3730 case ir_intrinsic_shared_atomic_or:
3731 opcode = TGSI_OPCODE_ATOMOR;
3732 break;
3733 case ir_intrinsic_shared_atomic_xor:
3734 opcode = TGSI_OPCODE_ATOMXOR;
3735 break;
3736 case ir_intrinsic_shared_atomic_exchange:
3737 opcode = TGSI_OPCODE_ATOMXCHG;
3738 break;
3739 case ir_intrinsic_shared_atomic_comp_swap:
3740 opcode = TGSI_OPCODE_ATOMCAS;
3741 param = param->get_next();
3742 val = ((ir_instruction *)param)->as_rvalue();
3743 val->accept(this);
3744 data2 = this->result;
3745 break;
3746 default:
3747 assert(!"Unexpected intrinsic");
3748 return;
3749 }
3750
3751 inst = emit_asm(ir, opcode, dst, off, data, data2);
3752 inst->resource = buffer;
3753 }
3754 }
3755
3756 void
3757 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
3758 {
3759 exec_node *param = ir->actual_parameters.get_head();
3760
3761 ir_dereference *img = (ir_dereference *)param;
3762 const ir_variable *imgvar = img->variable_referenced();
3763 const glsl_type *type = imgvar->type->without_array();
3764 unsigned sampler_array_size = 1, sampler_base = 0;
3765
3766 st_src_reg reladdr;
3767 st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
3768
3769 get_deref_offsets(img, &sampler_array_size, &sampler_base,
3770 (uint16_t*)&image.index, &reladdr, true);
3771
3772 if (reladdr.file != PROGRAM_UNDEFINED) {
3773 image.reladdr = ralloc(mem_ctx, st_src_reg);
3774 *image.reladdr = reladdr;
3775 emit_arl(ir, sampler_reladdr, reladdr);
3776 }
3777
3778 st_dst_reg dst = undef_dst;
3779 if (ir->return_deref) {
3780 ir->return_deref->accept(this);
3781 dst = st_dst_reg(this->result);
3782 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3783 }
3784
3785 glsl_to_tgsi_instruction *inst;
3786
3787 if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
3788 dst.writemask = WRITEMASK_XYZ;
3789 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
3790 } else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
3791 st_src_reg res = get_temp(glsl_type::ivec4_type);
3792 st_dst_reg dstres = st_dst_reg(res);
3793 dstres.writemask = WRITEMASK_W;
3794 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
3795 res.swizzle = SWIZZLE_WWWW;
3796 emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
3797 } else {
3798 st_src_reg arg1 = undef_src, arg2 = undef_src;
3799 st_src_reg coord;
3800 st_dst_reg coord_dst;
3801 coord = get_temp(glsl_type::ivec4_type);
3802 coord_dst = st_dst_reg(coord);
3803 coord_dst.writemask = (1 << type->coordinate_components()) - 1;
3804 param = param->get_next();
3805 ((ir_dereference *)param)->accept(this);
3806 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3807 coord.swizzle = SWIZZLE_XXXX;
3808 switch (type->coordinate_components()) {
3809 case 4: assert(!"unexpected coord count");
3810 /* fallthrough */
3811 case 3: coord.swizzle |= SWIZZLE_Z << 6;
3812 /* fallthrough */
3813 case 2: coord.swizzle |= SWIZZLE_Y << 3;
3814 }
3815
3816 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
3817 param = param->get_next();
3818 ((ir_dereference *)param)->accept(this);
3819 st_src_reg sample = this->result;
3820 sample.swizzle = SWIZZLE_XXXX;
3821 coord_dst.writemask = WRITEMASK_W;
3822 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
3823 coord.swizzle |= SWIZZLE_W << 9;
3824 }
3825
3826 param = param->get_next();
3827 if (!param->is_tail_sentinel()) {
3828 ((ir_dereference *)param)->accept(this);
3829 arg1 = this->result;
3830 param = param->get_next();
3831 }
3832
3833 if (!param->is_tail_sentinel()) {
3834 ((ir_dereference *)param)->accept(this);
3835 arg2 = this->result;
3836 param = param->get_next();
3837 }
3838
3839 assert(param->is_tail_sentinel());
3840
3841 unsigned opcode;
3842 switch (ir->callee->intrinsic_id) {
3843 case ir_intrinsic_image_load:
3844 opcode = TGSI_OPCODE_LOAD;
3845 break;
3846 case ir_intrinsic_image_store:
3847 opcode = TGSI_OPCODE_STORE;
3848 break;
3849 case ir_intrinsic_image_atomic_add:
3850 opcode = TGSI_OPCODE_ATOMUADD;
3851 break;
3852 case ir_intrinsic_image_atomic_min:
3853 opcode = TGSI_OPCODE_ATOMIMIN;
3854 break;
3855 case ir_intrinsic_image_atomic_max:
3856 opcode = TGSI_OPCODE_ATOMIMAX;
3857 break;
3858 case ir_intrinsic_image_atomic_and:
3859 opcode = TGSI_OPCODE_ATOMAND;
3860 break;
3861 case ir_intrinsic_image_atomic_or:
3862 opcode = TGSI_OPCODE_ATOMOR;
3863 break;
3864 case ir_intrinsic_image_atomic_xor:
3865 opcode = TGSI_OPCODE_ATOMXOR;
3866 break;
3867 case ir_intrinsic_image_atomic_exchange:
3868 opcode = TGSI_OPCODE_ATOMXCHG;
3869 break;
3870 case ir_intrinsic_image_atomic_comp_swap:
3871 opcode = TGSI_OPCODE_ATOMCAS;
3872 break;
3873 default:
3874 assert(!"Unexpected intrinsic");
3875 return;
3876 }
3877
3878 inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
3879 if (opcode == TGSI_OPCODE_STORE)
3880 inst->dst[0].writemask = WRITEMASK_XYZW;
3881 }
3882
3883 inst->resource = image;
3884 inst->sampler_array_size = sampler_array_size;
3885 inst->sampler_base = sampler_base;
3886
3887 inst->tex_target = type->sampler_index();
3888 inst->image_format = st_mesa_format_to_pipe_format(st_context(ctx),
3889 _mesa_get_shader_image_format(imgvar->data.image_format));
3890
3891 if (imgvar->data.image_coherent)
3892 inst->buffer_access |= TGSI_MEMORY_COHERENT;
3893 if (imgvar->data.image_restrict)
3894 inst->buffer_access |= TGSI_MEMORY_RESTRICT;
3895 if (imgvar->data.image_volatile)
3896 inst->buffer_access |= TGSI_MEMORY_VOLATILE;
3897 }
3898
3899 void
3900 glsl_to_tgsi_visitor::visit_generic_intrinsic(ir_call *ir, unsigned op)
3901 {
3902 ir->return_deref->accept(this);
3903 st_dst_reg dst = st_dst_reg(this->result);
3904
3905 st_src_reg src[4] = { undef_src, undef_src, undef_src, undef_src };
3906 unsigned num_src = 0;
3907 foreach_in_list(ir_rvalue, param, &ir->actual_parameters) {
3908 assert(num_src < ARRAY_SIZE(src));
3909
3910 this->result.file = PROGRAM_UNDEFINED;
3911 param->accept(this);
3912 assert(this->result.file != PROGRAM_UNDEFINED);
3913
3914 src[num_src] = this->result;
3915 num_src++;
3916 }
3917
3918 emit_asm(ir, op, dst, src[0], src[1], src[2], src[3]);
3919 }
3920
3921 void
3922 glsl_to_tgsi_visitor::visit(ir_call *ir)
3923 {
3924 ir_function_signature *sig = ir->callee;
3925
3926 /* Filter out intrinsics */
3927 switch (sig->intrinsic_id) {
3928 case ir_intrinsic_atomic_counter_read:
3929 case ir_intrinsic_atomic_counter_increment:
3930 case ir_intrinsic_atomic_counter_predecrement:
3931 case ir_intrinsic_atomic_counter_add:
3932 case ir_intrinsic_atomic_counter_min:
3933 case ir_intrinsic_atomic_counter_max:
3934 case ir_intrinsic_atomic_counter_and:
3935 case ir_intrinsic_atomic_counter_or:
3936 case ir_intrinsic_atomic_counter_xor:
3937 case ir_intrinsic_atomic_counter_exchange:
3938 case ir_intrinsic_atomic_counter_comp_swap:
3939 visit_atomic_counter_intrinsic(ir);
3940 return;
3941
3942 case ir_intrinsic_ssbo_load:
3943 case ir_intrinsic_ssbo_store:
3944 case ir_intrinsic_ssbo_atomic_add:
3945 case ir_intrinsic_ssbo_atomic_min:
3946 case ir_intrinsic_ssbo_atomic_max:
3947 case ir_intrinsic_ssbo_atomic_and:
3948 case ir_intrinsic_ssbo_atomic_or:
3949 case ir_intrinsic_ssbo_atomic_xor:
3950 case ir_intrinsic_ssbo_atomic_exchange:
3951 case ir_intrinsic_ssbo_atomic_comp_swap:
3952 visit_ssbo_intrinsic(ir);
3953 return;
3954
3955 case ir_intrinsic_memory_barrier:
3956 case ir_intrinsic_memory_barrier_atomic_counter:
3957 case ir_intrinsic_memory_barrier_buffer:
3958 case ir_intrinsic_memory_barrier_image:
3959 case ir_intrinsic_memory_barrier_shared:
3960 case ir_intrinsic_group_memory_barrier:
3961 visit_membar_intrinsic(ir);
3962 return;
3963
3964 case ir_intrinsic_shared_load:
3965 case ir_intrinsic_shared_store:
3966 case ir_intrinsic_shared_atomic_add:
3967 case ir_intrinsic_shared_atomic_min:
3968 case ir_intrinsic_shared_atomic_max:
3969 case ir_intrinsic_shared_atomic_and:
3970 case ir_intrinsic_shared_atomic_or:
3971 case ir_intrinsic_shared_atomic_xor:
3972 case ir_intrinsic_shared_atomic_exchange:
3973 case ir_intrinsic_shared_atomic_comp_swap:
3974 visit_shared_intrinsic(ir);
3975 return;
3976
3977 case ir_intrinsic_image_load:
3978 case ir_intrinsic_image_store:
3979 case ir_intrinsic_image_atomic_add:
3980 case ir_intrinsic_image_atomic_min:
3981 case ir_intrinsic_image_atomic_max:
3982 case ir_intrinsic_image_atomic_and:
3983 case ir_intrinsic_image_atomic_or:
3984 case ir_intrinsic_image_atomic_xor:
3985 case ir_intrinsic_image_atomic_exchange:
3986 case ir_intrinsic_image_atomic_comp_swap:
3987 case ir_intrinsic_image_size:
3988 case ir_intrinsic_image_samples:
3989 visit_image_intrinsic(ir);
3990 return;
3991
3992 case ir_intrinsic_shader_clock: {
3993 ir->return_deref->accept(this);
3994
3995 st_dst_reg dst = st_dst_reg(this->result);
3996 dst.writemask = TGSI_WRITEMASK_XY;
3997
3998 emit_asm(ir, TGSI_OPCODE_CLOCK, dst);
3999 return;
4000 }
4001
4002 case ir_intrinsic_vote_all:
4003 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ALL);
4004 return;
4005 case ir_intrinsic_vote_any:
4006 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ANY);
4007 return;
4008 case ir_intrinsic_vote_eq:
4009 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_EQ);
4010 return;
4011 case ir_intrinsic_ballot:
4012 visit_generic_intrinsic(ir, TGSI_OPCODE_BALLOT);
4013 return;
4014 case ir_intrinsic_read_first_invocation:
4015 visit_generic_intrinsic(ir, TGSI_OPCODE_READ_FIRST);
4016 return;
4017 case ir_intrinsic_read_invocation:
4018 visit_generic_intrinsic(ir, TGSI_OPCODE_READ_INVOC);
4019 return;
4020
4021 case ir_intrinsic_invalid:
4022 case ir_intrinsic_generic_load:
4023 case ir_intrinsic_generic_store:
4024 case ir_intrinsic_generic_atomic_add:
4025 case ir_intrinsic_generic_atomic_and:
4026 case ir_intrinsic_generic_atomic_or:
4027 case ir_intrinsic_generic_atomic_xor:
4028 case ir_intrinsic_generic_atomic_min:
4029 case ir_intrinsic_generic_atomic_max:
4030 case ir_intrinsic_generic_atomic_exchange:
4031 case ir_intrinsic_generic_atomic_comp_swap:
4032 unreachable("Invalid intrinsic");
4033 }
4034 }
4035
4036 void
4037 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
4038 unsigned *array_elements,
4039 uint16_t *index,
4040 st_src_reg *indirect,
4041 unsigned *location)
4042 {
4043 switch (tail->ir_type) {
4044 case ir_type_dereference_record: {
4045 ir_dereference_record *deref_record = tail->as_dereference_record();
4046 const glsl_type *struct_type = deref_record->record->type;
4047 int field_index = deref_record->record->type->field_index(deref_record->field);
4048
4049 calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
4050
4051 assert(field_index >= 0);
4052 *location += struct_type->record_location_offset(field_index);
4053 break;
4054 }
4055
4056 case ir_type_dereference_array: {
4057 ir_dereference_array *deref_arr = tail->as_dereference_array();
4058 ir_constant *array_index = deref_arr->array_index->constant_expression_value();
4059
4060 if (!array_index) {
4061 st_src_reg temp_reg;
4062 st_dst_reg temp_dst;
4063
4064 temp_reg = get_temp(glsl_type::uint_type);
4065 temp_dst = st_dst_reg(temp_reg);
4066 temp_dst.writemask = 1;
4067
4068 deref_arr->array_index->accept(this);
4069 if (*array_elements != 1)
4070 emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
4071 else
4072 emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
4073
4074 if (indirect->file == PROGRAM_UNDEFINED)
4075 *indirect = temp_reg;
4076 else {
4077 temp_dst = st_dst_reg(*indirect);
4078 temp_dst.writemask = 1;
4079 emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
4080 }
4081 } else
4082 *index += array_index->value.u[0] * *array_elements;
4083
4084 *array_elements *= deref_arr->array->type->length;
4085
4086 calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
4087 break;
4088 }
4089 default:
4090 break;
4091 }
4092 }
4093
4094 void
4095 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
4096 unsigned *array_size,
4097 unsigned *base,
4098 uint16_t *index,
4099 st_src_reg *reladdr,
4100 bool opaque)
4101 {
4102 GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
4103 unsigned location = 0;
4104 ir_variable *var = ir->variable_referenced();
4105
4106 memset(reladdr, 0, sizeof(*reladdr));
4107 reladdr->file = PROGRAM_UNDEFINED;
4108
4109 *base = 0;
4110 *array_size = 1;
4111
4112 assert(var);
4113 location = var->data.location;
4114 calc_deref_offsets(ir, array_size, index, reladdr, &location);
4115
4116 /*
4117 * If we end up with no indirect then adjust the base to the index,
4118 * and set the array size to 1.
4119 */
4120 if (reladdr->file == PROGRAM_UNDEFINED) {
4121 *base = *index;
4122 *array_size = 1;
4123 }
4124
4125 if (opaque) {
4126 assert(location != 0xffffffff);
4127 *base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4128 *index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4129 }
4130 }
4131
4132 st_src_reg
4133 glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
4134 {
4135 if (offset.reladdr || offset.reladdr2) {
4136 st_src_reg tmp = get_temp(glsl_type::ivec2_type);
4137 st_dst_reg tmp_dst = st_dst_reg(tmp);
4138 tmp_dst.writemask = WRITEMASK_XY;
4139 emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
4140 return tmp;
4141 }
4142
4143 return offset;
4144 }
4145
4146 void
4147 glsl_to_tgsi_visitor::visit(ir_texture *ir)
4148 {
4149 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
4150 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
4151 st_src_reg levels_src, reladdr;
4152 st_dst_reg result_dst, coord_dst, cube_sc_dst;
4153 glsl_to_tgsi_instruction *inst = NULL;
4154 unsigned opcode = TGSI_OPCODE_NOP;
4155 const glsl_type *sampler_type = ir->sampler->type;
4156 unsigned sampler_array_size = 1, sampler_base = 0;
4157 uint16_t sampler_index = 0;
4158 bool is_cube_array = false, is_cube_shadow = false;
4159 unsigned i;
4160
4161 /* if we are a cube array sampler or a cube shadow */
4162 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4163 is_cube_array = sampler_type->sampler_array;
4164 is_cube_shadow = sampler_type->sampler_shadow;
4165 }
4166
4167 if (ir->coordinate) {
4168 ir->coordinate->accept(this);
4169
4170 /* Put our coords in a temp. We'll need to modify them for shadow,
4171 * projection, or LOD, so the only case we'd use it as-is is if
4172 * we're doing plain old texturing. The optimization passes on
4173 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
4174 */
4175 coord = get_temp(glsl_type::vec4_type);
4176 coord_dst = st_dst_reg(coord);
4177 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
4178 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4179 }
4180
4181 if (ir->projector) {
4182 ir->projector->accept(this);
4183 projector = this->result;
4184 }
4185
4186 /* Storage for our result. Ideally for an assignment we'd be using
4187 * the actual storage for the result here, instead.
4188 */
4189 result_src = get_temp(ir->type);
4190 result_dst = st_dst_reg(result_src);
4191 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
4192
4193 switch (ir->op) {
4194 case ir_tex:
4195 opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
4196 if (ir->offset) {
4197 ir->offset->accept(this);
4198 offset[0] = this->result;
4199 }
4200 break;
4201 case ir_txb:
4202 if (is_cube_array || is_cube_shadow) {
4203 opcode = TGSI_OPCODE_TXB2;
4204 }
4205 else {
4206 opcode = TGSI_OPCODE_TXB;
4207 }
4208 ir->lod_info.bias->accept(this);
4209 lod_info = this->result;
4210 if (ir->offset) {
4211 ir->offset->accept(this);
4212 offset[0] = this->result;
4213 }
4214 break;
4215 case ir_txl:
4216 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4217 opcode = TGSI_OPCODE_TEX_LZ;
4218 } else {
4219 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
4220 ir->lod_info.lod->accept(this);
4221 lod_info = this->result;
4222 }
4223 if (ir->offset) {
4224 ir->offset->accept(this);
4225 offset[0] = this->result;
4226 }
4227 break;
4228 case ir_txd:
4229 opcode = TGSI_OPCODE_TXD;
4230 ir->lod_info.grad.dPdx->accept(this);
4231 dx = this->result;
4232 ir->lod_info.grad.dPdy->accept(this);
4233 dy = this->result;
4234 if (ir->offset) {
4235 ir->offset->accept(this);
4236 offset[0] = this->result;
4237 }
4238 break;
4239 case ir_txs:
4240 opcode = TGSI_OPCODE_TXQ;
4241 ir->lod_info.lod->accept(this);
4242 lod_info = this->result;
4243 break;
4244 case ir_query_levels:
4245 opcode = TGSI_OPCODE_TXQ;
4246 lod_info = undef_src;
4247 levels_src = get_temp(ir->type);
4248 break;
4249 case ir_txf:
4250 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4251 opcode = TGSI_OPCODE_TXF_LZ;
4252 } else {
4253 opcode = TGSI_OPCODE_TXF;
4254 ir->lod_info.lod->accept(this);
4255 lod_info = this->result;
4256 }
4257 if (ir->offset) {
4258 ir->offset->accept(this);
4259 offset[0] = this->result;
4260 }
4261 break;
4262 case ir_txf_ms:
4263 opcode = TGSI_OPCODE_TXF;
4264 ir->lod_info.sample_index->accept(this);
4265 sample_index = this->result;
4266 break;
4267 case ir_tg4:
4268 opcode = TGSI_OPCODE_TG4;
4269 ir->lod_info.component->accept(this);
4270 component = this->result;
4271 if (ir->offset) {
4272 ir->offset->accept(this);
4273 if (ir->offset->type->is_array()) {
4274 const glsl_type *elt_type = ir->offset->type->fields.array;
4275 for (i = 0; i < ir->offset->type->length; i++) {
4276 offset[i] = this->result;
4277 offset[i].index += i * type_size(elt_type);
4278 offset[i].type = elt_type->base_type;
4279 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
4280 offset[i] = canonicalize_gather_offset(offset[i]);
4281 }
4282 } else {
4283 offset[0] = canonicalize_gather_offset(this->result);
4284 }
4285 }
4286 break;
4287 case ir_lod:
4288 opcode = TGSI_OPCODE_LODQ;
4289 break;
4290 case ir_texture_samples:
4291 opcode = TGSI_OPCODE_TXQS;
4292 break;
4293 case ir_samples_identical:
4294 unreachable("Unexpected ir_samples_identical opcode");
4295 }
4296
4297 if (ir->projector) {
4298 if (opcode == TGSI_OPCODE_TEX) {
4299 /* Slot the projector in as the last component of the coord. */
4300 coord_dst.writemask = WRITEMASK_W;
4301 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
4302 coord_dst.writemask = WRITEMASK_XYZW;
4303 opcode = TGSI_OPCODE_TXP;
4304 } else {
4305 st_src_reg coord_w = coord;
4306 coord_w.swizzle = SWIZZLE_WWWW;
4307
4308 /* For the other TEX opcodes there's no projective version
4309 * since the last slot is taken up by LOD info. Do the
4310 * projective divide now.
4311 */
4312 coord_dst.writemask = WRITEMASK_W;
4313 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
4314
4315 /* In the case where we have to project the coordinates "by hand,"
4316 * the shadow comparator value must also be projected.
4317 */
4318 st_src_reg tmp_src = coord;
4319 if (ir->shadow_comparator) {
4320 /* Slot the shadow value in as the second to last component of the
4321 * coord.
4322 */
4323 ir->shadow_comparator->accept(this);
4324
4325 tmp_src = get_temp(glsl_type::vec4_type);
4326 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
4327
4328 /* Projective division not allowed for array samplers. */
4329 assert(!sampler_type->sampler_array);
4330
4331 tmp_dst.writemask = WRITEMASK_Z;
4332 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
4333
4334 tmp_dst.writemask = WRITEMASK_XY;
4335 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
4336 }
4337
4338 coord_dst.writemask = WRITEMASK_XYZ;
4339 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
4340
4341 coord_dst.writemask = WRITEMASK_XYZW;
4342 coord.swizzle = SWIZZLE_XYZW;
4343 }
4344 }
4345
4346 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
4347 * comparator was put in the correct place (and projected) by the code,
4348 * above, that handles by-hand projection.
4349 */
4350 if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
4351 /* Slot the shadow value in as the second to last component of the
4352 * coord.
4353 */
4354 ir->shadow_comparator->accept(this);
4355
4356 if (is_cube_array) {
4357 cube_sc = get_temp(glsl_type::float_type);
4358 cube_sc_dst = st_dst_reg(cube_sc);
4359 cube_sc_dst.writemask = WRITEMASK_X;
4360 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
4361 cube_sc_dst.writemask = WRITEMASK_X;
4362 }
4363 else {
4364 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
4365 sampler_type->sampler_array) ||
4366 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4367 coord_dst.writemask = WRITEMASK_W;
4368 } else {
4369 coord_dst.writemask = WRITEMASK_Z;
4370 }
4371 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4372 coord_dst.writemask = WRITEMASK_XYZW;
4373 }
4374 }
4375
4376 if (ir->op == ir_txf_ms) {
4377 coord_dst.writemask = WRITEMASK_W;
4378 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
4379 coord_dst.writemask = WRITEMASK_XYZW;
4380 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
4381 opcode == TGSI_OPCODE_TXF) {
4382 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
4383 coord_dst.writemask = WRITEMASK_W;
4384 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
4385 coord_dst.writemask = WRITEMASK_XYZW;
4386 }
4387
4388 get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
4389 &sampler_index, &reladdr, true);
4390 if (reladdr.file != PROGRAM_UNDEFINED)
4391 emit_arl(ir, sampler_reladdr, reladdr);
4392
4393 if (opcode == TGSI_OPCODE_TXD)
4394 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
4395 else if (opcode == TGSI_OPCODE_TXQ) {
4396 if (ir->op == ir_query_levels) {
4397 /* the level is stored in W */
4398 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
4399 result_dst.writemask = WRITEMASK_X;
4400 levels_src.swizzle = SWIZZLE_WWWW;
4401 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
4402 } else
4403 inst = emit_asm(ir, opcode, result_dst, lod_info);
4404 } else if (opcode == TGSI_OPCODE_TXQS) {
4405 inst = emit_asm(ir, opcode, result_dst);
4406 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
4407 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
4408 } else if (opcode == TGSI_OPCODE_TEX2) {
4409 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4410 } else if (opcode == TGSI_OPCODE_TG4) {
4411 if (is_cube_array && ir->shadow_comparator) {
4412 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4413 } else {
4414 inst = emit_asm(ir, opcode, result_dst, coord, component);
4415 }
4416 } else
4417 inst = emit_asm(ir, opcode, result_dst, coord);
4418
4419 if (ir->shadow_comparator)
4420 inst->tex_shadow = GL_TRUE;
4421
4422 inst->resource.index = sampler_index;
4423 inst->sampler_array_size = sampler_array_size;
4424 inst->sampler_base = sampler_base;
4425
4426 if (reladdr.file != PROGRAM_UNDEFINED) {
4427 inst->resource.reladdr = ralloc(mem_ctx, st_src_reg);
4428 memcpy(inst->resource.reladdr, &reladdr, sizeof(reladdr));
4429 }
4430
4431 if (ir->offset) {
4432 if (!inst->tex_offsets)
4433 inst->tex_offsets = rzalloc_array(inst, st_src_reg, MAX_GLSL_TEXTURE_OFFSET);
4434
4435 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
4436 inst->tex_offsets[i] = offset[i];
4437 inst->tex_offset_num_offset = i;
4438 }
4439
4440 inst->tex_target = sampler_type->sampler_index();
4441 inst->tex_type = ir->type->base_type;
4442
4443 this->result = result_src;
4444 }
4445
4446 void
4447 glsl_to_tgsi_visitor::visit(ir_return *ir)
4448 {
4449 assert(!ir->get_value());
4450
4451 emit_asm(ir, TGSI_OPCODE_RET);
4452 }
4453
4454 void
4455 glsl_to_tgsi_visitor::visit(ir_discard *ir)
4456 {
4457 if (ir->condition) {
4458 ir->condition->accept(this);
4459 st_src_reg condition = this->result;
4460
4461 /* Convert the bool condition to a float so we can negate. */
4462 if (native_integers) {
4463 st_src_reg temp = get_temp(ir->condition->type);
4464 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
4465 condition, st_src_reg_for_float(1.0));
4466 condition = temp;
4467 }
4468
4469 condition.negate = ~condition.negate;
4470 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
4471 } else {
4472 /* unconditional kil */
4473 emit_asm(ir, TGSI_OPCODE_KILL);
4474 }
4475 }
4476
4477 void
4478 glsl_to_tgsi_visitor::visit(ir_if *ir)
4479 {
4480 unsigned if_opcode;
4481 glsl_to_tgsi_instruction *if_inst;
4482
4483 ir->condition->accept(this);
4484 assert(this->result.file != PROGRAM_UNDEFINED);
4485
4486 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
4487
4488 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
4489
4490 this->instructions.push_tail(if_inst);
4491
4492 visit_exec_list(&ir->then_instructions, this);
4493
4494 if (!ir->else_instructions.is_empty()) {
4495 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
4496 visit_exec_list(&ir->else_instructions, this);
4497 }
4498
4499 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
4500 }
4501
4502
4503 void
4504 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
4505 {
4506 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4507
4508 ir->stream->accept(this);
4509 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
4510 }
4511
4512 void
4513 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
4514 {
4515 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4516
4517 ir->stream->accept(this);
4518 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
4519 }
4520
4521 void
4522 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
4523 {
4524 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
4525 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
4526
4527 emit_asm(ir, TGSI_OPCODE_BARRIER);
4528 }
4529
4530 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
4531 {
4532 STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
4533
4534 result.file = PROGRAM_UNDEFINED;
4535 next_temp = 1;
4536 array_sizes = NULL;
4537 max_num_arrays = 0;
4538 next_array = 0;
4539 num_inputs = 0;
4540 num_outputs = 0;
4541 num_input_arrays = 0;
4542 num_output_arrays = 0;
4543 num_immediates = 0;
4544 num_address_regs = 0;
4545 samplers_used = 0;
4546 buffers_used = 0;
4547 images_used = 0;
4548 indirect_addr_consts = false;
4549 wpos_transform_const = -1;
4550 glsl_version = 0;
4551 native_integers = false;
4552 mem_ctx = ralloc_context(NULL);
4553 ctx = NULL;
4554 prog = NULL;
4555 shader_program = NULL;
4556 shader = NULL;
4557 options = NULL;
4558 have_sqrt = false;
4559 have_fma = false;
4560 use_shared_memory = false;
4561 has_tex_txf_lz = false;
4562 }
4563
4564 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
4565 {
4566 free(array_sizes);
4567 ralloc_free(mem_ctx);
4568 }
4569
4570 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
4571 {
4572 delete v;
4573 }
4574
4575
4576 /**
4577 * Count resources used by the given gpu program (number of texture
4578 * samplers, etc).
4579 */
4580 static void
4581 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
4582 {
4583 v->samplers_used = 0;
4584 v->buffers_used = 0;
4585 v->images_used = 0;
4586
4587 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
4588 if (inst->info->is_tex) {
4589 for (int i = 0; i < inst->sampler_array_size; i++) {
4590 unsigned idx = inst->sampler_base + i;
4591 v->samplers_used |= 1u << idx;
4592
4593 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
4594 v->sampler_types[idx] = inst->tex_type;
4595 v->sampler_targets[idx] =
4596 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4597
4598 if (inst->tex_shadow) {
4599 prog->ShadowSamplers |= 1 << (inst->resource.index + i);
4600 }
4601 }
4602 }
4603
4604 if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
4605 prog->ExternalSamplersUsed |= 1 << inst->resource.index;
4606
4607 if (inst->resource.file != PROGRAM_UNDEFINED && (
4608 is_resource_instruction(inst->op) ||
4609 inst->op == TGSI_OPCODE_STORE)) {
4610 if (inst->resource.file == PROGRAM_BUFFER) {
4611 v->buffers_used |= 1 << inst->resource.index;
4612 } else if (inst->resource.file == PROGRAM_MEMORY) {
4613 v->use_shared_memory = true;
4614 } else {
4615 assert(inst->resource.file == PROGRAM_IMAGE);
4616 for (int i = 0; i < inst->sampler_array_size; i++) {
4617 unsigned idx = inst->sampler_base + i;
4618 v->images_used |= 1 << idx;
4619 v->image_targets[idx] =
4620 st_translate_texture_target(inst->tex_target, false);
4621 v->image_formats[idx] = inst->image_format;
4622 }
4623 }
4624 }
4625 }
4626 prog->SamplersUsed = v->samplers_used;
4627
4628 if (v->shader_program != NULL)
4629 _mesa_update_shader_textures_used(v->shader_program, prog);
4630 }
4631
4632 /**
4633 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
4634 * are read from the given src in this instruction
4635 */
4636 static int
4637 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
4638 {
4639 int read_mask = 0, comp;
4640
4641 /* Now, given the src swizzle and the written channels, find which
4642 * components are actually read
4643 */
4644 for (comp = 0; comp < 4; ++comp) {
4645 const unsigned coord = GET_SWZ(src.swizzle, comp);
4646 assert(coord < 4);
4647 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
4648 read_mask |= 1 << coord;
4649 }
4650
4651 return read_mask;
4652 }
4653
4654 /**
4655 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
4656 * instruction is the first instruction to write to register T0. There are
4657 * several lowering passes done in GLSL IR (e.g. branches and
4658 * relative addressing) that create a large number of conditional assignments
4659 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
4660 *
4661 * Here is why this conversion is safe:
4662 * CMP T0, T1 T2 T0 can be expanded to:
4663 * if (T1 < 0.0)
4664 * MOV T0, T2;
4665 * else
4666 * MOV T0, T0;
4667 *
4668 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
4669 * as the original program. If (T1 < 0.0) evaluates to false, executing
4670 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
4671 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
4672 * because any instruction that was going to read from T0 after this was going
4673 * to read a garbage value anyway.
4674 */
4675 void
4676 glsl_to_tgsi_visitor::simplify_cmp(void)
4677 {
4678 int tempWritesSize = 0;
4679 unsigned *tempWrites = NULL;
4680 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
4681
4682 memset(outputWrites, 0, sizeof(outputWrites));
4683
4684 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4685 unsigned prevWriteMask = 0;
4686
4687 /* Give up if we encounter relative addressing or flow control. */
4688 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
4689 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
4690 tgsi_get_opcode_info(inst->op)->is_branch ||
4691 inst->op == TGSI_OPCODE_CONT ||
4692 inst->op == TGSI_OPCODE_END ||
4693 inst->op == TGSI_OPCODE_RET) {
4694 break;
4695 }
4696
4697 if (inst->dst[0].file == PROGRAM_OUTPUT) {
4698 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
4699 prevWriteMask = outputWrites[inst->dst[0].index];
4700 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4701 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
4702 if (inst->dst[0].index >= tempWritesSize) {
4703 const int inc = 4096;
4704
4705 tempWrites = (unsigned*)
4706 realloc(tempWrites,
4707 (tempWritesSize + inc) * sizeof(unsigned));
4708 if (!tempWrites)
4709 return;
4710
4711 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
4712 tempWritesSize += inc;
4713 }
4714
4715 prevWriteMask = tempWrites[inst->dst[0].index];
4716 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4717 } else
4718 continue;
4719
4720 /* For a CMP to be considered a conditional write, the destination
4721 * register and source register two must be the same. */
4722 if (inst->op == TGSI_OPCODE_CMP
4723 && !(inst->dst[0].writemask & prevWriteMask)
4724 && inst->src[2].file == inst->dst[0].file
4725 && inst->src[2].index == inst->dst[0].index
4726 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
4727
4728 inst->op = TGSI_OPCODE_MOV;
4729 inst->info = tgsi_get_opcode_info(inst->op);
4730 inst->src[0] = inst->src[1];
4731 }
4732 }
4733
4734 free(tempWrites);
4735 }
4736
4737 /* Replaces all references to a temporary register index with another index. */
4738 void
4739 glsl_to_tgsi_visitor::rename_temp_registers(int num_renames, struct rename_reg_pair *renames)
4740 {
4741 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4742 unsigned j;
4743 int k;
4744 for (j = 0; j < num_inst_src_regs(inst); j++) {
4745 if (inst->src[j].file == PROGRAM_TEMPORARY)
4746 for (k = 0; k < num_renames; k++)
4747 if (inst->src[j].index == renames[k].old_reg)
4748 inst->src[j].index = renames[k].new_reg;
4749 }
4750
4751 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4752 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4753 for (k = 0; k < num_renames; k++)
4754 if (inst->tex_offsets[j].index == renames[k].old_reg)
4755 inst->tex_offsets[j].index = renames[k].new_reg;
4756 }
4757
4758 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4759 if (inst->dst[j].file == PROGRAM_TEMPORARY)
4760 for (k = 0; k < num_renames; k++)
4761 if (inst->dst[j].index == renames[k].old_reg)
4762 inst->dst[j].index = renames[k].new_reg;
4763 }
4764 }
4765 }
4766
4767 void
4768 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
4769 {
4770 int depth = 0; /* loop depth */
4771 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4772 unsigned i = 0, j;
4773
4774 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4775 for (j = 0; j < num_inst_src_regs(inst); j++) {
4776 if (inst->src[j].file == PROGRAM_TEMPORARY) {
4777 if (first_reads[inst->src[j].index] == -1)
4778 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
4779 }
4780 }
4781 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4782 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
4783 if (first_reads[inst->tex_offsets[j].index] == -1)
4784 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
4785 }
4786 }
4787 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4788 if(depth++ == 0)
4789 loop_start = i;
4790 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4791 if (--depth == 0)
4792 loop_start = -1;
4793 }
4794 assert(depth >= 0);
4795 i++;
4796 }
4797 }
4798
4799 void
4800 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
4801 {
4802 int depth = 0; /* loop depth */
4803 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4804 unsigned i = 0, j;
4805 int k;
4806 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4807 for (j = 0; j < num_inst_src_regs(inst); j++) {
4808 if (inst->src[j].file == PROGRAM_TEMPORARY)
4809 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
4810 }
4811 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4812 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4813 if (first_writes[inst->dst[j].index] == -1)
4814 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4815 last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
4816 }
4817 }
4818 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4819 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4820 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
4821 }
4822 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4823 if(depth++ == 0)
4824 loop_start = i;
4825 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4826 if (--depth == 0) {
4827 loop_start = -1;
4828 for (k = 0; k < this->next_temp; k++) {
4829 if (last_reads[k] == -2) {
4830 last_reads[k] = i;
4831 }
4832 }
4833 }
4834 }
4835 assert(depth >= 0);
4836 i++;
4837 }
4838 }
4839
4840 void
4841 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
4842 {
4843 int depth = 0; /* loop depth */
4844 int i = 0, k;
4845 unsigned j;
4846
4847 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4848 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4849 if (inst->dst[j].file == PROGRAM_TEMPORARY)
4850 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
4851 }
4852
4853 if (inst->op == TGSI_OPCODE_BGNLOOP)
4854 depth++;
4855 else if (inst->op == TGSI_OPCODE_ENDLOOP)
4856 if (--depth == 0) {
4857 for (k = 0; k < this->next_temp; k++) {
4858 if (last_writes[k] == -2) {
4859 last_writes[k] = i;
4860 }
4861 }
4862 }
4863 assert(depth >= 0);
4864 i++;
4865 }
4866 }
4867
4868 /*
4869 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
4870 * channels for copy propagation and updates following instructions to
4871 * use the original versions.
4872 *
4873 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4874 * will occur. As an example, a TXP production before this pass:
4875 *
4876 * 0: MOV TEMP[1], INPUT[4].xyyy;
4877 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4878 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
4879 *
4880 * and after:
4881 *
4882 * 0: MOV TEMP[1], INPUT[4].xyyy;
4883 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4884 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4885 *
4886 * which allows for dead code elimination on TEMP[1]'s writes.
4887 */
4888 void
4889 glsl_to_tgsi_visitor::copy_propagate(void)
4890 {
4891 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
4892 glsl_to_tgsi_instruction *,
4893 this->next_temp * 4);
4894 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4895 int level = 0;
4896
4897 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4898 assert(inst->dst[0].file != PROGRAM_TEMPORARY
4899 || inst->dst[0].index < this->next_temp);
4900
4901 /* First, do any copy propagation possible into the src regs. */
4902 for (int r = 0; r < 3; r++) {
4903 glsl_to_tgsi_instruction *first = NULL;
4904 bool good = true;
4905 int acp_base = inst->src[r].index * 4;
4906
4907 if (inst->src[r].file != PROGRAM_TEMPORARY ||
4908 inst->src[r].reladdr ||
4909 inst->src[r].reladdr2)
4910 continue;
4911
4912 /* See if we can find entries in the ACP consisting of MOVs
4913 * from the same src register for all the swizzled channels
4914 * of this src register reference.
4915 */
4916 for (int i = 0; i < 4; i++) {
4917 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4918 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
4919
4920 if (!copy_chan) {
4921 good = false;
4922 break;
4923 }
4924
4925 assert(acp_level[acp_base + src_chan] <= level);
4926
4927 if (!first) {
4928 first = copy_chan;
4929 } else {
4930 if (first->src[0].file != copy_chan->src[0].file ||
4931 first->src[0].index != copy_chan->src[0].index ||
4932 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
4933 first->src[0].index2D != copy_chan->src[0].index2D) {
4934 good = false;
4935 break;
4936 }
4937 }
4938 }
4939
4940 if (good) {
4941 /* We've now validated that we can copy-propagate to
4942 * replace this src register reference. Do it.
4943 */
4944 inst->src[r].file = first->src[0].file;
4945 inst->src[r].index = first->src[0].index;
4946 inst->src[r].index2D = first->src[0].index2D;
4947 inst->src[r].has_index2 = first->src[0].has_index2;
4948 inst->src[r].double_reg2 = first->src[0].double_reg2;
4949 inst->src[r].array_id = first->src[0].array_id;
4950
4951 int swizzle = 0;
4952 for (int i = 0; i < 4; i++) {
4953 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4954 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
4955 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
4956 }
4957 inst->src[r].swizzle = swizzle;
4958 }
4959 }
4960
4961 switch (inst->op) {
4962 case TGSI_OPCODE_BGNLOOP:
4963 case TGSI_OPCODE_ENDLOOP:
4964 /* End of a basic block, clear the ACP entirely. */
4965 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4966 break;
4967
4968 case TGSI_OPCODE_IF:
4969 case TGSI_OPCODE_UIF:
4970 ++level;
4971 break;
4972
4973 case TGSI_OPCODE_ENDIF:
4974 case TGSI_OPCODE_ELSE:
4975 /* Clear all channels written inside the block from the ACP, but
4976 * leaving those that were not touched.
4977 */
4978 for (int r = 0; r < this->next_temp; r++) {
4979 for (int c = 0; c < 4; c++) {
4980 if (!acp[4 * r + c])
4981 continue;
4982
4983 if (acp_level[4 * r + c] >= level)
4984 acp[4 * r + c] = NULL;
4985 }
4986 }
4987 if (inst->op == TGSI_OPCODE_ENDIF)
4988 --level;
4989 break;
4990
4991 default:
4992 /* Continuing the block, clear any written channels from
4993 * the ACP.
4994 */
4995 for (int d = 0; d < 2; d++) {
4996 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
4997 /* Any temporary might be written, so no copy propagation
4998 * across this instruction.
4999 */
5000 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
5001 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
5002 inst->dst[d].reladdr) {
5003 /* Any output might be written, so no copy propagation
5004 * from outputs across this instruction.
5005 */
5006 for (int r = 0; r < this->next_temp; r++) {
5007 for (int c = 0; c < 4; c++) {
5008 if (!acp[4 * r + c])
5009 continue;
5010
5011 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
5012 acp[4 * r + c] = NULL;
5013 }
5014 }
5015 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
5016 inst->dst[d].file == PROGRAM_OUTPUT) {
5017 /* Clear where it's used as dst. */
5018 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
5019 for (int c = 0; c < 4; c++) {
5020 if (inst->dst[d].writemask & (1 << c))
5021 acp[4 * inst->dst[d].index + c] = NULL;
5022 }
5023 }
5024
5025 /* Clear where it's used as src. */
5026 for (int r = 0; r < this->next_temp; r++) {
5027 for (int c = 0; c < 4; c++) {
5028 if (!acp[4 * r + c])
5029 continue;
5030
5031 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
5032
5033 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
5034 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
5035 inst->dst[d].writemask & (1 << src_chan)) {
5036 acp[4 * r + c] = NULL;
5037 }
5038 }
5039 }
5040 }
5041 }
5042 break;
5043 }
5044
5045 /* If this is a copy, add it to the ACP. */
5046 if (inst->op == TGSI_OPCODE_MOV &&
5047 inst->dst[0].file == PROGRAM_TEMPORARY &&
5048 !(inst->dst[0].file == inst->src[0].file &&
5049 inst->dst[0].index == inst->src[0].index) &&
5050 !inst->dst[0].reladdr &&
5051 !inst->dst[0].reladdr2 &&
5052 !inst->saturate &&
5053 inst->src[0].file != PROGRAM_ARRAY &&
5054 !inst->src[0].reladdr &&
5055 !inst->src[0].reladdr2 &&
5056 !inst->src[0].negate &&
5057 !inst->src[0].abs) {
5058 for (int i = 0; i < 4; i++) {
5059 if (inst->dst[0].writemask & (1 << i)) {
5060 acp[4 * inst->dst[0].index + i] = inst;
5061 acp_level[4 * inst->dst[0].index + i] = level;
5062 }
5063 }
5064 }
5065 }
5066
5067 ralloc_free(acp_level);
5068 ralloc_free(acp);
5069 }
5070
5071 /*
5072 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
5073 * code elimination.
5074 *
5075 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5076 * will occur. As an example, a TXP production after copy propagation but
5077 * before this pass:
5078 *
5079 * 0: MOV TEMP[1], INPUT[4].xyyy;
5080 * 1: MOV TEMP[1].w, INPUT[4].wwww;
5081 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5082 *
5083 * and after this pass:
5084 *
5085 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5086 */
5087 int
5088 glsl_to_tgsi_visitor::eliminate_dead_code(void)
5089 {
5090 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
5091 glsl_to_tgsi_instruction *,
5092 this->next_temp * 4);
5093 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5094 int level = 0;
5095 int removed = 0;
5096
5097 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5098 assert(inst->dst[0].file != PROGRAM_TEMPORARY
5099 || inst->dst[0].index < this->next_temp);
5100
5101 switch (inst->op) {
5102 case TGSI_OPCODE_BGNLOOP:
5103 case TGSI_OPCODE_ENDLOOP:
5104 case TGSI_OPCODE_CONT:
5105 case TGSI_OPCODE_BRK:
5106 /* End of a basic block, clear the write array entirely.
5107 *
5108 * This keeps us from killing dead code when the writes are
5109 * on either side of a loop, even when the register isn't touched
5110 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
5111 * dead code of this type, so it shouldn't make a difference as long as
5112 * the dead code elimination pass in the GLSL compiler does its job.
5113 */
5114 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5115 break;
5116
5117 case TGSI_OPCODE_ENDIF:
5118 case TGSI_OPCODE_ELSE:
5119 /* Promote the recorded level of all channels written inside the
5120 * preceding if or else block to the level above the if/else block.
5121 */
5122 for (int r = 0; r < this->next_temp; r++) {
5123 for (int c = 0; c < 4; c++) {
5124 if (!writes[4 * r + c])
5125 continue;
5126
5127 if (write_level[4 * r + c] == level)
5128 write_level[4 * r + c] = level-1;
5129 }
5130 }
5131 if(inst->op == TGSI_OPCODE_ENDIF)
5132 --level;
5133 break;
5134
5135 case TGSI_OPCODE_IF:
5136 case TGSI_OPCODE_UIF:
5137 ++level;
5138 /* fallthrough to default case to mark the condition as read */
5139 default:
5140 /* Continuing the block, clear any channels from the write array that
5141 * are read by this instruction.
5142 */
5143 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
5144 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
5145 /* Any temporary might be read, so no dead code elimination
5146 * across this instruction.
5147 */
5148 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5149 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
5150 /* Clear where it's used as src. */
5151 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
5152 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
5153 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
5154 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
5155
5156 for (int c = 0; c < 4; c++) {
5157 if (src_chans & (1 << c))
5158 writes[4 * inst->src[i].index + c] = NULL;
5159 }
5160 }
5161 }
5162 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
5163 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
5164 /* Any temporary might be read, so no dead code elimination
5165 * across this instruction.
5166 */
5167 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5168 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
5169 /* Clear where it's used as src. */
5170 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
5171 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
5172 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
5173 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
5174
5175 for (int c = 0; c < 4; c++) {
5176 if (src_chans & (1 << c))
5177 writes[4 * inst->tex_offsets[i].index + c] = NULL;
5178 }
5179 }
5180 }
5181 break;
5182 }
5183
5184 /* If this instruction writes to a temporary, add it to the write array.
5185 * If there is already an instruction in the write array for one or more
5186 * of the channels, flag that channel write as dead.
5187 */
5188 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5189 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
5190 !inst->dst[i].reladdr) {
5191 for (int c = 0; c < 4; c++) {
5192 if (inst->dst[i].writemask & (1 << c)) {
5193 if (writes[4 * inst->dst[i].index + c]) {
5194 if (write_level[4 * inst->dst[i].index + c] < level)
5195 continue;
5196 else
5197 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
5198 }
5199 writes[4 * inst->dst[i].index + c] = inst;
5200 write_level[4 * inst->dst[i].index + c] = level;
5201 }
5202 }
5203 }
5204 }
5205 }
5206
5207 /* Anything still in the write array at this point is dead code. */
5208 for (int r = 0; r < this->next_temp; r++) {
5209 for (int c = 0; c < 4; c++) {
5210 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
5211 if (inst)
5212 inst->dead_mask |= (1 << c);
5213 }
5214 }
5215
5216 /* Now actually remove the instructions that are completely dead and update
5217 * the writemask of other instructions with dead channels.
5218 */
5219 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5220 if (!inst->dead_mask || !inst->dst[0].writemask)
5221 continue;
5222 /* No amount of dead masks should remove memory stores */
5223 if (inst->info->is_store)
5224 continue;
5225
5226 if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
5227 inst->remove();
5228 delete inst;
5229 removed++;
5230 } else {
5231 if (glsl_base_type_is_64bit(inst->dst[0].type)) {
5232 if (inst->dead_mask == WRITEMASK_XY ||
5233 inst->dead_mask == WRITEMASK_ZW)
5234 inst->dst[0].writemask &= ~(inst->dead_mask);
5235 } else
5236 inst->dst[0].writemask &= ~(inst->dead_mask);
5237 }
5238 }
5239
5240 ralloc_free(write_level);
5241 ralloc_free(writes);
5242
5243 return removed;
5244 }
5245
5246 /* merge DFRACEXP instructions into one. */
5247 void
5248 glsl_to_tgsi_visitor::merge_two_dsts(void)
5249 {
5250 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5251 glsl_to_tgsi_instruction *inst2;
5252 bool merged;
5253 if (num_inst_dst_regs(inst) != 2)
5254 continue;
5255
5256 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
5257 inst->dst[1].file != PROGRAM_UNDEFINED)
5258 continue;
5259
5260 inst2 = (glsl_to_tgsi_instruction *) inst->next;
5261 do {
5262
5263 if (inst->src[0].file == inst2->src[0].file &&
5264 inst->src[0].index == inst2->src[0].index &&
5265 inst->src[0].type == inst2->src[0].type &&
5266 inst->src[0].swizzle == inst2->src[0].swizzle)
5267 break;
5268 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
5269 } while (inst2);
5270
5271 if (!inst2)
5272 continue;
5273 merged = false;
5274 if (inst->dst[0].file == PROGRAM_UNDEFINED) {
5275 merged = true;
5276 inst->dst[0] = inst2->dst[0];
5277 } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
5278 inst->dst[1] = inst2->dst[1];
5279 merged = true;
5280 }
5281
5282 if (merged) {
5283 inst2->remove();
5284 delete inst2;
5285 }
5286 }
5287 }
5288
5289 /* Merges temporary registers together where possible to reduce the number of
5290 * registers needed to run a program.
5291 *
5292 * Produces optimal code only after copy propagation and dead code elimination
5293 * have been run. */
5294 void
5295 glsl_to_tgsi_visitor::merge_registers(void)
5296 {
5297 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
5298 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
5299 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5300 int i, j;
5301 int num_renames = 0;
5302
5303 /* Read the indices of the last read and first write to each temp register
5304 * into an array so that we don't have to traverse the instruction list as
5305 * much. */
5306 for (i = 0; i < this->next_temp; i++) {
5307 last_reads[i] = -1;
5308 first_writes[i] = -1;
5309 }
5310 get_last_temp_read_first_temp_write(last_reads, first_writes);
5311
5312 /* Start looking for registers with non-overlapping usages that can be
5313 * merged together. */
5314 for (i = 0; i < this->next_temp; i++) {
5315 /* Don't touch unused registers. */
5316 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
5317
5318 for (j = 0; j < this->next_temp; j++) {
5319 /* Don't touch unused registers. */
5320 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
5321
5322 /* We can merge the two registers if the first write to j is after or
5323 * in the same instruction as the last read from i. Note that the
5324 * register at index i will always be used earlier or at the same time
5325 * as the register at index j. */
5326 if (first_writes[i] <= first_writes[j] &&
5327 last_reads[i] <= first_writes[j]) {
5328 renames[num_renames].old_reg = j;
5329 renames[num_renames].new_reg = i;
5330 num_renames++;
5331
5332 /* Update the first_writes and last_reads arrays with the new
5333 * values for the merged register index, and mark the newly unused
5334 * register index as such. */
5335 assert(last_reads[j] >= last_reads[i]);
5336 last_reads[i] = last_reads[j];
5337 first_writes[j] = -1;
5338 last_reads[j] = -1;
5339 }
5340 }
5341 }
5342
5343 rename_temp_registers(num_renames, renames);
5344 ralloc_free(renames);
5345 ralloc_free(last_reads);
5346 ralloc_free(first_writes);
5347 }
5348
5349 /* Reassign indices to temporary registers by reusing unused indices created
5350 * by optimization passes. */
5351 void
5352 glsl_to_tgsi_visitor::renumber_registers(void)
5353 {
5354 int i = 0;
5355 int new_index = 0;
5356 int *first_reads = rzalloc_array(mem_ctx, int, this->next_temp);
5357 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5358 int num_renames = 0;
5359 for (i = 0; i < this->next_temp; i++) {
5360 first_reads[i] = -1;
5361 }
5362 get_first_temp_read(first_reads);
5363
5364 for (i = 0; i < this->next_temp; i++) {
5365 if (first_reads[i] < 0) continue;
5366 if (i != new_index) {
5367 renames[num_renames].old_reg = i;
5368 renames[num_renames].new_reg = new_index;
5369 num_renames++;
5370 }
5371 new_index++;
5372 }
5373
5374 rename_temp_registers(num_renames, renames);
5375 this->next_temp = new_index;
5376 ralloc_free(renames);
5377 ralloc_free(first_reads);
5378 }
5379
5380 /* ------------------------- TGSI conversion stuff -------------------------- */
5381
5382 /**
5383 * Intermediate state used during shader translation.
5384 */
5385 struct st_translate {
5386 struct ureg_program *ureg;
5387
5388 unsigned temps_size;
5389 struct ureg_dst *temps;
5390
5391 struct ureg_dst *arrays;
5392 unsigned num_temp_arrays;
5393 struct ureg_src *constants;
5394 int num_constants;
5395 struct ureg_src *immediates;
5396 int num_immediates;
5397 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
5398 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
5399 struct ureg_dst address[3];
5400 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
5401 struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
5402 struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
5403 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
5404 struct ureg_src shared_memory;
5405 unsigned *array_sizes;
5406 struct inout_decl *input_decls;
5407 unsigned num_input_decls;
5408 struct inout_decl *output_decls;
5409 unsigned num_output_decls;
5410
5411 const GLuint *inputMapping;
5412 const GLuint *outputMapping;
5413
5414 unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
5415 };
5416
5417 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
5418 unsigned
5419 _mesa_sysval_to_semantic(unsigned sysval)
5420 {
5421 switch (sysval) {
5422 /* Vertex shader */
5423 case SYSTEM_VALUE_VERTEX_ID:
5424 return TGSI_SEMANTIC_VERTEXID;
5425 case SYSTEM_VALUE_INSTANCE_ID:
5426 return TGSI_SEMANTIC_INSTANCEID;
5427 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
5428 return TGSI_SEMANTIC_VERTEXID_NOBASE;
5429 case SYSTEM_VALUE_BASE_VERTEX:
5430 return TGSI_SEMANTIC_BASEVERTEX;
5431 case SYSTEM_VALUE_BASE_INSTANCE:
5432 return TGSI_SEMANTIC_BASEINSTANCE;
5433 case SYSTEM_VALUE_DRAW_ID:
5434 return TGSI_SEMANTIC_DRAWID;
5435
5436 /* Geometry shader */
5437 case SYSTEM_VALUE_INVOCATION_ID:
5438 return TGSI_SEMANTIC_INVOCATIONID;
5439
5440 /* Fragment shader */
5441 case SYSTEM_VALUE_FRAG_COORD:
5442 return TGSI_SEMANTIC_POSITION;
5443 case SYSTEM_VALUE_FRONT_FACE:
5444 return TGSI_SEMANTIC_FACE;
5445 case SYSTEM_VALUE_SAMPLE_ID:
5446 return TGSI_SEMANTIC_SAMPLEID;
5447 case SYSTEM_VALUE_SAMPLE_POS:
5448 return TGSI_SEMANTIC_SAMPLEPOS;
5449 case SYSTEM_VALUE_SAMPLE_MASK_IN:
5450 return TGSI_SEMANTIC_SAMPLEMASK;
5451 case SYSTEM_VALUE_HELPER_INVOCATION:
5452 return TGSI_SEMANTIC_HELPER_INVOCATION;
5453
5454 /* Tessellation shader */
5455 case SYSTEM_VALUE_TESS_COORD:
5456 return TGSI_SEMANTIC_TESSCOORD;
5457 case SYSTEM_VALUE_VERTICES_IN:
5458 return TGSI_SEMANTIC_VERTICESIN;
5459 case SYSTEM_VALUE_PRIMITIVE_ID:
5460 return TGSI_SEMANTIC_PRIMID;
5461 case SYSTEM_VALUE_TESS_LEVEL_OUTER:
5462 return TGSI_SEMANTIC_TESSOUTER;
5463 case SYSTEM_VALUE_TESS_LEVEL_INNER:
5464 return TGSI_SEMANTIC_TESSINNER;
5465
5466 /* Compute shader */
5467 case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
5468 return TGSI_SEMANTIC_THREAD_ID;
5469 case SYSTEM_VALUE_WORK_GROUP_ID:
5470 return TGSI_SEMANTIC_BLOCK_ID;
5471 case SYSTEM_VALUE_NUM_WORK_GROUPS:
5472 return TGSI_SEMANTIC_GRID_SIZE;
5473 case SYSTEM_VALUE_LOCAL_GROUP_SIZE:
5474 return TGSI_SEMANTIC_BLOCK_SIZE;
5475
5476 /* ARB_shader_ballot */
5477 case SYSTEM_VALUE_SUBGROUP_SIZE:
5478 return TGSI_SEMANTIC_SUBGROUP_SIZE;
5479 case SYSTEM_VALUE_SUBGROUP_INVOCATION:
5480 return TGSI_SEMANTIC_SUBGROUP_INVOCATION;
5481 case SYSTEM_VALUE_SUBGROUP_EQ_MASK:
5482 return TGSI_SEMANTIC_SUBGROUP_EQ_MASK;
5483 case SYSTEM_VALUE_SUBGROUP_GE_MASK:
5484 return TGSI_SEMANTIC_SUBGROUP_GE_MASK;
5485 case SYSTEM_VALUE_SUBGROUP_GT_MASK:
5486 return TGSI_SEMANTIC_SUBGROUP_GT_MASK;
5487 case SYSTEM_VALUE_SUBGROUP_LE_MASK:
5488 return TGSI_SEMANTIC_SUBGROUP_LE_MASK;
5489 case SYSTEM_VALUE_SUBGROUP_LT_MASK:
5490 return TGSI_SEMANTIC_SUBGROUP_LT_MASK;
5491
5492 /* Unhandled */
5493 case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
5494 case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
5495 case SYSTEM_VALUE_VERTEX_CNT:
5496 default:
5497 assert(!"Unexpected SYSTEM_VALUE_ enum");
5498 return TGSI_SEMANTIC_COUNT;
5499 }
5500 }
5501
5502 /**
5503 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
5504 */
5505 static struct ureg_src
5506 emit_immediate(struct st_translate *t,
5507 gl_constant_value values[4],
5508 int type, int size)
5509 {
5510 struct ureg_program *ureg = t->ureg;
5511
5512 switch(type)
5513 {
5514 case GL_FLOAT:
5515 return ureg_DECL_immediate(ureg, &values[0].f, size);
5516 case GL_DOUBLE:
5517 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
5518 case GL_INT64_ARB:
5519 return ureg_DECL_immediate_int64(ureg, (int64_t *)&values[0].f, size);
5520 case GL_UNSIGNED_INT64_ARB:
5521 return ureg_DECL_immediate_uint64(ureg, (uint64_t *)&values[0].f, size);
5522 case GL_INT:
5523 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
5524 case GL_UNSIGNED_INT:
5525 case GL_BOOL:
5526 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
5527 default:
5528 assert(!"should not get here - type must be float, int, uint, or bool");
5529 return ureg_src_undef();
5530 }
5531 }
5532
5533 /**
5534 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
5535 */
5536 static struct ureg_dst
5537 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
5538 unsigned array_id)
5539 {
5540 unsigned array;
5541
5542 switch(file) {
5543 case PROGRAM_UNDEFINED:
5544 return ureg_dst_undef();
5545
5546 case PROGRAM_TEMPORARY:
5547 /* Allocate space for temporaries on demand. */
5548 if (index >= t->temps_size) {
5549 const int inc = align(index - t->temps_size + 1, 4096);
5550
5551 t->temps = (struct ureg_dst*)
5552 realloc(t->temps,
5553 (t->temps_size + inc) * sizeof(struct ureg_dst));
5554 if (!t->temps)
5555 return ureg_dst_undef();
5556
5557 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
5558 t->temps_size += inc;
5559 }
5560
5561 if (ureg_dst_is_undef(t->temps[index]))
5562 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
5563
5564 return t->temps[index];
5565
5566 case PROGRAM_ARRAY:
5567 assert(array_id && array_id <= t->num_temp_arrays);
5568 array = array_id - 1;
5569
5570 if (ureg_dst_is_undef(t->arrays[array]))
5571 t->arrays[array] = ureg_DECL_array_temporary(
5572 t->ureg, t->array_sizes[array], TRUE);
5573
5574 return ureg_dst_array_offset(t->arrays[array], index);
5575
5576 case PROGRAM_OUTPUT:
5577 if (!array_id) {
5578 if (t->procType == PIPE_SHADER_FRAGMENT)
5579 assert(index < 2 * FRAG_RESULT_MAX);
5580 else if (t->procType == PIPE_SHADER_TESS_CTRL ||
5581 t->procType == PIPE_SHADER_TESS_EVAL)
5582 assert(index < VARYING_SLOT_TESS_MAX);
5583 else
5584 assert(index < VARYING_SLOT_MAX);
5585
5586 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
5587 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
5588 return t->outputs[t->outputMapping[index]];
5589 }
5590 else {
5591 struct inout_decl *decl = find_inout_array(t->output_decls, t->num_output_decls, array_id);
5592 unsigned mesa_index = decl->mesa_index;
5593 int slot = t->outputMapping[mesa_index];
5594
5595 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
5596
5597 struct ureg_dst dst = t->outputs[slot];
5598 dst.ArrayID = array_id;
5599 return ureg_dst_array_offset(dst, index - mesa_index);
5600 }
5601
5602 case PROGRAM_ADDRESS:
5603 return t->address[index];
5604
5605 default:
5606 assert(!"unknown dst register file");
5607 return ureg_dst_undef();
5608 }
5609 }
5610
5611 /**
5612 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
5613 */
5614 static struct ureg_src
5615 src_register(struct st_translate *t, const st_src_reg *reg)
5616 {
5617 int index = reg->index;
5618 int double_reg2 = reg->double_reg2 ? 1 : 0;
5619
5620 switch(reg->file) {
5621 case PROGRAM_UNDEFINED:
5622 return ureg_imm4f(t->ureg, 0, 0, 0, 0);
5623
5624 case PROGRAM_TEMPORARY:
5625 case PROGRAM_ARRAY:
5626 return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
5627
5628 case PROGRAM_OUTPUT: {
5629 struct ureg_dst dst = dst_register(t, reg->file, reg->index, reg->array_id);
5630 assert(dst.WriteMask != 0);
5631 unsigned shift = ffs(dst.WriteMask) - 1;
5632 return ureg_swizzle(ureg_src(dst),
5633 shift,
5634 MIN2(shift + 1, 3),
5635 MIN2(shift + 2, 3),
5636 MIN2(shift + 3, 3));
5637 }
5638
5639 case PROGRAM_UNIFORM:
5640 assert(reg->index >= 0);
5641 return reg->index < t->num_constants ?
5642 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5643 case PROGRAM_STATE_VAR:
5644 case PROGRAM_CONSTANT: /* ie, immediate */
5645 if (reg->has_index2)
5646 return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
5647 else
5648 return reg->index >= 0 && reg->index < t->num_constants ?
5649 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5650
5651 case PROGRAM_IMMEDIATE:
5652 assert(reg->index >= 0 && reg->index < t->num_immediates);
5653 return t->immediates[reg->index];
5654
5655 case PROGRAM_INPUT:
5656 /* GLSL inputs are 64-bit containers, so we have to
5657 * map back to the original index and add the offset after
5658 * mapping. */
5659 index -= double_reg2;
5660 if (!reg->array_id) {
5661 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
5662 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
5663 return t->inputs[t->inputMapping[index] + double_reg2];
5664 }
5665 else {
5666 struct inout_decl *decl = find_inout_array(t->input_decls, t->num_input_decls, reg->array_id);
5667 unsigned mesa_index = decl->mesa_index;
5668 int slot = t->inputMapping[mesa_index];
5669
5670 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
5671
5672 struct ureg_src src = t->inputs[slot];
5673 src.ArrayID = reg->array_id;
5674 return ureg_src_array_offset(src, index + double_reg2 - mesa_index);
5675 }
5676
5677 case PROGRAM_ADDRESS:
5678 return ureg_src(t->address[reg->index]);
5679
5680 case PROGRAM_SYSTEM_VALUE:
5681 assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
5682 return t->systemValues[reg->index];
5683
5684 default:
5685 assert(!"unknown src register file");
5686 return ureg_src_undef();
5687 }
5688 }
5689
5690 /**
5691 * Create a TGSI ureg_dst register from an st_dst_reg.
5692 */
5693 static struct ureg_dst
5694 translate_dst(struct st_translate *t,
5695 const st_dst_reg *dst_reg,
5696 bool saturate)
5697 {
5698 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
5699 dst_reg->array_id);
5700
5701 if (dst.File == TGSI_FILE_NULL)
5702 return dst;
5703
5704 dst = ureg_writemask(dst, dst_reg->writemask);
5705
5706 if (saturate)
5707 dst = ureg_saturate(dst);
5708
5709 if (dst_reg->reladdr != NULL) {
5710 assert(dst_reg->file != PROGRAM_TEMPORARY);
5711 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
5712 }
5713
5714 if (dst_reg->has_index2) {
5715 if (dst_reg->reladdr2)
5716 dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
5717 dst_reg->index2D);
5718 else
5719 dst = ureg_dst_dimension(dst, dst_reg->index2D);
5720 }
5721
5722 return dst;
5723 }
5724
5725 /**
5726 * Create a TGSI ureg_src register from an st_src_reg.
5727 */
5728 static struct ureg_src
5729 translate_src(struct st_translate *t, const st_src_reg *src_reg)
5730 {
5731 struct ureg_src src = src_register(t, src_reg);
5732
5733 if (src_reg->has_index2) {
5734 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
5735 * and UBO constant buffers (buffer, position).
5736 */
5737 if (src_reg->reladdr2)
5738 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
5739 src_reg->index2D);
5740 else
5741 src = ureg_src_dimension(src, src_reg->index2D);
5742 }
5743
5744 src = ureg_swizzle(src,
5745 GET_SWZ(src_reg->swizzle, 0) & 0x3,
5746 GET_SWZ(src_reg->swizzle, 1) & 0x3,
5747 GET_SWZ(src_reg->swizzle, 2) & 0x3,
5748 GET_SWZ(src_reg->swizzle, 3) & 0x3);
5749
5750 if (src_reg->abs)
5751 src = ureg_abs(src);
5752
5753 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
5754 src = ureg_negate(src);
5755
5756 if (src_reg->reladdr != NULL) {
5757 assert(src_reg->file != PROGRAM_TEMPORARY);
5758 src = ureg_src_indirect(src, ureg_src(t->address[0]));
5759 }
5760
5761 return src;
5762 }
5763
5764 static struct tgsi_texture_offset
5765 translate_tex_offset(struct st_translate *t,
5766 const st_src_reg *in_offset)
5767 {
5768 struct tgsi_texture_offset offset;
5769 struct ureg_src src = translate_src(t, in_offset);
5770
5771 offset.File = src.File;
5772 offset.Index = src.Index;
5773 offset.SwizzleX = src.SwizzleX;
5774 offset.SwizzleY = src.SwizzleY;
5775 offset.SwizzleZ = src.SwizzleZ;
5776 offset.Padding = 0;
5777
5778 assert(!src.Indirect);
5779 assert(!src.DimIndirect);
5780 assert(!src.Dimension);
5781 assert(!src.Absolute); /* those shouldn't be used with integers anyway */
5782 assert(!src.Negate);
5783
5784 return offset;
5785 }
5786
5787 static void
5788 compile_tgsi_instruction(struct st_translate *t,
5789 const glsl_to_tgsi_instruction *inst)
5790 {
5791 struct ureg_program *ureg = t->ureg;
5792 int i;
5793 struct ureg_dst dst[2];
5794 struct ureg_src src[4];
5795 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
5796
5797 int num_dst;
5798 int num_src;
5799 unsigned tex_target = 0;
5800
5801 num_dst = num_inst_dst_regs(inst);
5802 num_src = num_inst_src_regs(inst);
5803
5804 for (i = 0; i < num_dst; i++)
5805 dst[i] = translate_dst(t,
5806 &inst->dst[i],
5807 inst->saturate);
5808
5809 for (i = 0; i < num_src; i++)
5810 src[i] = translate_src(t, &inst->src[i]);
5811
5812 switch(inst->op) {
5813 case TGSI_OPCODE_BGNLOOP:
5814 case TGSI_OPCODE_ELSE:
5815 case TGSI_OPCODE_ENDLOOP:
5816 case TGSI_OPCODE_IF:
5817 case TGSI_OPCODE_UIF:
5818 assert(num_dst == 0);
5819 ureg_insn(ureg, inst->op, NULL, 0, src, num_src);
5820 return;
5821
5822 case TGSI_OPCODE_TEX:
5823 case TGSI_OPCODE_TEX_LZ:
5824 case TGSI_OPCODE_TXB:
5825 case TGSI_OPCODE_TXD:
5826 case TGSI_OPCODE_TXL:
5827 case TGSI_OPCODE_TXP:
5828 case TGSI_OPCODE_TXQ:
5829 case TGSI_OPCODE_TXQS:
5830 case TGSI_OPCODE_TXF:
5831 case TGSI_OPCODE_TXF_LZ:
5832 case TGSI_OPCODE_TEX2:
5833 case TGSI_OPCODE_TXB2:
5834 case TGSI_OPCODE_TXL2:
5835 case TGSI_OPCODE_TG4:
5836 case TGSI_OPCODE_LODQ:
5837 src[num_src] = t->samplers[inst->resource.index];
5838 assert(src[num_src].File != TGSI_FILE_NULL);
5839 if (inst->resource.reladdr)
5840 src[num_src] =
5841 ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
5842 num_src++;
5843 for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
5844 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
5845 }
5846 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5847
5848 ureg_tex_insn(ureg,
5849 inst->op,
5850 dst, num_dst,
5851 tex_target,
5852 texoffsets, inst->tex_offset_num_offset,
5853 src, num_src);
5854 return;
5855
5856 case TGSI_OPCODE_RESQ:
5857 case TGSI_OPCODE_LOAD:
5858 case TGSI_OPCODE_ATOMUADD:
5859 case TGSI_OPCODE_ATOMXCHG:
5860 case TGSI_OPCODE_ATOMCAS:
5861 case TGSI_OPCODE_ATOMAND:
5862 case TGSI_OPCODE_ATOMOR:
5863 case TGSI_OPCODE_ATOMXOR:
5864 case TGSI_OPCODE_ATOMUMIN:
5865 case TGSI_OPCODE_ATOMUMAX:
5866 case TGSI_OPCODE_ATOMIMIN:
5867 case TGSI_OPCODE_ATOMIMAX:
5868 for (i = num_src - 1; i >= 0; i--)
5869 src[i + 1] = src[i];
5870 num_src++;
5871 if (inst->resource.file == PROGRAM_MEMORY) {
5872 src[0] = t->shared_memory;
5873 } else if (inst->resource.file == PROGRAM_BUFFER) {
5874 src[0] = t->buffers[inst->resource.index];
5875 } else {
5876 src[0] = t->images[inst->resource.index];
5877 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5878 }
5879 if (inst->resource.reladdr)
5880 src[0] = ureg_src_indirect(src[0], ureg_src(t->address[2]));
5881 assert(src[0].File != TGSI_FILE_NULL);
5882 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5883 inst->buffer_access,
5884 tex_target, inst->image_format);
5885 break;
5886
5887 case TGSI_OPCODE_STORE:
5888 if (inst->resource.file == PROGRAM_MEMORY) {
5889 dst[0] = ureg_dst(t->shared_memory);
5890 } else if (inst->resource.file == PROGRAM_BUFFER) {
5891 dst[0] = ureg_dst(t->buffers[inst->resource.index]);
5892 } else {
5893 dst[0] = ureg_dst(t->images[inst->resource.index]);
5894 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5895 }
5896 dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
5897 if (inst->resource.reladdr)
5898 dst[0] = ureg_dst_indirect(dst[0], ureg_src(t->address[2]));
5899 assert(dst[0].File != TGSI_FILE_NULL);
5900 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5901 inst->buffer_access,
5902 tex_target, inst->image_format);
5903 break;
5904
5905 case TGSI_OPCODE_SCS:
5906 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
5907 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
5908 break;
5909
5910 default:
5911 ureg_insn(ureg,
5912 inst->op,
5913 dst, num_dst,
5914 src, num_src);
5915 break;
5916 }
5917 }
5918
5919 /**
5920 * Emit the TGSI instructions for inverting and adjusting WPOS.
5921 * This code is unavoidable because it also depends on whether
5922 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
5923 */
5924 static void
5925 emit_wpos_adjustment(struct gl_context *ctx,
5926 struct st_translate *t,
5927 int wpos_transform_const,
5928 boolean invert,
5929 GLfloat adjX, GLfloat adjY[2])
5930 {
5931 struct ureg_program *ureg = t->ureg;
5932
5933 assert(wpos_transform_const >= 0);
5934
5935 /* Fragment program uses fragment position input.
5936 * Need to replace instances of INPUT[WPOS] with temp T
5937 * where T = INPUT[WPOS] is inverted by Y.
5938 */
5939 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
5940 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
5941 struct ureg_src *wpos =
5942 ctx->Const.GLSLFragCoordIsSysVal ?
5943 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
5944 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
5945 struct ureg_src wpos_input = *wpos;
5946
5947 /* First, apply the coordinate shift: */
5948 if (adjX || adjY[0] || adjY[1]) {
5949 if (adjY[0] != adjY[1]) {
5950 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
5951 * depending on whether inversion is actually going to be applied
5952 * or not, which is determined by testing against the inversion
5953 * state variable used below, which will be either +1 or -1.
5954 */
5955 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
5956
5957 ureg_CMP(ureg, adj_temp,
5958 ureg_scalar(wpostrans, invert ? 2 : 0),
5959 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
5960 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
5961 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
5962 } else {
5963 ureg_ADD(ureg, wpos_temp, wpos_input,
5964 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
5965 }
5966 wpos_input = ureg_src(wpos_temp);
5967 } else {
5968 /* MOV wpos_temp, input[wpos]
5969 */
5970 ureg_MOV( ureg, wpos_temp, wpos_input );
5971 }
5972
5973 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
5974 * inversion/identity, or the other way around if we're drawing to an FBO.
5975 */
5976 if (invert) {
5977 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
5978 */
5979 ureg_MAD( ureg,
5980 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5981 wpos_input,
5982 ureg_scalar(wpostrans, 0),
5983 ureg_scalar(wpostrans, 1));
5984 } else {
5985 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
5986 */
5987 ureg_MAD( ureg,
5988 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5989 wpos_input,
5990 ureg_scalar(wpostrans, 2),
5991 ureg_scalar(wpostrans, 3));
5992 }
5993
5994 /* Use wpos_temp as position input from here on:
5995 */
5996 *wpos = ureg_src(wpos_temp);
5997 }
5998
5999
6000 /**
6001 * Emit fragment position/ooordinate code.
6002 */
6003 static void
6004 emit_wpos(struct st_context *st,
6005 struct st_translate *t,
6006 const struct gl_program *program,
6007 struct ureg_program *ureg,
6008 int wpos_transform_const)
6009 {
6010 struct pipe_screen *pscreen = st->pipe->screen;
6011 GLfloat adjX = 0.0f;
6012 GLfloat adjY[2] = { 0.0f, 0.0f };
6013 boolean invert = FALSE;
6014
6015 /* Query the pixel center conventions supported by the pipe driver and set
6016 * adjX, adjY to help out if it cannot handle the requested one internally.
6017 *
6018 * The bias of the y-coordinate depends on whether y-inversion takes place
6019 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
6020 * drawing to an FBO (causes additional inversion), and whether the pipe
6021 * driver origin and the requested origin differ (the latter condition is
6022 * stored in the 'invert' variable).
6023 *
6024 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
6025 *
6026 * center shift only:
6027 * i -> h: +0.5
6028 * h -> i: -0.5
6029 *
6030 * inversion only:
6031 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
6032 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
6033 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
6034 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
6035 *
6036 * inversion and center shift:
6037 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
6038 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
6039 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
6040 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
6041 */
6042 if (program->OriginUpperLeft) {
6043 /* Fragment shader wants origin in upper-left */
6044 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
6045 /* the driver supports upper-left origin */
6046 }
6047 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
6048 /* the driver supports lower-left origin, need to invert Y */
6049 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6050 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6051 invert = TRUE;
6052 }
6053 else
6054 assert(0);
6055 }
6056 else {
6057 /* Fragment shader wants origin in lower-left */
6058 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
6059 /* the driver supports lower-left origin */
6060 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6061 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6062 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
6063 /* the driver supports upper-left origin, need to invert Y */
6064 invert = TRUE;
6065 else
6066 assert(0);
6067 }
6068
6069 if (program->PixelCenterInteger) {
6070 /* Fragment shader wants pixel center integer */
6071 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6072 /* the driver supports pixel center integer */
6073 adjY[1] = 1.0f;
6074 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6075 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6076 }
6077 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6078 /* the driver supports pixel center half integer, need to bias X,Y */
6079 adjX = -0.5f;
6080 adjY[0] = -0.5f;
6081 adjY[1] = 0.5f;
6082 }
6083 else
6084 assert(0);
6085 }
6086 else {
6087 /* Fragment shader wants pixel center half integer */
6088 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6089 /* the driver supports pixel center half integer */
6090 }
6091 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6092 /* the driver supports pixel center integer, need to bias X,Y */
6093 adjX = adjY[0] = adjY[1] = 0.5f;
6094 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6095 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6096 }
6097 else
6098 assert(0);
6099 }
6100
6101 /* we invert after adjustment so that we avoid the MOV to temporary,
6102 * and reuse the adjustment ADD instead */
6103 emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
6104 }
6105
6106 /**
6107 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
6108 * TGSI uses +1 for front, -1 for back.
6109 * This function converts the TGSI value to the GL value. Simply clamping/
6110 * saturating the value to [0,1] does the job.
6111 */
6112 static void
6113 emit_face_var(struct gl_context *ctx, struct st_translate *t)
6114 {
6115 struct ureg_program *ureg = t->ureg;
6116 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
6117 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
6118
6119 if (ctx->Const.NativeIntegers) {
6120 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
6121 }
6122 else {
6123 /* MOV_SAT face_temp, input[face] */
6124 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
6125 }
6126
6127 /* Use face_temp as face input from here on: */
6128 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
6129 }
6130
6131 static void
6132 emit_compute_block_size(const struct gl_program *prog,
6133 struct ureg_program *ureg) {
6134 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
6135 prog->info.cs.local_size[0]);
6136 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
6137 prog->info.cs.local_size[1]);
6138 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
6139 prog->info.cs.local_size[2]);
6140 }
6141
6142 struct sort_inout_decls {
6143 bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
6144 return mapping[a.mesa_index] < mapping[b.mesa_index];
6145 }
6146
6147 const GLuint *mapping;
6148 };
6149
6150 /* Sort the given array of decls by the corresponding slot (TGSI file index).
6151 *
6152 * This is for the benefit of older drivers which are broken when the
6153 * declarations aren't sorted in this way.
6154 */
6155 static void
6156 sort_inout_decls_by_slot(struct inout_decl *decls,
6157 unsigned count,
6158 const GLuint mapping[])
6159 {
6160 sort_inout_decls sorter;
6161 sorter.mapping = mapping;
6162 std::sort(decls, decls + count, sorter);
6163 }
6164
6165 static unsigned
6166 st_translate_interp(enum glsl_interp_mode glsl_qual, GLuint varying)
6167 {
6168 switch (glsl_qual) {
6169 case INTERP_MODE_NONE:
6170 if (varying == VARYING_SLOT_COL0 || varying == VARYING_SLOT_COL1)
6171 return TGSI_INTERPOLATE_COLOR;
6172 return TGSI_INTERPOLATE_PERSPECTIVE;
6173 case INTERP_MODE_SMOOTH:
6174 return TGSI_INTERPOLATE_PERSPECTIVE;
6175 case INTERP_MODE_FLAT:
6176 return TGSI_INTERPOLATE_CONSTANT;
6177 case INTERP_MODE_NOPERSPECTIVE:
6178 return TGSI_INTERPOLATE_LINEAR;
6179 default:
6180 assert(0 && "unexpected interp mode in st_translate_interp()");
6181 return TGSI_INTERPOLATE_PERSPECTIVE;
6182 }
6183 }
6184
6185 /**
6186 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
6187 * \param program the program to translate
6188 * \param numInputs number of input registers used
6189 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
6190 * input indexes
6191 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
6192 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
6193 * each input
6194 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
6195 * \param numOutputs number of output registers used
6196 * \param outputMapping maps Mesa fragment program outputs to TGSI
6197 * generic outputs
6198 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
6199 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
6200 * each output
6201 *
6202 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
6203 */
6204 extern "C" enum pipe_error
6205 st_translate_program(
6206 struct gl_context *ctx,
6207 uint procType,
6208 struct ureg_program *ureg,
6209 glsl_to_tgsi_visitor *program,
6210 const struct gl_program *proginfo,
6211 GLuint numInputs,
6212 const GLuint inputMapping[],
6213 const GLuint inputSlotToAttr[],
6214 const ubyte inputSemanticName[],
6215 const ubyte inputSemanticIndex[],
6216 const GLuint interpMode[],
6217 GLuint numOutputs,
6218 const GLuint outputMapping[],
6219 const GLuint outputSlotToAttr[],
6220 const ubyte outputSemanticName[],
6221 const ubyte outputSemanticIndex[])
6222 {
6223 struct st_translate *t;
6224 unsigned i;
6225 struct gl_program_constants *frag_const =
6226 &ctx->Const.Program[MESA_SHADER_FRAGMENT];
6227 enum pipe_error ret = PIPE_OK;
6228
6229 assert(numInputs <= ARRAY_SIZE(t->inputs));
6230 assert(numOutputs <= ARRAY_SIZE(t->outputs));
6231
6232 t = CALLOC_STRUCT(st_translate);
6233 if (!t) {
6234 ret = PIPE_ERROR_OUT_OF_MEMORY;
6235 goto out;
6236 }
6237
6238 t->procType = procType;
6239 t->inputMapping = inputMapping;
6240 t->outputMapping = outputMapping;
6241 t->ureg = ureg;
6242 t->num_temp_arrays = program->next_array;
6243 if (t->num_temp_arrays)
6244 t->arrays = (struct ureg_dst*)
6245 calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
6246
6247 /*
6248 * Declare input attributes.
6249 */
6250 switch (procType) {
6251 case PIPE_SHADER_FRAGMENT:
6252 case PIPE_SHADER_GEOMETRY:
6253 case PIPE_SHADER_TESS_EVAL:
6254 case PIPE_SHADER_TESS_CTRL:
6255 sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
6256
6257 for (i = 0; i < program->num_inputs; ++i) {
6258 struct inout_decl *decl = &program->inputs[i];
6259 unsigned slot = inputMapping[decl->mesa_index];
6260 struct ureg_src src;
6261 ubyte tgsi_usage_mask = decl->usage_mask;
6262
6263 if (glsl_base_type_is_64bit(decl->base_type)) {
6264 if (tgsi_usage_mask == 1)
6265 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6266 else if (tgsi_usage_mask == 2)
6267 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6268 else
6269 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6270 }
6271
6272 unsigned interp_mode = 0;
6273 unsigned interp_location = 0;
6274 if (procType == PIPE_SHADER_FRAGMENT) {
6275 assert(interpMode);
6276 interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
6277 interpMode[slot] :
6278 st_translate_interp(decl->interp, inputSlotToAttr[slot]);
6279
6280 interp_location = decl->interp_loc;
6281 }
6282
6283 src = ureg_DECL_fs_input_cyl_centroid_layout(ureg,
6284 inputSemanticName[slot], inputSemanticIndex[slot],
6285 interp_mode, 0, interp_location, slot, tgsi_usage_mask,
6286 decl->array_id, decl->size);
6287
6288 for (unsigned j = 0; j < decl->size; ++j) {
6289 if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
6290 /* The ArrayID is set up in dst_register */
6291 t->inputs[slot + j] = src;
6292 t->inputs[slot + j].ArrayID = 0;
6293 t->inputs[slot + j].Index += j;
6294 }
6295 }
6296 }
6297 break;
6298 case PIPE_SHADER_VERTEX:
6299 for (i = 0; i < numInputs; i++) {
6300 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
6301 }
6302 break;
6303 case PIPE_SHADER_COMPUTE:
6304 break;
6305 default:
6306 assert(0);
6307 }
6308
6309 /*
6310 * Declare output attributes.
6311 */
6312 switch (procType) {
6313 case PIPE_SHADER_FRAGMENT:
6314 case PIPE_SHADER_COMPUTE:
6315 break;
6316 case PIPE_SHADER_GEOMETRY:
6317 case PIPE_SHADER_TESS_EVAL:
6318 case PIPE_SHADER_TESS_CTRL:
6319 case PIPE_SHADER_VERTEX:
6320 sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
6321
6322 for (i = 0; i < program->num_outputs; ++i) {
6323 struct inout_decl *decl = &program->outputs[i];
6324 unsigned slot = outputMapping[decl->mesa_index];
6325 struct ureg_dst dst;
6326 ubyte tgsi_usage_mask = decl->usage_mask;
6327
6328 if (glsl_base_type_is_64bit(decl->base_type)) {
6329 if (tgsi_usage_mask == 1)
6330 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6331 else if (tgsi_usage_mask == 2)
6332 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6333 else
6334 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6335 }
6336
6337 dst = ureg_DECL_output_layout(ureg,
6338 outputSemanticName[slot], outputSemanticIndex[slot],
6339 decl->gs_out_streams,
6340 slot, tgsi_usage_mask, decl->array_id, decl->size);
6341
6342 for (unsigned j = 0; j < decl->size; ++j) {
6343 if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
6344 /* The ArrayID is set up in dst_register */
6345 t->outputs[slot + j] = dst;
6346 t->outputs[slot + j].ArrayID = 0;
6347 t->outputs[slot + j].Index += j;
6348 }
6349 }
6350 }
6351 break;
6352 default:
6353 assert(0);
6354 }
6355
6356 if (procType == PIPE_SHADER_FRAGMENT) {
6357 if (program->shader->Program->info.fs.early_fragment_tests)
6358 ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
6359
6360 if (proginfo->info.inputs_read & VARYING_BIT_POS) {
6361 /* Must do this after setting up t->inputs. */
6362 emit_wpos(st_context(ctx), t, proginfo, ureg,
6363 program->wpos_transform_const);
6364 }
6365
6366 if (proginfo->info.inputs_read & VARYING_BIT_FACE)
6367 emit_face_var(ctx, t);
6368
6369 for (i = 0; i < numOutputs; i++) {
6370 switch (outputSemanticName[i]) {
6371 case TGSI_SEMANTIC_POSITION:
6372 t->outputs[i] = ureg_DECL_output(ureg,
6373 TGSI_SEMANTIC_POSITION, /* Z/Depth */
6374 outputSemanticIndex[i]);
6375 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
6376 break;
6377 case TGSI_SEMANTIC_STENCIL:
6378 t->outputs[i] = ureg_DECL_output(ureg,
6379 TGSI_SEMANTIC_STENCIL, /* Stencil */
6380 outputSemanticIndex[i]);
6381 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
6382 break;
6383 case TGSI_SEMANTIC_COLOR:
6384 t->outputs[i] = ureg_DECL_output(ureg,
6385 TGSI_SEMANTIC_COLOR,
6386 outputSemanticIndex[i]);
6387 break;
6388 case TGSI_SEMANTIC_SAMPLEMASK:
6389 t->outputs[i] = ureg_DECL_output(ureg,
6390 TGSI_SEMANTIC_SAMPLEMASK,
6391 outputSemanticIndex[i]);
6392 /* TODO: If we ever support more than 32 samples, this will have
6393 * to become an array.
6394 */
6395 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6396 break;
6397 default:
6398 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
6399 ret = PIPE_ERROR_BAD_INPUT;
6400 goto out;
6401 }
6402 }
6403 }
6404 else if (procType == PIPE_SHADER_VERTEX) {
6405 for (i = 0; i < numOutputs; i++) {
6406 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
6407 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
6408 ureg_MOV(ureg,
6409 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
6410 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
6411 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6412 }
6413 }
6414 }
6415
6416 if (procType == PIPE_SHADER_COMPUTE) {
6417 emit_compute_block_size(proginfo, ureg);
6418 }
6419
6420 /* Declare address register.
6421 */
6422 if (program->num_address_regs > 0) {
6423 assert(program->num_address_regs <= 3);
6424 for (int i = 0; i < program->num_address_regs; i++)
6425 t->address[i] = ureg_DECL_address(ureg);
6426 }
6427
6428 /* Declare misc input registers
6429 */
6430 {
6431 GLbitfield sysInputs = proginfo->info.system_values_read;
6432
6433 for (i = 0; sysInputs; i++) {
6434 if (sysInputs & (1 << i)) {
6435 unsigned semName = _mesa_sysval_to_semantic(i);
6436
6437 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
6438
6439 if (semName == TGSI_SEMANTIC_INSTANCEID ||
6440 semName == TGSI_SEMANTIC_VERTEXID) {
6441 /* From Gallium perspective, these system values are always
6442 * integer, and require native integer support. However, if
6443 * native integer is supported on the vertex stage but not the
6444 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
6445 * assumes these system values are floats. To resolve the
6446 * inconsistency, we insert a U2F.
6447 */
6448 struct st_context *st = st_context(ctx);
6449 struct pipe_screen *pscreen = st->pipe->screen;
6450 assert(procType == PIPE_SHADER_VERTEX);
6451 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
6452 (void) pscreen;
6453 if (!ctx->Const.NativeIntegers) {
6454 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
6455 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
6456 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
6457 }
6458 }
6459
6460 if (procType == PIPE_SHADER_FRAGMENT &&
6461 semName == TGSI_SEMANTIC_POSITION)
6462 emit_wpos(st_context(ctx), t, proginfo, ureg,
6463 program->wpos_transform_const);
6464
6465 sysInputs &= ~(1 << i);
6466 }
6467 }
6468 }
6469
6470 t->array_sizes = program->array_sizes;
6471 t->input_decls = program->inputs;
6472 t->num_input_decls = program->num_inputs;
6473 t->output_decls = program->outputs;
6474 t->num_output_decls = program->num_outputs;
6475
6476 /* Emit constants and uniforms. TGSI uses a single index space for these,
6477 * so we put all the translated regs in t->constants.
6478 */
6479 if (proginfo->Parameters) {
6480 t->constants = (struct ureg_src *)
6481 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
6482 if (t->constants == NULL) {
6483 ret = PIPE_ERROR_OUT_OF_MEMORY;
6484 goto out;
6485 }
6486 t->num_constants = proginfo->Parameters->NumParameters;
6487
6488 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
6489 switch (proginfo->Parameters->Parameters[i].Type) {
6490 case PROGRAM_STATE_VAR:
6491 case PROGRAM_UNIFORM:
6492 t->constants[i] = ureg_DECL_constant(ureg, i);
6493 break;
6494
6495 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
6496 * addressing of the const buffer.
6497 * FIXME: Be smarter and recognize param arrays:
6498 * indirect addressing is only valid within the referenced
6499 * array.
6500 */
6501 case PROGRAM_CONSTANT:
6502 if (program->indirect_addr_consts)
6503 t->constants[i] = ureg_DECL_constant(ureg, i);
6504 else
6505 t->constants[i] = emit_immediate(t,
6506 proginfo->Parameters->ParameterValues[i],
6507 proginfo->Parameters->Parameters[i].DataType,
6508 4);
6509 break;
6510 default:
6511 break;
6512 }
6513 }
6514 }
6515
6516 for (i = 0; i < proginfo->info.num_ubos; i++) {
6517 unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
6518 unsigned num_const_vecs = (size + 15) / 16;
6519 unsigned first, last;
6520 assert(num_const_vecs > 0);
6521 first = 0;
6522 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
6523 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
6524 }
6525
6526 /* Emit immediate values.
6527 */
6528 t->immediates = (struct ureg_src *)
6529 calloc(program->num_immediates, sizeof(struct ureg_src));
6530 if (t->immediates == NULL) {
6531 ret = PIPE_ERROR_OUT_OF_MEMORY;
6532 goto out;
6533 }
6534 t->num_immediates = program->num_immediates;
6535
6536 i = 0;
6537 foreach_in_list(immediate_storage, imm, &program->immediates) {
6538 assert(i < program->num_immediates);
6539 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
6540 }
6541 assert(i == program->num_immediates);
6542
6543 /* texture samplers */
6544 for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
6545 if (program->samplers_used & (1u << i)) {
6546 unsigned type;
6547
6548 t->samplers[i] = ureg_DECL_sampler(ureg, i);
6549
6550 switch (program->sampler_types[i]) {
6551 case GLSL_TYPE_INT:
6552 type = TGSI_RETURN_TYPE_SINT;
6553 break;
6554 case GLSL_TYPE_UINT:
6555 type = TGSI_RETURN_TYPE_UINT;
6556 break;
6557 case GLSL_TYPE_FLOAT:
6558 type = TGSI_RETURN_TYPE_FLOAT;
6559 break;
6560 default:
6561 unreachable("not reached");
6562 }
6563
6564 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
6565 type, type, type, type );
6566 }
6567 }
6568
6569 for (i = 0; i < frag_const->MaxAtomicBuffers; i++) {
6570 if (program->buffers_used & (1 << i)) {
6571 t->buffers[i] = ureg_DECL_buffer(ureg, i, true);
6572 }
6573 }
6574
6575 for (; i < frag_const->MaxAtomicBuffers + frag_const->MaxShaderStorageBlocks;
6576 i++) {
6577 if (program->buffers_used & (1 << i)) {
6578 t->buffers[i] = ureg_DECL_buffer(ureg, i, false);
6579 }
6580 }
6581
6582 if (program->use_shared_memory)
6583 t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
6584
6585 for (i = 0; i < program->shader->Program->info.num_images; i++) {
6586 if (program->images_used & (1 << i)) {
6587 t->images[i] = ureg_DECL_image(ureg, i,
6588 program->image_targets[i],
6589 program->image_formats[i],
6590 true, false);
6591 }
6592 }
6593
6594 /* Emit each instruction in turn:
6595 */
6596 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
6597 compile_tgsi_instruction(t, inst);
6598
6599 /* Set the next shader stage hint for VS and TES. */
6600 switch (procType) {
6601 case PIPE_SHADER_VERTEX:
6602 case PIPE_SHADER_TESS_EVAL:
6603 if (program->shader_program->SeparateShader)
6604 break;
6605
6606 for (i = program->shader->Stage+1; i <= MESA_SHADER_FRAGMENT; i++) {
6607 if (program->shader_program->_LinkedShaders[i]) {
6608 unsigned next;
6609
6610 switch (i) {
6611 case MESA_SHADER_TESS_CTRL:
6612 next = PIPE_SHADER_TESS_CTRL;
6613 break;
6614 case MESA_SHADER_TESS_EVAL:
6615 next = PIPE_SHADER_TESS_EVAL;
6616 break;
6617 case MESA_SHADER_GEOMETRY:
6618 next = PIPE_SHADER_GEOMETRY;
6619 break;
6620 case MESA_SHADER_FRAGMENT:
6621 next = PIPE_SHADER_FRAGMENT;
6622 break;
6623 default:
6624 assert(0);
6625 continue;
6626 }
6627
6628 ureg_set_next_shader_processor(ureg, next);
6629 break;
6630 }
6631 }
6632 break;
6633 }
6634
6635 out:
6636 if (t) {
6637 free(t->arrays);
6638 free(t->temps);
6639 free(t->constants);
6640 t->num_constants = 0;
6641 free(t->immediates);
6642 t->num_immediates = 0;
6643 FREE(t);
6644 }
6645
6646 return ret;
6647 }
6648 /* ----------------------------- End TGSI code ------------------------------ */
6649
6650
6651 /**
6652 * Convert a shader's GLSL IR into a Mesa gl_program, although without
6653 * generating Mesa IR.
6654 */
6655 static struct gl_program *
6656 get_mesa_program_tgsi(struct gl_context *ctx,
6657 struct gl_shader_program *shader_program,
6658 struct gl_linked_shader *shader)
6659 {
6660 glsl_to_tgsi_visitor* v;
6661 struct gl_program *prog;
6662 struct gl_shader_compiler_options *options =
6663 &ctx->Const.ShaderCompilerOptions[shader->Stage];
6664 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6665 enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(shader->Stage);
6666 unsigned skip_merge_registers;
6667
6668 validate_ir_tree(shader->ir);
6669
6670 prog = shader->Program;
6671
6672 prog->Parameters = _mesa_new_parameter_list();
6673 v = new glsl_to_tgsi_visitor();
6674 v->ctx = ctx;
6675 v->prog = prog;
6676 v->shader_program = shader_program;
6677 v->shader = shader;
6678 v->options = options;
6679 v->glsl_version = ctx->Const.GLSLVersion;
6680 v->native_integers = ctx->Const.NativeIntegers;
6681
6682 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
6683 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
6684 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
6685 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
6686 v->has_tex_txf_lz = pscreen->get_param(pscreen,
6687 PIPE_CAP_TGSI_TEX_TXF_LZ);
6688 skip_merge_registers =
6689 pscreen->get_shader_param(pscreen, ptarget,
6690 PIPE_SHADER_CAP_TGSI_SKIP_MERGE_REGISTERS);
6691
6692 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
6693 prog->Parameters);
6694
6695 /* Remove reads from output registers. */
6696 if (!pscreen->get_param(pscreen, PIPE_CAP_TGSI_CAN_READ_OUTPUTS))
6697 lower_output_reads(shader->Stage, shader->ir);
6698
6699 /* Emit intermediate IR for main(). */
6700 visit_exec_list(shader->ir, v);
6701
6702 #if 0
6703 /* Print out some information (for debugging purposes) used by the
6704 * optimization passes. */
6705 {
6706 int i;
6707 int *first_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
6708 int *first_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
6709 int *last_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
6710 int *last_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
6711
6712 for (i = 0; i < v->next_temp; i++) {
6713 first_writes[i] = -1;
6714 first_reads[i] = -1;
6715 last_writes[i] = -1;
6716 last_reads[i] = -1;
6717 }
6718 v->get_first_temp_read(first_reads);
6719 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
6720 v->get_last_temp_write(last_writes);
6721 for (i = 0; i < v->next_temp; i++)
6722 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
6723 first_writes[i],
6724 last_reads[i],
6725 last_writes[i]);
6726 ralloc_free(first_writes);
6727 ralloc_free(first_reads);
6728 ralloc_free(last_writes);
6729 ralloc_free(last_reads);
6730 }
6731 #endif
6732
6733 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
6734 v->simplify_cmp();
6735
6736 if (shader->Stage != MESA_SHADER_TESS_CTRL &&
6737 shader->Stage != MESA_SHADER_TESS_EVAL)
6738 v->copy_propagate();
6739
6740 while (v->eliminate_dead_code());
6741
6742 v->merge_two_dsts();
6743 if (!skip_merge_registers)
6744 v->merge_registers();
6745 v->renumber_registers();
6746
6747 /* Write the END instruction. */
6748 v->emit_asm(NULL, TGSI_OPCODE_END);
6749
6750 if (ctx->_Shader->Flags & GLSL_DUMP) {
6751 _mesa_log("\n");
6752 _mesa_log("GLSL IR for linked %s program %d:\n",
6753 _mesa_shader_stage_to_string(shader->Stage),
6754 shader_program->Name);
6755 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
6756 _mesa_log("\n\n");
6757 }
6758
6759 do_set_program_inouts(shader->ir, prog, shader->Stage);
6760 _mesa_copy_linked_program_data(shader_program, shader);
6761 shrink_array_declarations(v->inputs, v->num_inputs,
6762 &prog->info.inputs_read,
6763 prog->info.double_inputs_read,
6764 &prog->info.patch_inputs_read);
6765 shrink_array_declarations(v->outputs, v->num_outputs,
6766 &prog->info.outputs_written, 0ULL,
6767 &prog->info.patch_outputs_written);
6768 count_resources(v, prog);
6769
6770 /* The GLSL IR won't be needed anymore. */
6771 ralloc_free(shader->ir);
6772 shader->ir = NULL;
6773
6774 /* This must be done before the uniform storage is associated. */
6775 if (shader->Stage == MESA_SHADER_FRAGMENT &&
6776 (prog->info.inputs_read & VARYING_BIT_POS ||
6777 prog->info.system_values_read & (1 << SYSTEM_VALUE_FRAG_COORD))) {
6778 static const gl_state_index wposTransformState[STATE_LENGTH] = {
6779 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
6780 };
6781
6782 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
6783 wposTransformState);
6784 }
6785
6786 /* Avoid reallocation of the program parameter list, because the uniform
6787 * storage is only associated with the original parameter list.
6788 * This should be enough for Bitmap and DrawPixels constants.
6789 */
6790 _mesa_reserve_parameter_storage(prog->Parameters, 8);
6791
6792 /* This has to be done last. Any operation the can cause
6793 * prog->ParameterValues to get reallocated (e.g., anything that adds a
6794 * program constant) has to happen before creating this linkage.
6795 */
6796 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters,
6797 true);
6798 if (!shader_program->data->LinkStatus) {
6799 free_glsl_to_tgsi_visitor(v);
6800 _mesa_reference_program(ctx, &shader->Program, NULL);
6801 return NULL;
6802 }
6803
6804 struct st_vertex_program *stvp;
6805 struct st_fragment_program *stfp;
6806 struct st_geometry_program *stgp;
6807 struct st_tessctrl_program *sttcp;
6808 struct st_tesseval_program *sttep;
6809 struct st_compute_program *stcp;
6810
6811 switch (shader->Stage) {
6812 case MESA_SHADER_VERTEX:
6813 stvp = (struct st_vertex_program *)prog;
6814 stvp->glsl_to_tgsi = v;
6815 break;
6816 case MESA_SHADER_FRAGMENT:
6817 stfp = (struct st_fragment_program *)prog;
6818 stfp->glsl_to_tgsi = v;
6819 break;
6820 case MESA_SHADER_GEOMETRY:
6821 stgp = (struct st_geometry_program *)prog;
6822 stgp->glsl_to_tgsi = v;
6823 break;
6824 case MESA_SHADER_TESS_CTRL:
6825 sttcp = (struct st_tessctrl_program *)prog;
6826 sttcp->glsl_to_tgsi = v;
6827 break;
6828 case MESA_SHADER_TESS_EVAL:
6829 sttep = (struct st_tesseval_program *)prog;
6830 sttep->glsl_to_tgsi = v;
6831 break;
6832 case MESA_SHADER_COMPUTE:
6833 stcp = (struct st_compute_program *)prog;
6834 stcp->glsl_to_tgsi = v;
6835 break;
6836 default:
6837 assert(!"should not be reached");
6838 return NULL;
6839 }
6840
6841 return prog;
6842 }
6843
6844 /* See if there are unsupported control flow statements. */
6845 class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
6846 private:
6847 const struct gl_shader_compiler_options *options;
6848 public:
6849 ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
6850 : options(options),
6851 unsupported(false)
6852 {
6853 }
6854
6855 virtual ir_visitor_status visit_enter(ir_function *ir)
6856 {
6857 /* Other functions are skipped (same as glsl_to_tgsi). */
6858 if (strcmp(ir->name, "main") == 0)
6859 return visit_continue;
6860
6861 return visit_continue_with_parent;
6862 }
6863
6864 virtual ir_visitor_status visit_enter(ir_call *ir)
6865 {
6866 if (!ir->callee->is_intrinsic()) {
6867 unsupported = true; /* it's a function call */
6868 return visit_stop;
6869 }
6870 return visit_continue;
6871 }
6872
6873 virtual ir_visitor_status visit_enter(ir_return *ir)
6874 {
6875 if (options->EmitNoMainReturn) {
6876 unsupported = true;
6877 return visit_stop;
6878 }
6879 return visit_continue;
6880 }
6881
6882 bool unsupported;
6883 };
6884
6885 static bool
6886 has_unsupported_control_flow(exec_list *ir,
6887 const struct gl_shader_compiler_options *options)
6888 {
6889 ir_control_flow_info_visitor visitor(options);
6890 visit_list_elements(&visitor, ir);
6891 return visitor.unsupported;
6892 }
6893
6894 extern "C" {
6895
6896 /**
6897 * Link a shader.
6898 * Called via ctx->Driver.LinkShader()
6899 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
6900 * with code lowering and other optimizations.
6901 */
6902 GLboolean
6903 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
6904 {
6905 /* Return early if we are loading the shader from on-disk cache */
6906 if (st_load_tgsi_from_disk_cache(ctx, prog)) {
6907 return GL_TRUE;
6908 }
6909
6910 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6911 assert(prog->data->LinkStatus);
6912
6913 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6914 if (prog->_LinkedShaders[i] == NULL)
6915 continue;
6916
6917 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
6918 exec_list *ir = shader->ir;
6919 gl_shader_stage stage = shader->Stage;
6920 const struct gl_shader_compiler_options *options =
6921 &ctx->Const.ShaderCompilerOptions[stage];
6922 enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(stage);
6923 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
6924 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
6925 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
6926 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
6927 unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
6928 PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
6929
6930 /* If there are forms of indirect addressing that the driver
6931 * cannot handle, perform the lowering pass.
6932 */
6933 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
6934 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
6935 lower_variable_index_to_cond_assign(stage, ir,
6936 options->EmitNoIndirectInput,
6937 options->EmitNoIndirectOutput,
6938 options->EmitNoIndirectTemp,
6939 options->EmitNoIndirectUniform);
6940 }
6941
6942 if (!pscreen->get_param(pscreen, PIPE_CAP_INT64_DIVMOD))
6943 lower_64bit_integer_instructions(ir, DIV64 | MOD64);
6944
6945 if (ctx->Extensions.ARB_shading_language_packing) {
6946 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
6947 LOWER_UNPACK_SNORM_2x16 |
6948 LOWER_PACK_UNORM_2x16 |
6949 LOWER_UNPACK_UNORM_2x16 |
6950 LOWER_PACK_SNORM_4x8 |
6951 LOWER_UNPACK_SNORM_4x8 |
6952 LOWER_UNPACK_UNORM_4x8 |
6953 LOWER_PACK_UNORM_4x8;
6954
6955 if (ctx->Extensions.ARB_gpu_shader5)
6956 lower_inst |= LOWER_PACK_USE_BFI |
6957 LOWER_PACK_USE_BFE;
6958 if (!ctx->st->has_half_float_packing)
6959 lower_inst |= LOWER_PACK_HALF_2x16 |
6960 LOWER_UNPACK_HALF_2x16;
6961
6962 lower_packing_builtins(ir, lower_inst);
6963 }
6964
6965 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
6966 lower_offset_arrays(ir);
6967 do_mat_op_to_vec(ir);
6968
6969 if (stage == MESA_SHADER_FRAGMENT)
6970 lower_blend_equation_advanced(shader);
6971
6972 lower_instructions(ir,
6973 MOD_TO_FLOOR |
6974 FDIV_TO_MUL_RCP |
6975 EXP_TO_EXP2 |
6976 LOG_TO_LOG2 |
6977 LDEXP_TO_ARITH |
6978 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
6979 CARRY_TO_ARITH |
6980 BORROW_TO_ARITH |
6981 (have_dround ? 0 : DOPS_TO_DFRAC) |
6982 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
6983 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
6984 (options->EmitNoSat ? SAT_TO_CLAMP : 0) |
6985 (ctx->Const.ForceGLSLAbsSqrt ? SQRT_TO_ABS_SQRT : 0) |
6986 /* Assume that if ARB_gpu_shader5 is not supported
6987 * then all of the extended integer functions need
6988 * lowering. It may be necessary to add some caps
6989 * for individual instructions.
6990 */
6991 (!ctx->Extensions.ARB_gpu_shader5
6992 ? BIT_COUNT_TO_MATH |
6993 EXTRACT_TO_SHIFTS |
6994 INSERT_TO_SHIFTS |
6995 REVERSE_TO_SHIFTS |
6996 FIND_LSB_TO_FLOAT_CAST |
6997 FIND_MSB_TO_FLOAT_CAST |
6998 IMUL_HIGH_TO_MUL
6999 : 0));
7000
7001 do_vec_index_to_cond_assign(ir);
7002 lower_vector_insert(ir, true);
7003 lower_quadop_vector(ir, false);
7004 lower_noise(ir);
7005 if (options->MaxIfDepth == 0) {
7006 lower_discard(ir);
7007 }
7008
7009 if (ctx->Const.GLSLOptimizeConservatively) {
7010 /* Do it once and repeat only if there's unsupported control flow. */
7011 do {
7012 do_common_optimization(ir, true, true, options,
7013 ctx->Const.NativeIntegers);
7014 lower_if_to_cond_assign((gl_shader_stage)i, ir,
7015 options->MaxIfDepth, if_threshold);
7016 } while (has_unsupported_control_flow(ir, options));
7017 } else {
7018 /* Repeat it until it stops making changes. */
7019 bool progress;
7020 do {
7021 progress = do_common_optimization(ir, true, true, options,
7022 ctx->Const.NativeIntegers);
7023 progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
7024 options->MaxIfDepth, if_threshold);
7025 } while (progress);
7026 }
7027
7028 validate_ir_tree(ir);
7029 }
7030
7031 build_program_resource_list(ctx, prog);
7032
7033 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
7034 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
7035 if (shader == NULL)
7036 continue;
7037
7038 enum pipe_shader_type ptarget =
7039 st_shader_stage_to_ptarget(shader->Stage);
7040 enum pipe_shader_ir preferred_ir = (enum pipe_shader_ir)
7041 pscreen->get_shader_param(pscreen, ptarget,
7042 PIPE_SHADER_CAP_PREFERRED_IR);
7043
7044 struct gl_program *linked_prog = NULL;
7045 if (preferred_ir == PIPE_SHADER_IR_NIR) {
7046 /* TODO only for GLSL VS/FS for now: */
7047 switch (shader->Stage) {
7048 case MESA_SHADER_VERTEX:
7049 case MESA_SHADER_FRAGMENT:
7050 linked_prog = st_nir_get_mesa_program(ctx, prog, shader);
7051 default:
7052 break;
7053 }
7054 } else {
7055 linked_prog = get_mesa_program_tgsi(ctx, prog, shader);
7056 }
7057
7058 if (linked_prog) {
7059 st_set_prog_affected_state_flags(linked_prog);
7060 if (!ctx->Driver.ProgramStringNotify(ctx,
7061 _mesa_shader_stage_to_program(i),
7062 linked_prog)) {
7063 _mesa_reference_program(ctx, &shader->Program, NULL);
7064 return GL_FALSE;
7065 }
7066 }
7067 }
7068
7069 return GL_TRUE;
7070 }
7071
7072 void
7073 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
7074 const GLuint outputMapping[],
7075 struct pipe_stream_output_info *so)
7076 {
7077 if (!glsl_to_tgsi->shader_program->last_vert_prog)
7078 return;
7079
7080 struct gl_transform_feedback_info *info =
7081 glsl_to_tgsi->shader_program->last_vert_prog->sh.LinkedTransformFeedback;
7082 st_translate_stream_output_info2(info, outputMapping, so);
7083 }
7084
7085 void
7086 st_translate_stream_output_info2(struct gl_transform_feedback_info *info,
7087 const GLuint outputMapping[],
7088 struct pipe_stream_output_info *so)
7089 {
7090 unsigned i;
7091
7092 for (i = 0; i < info->NumOutputs; i++) {
7093 so->output[i].register_index =
7094 outputMapping[info->Outputs[i].OutputRegister];
7095 so->output[i].start_component = info->Outputs[i].ComponentOffset;
7096 so->output[i].num_components = info->Outputs[i].NumComponents;
7097 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
7098 so->output[i].dst_offset = info->Outputs[i].DstOffset;
7099 so->output[i].stream = info->Outputs[i].StreamId;
7100 }
7101
7102 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
7103 so->stride[i] = info->Buffers[i].Stride;
7104 }
7105 so->num_outputs = info->NumOutputs;
7106 }
7107
7108 } /* extern "C" */