89ad6cd8c287fe92cdd6beb0189a1cdd1ad82aea
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "glsl_parser_extras.h"
36 #include "ir_optimization.h"
37
38 #include "main/errors.h"
39 #include "main/shaderobj.h"
40 #include "main/uniforms.h"
41 #include "main/shaderapi.h"
42 #include "program/prog_instruction.h"
43 #include "program/sampler.h"
44
45 #include "pipe/p_context.h"
46 #include "pipe/p_screen.h"
47 #include "tgsi/tgsi_ureg.h"
48 #include "tgsi/tgsi_info.h"
49 #include "util/u_math.h"
50 #include "util/u_memory.h"
51 #include "st_program.h"
52 #include "st_mesa_to_tgsi.h"
53
54
55 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
56 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
57 (1 << PROGRAM_CONSTANT) | \
58 (1 << PROGRAM_UNIFORM))
59
60 #define MAX_GLSL_TEXTURE_OFFSET 4
61
62 class st_src_reg;
63 class st_dst_reg;
64
65 static int swizzle_for_size(int size);
66
67 /**
68 * This struct is a corresponding struct to TGSI ureg_src.
69 */
70 class st_src_reg {
71 public:
72 st_src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->index2D = 0;
82 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
83 this->reladdr = NULL;
84 this->reladdr2 = NULL;
85 this->has_index2 = false;
86 this->double_reg2 = false;
87 this->array_id = 0;
88 }
89
90 st_src_reg(gl_register_file file, int index, int type)
91 {
92 this->type = type;
93 this->file = file;
94 this->index = index;
95 this->index2D = 0;
96 this->swizzle = SWIZZLE_XYZW;
97 this->negate = 0;
98 this->reladdr = NULL;
99 this->reladdr2 = NULL;
100 this->has_index2 = false;
101 this->double_reg2 = false;
102 this->array_id = 0;
103 }
104
105 st_src_reg(gl_register_file file, int index, int type, int index2D)
106 {
107 this->type = type;
108 this->file = file;
109 this->index = index;
110 this->index2D = index2D;
111 this->swizzle = SWIZZLE_XYZW;
112 this->negate = 0;
113 this->reladdr = NULL;
114 this->reladdr2 = NULL;
115 this->has_index2 = false;
116 this->double_reg2 = false;
117 this->array_id = 0;
118 }
119
120 st_src_reg()
121 {
122 this->type = GLSL_TYPE_ERROR;
123 this->file = PROGRAM_UNDEFINED;
124 this->index = 0;
125 this->index2D = 0;
126 this->swizzle = 0;
127 this->negate = 0;
128 this->reladdr = NULL;
129 this->reladdr2 = NULL;
130 this->has_index2 = false;
131 this->double_reg2 = false;
132 this->array_id = 0;
133 }
134
135 explicit st_src_reg(st_dst_reg reg);
136
137 gl_register_file file; /**< PROGRAM_* from Mesa */
138 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
139 int index2D;
140 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
141 int negate; /**< NEGATE_XYZW mask from mesa */
142 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
143 /** Register index should be offset by the integer in this reg. */
144 st_src_reg *reladdr;
145 st_src_reg *reladdr2;
146 bool has_index2;
147 /*
148 * Is this the second half of a double register pair?
149 * currently used for input mapping only.
150 */
151 bool double_reg2;
152 unsigned array_id;
153 };
154
155 class st_dst_reg {
156 public:
157 st_dst_reg(gl_register_file file, int writemask, int type, int index)
158 {
159 this->file = file;
160 this->index = index;
161 this->index2D = 0;
162 this->writemask = writemask;
163 this->cond_mask = COND_TR;
164 this->reladdr = NULL;
165 this->reladdr2 = NULL;
166 this->has_index2 = false;
167 this->type = type;
168 this->array_id = 0;
169 }
170
171 st_dst_reg(gl_register_file file, int writemask, int type)
172 {
173 this->file = file;
174 this->index = 0;
175 this->index2D = 0;
176 this->writemask = writemask;
177 this->cond_mask = COND_TR;
178 this->reladdr = NULL;
179 this->reladdr2 = NULL;
180 this->has_index2 = false;
181 this->type = type;
182 this->array_id = 0;
183 }
184
185 st_dst_reg()
186 {
187 this->type = GLSL_TYPE_ERROR;
188 this->file = PROGRAM_UNDEFINED;
189 this->index = 0;
190 this->index2D = 0;
191 this->writemask = 0;
192 this->cond_mask = COND_TR;
193 this->reladdr = NULL;
194 this->reladdr2 = NULL;
195 this->has_index2 = false;
196 this->array_id = 0;
197 }
198
199 explicit st_dst_reg(st_src_reg reg);
200
201 gl_register_file file; /**< PROGRAM_* from Mesa */
202 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
203 int index2D;
204 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
205 GLuint cond_mask:4;
206 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
207 /** Register index should be offset by the integer in this reg. */
208 st_src_reg *reladdr;
209 st_src_reg *reladdr2;
210 bool has_index2;
211 unsigned array_id;
212 };
213
214 st_src_reg::st_src_reg(st_dst_reg reg)
215 {
216 this->type = reg.type;
217 this->file = reg.file;
218 this->index = reg.index;
219 this->swizzle = SWIZZLE_XYZW;
220 this->negate = 0;
221 this->reladdr = reg.reladdr;
222 this->index2D = reg.index2D;
223 this->reladdr2 = reg.reladdr2;
224 this->has_index2 = reg.has_index2;
225 this->double_reg2 = false;
226 this->array_id = reg.array_id;
227 }
228
229 st_dst_reg::st_dst_reg(st_src_reg reg)
230 {
231 this->type = reg.type;
232 this->file = reg.file;
233 this->index = reg.index;
234 this->writemask = WRITEMASK_XYZW;
235 this->cond_mask = COND_TR;
236 this->reladdr = reg.reladdr;
237 this->index2D = reg.index2D;
238 this->reladdr2 = reg.reladdr2;
239 this->has_index2 = reg.has_index2;
240 this->array_id = reg.array_id;
241 }
242
243 class glsl_to_tgsi_instruction : public exec_node {
244 public:
245 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
246
247 unsigned op;
248 st_dst_reg dst[2];
249 st_src_reg src[4];
250 /** Pointer to the ir source this tree came from for debugging */
251 ir_instruction *ir;
252 GLboolean cond_update;
253 bool saturate;
254 st_src_reg sampler; /**< sampler register */
255 int sampler_array_size; /**< 1-based size of sampler array, 1 if not array */
256 int tex_target; /**< One of TEXTURE_*_INDEX */
257 glsl_base_type tex_type;
258 GLboolean tex_shadow;
259
260 st_src_reg tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
261 unsigned tex_offset_num_offset;
262 int dead_mask; /**< Used in dead code elimination */
263
264 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
265 const struct tgsi_opcode_info *info;
266 };
267
268 class variable_storage : public exec_node {
269 public:
270 variable_storage(ir_variable *var, gl_register_file file, int index,
271 unsigned array_id = 0)
272 : file(file), index(index), var(var), array_id(array_id)
273 {
274 /* empty */
275 }
276
277 gl_register_file file;
278 int index;
279 ir_variable *var; /* variable that maps to this, if any */
280 unsigned array_id;
281 };
282
283 class immediate_storage : public exec_node {
284 public:
285 immediate_storage(gl_constant_value *values, int size32, int type)
286 {
287 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
288 this->size32 = size32;
289 this->type = type;
290 }
291
292 /* doubles are stored across 2 gl_constant_values */
293 gl_constant_value values[4];
294 int size32; /**< Number of 32-bit components (1-4) */
295 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
296 };
297
298 class function_entry : public exec_node {
299 public:
300 ir_function_signature *sig;
301
302 /**
303 * identifier of this function signature used by the program.
304 *
305 * At the point that TGSI instructions for function calls are
306 * generated, we don't know the address of the first instruction of
307 * the function body. So we make the BranchTarget that is called a
308 * small integer and rewrite them during set_branchtargets().
309 */
310 int sig_id;
311
312 /**
313 * Pointer to first instruction of the function body.
314 *
315 * Set during function body emits after main() is processed.
316 */
317 glsl_to_tgsi_instruction *bgn_inst;
318
319 /**
320 * Index of the first instruction of the function body in actual TGSI.
321 *
322 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
323 */
324 int inst;
325
326 /** Storage for the return value. */
327 st_src_reg return_reg;
328 };
329
330 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
331 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
332
333 struct array_decl {
334 unsigned mesa_index;
335 unsigned array_id;
336 unsigned array_size;
337 };
338
339 struct rename_reg_pair {
340 int old_reg;
341 int new_reg;
342 };
343
344 struct glsl_to_tgsi_visitor : public ir_visitor {
345 public:
346 glsl_to_tgsi_visitor();
347 ~glsl_to_tgsi_visitor();
348
349 function_entry *current_function;
350
351 struct gl_context *ctx;
352 struct gl_program *prog;
353 struct gl_shader_program *shader_program;
354 struct gl_shader *shader;
355 struct gl_shader_compiler_options *options;
356
357 int next_temp;
358
359 unsigned *array_sizes;
360 unsigned max_num_arrays;
361 unsigned next_array;
362
363 struct array_decl input_arrays[PIPE_MAX_SHADER_INPUTS];
364 unsigned num_input_arrays;
365 struct array_decl output_arrays[PIPE_MAX_SHADER_OUTPUTS];
366 unsigned num_output_arrays;
367
368 int num_address_regs;
369 int samplers_used;
370 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
371 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
372 bool indirect_addr_consts;
373 int wpos_transform_const;
374
375 int glsl_version;
376 bool native_integers;
377 bool have_sqrt;
378 bool have_fma;
379
380 variable_storage *find_variable_storage(ir_variable *var);
381
382 int add_constant(gl_register_file file, gl_constant_value values[8],
383 int size, int datatype, GLuint *swizzle_out);
384
385 function_entry *get_function_signature(ir_function_signature *sig);
386
387 st_src_reg get_temp(const glsl_type *type);
388 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
389
390 st_src_reg st_src_reg_for_double(double val);
391 st_src_reg st_src_reg_for_float(float val);
392 st_src_reg st_src_reg_for_int(int val);
393 st_src_reg st_src_reg_for_type(int type, int val);
394
395 /**
396 * \name Visit methods
397 *
398 * As typical for the visitor pattern, there must be one \c visit method for
399 * each concrete subclass of \c ir_instruction. Virtual base classes within
400 * the hierarchy should not have \c visit methods.
401 */
402 /*@{*/
403 virtual void visit(ir_variable *);
404 virtual void visit(ir_loop *);
405 virtual void visit(ir_loop_jump *);
406 virtual void visit(ir_function_signature *);
407 virtual void visit(ir_function *);
408 virtual void visit(ir_expression *);
409 virtual void visit(ir_swizzle *);
410 virtual void visit(ir_dereference_variable *);
411 virtual void visit(ir_dereference_array *);
412 virtual void visit(ir_dereference_record *);
413 virtual void visit(ir_assignment *);
414 virtual void visit(ir_constant *);
415 virtual void visit(ir_call *);
416 virtual void visit(ir_return *);
417 virtual void visit(ir_discard *);
418 virtual void visit(ir_texture *);
419 virtual void visit(ir_if *);
420 virtual void visit(ir_emit_vertex *);
421 virtual void visit(ir_end_primitive *);
422 virtual void visit(ir_barrier *);
423 /*@}*/
424
425 st_src_reg result;
426
427 /** List of variable_storage */
428 exec_list variables;
429
430 /** List of immediate_storage */
431 exec_list immediates;
432 unsigned num_immediates;
433
434 /** List of function_entry */
435 exec_list function_signatures;
436 int next_signature_id;
437
438 /** List of glsl_to_tgsi_instruction */
439 exec_list instructions;
440
441 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
442 st_dst_reg dst = undef_dst,
443 st_src_reg src0 = undef_src,
444 st_src_reg src1 = undef_src,
445 st_src_reg src2 = undef_src,
446 st_src_reg src3 = undef_src);
447
448 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
449 st_dst_reg dst, st_dst_reg dst1,
450 st_src_reg src0 = undef_src,
451 st_src_reg src1 = undef_src,
452 st_src_reg src2 = undef_src,
453 st_src_reg src3 = undef_src);
454
455 unsigned get_opcode(ir_instruction *ir, unsigned op,
456 st_dst_reg dst,
457 st_src_reg src0, st_src_reg src1);
458
459 /**
460 * Emit the correct dot-product instruction for the type of arguments
461 */
462 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
463 st_dst_reg dst,
464 st_src_reg src0,
465 st_src_reg src1,
466 unsigned elements);
467
468 void emit_scalar(ir_instruction *ir, unsigned op,
469 st_dst_reg dst, st_src_reg src0);
470
471 void emit_scalar(ir_instruction *ir, unsigned op,
472 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
473
474 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
475
476 bool try_emit_mad(ir_expression *ir,
477 int mul_operand);
478 bool try_emit_mad_for_and_not(ir_expression *ir,
479 int mul_operand);
480
481 void emit_swz(ir_expression *ir);
482
483 bool process_move_condition(ir_rvalue *ir);
484
485 void simplify_cmp(void);
486
487 void rename_temp_registers(int num_renames, struct rename_reg_pair *renames);
488 void get_first_temp_read(int *first_reads);
489 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
490 void get_last_temp_write(int *last_writes);
491
492 void copy_propagate(void);
493 int eliminate_dead_code(void);
494
495 void merge_two_dsts(void);
496 void merge_registers(void);
497 void renumber_registers(void);
498
499 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
500 st_dst_reg *l, st_src_reg *r,
501 st_src_reg *cond, bool cond_swap);
502
503 void *mem_ctx;
504 };
505
506 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
507 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
508 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
509
510 static void
511 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
512
513 static void
514 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
515 {
516 va_list args;
517 va_start(args, fmt);
518 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
519 va_end(args);
520
521 prog->LinkStatus = GL_FALSE;
522 }
523
524 static int
525 swizzle_for_size(int size)
526 {
527 static const int size_swizzles[4] = {
528 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
529 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
530 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
531 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
532 };
533
534 assert((size >= 1) && (size <= 4));
535 return size_swizzles[size - 1];
536 }
537
538 static unsigned
539 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
540 {
541 return op->info->num_dst;
542 }
543
544 static unsigned
545 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
546 {
547 return op->info->is_tex ? op->info->num_src - 1 : op->info->num_src;
548 }
549
550 glsl_to_tgsi_instruction *
551 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
552 st_dst_reg dst, st_dst_reg dst1,
553 st_src_reg src0, st_src_reg src1,
554 st_src_reg src2, st_src_reg src3)
555 {
556 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
557 int num_reladdr = 0, i, j;
558
559 op = get_opcode(ir, op, dst, src0, src1);
560
561 /* If we have to do relative addressing, we want to load the ARL
562 * reg directly for one of the regs, and preload the other reladdr
563 * sources into temps.
564 */
565 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
566 num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
567 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
568 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
569 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
570 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
571
572 reladdr_to_temp(ir, &src3, &num_reladdr);
573 reladdr_to_temp(ir, &src2, &num_reladdr);
574 reladdr_to_temp(ir, &src1, &num_reladdr);
575 reladdr_to_temp(ir, &src0, &num_reladdr);
576
577 if (dst.reladdr || dst.reladdr2) {
578 if (dst.reladdr)
579 emit_arl(ir, address_reg, *dst.reladdr);
580 if (dst.reladdr2)
581 emit_arl(ir, address_reg2, *dst.reladdr2);
582 num_reladdr--;
583 }
584 if (dst1.reladdr) {
585 emit_arl(ir, address_reg, *dst1.reladdr);
586 num_reladdr--;
587 }
588 assert(num_reladdr == 0);
589
590 inst->op = op;
591 inst->info = tgsi_get_opcode_info(op);
592 inst->dst[0] = dst;
593 inst->dst[1] = dst1;
594 inst->src[0] = src0;
595 inst->src[1] = src1;
596 inst->src[2] = src2;
597 inst->src[3] = src3;
598 inst->ir = ir;
599 inst->dead_mask = 0;
600 /* default to float, for paths where this is not initialized
601 * (since 0==UINT which is likely wrong):
602 */
603 inst->tex_type = GLSL_TYPE_FLOAT;
604
605 inst->function = NULL;
606
607 /* Update indirect addressing status used by TGSI */
608 if (dst.reladdr || dst.reladdr2) {
609 switch(dst.file) {
610 case PROGRAM_STATE_VAR:
611 case PROGRAM_CONSTANT:
612 case PROGRAM_UNIFORM:
613 this->indirect_addr_consts = true;
614 break;
615 case PROGRAM_IMMEDIATE:
616 assert(!"immediates should not have indirect addressing");
617 break;
618 default:
619 break;
620 }
621 }
622 else {
623 for (i = 0; i < 4; i++) {
624 if(inst->src[i].reladdr) {
625 switch(inst->src[i].file) {
626 case PROGRAM_STATE_VAR:
627 case PROGRAM_CONSTANT:
628 case PROGRAM_UNIFORM:
629 this->indirect_addr_consts = true;
630 break;
631 case PROGRAM_IMMEDIATE:
632 assert(!"immediates should not have indirect addressing");
633 break;
634 default:
635 break;
636 }
637 }
638 }
639 }
640
641 this->instructions.push_tail(inst);
642
643 /*
644 * This section contains the double processing.
645 * GLSL just represents doubles as single channel values,
646 * however most HW and TGSI represent doubles as pairs of register channels.
647 *
648 * so we have to fixup destination writemask/index and src swizzle/indexes.
649 * dest writemasks need to translate from single channel write mask
650 * to a dual-channel writemask, but also need to modify the index,
651 * if we are touching the Z,W fields in the pre-translated writemask.
652 *
653 * src channels have similiar index modifications along with swizzle
654 * changes to we pick the XY, ZW pairs from the correct index.
655 *
656 * GLSL [0].x -> TGSI [0].xy
657 * GLSL [0].y -> TGSI [0].zw
658 * GLSL [0].z -> TGSI [1].xy
659 * GLSL [0].w -> TGSI [1].zw
660 */
661 if (inst->dst[0].type == GLSL_TYPE_DOUBLE || inst->dst[1].type == GLSL_TYPE_DOUBLE ||
662 inst->src[0].type == GLSL_TYPE_DOUBLE) {
663 glsl_to_tgsi_instruction *dinst = NULL;
664 int initial_src_swz[4], initial_src_idx[4];
665 int initial_dst_idx[2], initial_dst_writemask[2];
666 /* select the writemask for dst0 or dst1 */
667 unsigned writemask = inst->dst[0].file == PROGRAM_UNDEFINED ? inst->dst[1].writemask : inst->dst[0].writemask;
668
669 /* copy out the writemask, index and swizzles for all src/dsts. */
670 for (j = 0; j < 2; j++) {
671 initial_dst_writemask[j] = inst->dst[j].writemask;
672 initial_dst_idx[j] = inst->dst[j].index;
673 }
674
675 for (j = 0; j < 4; j++) {
676 initial_src_swz[j] = inst->src[j].swizzle;
677 initial_src_idx[j] = inst->src[j].index;
678 }
679
680 /*
681 * scan all the components in the dst writemask
682 * generate an instruction for each of them if required.
683 */
684 while (writemask) {
685
686 int i = u_bit_scan(&writemask);
687
688 /* first time use previous instruction */
689 if (dinst == NULL) {
690 dinst = inst;
691 } else {
692 /* create a new instructions for subsequent attempts */
693 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
694 *dinst = *inst;
695 dinst->next = NULL;
696 dinst->prev = NULL;
697 this->instructions.push_tail(dinst);
698 }
699
700 /* modify the destination if we are splitting */
701 for (j = 0; j < 2; j++) {
702 if (dinst->dst[j].type == GLSL_TYPE_DOUBLE) {
703 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
704 dinst->dst[j].index = initial_dst_idx[j];
705 if (i > 1)
706 dinst->dst[j].index++;
707 } else {
708 /* if we aren't writing to a double, just get the bit of the initial writemask
709 for this channel */
710 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
711 }
712 }
713
714 /* modify the src registers */
715 for (j = 0; j < 4; j++) {
716 int swz = GET_SWZ(initial_src_swz[j], i);
717
718 if (dinst->src[j].type == GLSL_TYPE_DOUBLE) {
719 dinst->src[j].index = initial_src_idx[j];
720 if (swz > 1) {
721 dinst->src[j].double_reg2 = true;
722 dinst->src[j].index++;
723 }
724
725 if (swz & 1)
726 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
727 else
728 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
729
730 } else {
731 /* some opcodes are special case in what they use as sources
732 - F2D is a float src0, DLDEXP is integer src1 */
733 if (op == TGSI_OPCODE_F2D ||
734 op == TGSI_OPCODE_DLDEXP ||
735 (op == TGSI_OPCODE_UCMP && dinst->dst[0].type == GLSL_TYPE_DOUBLE)) {
736 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
737 }
738 }
739 }
740 }
741 inst = dinst;
742 }
743
744
745 return inst;
746 }
747
748 glsl_to_tgsi_instruction *
749 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
750 st_dst_reg dst,
751 st_src_reg src0, st_src_reg src1,
752 st_src_reg src2, st_src_reg src3)
753 {
754 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
755 }
756
757 /**
758 * Determines whether to use an integer, unsigned integer, or float opcode
759 * based on the operands and input opcode, then emits the result.
760 */
761 unsigned
762 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
763 st_dst_reg dst,
764 st_src_reg src0, st_src_reg src1)
765 {
766 int type = GLSL_TYPE_FLOAT;
767
768 if (op == TGSI_OPCODE_MOV)
769 return op;
770
771 assert(src0.type != GLSL_TYPE_ARRAY);
772 assert(src0.type != GLSL_TYPE_STRUCT);
773 assert(src1.type != GLSL_TYPE_ARRAY);
774 assert(src1.type != GLSL_TYPE_STRUCT);
775
776 if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
777 type = GLSL_TYPE_DOUBLE;
778 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
779 type = GLSL_TYPE_FLOAT;
780 else if (native_integers)
781 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
782
783 #define case5(c, f, i, u, d) \
784 case TGSI_OPCODE_##c: \
785 if (type == GLSL_TYPE_DOUBLE) \
786 op = TGSI_OPCODE_##d; \
787 else if (type == GLSL_TYPE_INT) \
788 op = TGSI_OPCODE_##i; \
789 else if (type == GLSL_TYPE_UINT) \
790 op = TGSI_OPCODE_##u; \
791 else \
792 op = TGSI_OPCODE_##f; \
793 break;
794
795 #define case4(c, f, i, u) \
796 case TGSI_OPCODE_##c: \
797 if (type == GLSL_TYPE_INT) \
798 op = TGSI_OPCODE_##i; \
799 else if (type == GLSL_TYPE_UINT) \
800 op = TGSI_OPCODE_##u; \
801 else \
802 op = TGSI_OPCODE_##f; \
803 break;
804
805 #define case3(f, i, u) case4(f, f, i, u)
806 #define case4d(f, i, u, d) case5(f, f, i, u, d)
807 #define case3fid(f, i, d) case5(f, f, i, i, d)
808 #define case2fi(f, i) case4(f, f, i, i)
809 #define case2iu(i, u) case4(i, LAST, i, u)
810
811 #define casecomp(c, f, i, u, d) \
812 case TGSI_OPCODE_##c: \
813 if (type == GLSL_TYPE_DOUBLE) \
814 op = TGSI_OPCODE_##d; \
815 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
816 op = TGSI_OPCODE_##i; \
817 else if (type == GLSL_TYPE_UINT) \
818 op = TGSI_OPCODE_##u; \
819 else if (native_integers) \
820 op = TGSI_OPCODE_##f; \
821 else \
822 op = TGSI_OPCODE_##c; \
823 break;
824
825 switch(op) {
826 case3fid(ADD, UADD, DADD);
827 case3fid(MUL, UMUL, DMUL);
828 case3fid(MAD, UMAD, DMAD);
829 case3fid(FMA, UMAD, DFMA);
830 case3(DIV, IDIV, UDIV);
831 case4d(MAX, IMAX, UMAX, DMAX);
832 case4d(MIN, IMIN, UMIN, DMIN);
833 case2iu(MOD, UMOD);
834
835 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ);
836 casecomp(SNE, FSNE, USNE, USNE, DSNE);
837 casecomp(SGE, FSGE, ISGE, USGE, DSGE);
838 casecomp(SLT, FSLT, ISLT, USLT, DSLT);
839
840 case2iu(ISHR, USHR);
841
842 case3fid(SSG, ISSG, DSSG);
843 case3fid(ABS, IABS, DABS);
844
845 case2iu(IBFE, UBFE);
846 case2iu(IMSB, UMSB);
847 case2iu(IMUL_HI, UMUL_HI);
848
849 case3fid(SQRT, SQRT, DSQRT);
850
851 case3fid(RCP, RCP, DRCP);
852 case3fid(RSQ, RSQ, DRSQ);
853
854 case3fid(FRC, FRC, DFRAC);
855 case3fid(TRUNC, TRUNC, DTRUNC);
856 case3fid(CEIL, CEIL, DCEIL);
857 case3fid(FLR, FLR, DFLR);
858 case3fid(ROUND, ROUND, DROUND);
859
860 default: break;
861 }
862
863 assert(op != TGSI_OPCODE_LAST);
864 return op;
865 }
866
867 glsl_to_tgsi_instruction *
868 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
869 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
870 unsigned elements)
871 {
872 static const unsigned dot_opcodes[] = {
873 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
874 };
875
876 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
877 }
878
879 /**
880 * Emits TGSI scalar opcodes to produce unique answers across channels.
881 *
882 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
883 * channel determines the result across all channels. So to do a vec4
884 * of this operation, we want to emit a scalar per source channel used
885 * to produce dest channels.
886 */
887 void
888 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
889 st_dst_reg dst,
890 st_src_reg orig_src0, st_src_reg orig_src1)
891 {
892 int i, j;
893 int done_mask = ~dst.writemask;
894
895 /* TGSI RCP is a scalar operation splatting results to all channels,
896 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
897 * dst channels.
898 */
899 for (i = 0; i < 4; i++) {
900 GLuint this_mask = (1 << i);
901 st_src_reg src0 = orig_src0;
902 st_src_reg src1 = orig_src1;
903
904 if (done_mask & this_mask)
905 continue;
906
907 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
908 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
909 for (j = i + 1; j < 4; j++) {
910 /* If there is another enabled component in the destination that is
911 * derived from the same inputs, generate its value on this pass as
912 * well.
913 */
914 if (!(done_mask & (1 << j)) &&
915 GET_SWZ(src0.swizzle, j) == src0_swiz &&
916 GET_SWZ(src1.swizzle, j) == src1_swiz) {
917 this_mask |= (1 << j);
918 }
919 }
920 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
921 src0_swiz, src0_swiz);
922 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
923 src1_swiz, src1_swiz);
924
925 dst.writemask = this_mask;
926 emit_asm(ir, op, dst, src0, src1);
927 done_mask |= this_mask;
928 }
929 }
930
931 void
932 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
933 st_dst_reg dst, st_src_reg src0)
934 {
935 st_src_reg undef = undef_src;
936
937 undef.swizzle = SWIZZLE_XXXX;
938
939 emit_scalar(ir, op, dst, src0, undef);
940 }
941
942 void
943 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
944 st_dst_reg dst, st_src_reg src0)
945 {
946 int op = TGSI_OPCODE_ARL;
947
948 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
949 op = TGSI_OPCODE_UARL;
950
951 assert(dst.file == PROGRAM_ADDRESS);
952 if (dst.index >= this->num_address_regs)
953 this->num_address_regs = dst.index + 1;
954
955 emit_asm(NULL, op, dst, src0);
956 }
957
958 int
959 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
960 gl_constant_value values[8], int size, int datatype,
961 GLuint *swizzle_out)
962 {
963 if (file == PROGRAM_CONSTANT) {
964 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
965 size, datatype, swizzle_out);
966 }
967
968 assert(file == PROGRAM_IMMEDIATE);
969
970 int index = 0;
971 immediate_storage *entry;
972 int size32 = size * (datatype == GL_DOUBLE ? 2 : 1);
973 int i;
974
975 /* Search immediate storage to see if we already have an identical
976 * immediate that we can use instead of adding a duplicate entry.
977 */
978 foreach_in_list(immediate_storage, entry, &this->immediates) {
979 immediate_storage *tmp = entry;
980
981 for (i = 0; i * 4 < size32; i++) {
982 int slot_size = MIN2(size32 - (i * 4), 4);
983 if (tmp->type != datatype || tmp->size32 != slot_size)
984 break;
985 if (memcmp(tmp->values, &values[i * 4],
986 slot_size * sizeof(gl_constant_value)))
987 break;
988
989 /* Everything matches, keep going until the full size is matched */
990 tmp = (immediate_storage *)tmp->next;
991 }
992
993 /* The full value matched */
994 if (i * 4 >= size32)
995 return index;
996
997 index++;
998 }
999
1000 for (i = 0; i * 4 < size32; i++) {
1001 int slot_size = MIN2(size32 - (i * 4), 4);
1002 /* Add this immediate to the list. */
1003 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
1004 this->immediates.push_tail(entry);
1005 this->num_immediates++;
1006 }
1007 return index;
1008 }
1009
1010 st_src_reg
1011 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1012 {
1013 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1014 union gl_constant_value uval;
1015
1016 uval.f = val;
1017 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1018
1019 return src;
1020 }
1021
1022 st_src_reg
1023 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1024 {
1025 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1026 union gl_constant_value uval[2];
1027
1028 uval[0].u = *(uint32_t *)&val;
1029 uval[1].u = *(((uint32_t *)&val) + 1);
1030 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1031
1032 return src;
1033 }
1034
1035 st_src_reg
1036 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1037 {
1038 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1039 union gl_constant_value uval;
1040
1041 assert(native_integers);
1042
1043 uval.i = val;
1044 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1045
1046 return src;
1047 }
1048
1049 st_src_reg
1050 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
1051 {
1052 if (native_integers)
1053 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1054 st_src_reg_for_int(val);
1055 else
1056 return st_src_reg_for_float(val);
1057 }
1058
1059 static int
1060 type_size(const struct glsl_type *type)
1061 {
1062 unsigned int i;
1063 int size;
1064
1065 switch (type->base_type) {
1066 case GLSL_TYPE_UINT:
1067 case GLSL_TYPE_INT:
1068 case GLSL_TYPE_FLOAT:
1069 case GLSL_TYPE_BOOL:
1070 if (type->is_matrix()) {
1071 return type->matrix_columns;
1072 } else {
1073 /* Regardless of size of vector, it gets a vec4. This is bad
1074 * packing for things like floats, but otherwise arrays become a
1075 * mess. Hopefully a later pass over the code can pack scalars
1076 * down if appropriate.
1077 */
1078 return 1;
1079 }
1080 break;
1081 case GLSL_TYPE_DOUBLE:
1082 if (type->is_matrix()) {
1083 if (type->vector_elements <= 2)
1084 return type->matrix_columns;
1085 else
1086 return type->matrix_columns * 2;
1087 } else {
1088 /* For doubles if we have a double or dvec2 they fit in one
1089 * vec4, else they need 2 vec4s.
1090 */
1091 if (type->vector_elements <= 2)
1092 return 1;
1093 else
1094 return 2;
1095 }
1096 break;
1097 case GLSL_TYPE_ARRAY:
1098 assert(type->length > 0);
1099 return type_size(type->fields.array) * type->length;
1100 case GLSL_TYPE_STRUCT:
1101 size = 0;
1102 for (i = 0; i < type->length; i++) {
1103 size += type_size(type->fields.structure[i].type);
1104 }
1105 return size;
1106 case GLSL_TYPE_SAMPLER:
1107 case GLSL_TYPE_IMAGE:
1108 case GLSL_TYPE_SUBROUTINE:
1109 /* Samplers take up one slot in UNIFORMS[], but they're baked in
1110 * at link time.
1111 */
1112 return 1;
1113 case GLSL_TYPE_ATOMIC_UINT:
1114 case GLSL_TYPE_INTERFACE:
1115 case GLSL_TYPE_VOID:
1116 case GLSL_TYPE_ERROR:
1117 assert(!"Invalid type in type_size");
1118 break;
1119 }
1120 return 0;
1121 }
1122
1123
1124 /**
1125 * If the given GLSL type is an array or matrix or a structure containing
1126 * an array/matrix member, return true. Else return false.
1127 *
1128 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1129 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
1130 * we have an array that might be indexed with a variable, we need to use
1131 * the later storage type.
1132 */
1133 static bool
1134 type_has_array_or_matrix(const glsl_type *type)
1135 {
1136 if (type->is_array() || type->is_matrix())
1137 return true;
1138
1139 if (type->is_record()) {
1140 for (unsigned i = 0; i < type->length; i++) {
1141 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1142 return true;
1143 }
1144 }
1145 }
1146
1147 return false;
1148 }
1149
1150
1151 /**
1152 * In the initial pass of codegen, we assign temporary numbers to
1153 * intermediate results. (not SSA -- variable assignments will reuse
1154 * storage).
1155 */
1156 st_src_reg
1157 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1158 {
1159 st_src_reg src;
1160
1161 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1162 src.reladdr = NULL;
1163 src.negate = 0;
1164
1165 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1166 if (next_array >= max_num_arrays) {
1167 max_num_arrays += 32;
1168 array_sizes = (unsigned*)
1169 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1170 }
1171
1172 src.file = PROGRAM_ARRAY;
1173 src.index = next_array << 16 | 0x8000;
1174 array_sizes[next_array] = type_size(type);
1175 ++next_array;
1176
1177 } else {
1178 src.file = PROGRAM_TEMPORARY;
1179 src.index = next_temp;
1180 next_temp += type_size(type);
1181 }
1182
1183 if (type->is_array() || type->is_record()) {
1184 src.swizzle = SWIZZLE_NOOP;
1185 } else {
1186 src.swizzle = swizzle_for_size(type->vector_elements);
1187 }
1188
1189 return src;
1190 }
1191
1192 variable_storage *
1193 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1194 {
1195
1196 foreach_in_list(variable_storage, entry, &this->variables) {
1197 if (entry->var == var)
1198 return entry;
1199 }
1200
1201 return NULL;
1202 }
1203
1204 void
1205 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1206 {
1207 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1208 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1209
1210 fp->OriginUpperLeft = ir->data.origin_upper_left;
1211 fp->PixelCenterInteger = ir->data.pixel_center_integer;
1212 }
1213
1214 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1215 unsigned int i;
1216 const ir_state_slot *const slots = ir->get_state_slots();
1217 assert(slots != NULL);
1218
1219 /* Check if this statevar's setup in the STATE file exactly
1220 * matches how we'll want to reference it as a
1221 * struct/array/whatever. If not, then we need to move it into
1222 * temporary storage and hope that it'll get copy-propagated
1223 * out.
1224 */
1225 for (i = 0; i < ir->get_num_state_slots(); i++) {
1226 if (slots[i].swizzle != SWIZZLE_XYZW) {
1227 break;
1228 }
1229 }
1230
1231 variable_storage *storage;
1232 st_dst_reg dst;
1233 if (i == ir->get_num_state_slots()) {
1234 /* We'll set the index later. */
1235 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1236 this->variables.push_tail(storage);
1237
1238 dst = undef_dst;
1239 } else {
1240 /* The variable_storage constructor allocates slots based on the size
1241 * of the type. However, this had better match the number of state
1242 * elements that we're going to copy into the new temporary.
1243 */
1244 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1245
1246 dst = st_dst_reg(get_temp(ir->type));
1247
1248 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1249
1250 this->variables.push_tail(storage);
1251 }
1252
1253
1254 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1255 int index = _mesa_add_state_reference(this->prog->Parameters,
1256 (gl_state_index *)slots[i].tokens);
1257
1258 if (storage->file == PROGRAM_STATE_VAR) {
1259 if (storage->index == -1) {
1260 storage->index = index;
1261 } else {
1262 assert(index == storage->index + (int)i);
1263 }
1264 } else {
1265 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1266 * the data being moved since MOV does not care about the type of
1267 * data it is moving, and we don't want to declare registers with
1268 * array or struct types.
1269 */
1270 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1271 src.swizzle = slots[i].swizzle;
1272 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1273 /* even a float takes up a whole vec4 reg in a struct/array. */
1274 dst.index++;
1275 }
1276 }
1277
1278 if (storage->file == PROGRAM_TEMPORARY &&
1279 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1280 fail_link(this->shader_program,
1281 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1282 ir->name, dst.index - storage->index,
1283 type_size(ir->type));
1284 }
1285 }
1286 }
1287
1288 void
1289 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1290 {
1291 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1292
1293 visit_exec_list(&ir->body_instructions, this);
1294
1295 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1296 }
1297
1298 void
1299 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1300 {
1301 switch (ir->mode) {
1302 case ir_loop_jump::jump_break:
1303 emit_asm(NULL, TGSI_OPCODE_BRK);
1304 break;
1305 case ir_loop_jump::jump_continue:
1306 emit_asm(NULL, TGSI_OPCODE_CONT);
1307 break;
1308 }
1309 }
1310
1311
1312 void
1313 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1314 {
1315 assert(0);
1316 (void)ir;
1317 }
1318
1319 void
1320 glsl_to_tgsi_visitor::visit(ir_function *ir)
1321 {
1322 /* Ignore function bodies other than main() -- we shouldn't see calls to
1323 * them since they should all be inlined before we get to glsl_to_tgsi.
1324 */
1325 if (strcmp(ir->name, "main") == 0) {
1326 const ir_function_signature *sig;
1327 exec_list empty;
1328
1329 sig = ir->matching_signature(NULL, &empty, false);
1330
1331 assert(sig);
1332
1333 foreach_in_list(ir_instruction, ir, &sig->body) {
1334 ir->accept(this);
1335 }
1336 }
1337 }
1338
1339 bool
1340 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1341 {
1342 int nonmul_operand = 1 - mul_operand;
1343 st_src_reg a, b, c;
1344 st_dst_reg result_dst;
1345
1346 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1347 if (!expr || expr->operation != ir_binop_mul)
1348 return false;
1349
1350 expr->operands[0]->accept(this);
1351 a = this->result;
1352 expr->operands[1]->accept(this);
1353 b = this->result;
1354 ir->operands[nonmul_operand]->accept(this);
1355 c = this->result;
1356
1357 this->result = get_temp(ir->type);
1358 result_dst = st_dst_reg(this->result);
1359 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1360 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1361
1362 return true;
1363 }
1364
1365 /**
1366 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1367 *
1368 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1369 * implemented using multiplication, and logical-or is implemented using
1370 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1371 * As result, the logical expression (a & !b) can be rewritten as:
1372 *
1373 * - a * !b
1374 * - a * (1 - b)
1375 * - (a * 1) - (a * b)
1376 * - a + -(a * b)
1377 * - a + (a * -b)
1378 *
1379 * This final expression can be implemented as a single MAD(a, -b, a)
1380 * instruction.
1381 */
1382 bool
1383 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1384 {
1385 const int other_operand = 1 - try_operand;
1386 st_src_reg a, b;
1387
1388 ir_expression *expr = ir->operands[try_operand]->as_expression();
1389 if (!expr || expr->operation != ir_unop_logic_not)
1390 return false;
1391
1392 ir->operands[other_operand]->accept(this);
1393 a = this->result;
1394 expr->operands[0]->accept(this);
1395 b = this->result;
1396
1397 b.negate = ~b.negate;
1398
1399 this->result = get_temp(ir->type);
1400 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1401
1402 return true;
1403 }
1404
1405 void
1406 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1407 st_src_reg *reg, int *num_reladdr)
1408 {
1409 if (!reg->reladdr && !reg->reladdr2)
1410 return;
1411
1412 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1413 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1414
1415 if (*num_reladdr != 1) {
1416 st_src_reg temp = get_temp(glsl_type::vec4_type);
1417
1418 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1419 *reg = temp;
1420 }
1421
1422 (*num_reladdr)--;
1423 }
1424
1425 void
1426 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1427 {
1428 unsigned int operand;
1429 st_src_reg op[ARRAY_SIZE(ir->operands)];
1430 st_src_reg result_src;
1431 st_dst_reg result_dst;
1432
1433 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1434 */
1435 if (ir->operation == ir_binop_add) {
1436 if (try_emit_mad(ir, 1))
1437 return;
1438 if (try_emit_mad(ir, 0))
1439 return;
1440 }
1441
1442 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1443 */
1444 if (!native_integers && ir->operation == ir_binop_logic_and) {
1445 if (try_emit_mad_for_and_not(ir, 1))
1446 return;
1447 if (try_emit_mad_for_and_not(ir, 0))
1448 return;
1449 }
1450
1451 if (ir->operation == ir_quadop_vector)
1452 assert(!"ir_quadop_vector should have been lowered");
1453
1454 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1455 this->result.file = PROGRAM_UNDEFINED;
1456 ir->operands[operand]->accept(this);
1457 if (this->result.file == PROGRAM_UNDEFINED) {
1458 printf("Failed to get tree for expression operand:\n");
1459 ir->operands[operand]->print();
1460 printf("\n");
1461 exit(1);
1462 }
1463 op[operand] = this->result;
1464
1465 /* Matrix expression operands should have been broken down to vector
1466 * operations already.
1467 */
1468 assert(!ir->operands[operand]->type->is_matrix());
1469 }
1470
1471 int vector_elements = ir->operands[0]->type->vector_elements;
1472 if (ir->operands[1]) {
1473 vector_elements = MAX2(vector_elements,
1474 ir->operands[1]->type->vector_elements);
1475 }
1476
1477 this->result.file = PROGRAM_UNDEFINED;
1478
1479 /* Storage for our result. Ideally for an assignment we'd be using
1480 * the actual storage for the result here, instead.
1481 */
1482 result_src = get_temp(ir->type);
1483 /* convenience for the emit functions below. */
1484 result_dst = st_dst_reg(result_src);
1485 /* Limit writes to the channels that will be used by result_src later.
1486 * This does limit this temp's use as a temporary for multi-instruction
1487 * sequences.
1488 */
1489 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1490
1491 switch (ir->operation) {
1492 case ir_unop_logic_not:
1493 if (result_dst.type != GLSL_TYPE_FLOAT)
1494 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1495 else {
1496 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1497 * older GPUs implement SEQ using multiple instructions (i915 uses two
1498 * SGE instructions and a MUL instruction). Since our logic values are
1499 * 0.0 and 1.0, 1-x also implements !x.
1500 */
1501 op[0].negate = ~op[0].negate;
1502 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1503 }
1504 break;
1505 case ir_unop_neg:
1506 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1507 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1508 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1509 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1510 else {
1511 op[0].negate = ~op[0].negate;
1512 result_src = op[0];
1513 }
1514 break;
1515 case ir_unop_subroutine_to_int:
1516 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1517 break;
1518 case ir_unop_abs:
1519 emit_asm(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1520 break;
1521 case ir_unop_sign:
1522 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1523 break;
1524 case ir_unop_rcp:
1525 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1526 break;
1527
1528 case ir_unop_exp2:
1529 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1530 break;
1531 case ir_unop_exp:
1532 case ir_unop_log:
1533 assert(!"not reached: should be handled by ir_explog_to_explog2");
1534 break;
1535 case ir_unop_log2:
1536 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1537 break;
1538 case ir_unop_sin:
1539 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1540 break;
1541 case ir_unop_cos:
1542 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1543 break;
1544 case ir_unop_saturate: {
1545 glsl_to_tgsi_instruction *inst;
1546 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1547 inst->saturate = true;
1548 break;
1549 }
1550
1551 case ir_unop_dFdx:
1552 case ir_unop_dFdx_coarse:
1553 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1554 break;
1555 case ir_unop_dFdx_fine:
1556 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1557 break;
1558 case ir_unop_dFdy:
1559 case ir_unop_dFdy_coarse:
1560 case ir_unop_dFdy_fine:
1561 {
1562 /* The X component contains 1 or -1 depending on whether the framebuffer
1563 * is a FBO or the window system buffer, respectively.
1564 * It is then multiplied with the source operand of DDY.
1565 */
1566 static const gl_state_index transform_y_state[STATE_LENGTH]
1567 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1568
1569 unsigned transform_y_index =
1570 _mesa_add_state_reference(this->prog->Parameters,
1571 transform_y_state);
1572
1573 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1574 transform_y_index,
1575 glsl_type::vec4_type);
1576 transform_y.swizzle = SWIZZLE_XXXX;
1577
1578 st_src_reg temp = get_temp(glsl_type::vec4_type);
1579
1580 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1581 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1582 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1583 break;
1584 }
1585
1586 case ir_unop_frexp_sig:
1587 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1588 break;
1589
1590 case ir_unop_frexp_exp:
1591 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1592 break;
1593
1594 case ir_unop_noise: {
1595 /* At some point, a motivated person could add a better
1596 * implementation of noise. Currently not even the nvidia
1597 * binary drivers do anything more than this. In any case, the
1598 * place to do this is in the GL state tracker, not the poor
1599 * driver.
1600 */
1601 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1602 break;
1603 }
1604
1605 case ir_binop_add:
1606 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1607 break;
1608 case ir_binop_sub:
1609 emit_asm(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1610 break;
1611
1612 case ir_binop_mul:
1613 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1614 break;
1615 case ir_binop_div:
1616 if (result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_DOUBLE)
1617 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1618 else
1619 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1620 break;
1621 case ir_binop_mod:
1622 if (result_dst.type == GLSL_TYPE_FLOAT)
1623 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1624 else
1625 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1626 break;
1627
1628 case ir_binop_less:
1629 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1630 break;
1631 case ir_binop_greater:
1632 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1633 break;
1634 case ir_binop_lequal:
1635 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1636 break;
1637 case ir_binop_gequal:
1638 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1639 break;
1640 case ir_binop_equal:
1641 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1642 break;
1643 case ir_binop_nequal:
1644 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1645 break;
1646 case ir_binop_all_equal:
1647 /* "==" operator producing a scalar boolean. */
1648 if (ir->operands[0]->type->is_vector() ||
1649 ir->operands[1]->type->is_vector()) {
1650 st_src_reg temp = get_temp(native_integers ?
1651 glsl_type::uvec4_type :
1652 glsl_type::vec4_type);
1653
1654 if (native_integers) {
1655 st_dst_reg temp_dst = st_dst_reg(temp);
1656 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1657
1658 if (ir->operands[0]->type->is_boolean() &&
1659 ir->operands[1]->as_constant() &&
1660 ir->operands[1]->as_constant()->is_one()) {
1661 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1662 } else {
1663 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1664 }
1665
1666 /* Emit 1-3 AND operations to combine the SEQ results. */
1667 switch (ir->operands[0]->type->vector_elements) {
1668 case 2:
1669 break;
1670 case 3:
1671 temp_dst.writemask = WRITEMASK_Y;
1672 temp1.swizzle = SWIZZLE_YYYY;
1673 temp2.swizzle = SWIZZLE_ZZZZ;
1674 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1675 break;
1676 case 4:
1677 temp_dst.writemask = WRITEMASK_X;
1678 temp1.swizzle = SWIZZLE_XXXX;
1679 temp2.swizzle = SWIZZLE_YYYY;
1680 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1681 temp_dst.writemask = WRITEMASK_Y;
1682 temp1.swizzle = SWIZZLE_ZZZZ;
1683 temp2.swizzle = SWIZZLE_WWWW;
1684 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1685 }
1686
1687 temp1.swizzle = SWIZZLE_XXXX;
1688 temp2.swizzle = SWIZZLE_YYYY;
1689 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1690 } else {
1691 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1692
1693 /* After the dot-product, the value will be an integer on the
1694 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1695 */
1696 emit_dp(ir, result_dst, temp, temp, vector_elements);
1697
1698 /* Negating the result of the dot-product gives values on the range
1699 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1700 * This is achieved using SGE.
1701 */
1702 st_src_reg sge_src = result_src;
1703 sge_src.negate = ~sge_src.negate;
1704 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1705 }
1706 } else {
1707 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1708 }
1709 break;
1710 case ir_binop_any_nequal:
1711 /* "!=" operator producing a scalar boolean. */
1712 if (ir->operands[0]->type->is_vector() ||
1713 ir->operands[1]->type->is_vector()) {
1714 st_src_reg temp = get_temp(native_integers ?
1715 glsl_type::uvec4_type :
1716 glsl_type::vec4_type);
1717 if (ir->operands[0]->type->is_boolean() &&
1718 ir->operands[1]->as_constant() &&
1719 ir->operands[1]->as_constant()->is_zero()) {
1720 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1721 } else {
1722 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1723 }
1724
1725 if (native_integers) {
1726 st_dst_reg temp_dst = st_dst_reg(temp);
1727 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1728
1729 /* Emit 1-3 OR operations to combine the SNE results. */
1730 switch (ir->operands[0]->type->vector_elements) {
1731 case 2:
1732 break;
1733 case 3:
1734 temp_dst.writemask = WRITEMASK_Y;
1735 temp1.swizzle = SWIZZLE_YYYY;
1736 temp2.swizzle = SWIZZLE_ZZZZ;
1737 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1738 break;
1739 case 4:
1740 temp_dst.writemask = WRITEMASK_X;
1741 temp1.swizzle = SWIZZLE_XXXX;
1742 temp2.swizzle = SWIZZLE_YYYY;
1743 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1744 temp_dst.writemask = WRITEMASK_Y;
1745 temp1.swizzle = SWIZZLE_ZZZZ;
1746 temp2.swizzle = SWIZZLE_WWWW;
1747 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1748 }
1749
1750 temp1.swizzle = SWIZZLE_XXXX;
1751 temp2.swizzle = SWIZZLE_YYYY;
1752 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1753 } else {
1754 /* After the dot-product, the value will be an integer on the
1755 * range [0,4]. Zero stays zero, and positive values become 1.0.
1756 */
1757 glsl_to_tgsi_instruction *const dp =
1758 emit_dp(ir, result_dst, temp, temp, vector_elements);
1759 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1760 /* The clamping to [0,1] can be done for free in the fragment
1761 * shader with a saturate.
1762 */
1763 dp->saturate = true;
1764 } else {
1765 /* Negating the result of the dot-product gives values on the range
1766 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1767 * achieved using SLT.
1768 */
1769 st_src_reg slt_src = result_src;
1770 slt_src.negate = ~slt_src.negate;
1771 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1772 }
1773 }
1774 } else {
1775 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1776 }
1777 break;
1778
1779 case ir_binop_logic_xor:
1780 if (native_integers)
1781 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1782 else
1783 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1784 break;
1785
1786 case ir_binop_logic_or: {
1787 if (native_integers) {
1788 /* If integers are used as booleans, we can use an actual "or"
1789 * instruction.
1790 */
1791 assert(native_integers);
1792 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1793 } else {
1794 /* After the addition, the value will be an integer on the
1795 * range [0,2]. Zero stays zero, and positive values become 1.0.
1796 */
1797 glsl_to_tgsi_instruction *add =
1798 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1799 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1800 /* The clamping to [0,1] can be done for free in the fragment
1801 * shader with a saturate if floats are being used as boolean values.
1802 */
1803 add->saturate = true;
1804 } else {
1805 /* Negating the result of the addition gives values on the range
1806 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1807 * is achieved using SLT.
1808 */
1809 st_src_reg slt_src = result_src;
1810 slt_src.negate = ~slt_src.negate;
1811 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1812 }
1813 }
1814 break;
1815 }
1816
1817 case ir_binop_logic_and:
1818 /* If native integers are disabled, the bool args are stored as float 0.0
1819 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1820 * actual AND opcode.
1821 */
1822 if (native_integers)
1823 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1824 else
1825 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1826 break;
1827
1828 case ir_binop_dot:
1829 assert(ir->operands[0]->type->is_vector());
1830 assert(ir->operands[0]->type == ir->operands[1]->type);
1831 emit_dp(ir, result_dst, op[0], op[1],
1832 ir->operands[0]->type->vector_elements);
1833 break;
1834
1835 case ir_unop_sqrt:
1836 if (have_sqrt) {
1837 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1838 } else {
1839 /* sqrt(x) = x * rsq(x). */
1840 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1841 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1842 /* For incoming channels <= 0, set the result to 0. */
1843 op[0].negate = ~op[0].negate;
1844 emit_asm(ir, TGSI_OPCODE_CMP, result_dst,
1845 op[0], result_src, st_src_reg_for_float(0.0));
1846 }
1847 break;
1848 case ir_unop_rsq:
1849 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1850 break;
1851 case ir_unop_i2f:
1852 if (native_integers) {
1853 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1854 break;
1855 }
1856 /* fallthrough to next case otherwise */
1857 case ir_unop_b2f:
1858 if (native_integers) {
1859 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1860 break;
1861 }
1862 /* fallthrough to next case otherwise */
1863 case ir_unop_i2u:
1864 case ir_unop_u2i:
1865 /* Converting between signed and unsigned integers is a no-op. */
1866 result_src = op[0];
1867 break;
1868 case ir_unop_b2i:
1869 if (native_integers) {
1870 /* Booleans are stored as integers using ~0 for true and 0 for false.
1871 * GLSL requires that int(bool) return 1 for true and 0 for false.
1872 * This conversion is done with AND, but it could be done with NEG.
1873 */
1874 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1875 } else {
1876 /* Booleans and integers are both stored as floats when native
1877 * integers are disabled.
1878 */
1879 result_src = op[0];
1880 }
1881 break;
1882 case ir_unop_f2i:
1883 if (native_integers)
1884 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1885 else
1886 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1887 break;
1888 case ir_unop_f2u:
1889 if (native_integers)
1890 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1891 else
1892 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1893 break;
1894 case ir_unop_bitcast_f2i:
1895 result_src = op[0];
1896 result_src.type = GLSL_TYPE_INT;
1897 break;
1898 case ir_unop_bitcast_f2u:
1899 result_src = op[0];
1900 result_src.type = GLSL_TYPE_UINT;
1901 break;
1902 case ir_unop_bitcast_i2f:
1903 case ir_unop_bitcast_u2f:
1904 result_src = op[0];
1905 result_src.type = GLSL_TYPE_FLOAT;
1906 break;
1907 case ir_unop_f2b:
1908 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1909 break;
1910 case ir_unop_d2b:
1911 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
1912 break;
1913 case ir_unop_i2b:
1914 if (native_integers)
1915 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
1916 else
1917 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1918 break;
1919 case ir_unop_trunc:
1920 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1921 break;
1922 case ir_unop_ceil:
1923 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1924 break;
1925 case ir_unop_floor:
1926 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1927 break;
1928 case ir_unop_round_even:
1929 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1930 break;
1931 case ir_unop_fract:
1932 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1933 break;
1934
1935 case ir_binop_min:
1936 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1937 break;
1938 case ir_binop_max:
1939 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1940 break;
1941 case ir_binop_pow:
1942 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1943 break;
1944
1945 case ir_unop_bit_not:
1946 if (native_integers) {
1947 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1948 break;
1949 }
1950 case ir_unop_u2f:
1951 if (native_integers) {
1952 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1953 break;
1954 }
1955 case ir_binop_lshift:
1956 if (native_integers) {
1957 emit_asm(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1958 break;
1959 }
1960 case ir_binop_rshift:
1961 if (native_integers) {
1962 emit_asm(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1963 break;
1964 }
1965 case ir_binop_bit_and:
1966 if (native_integers) {
1967 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1968 break;
1969 }
1970 case ir_binop_bit_xor:
1971 if (native_integers) {
1972 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1973 break;
1974 }
1975 case ir_binop_bit_or:
1976 if (native_integers) {
1977 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1978 break;
1979 }
1980
1981 assert(!"GLSL 1.30 features unsupported");
1982 break;
1983
1984 case ir_binop_ubo_load: {
1985 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1986 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1987 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1988 unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
1989 st_src_reg index_reg = get_temp(glsl_type::uint_type);
1990 st_src_reg cbuf;
1991
1992 cbuf.type = ir->type->base_type;
1993 cbuf.file = PROGRAM_CONSTANT;
1994 cbuf.index = 0;
1995 cbuf.reladdr = NULL;
1996 cbuf.negate = 0;
1997
1998 assert(ir->type->is_vector() || ir->type->is_scalar());
1999
2000 if (const_offset_ir) {
2001 /* Constant index into constant buffer */
2002 cbuf.reladdr = NULL;
2003 cbuf.index = const_offset / 16;
2004 }
2005 else {
2006 /* Relative/variable index into constant buffer */
2007 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1],
2008 st_src_reg_for_int(4));
2009 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2010 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
2011 }
2012
2013 if (const_uniform_block) {
2014 /* Constant constant buffer */
2015 cbuf.reladdr2 = NULL;
2016 cbuf.index2D = const_block;
2017 cbuf.has_index2 = true;
2018 }
2019 else {
2020 /* Relative/variable constant buffer */
2021 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2022 cbuf.index2D = 1;
2023 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
2024 cbuf.has_index2 = true;
2025 }
2026
2027 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2028 if (cbuf.type == GLSL_TYPE_DOUBLE)
2029 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2030 const_offset % 16 / 8,
2031 const_offset % 16 / 8,
2032 const_offset % 16 / 8);
2033 else
2034 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2035 const_offset % 16 / 4,
2036 const_offset % 16 / 4,
2037 const_offset % 16 / 4);
2038
2039 if (ir->type->base_type == GLSL_TYPE_BOOL) {
2040 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2041 } else {
2042 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2043 }
2044 break;
2045 }
2046 case ir_triop_lrp:
2047 /* note: we have to reorder the three args here */
2048 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2049 break;
2050 case ir_triop_csel:
2051 if (this->ctx->Const.NativeIntegers)
2052 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2053 else {
2054 op[0].negate = ~op[0].negate;
2055 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2056 }
2057 break;
2058 case ir_triop_bitfield_extract:
2059 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2060 break;
2061 case ir_quadop_bitfield_insert:
2062 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2063 break;
2064 case ir_unop_bitfield_reverse:
2065 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2066 break;
2067 case ir_unop_bit_count:
2068 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2069 break;
2070 case ir_unop_find_msb:
2071 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2072 break;
2073 case ir_unop_find_lsb:
2074 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2075 break;
2076 case ir_binop_imul_high:
2077 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2078 break;
2079 case ir_triop_fma:
2080 /* In theory, MAD is incorrect here. */
2081 if (have_fma)
2082 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2083 else
2084 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2085 break;
2086 case ir_unop_interpolate_at_centroid:
2087 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2088 break;
2089 case ir_binop_interpolate_at_offset:
2090 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], op[1]);
2091 break;
2092 case ir_binop_interpolate_at_sample:
2093 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2094 break;
2095
2096 case ir_unop_d2f:
2097 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2098 break;
2099 case ir_unop_f2d:
2100 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2101 break;
2102 case ir_unop_d2i:
2103 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2104 break;
2105 case ir_unop_i2d:
2106 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2107 break;
2108 case ir_unop_d2u:
2109 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2110 break;
2111 case ir_unop_u2d:
2112 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2113 break;
2114 case ir_unop_unpack_double_2x32:
2115 case ir_unop_pack_double_2x32:
2116 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2117 break;
2118
2119 case ir_binop_ldexp:
2120 if (ir->operands[0]->type->base_type == GLSL_TYPE_DOUBLE) {
2121 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2122 } else {
2123 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2124 }
2125 break;
2126
2127 case ir_unop_pack_snorm_2x16:
2128 case ir_unop_pack_unorm_2x16:
2129 case ir_unop_pack_half_2x16:
2130 case ir_unop_pack_snorm_4x8:
2131 case ir_unop_pack_unorm_4x8:
2132
2133 case ir_unop_unpack_snorm_2x16:
2134 case ir_unop_unpack_unorm_2x16:
2135 case ir_unop_unpack_half_2x16:
2136 case ir_unop_unpack_half_2x16_split_x:
2137 case ir_unop_unpack_half_2x16_split_y:
2138 case ir_unop_unpack_snorm_4x8:
2139 case ir_unop_unpack_unorm_4x8:
2140
2141 case ir_binop_pack_half_2x16_split:
2142 case ir_binop_bfm:
2143 case ir_triop_bfi:
2144 case ir_quadop_vector:
2145 case ir_binop_vector_extract:
2146 case ir_triop_vector_insert:
2147 case ir_binop_carry:
2148 case ir_binop_borrow:
2149 case ir_unop_ssbo_unsized_array_length:
2150 /* This operation is not supported, or should have already been handled.
2151 */
2152 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2153 break;
2154
2155 case ir_unop_get_buffer_size:
2156 assert(!"Not implemented yet");
2157 break;
2158 }
2159
2160 this->result = result_src;
2161 }
2162
2163
2164 void
2165 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2166 {
2167 st_src_reg src;
2168 int i;
2169 int swizzle[4];
2170
2171 /* Note that this is only swizzles in expressions, not those on the left
2172 * hand side of an assignment, which do write masking. See ir_assignment
2173 * for that.
2174 */
2175
2176 ir->val->accept(this);
2177 src = this->result;
2178 assert(src.file != PROGRAM_UNDEFINED);
2179 assert(ir->type->vector_elements > 0);
2180
2181 for (i = 0; i < 4; i++) {
2182 if (i < ir->type->vector_elements) {
2183 switch (i) {
2184 case 0:
2185 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2186 break;
2187 case 1:
2188 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2189 break;
2190 case 2:
2191 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2192 break;
2193 case 3:
2194 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2195 break;
2196 }
2197 } else {
2198 /* If the type is smaller than a vec4, replicate the last
2199 * channel out.
2200 */
2201 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2202 }
2203 }
2204
2205 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2206
2207 this->result = src;
2208 }
2209
2210 /* Test if the variable is an array. Note that geometry and
2211 * tessellation shader inputs are outputs are always arrays (except
2212 * for patch inputs), so only the array element type is considered.
2213 */
2214 static bool
2215 is_inout_array(unsigned stage, ir_variable *var, bool *is_2d)
2216 {
2217 const glsl_type *type = var->type;
2218
2219 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2220 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2221 return false;
2222
2223 *is_2d = false;
2224
2225 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2226 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2227 stage == MESA_SHADER_TESS_CTRL) &&
2228 !var->data.patch) {
2229 if (!var->type->is_array())
2230 return false; /* a system value probably */
2231
2232 type = var->type->fields.array;
2233 *is_2d = true;
2234 }
2235
2236 return type->is_array() || type->is_matrix();
2237 }
2238
2239 void
2240 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2241 {
2242 variable_storage *entry = find_variable_storage(ir->var);
2243 ir_variable *var = ir->var;
2244 bool is_2d;
2245
2246 if (!entry) {
2247 switch (var->data.mode) {
2248 case ir_var_uniform:
2249 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2250 var->data.location);
2251 this->variables.push_tail(entry);
2252 break;
2253 case ir_var_shader_in:
2254 /* The linker assigns locations for varyings and attributes,
2255 * including deprecated builtins (like gl_Color), user-assign
2256 * generic attributes (glBindVertexLocation), and
2257 * user-defined varyings.
2258 */
2259 assert(var->data.location != -1);
2260
2261 if (is_inout_array(shader->Stage, var, &is_2d)) {
2262 struct array_decl *decl = &input_arrays[num_input_arrays];
2263
2264 decl->mesa_index = var->data.location;
2265 decl->array_id = num_input_arrays + 1;
2266 if (is_2d)
2267 decl->array_size = type_size(var->type->fields.array);
2268 else
2269 decl->array_size = type_size(var->type);
2270 num_input_arrays++;
2271
2272 entry = new(mem_ctx) variable_storage(var,
2273 PROGRAM_INPUT,
2274 var->data.location,
2275 decl->array_id);
2276 }
2277 else {
2278 entry = new(mem_ctx) variable_storage(var,
2279 PROGRAM_INPUT,
2280 var->data.location);
2281 }
2282 this->variables.push_tail(entry);
2283 break;
2284 case ir_var_shader_out:
2285 assert(var->data.location != -1);
2286
2287 if (is_inout_array(shader->Stage, var, &is_2d)) {
2288 struct array_decl *decl = &output_arrays[num_output_arrays];
2289
2290 decl->mesa_index = var->data.location;
2291 decl->array_id = num_output_arrays + 1;
2292 if (is_2d)
2293 decl->array_size = type_size(var->type->fields.array);
2294 else
2295 decl->array_size = type_size(var->type);
2296 num_output_arrays++;
2297
2298 entry = new(mem_ctx) variable_storage(var,
2299 PROGRAM_OUTPUT,
2300 var->data.location,
2301 decl->array_id);
2302 }
2303 else {
2304 entry = new(mem_ctx) variable_storage(var,
2305 PROGRAM_OUTPUT,
2306 var->data.location
2307 + var->data.index);
2308 }
2309 this->variables.push_tail(entry);
2310 break;
2311 case ir_var_system_value:
2312 entry = new(mem_ctx) variable_storage(var,
2313 PROGRAM_SYSTEM_VALUE,
2314 var->data.location);
2315 break;
2316 case ir_var_auto:
2317 case ir_var_temporary:
2318 st_src_reg src = get_temp(var->type);
2319
2320 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2321 this->variables.push_tail(entry);
2322
2323 break;
2324 }
2325
2326 if (!entry) {
2327 printf("Failed to make storage for %s\n", var->name);
2328 exit(1);
2329 }
2330 }
2331
2332 this->result = st_src_reg(entry->file, entry->index, var->type);
2333 this->result.array_id = entry->array_id;
2334 if (!native_integers)
2335 this->result.type = GLSL_TYPE_FLOAT;
2336 }
2337
2338 static void
2339 shrink_array_declarations(struct array_decl *arrays, unsigned count,
2340 GLbitfield64 usage_mask,
2341 GLbitfield patch_usage_mask)
2342 {
2343 unsigned i, j;
2344
2345 /* Fix array declarations by removing unused array elements at both ends
2346 * of the arrays. For example, mat4[3] where only mat[1] is used.
2347 */
2348 for (i = 0; i < count; i++) {
2349 struct array_decl *decl = &arrays[i];
2350
2351 /* Shrink the beginning. */
2352 for (j = 0; j < decl->array_size; j++) {
2353 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2354 if (patch_usage_mask &
2355 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2356 break;
2357 }
2358 else {
2359 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2360 break;
2361 }
2362
2363 decl->mesa_index++;
2364 decl->array_size--;
2365 j--;
2366 }
2367
2368 /* Shrink the end. */
2369 for (j = decl->array_size-1; j >= 0; j--) {
2370 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2371 if (patch_usage_mask &
2372 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2373 break;
2374 }
2375 else {
2376 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2377 break;
2378 }
2379
2380 decl->array_size--;
2381 }
2382 }
2383 }
2384
2385 void
2386 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2387 {
2388 ir_constant *index;
2389 st_src_reg src;
2390 int element_size = type_size(ir->type);
2391 bool is_2D = false;
2392
2393 index = ir->array_index->constant_expression_value();
2394
2395 ir->array->accept(this);
2396 src = this->result;
2397
2398 if (ir->array->ir_type != ir_type_dereference_array) {
2399 switch (this->prog->Target) {
2400 case GL_TESS_CONTROL_PROGRAM_NV:
2401 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2402 !ir->variable_referenced()->data.patch;
2403 break;
2404 case GL_TESS_EVALUATION_PROGRAM_NV:
2405 is_2D = src.file == PROGRAM_INPUT &&
2406 !ir->variable_referenced()->data.patch;
2407 break;
2408 case GL_GEOMETRY_PROGRAM_NV:
2409 is_2D = src.file == PROGRAM_INPUT;
2410 break;
2411 }
2412 }
2413
2414 if (is_2D)
2415 element_size = 1;
2416
2417 if (index) {
2418 if (is_2D) {
2419 src.index2D = index->value.i[0];
2420 src.has_index2 = true;
2421 } else
2422 src.index += index->value.i[0] * element_size;
2423 } else {
2424 /* Variable index array dereference. It eats the "vec4" of the
2425 * base of the array and an index that offsets the TGSI register
2426 * index.
2427 */
2428 ir->array_index->accept(this);
2429
2430 st_src_reg index_reg;
2431
2432 if (element_size == 1) {
2433 index_reg = this->result;
2434 } else {
2435 index_reg = get_temp(native_integers ?
2436 glsl_type::int_type : glsl_type::float_type);
2437
2438 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2439 this->result, st_src_reg_for_type(index_reg.type, element_size));
2440 }
2441
2442 /* If there was already a relative address register involved, add the
2443 * new and the old together to get the new offset.
2444 */
2445 if (!is_2D && src.reladdr != NULL) {
2446 st_src_reg accum_reg = get_temp(native_integers ?
2447 glsl_type::int_type : glsl_type::float_type);
2448
2449 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2450 index_reg, *src.reladdr);
2451
2452 index_reg = accum_reg;
2453 }
2454
2455 if (is_2D) {
2456 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2457 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2458 src.index2D = 0;
2459 src.has_index2 = true;
2460 } else {
2461 src.reladdr = ralloc(mem_ctx, st_src_reg);
2462 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2463 }
2464 }
2465
2466 /* If the type is smaller than a vec4, replicate the last channel out. */
2467 if (ir->type->is_scalar() || ir->type->is_vector())
2468 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2469 else
2470 src.swizzle = SWIZZLE_NOOP;
2471
2472 /* Change the register type to the element type of the array. */
2473 src.type = ir->type->base_type;
2474
2475 this->result = src;
2476 }
2477
2478 void
2479 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2480 {
2481 unsigned int i;
2482 const glsl_type *struct_type = ir->record->type;
2483 int offset = 0;
2484
2485 ir->record->accept(this);
2486
2487 for (i = 0; i < struct_type->length; i++) {
2488 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2489 break;
2490 offset += type_size(struct_type->fields.structure[i].type);
2491 }
2492
2493 /* If the type is smaller than a vec4, replicate the last channel out. */
2494 if (ir->type->is_scalar() || ir->type->is_vector())
2495 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2496 else
2497 this->result.swizzle = SWIZZLE_NOOP;
2498
2499 this->result.index += offset;
2500 this->result.type = ir->type->base_type;
2501 }
2502
2503 /**
2504 * We want to be careful in assignment setup to hit the actual storage
2505 * instead of potentially using a temporary like we might with the
2506 * ir_dereference handler.
2507 */
2508 static st_dst_reg
2509 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2510 {
2511 /* The LHS must be a dereference. If the LHS is a variable indexed array
2512 * access of a vector, it must be separated into a series conditional moves
2513 * before reaching this point (see ir_vec_index_to_cond_assign).
2514 */
2515 assert(ir->as_dereference());
2516 ir_dereference_array *deref_array = ir->as_dereference_array();
2517 if (deref_array) {
2518 assert(!deref_array->array->type->is_vector());
2519 }
2520
2521 /* Use the rvalue deref handler for the most part. We'll ignore
2522 * swizzles in it and write swizzles using writemask, though.
2523 */
2524 ir->accept(v);
2525 return st_dst_reg(v->result);
2526 }
2527
2528 /**
2529 * Process the condition of a conditional assignment
2530 *
2531 * Examines the condition of a conditional assignment to generate the optimal
2532 * first operand of a \c CMP instruction. If the condition is a relational
2533 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2534 * used as the source for the \c CMP instruction. Otherwise the comparison
2535 * is processed to a boolean result, and the boolean result is used as the
2536 * operand to the CMP instruction.
2537 */
2538 bool
2539 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2540 {
2541 ir_rvalue *src_ir = ir;
2542 bool negate = true;
2543 bool switch_order = false;
2544
2545 ir_expression *const expr = ir->as_expression();
2546
2547 if (native_integers) {
2548 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2549 enum glsl_base_type type = expr->operands[0]->type->base_type;
2550 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2551 type == GLSL_TYPE_BOOL) {
2552 if (expr->operation == ir_binop_equal) {
2553 if (expr->operands[0]->is_zero()) {
2554 src_ir = expr->operands[1];
2555 switch_order = true;
2556 }
2557 else if (expr->operands[1]->is_zero()) {
2558 src_ir = expr->operands[0];
2559 switch_order = true;
2560 }
2561 }
2562 else if (expr->operation == ir_binop_nequal) {
2563 if (expr->operands[0]->is_zero()) {
2564 src_ir = expr->operands[1];
2565 }
2566 else if (expr->operands[1]->is_zero()) {
2567 src_ir = expr->operands[0];
2568 }
2569 }
2570 }
2571 }
2572
2573 src_ir->accept(this);
2574 return switch_order;
2575 }
2576
2577 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2578 bool zero_on_left = false;
2579
2580 if (expr->operands[0]->is_zero()) {
2581 src_ir = expr->operands[1];
2582 zero_on_left = true;
2583 } else if (expr->operands[1]->is_zero()) {
2584 src_ir = expr->operands[0];
2585 zero_on_left = false;
2586 }
2587
2588 /* a is - 0 + - 0 +
2589 * (a < 0) T F F ( a < 0) T F F
2590 * (0 < a) F F T (-a < 0) F F T
2591 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2592 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2593 * (a > 0) F F T (-a < 0) F F T
2594 * (0 > a) T F F ( a < 0) T F F
2595 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2596 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2597 *
2598 * Note that exchanging the order of 0 and 'a' in the comparison simply
2599 * means that the value of 'a' should be negated.
2600 */
2601 if (src_ir != ir) {
2602 switch (expr->operation) {
2603 case ir_binop_less:
2604 switch_order = false;
2605 negate = zero_on_left;
2606 break;
2607
2608 case ir_binop_greater:
2609 switch_order = false;
2610 negate = !zero_on_left;
2611 break;
2612
2613 case ir_binop_lequal:
2614 switch_order = true;
2615 negate = !zero_on_left;
2616 break;
2617
2618 case ir_binop_gequal:
2619 switch_order = true;
2620 negate = zero_on_left;
2621 break;
2622
2623 default:
2624 /* This isn't the right kind of comparison afterall, so make sure
2625 * the whole condition is visited.
2626 */
2627 src_ir = ir;
2628 break;
2629 }
2630 }
2631 }
2632
2633 src_ir->accept(this);
2634
2635 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2636 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2637 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2638 * computing the condition.
2639 */
2640 if (negate)
2641 this->result.negate = ~this->result.negate;
2642
2643 return switch_order;
2644 }
2645
2646 void
2647 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2648 st_dst_reg *l, st_src_reg *r,
2649 st_src_reg *cond, bool cond_swap)
2650 {
2651 if (type->base_type == GLSL_TYPE_STRUCT) {
2652 for (unsigned int i = 0; i < type->length; i++) {
2653 emit_block_mov(ir, type->fields.structure[i].type, l, r,
2654 cond, cond_swap);
2655 }
2656 return;
2657 }
2658
2659 if (type->is_array()) {
2660 for (unsigned int i = 0; i < type->length; i++) {
2661 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
2662 }
2663 return;
2664 }
2665
2666 if (type->is_matrix()) {
2667 const struct glsl_type *vec_type;
2668
2669 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
2670 type->vector_elements, 1);
2671
2672 for (int i = 0; i < type->matrix_columns; i++) {
2673 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
2674 }
2675 return;
2676 }
2677
2678 assert(type->is_scalar() || type->is_vector());
2679
2680 r->type = type->base_type;
2681 if (cond) {
2682 st_src_reg l_src = st_src_reg(*l);
2683 l_src.swizzle = swizzle_for_size(type->vector_elements);
2684
2685 if (native_integers) {
2686 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
2687 cond_swap ? l_src : *r,
2688 cond_swap ? *r : l_src);
2689 } else {
2690 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
2691 cond_swap ? l_src : *r,
2692 cond_swap ? *r : l_src);
2693 }
2694 } else {
2695 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
2696 }
2697 l->index++;
2698 r->index++;
2699 }
2700
2701 void
2702 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2703 {
2704 st_dst_reg l;
2705 st_src_reg r;
2706
2707 ir->rhs->accept(this);
2708 r = this->result;
2709
2710 l = get_assignment_lhs(ir->lhs, this);
2711
2712 /* FINISHME: This should really set to the correct maximal writemask for each
2713 * FINISHME: component written (in the loops below). This case can only
2714 * FINISHME: occur for matrices, arrays, and structures.
2715 */
2716 if (ir->write_mask == 0) {
2717 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2718 l.writemask = WRITEMASK_XYZW;
2719 } else if (ir->lhs->type->is_scalar() &&
2720 !ir->lhs->type->is_double() &&
2721 ir->lhs->variable_referenced()->data.mode == ir_var_shader_out) {
2722 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2723 * FINISHME: W component of fragment shader output zero, work correctly.
2724 */
2725 l.writemask = WRITEMASK_XYZW;
2726 } else {
2727 int swizzles[4];
2728 int first_enabled_chan = 0;
2729 int rhs_chan = 0;
2730
2731 l.writemask = ir->write_mask;
2732
2733 for (int i = 0; i < 4; i++) {
2734 if (l.writemask & (1 << i)) {
2735 first_enabled_chan = GET_SWZ(r.swizzle, i);
2736 break;
2737 }
2738 }
2739
2740 /* Swizzle a small RHS vector into the channels being written.
2741 *
2742 * glsl ir treats write_mask as dictating how many channels are
2743 * present on the RHS while TGSI treats write_mask as just
2744 * showing which channels of the vec4 RHS get written.
2745 */
2746 for (int i = 0; i < 4; i++) {
2747 if (l.writemask & (1 << i))
2748 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2749 else
2750 swizzles[i] = first_enabled_chan;
2751 }
2752 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2753 swizzles[2], swizzles[3]);
2754 }
2755
2756 assert(l.file != PROGRAM_UNDEFINED);
2757 assert(r.file != PROGRAM_UNDEFINED);
2758
2759 if (ir->condition) {
2760 const bool switch_order = this->process_move_condition(ir->condition);
2761 st_src_reg condition = this->result;
2762
2763 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
2764 } else if (ir->rhs->as_expression() &&
2765 this->instructions.get_tail() &&
2766 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2767 type_size(ir->lhs->type) == 1 &&
2768 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
2769 /* To avoid emitting an extra MOV when assigning an expression to a
2770 * variable, emit the last instruction of the expression again, but
2771 * replace the destination register with the target of the assignment.
2772 * Dead code elimination will remove the original instruction.
2773 */
2774 glsl_to_tgsi_instruction *inst, *new_inst;
2775 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2776 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
2777 new_inst->saturate = inst->saturate;
2778 inst->dead_mask = inst->dst[0].writemask;
2779 } else {
2780 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
2781 }
2782 }
2783
2784
2785 void
2786 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2787 {
2788 st_src_reg src;
2789 GLdouble stack_vals[4] = { 0 };
2790 gl_constant_value *values = (gl_constant_value *) stack_vals;
2791 GLenum gl_type = GL_NONE;
2792 unsigned int i;
2793 static int in_array = 0;
2794 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2795
2796 /* Unfortunately, 4 floats is all we can get into
2797 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2798 * aggregate constant and move each constant value into it. If we
2799 * get lucky, copy propagation will eliminate the extra moves.
2800 */
2801 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2802 st_src_reg temp_base = get_temp(ir->type);
2803 st_dst_reg temp = st_dst_reg(temp_base);
2804
2805 foreach_in_list(ir_constant, field_value, &ir->components) {
2806 int size = type_size(field_value->type);
2807
2808 assert(size > 0);
2809
2810 field_value->accept(this);
2811 src = this->result;
2812
2813 for (i = 0; i < (unsigned int)size; i++) {
2814 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2815
2816 src.index++;
2817 temp.index++;
2818 }
2819 }
2820 this->result = temp_base;
2821 return;
2822 }
2823
2824 if (ir->type->is_array()) {
2825 st_src_reg temp_base = get_temp(ir->type);
2826 st_dst_reg temp = st_dst_reg(temp_base);
2827 int size = type_size(ir->type->fields.array);
2828
2829 assert(size > 0);
2830 in_array++;
2831
2832 for (i = 0; i < ir->type->length; i++) {
2833 ir->array_elements[i]->accept(this);
2834 src = this->result;
2835 for (int j = 0; j < size; j++) {
2836 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2837
2838 src.index++;
2839 temp.index++;
2840 }
2841 }
2842 this->result = temp_base;
2843 in_array--;
2844 return;
2845 }
2846
2847 if (ir->type->is_matrix()) {
2848 st_src_reg mat = get_temp(ir->type);
2849 st_dst_reg mat_column = st_dst_reg(mat);
2850
2851 for (i = 0; i < ir->type->matrix_columns; i++) {
2852 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2853 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2854
2855 src = st_src_reg(file, -1, ir->type->base_type);
2856 src.index = add_constant(file,
2857 values,
2858 ir->type->vector_elements,
2859 GL_FLOAT,
2860 &src.swizzle);
2861 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
2862
2863 mat_column.index++;
2864 }
2865
2866 this->result = mat;
2867 return;
2868 }
2869
2870 switch (ir->type->base_type) {
2871 case GLSL_TYPE_FLOAT:
2872 gl_type = GL_FLOAT;
2873 for (i = 0; i < ir->type->vector_elements; i++) {
2874 values[i].f = ir->value.f[i];
2875 }
2876 break;
2877 case GLSL_TYPE_DOUBLE:
2878 gl_type = GL_DOUBLE;
2879 for (i = 0; i < ir->type->vector_elements; i++) {
2880 values[i * 2].i = *(uint32_t *)&ir->value.d[i];
2881 values[i * 2 + 1].i = *(((uint32_t *)&ir->value.d[i]) + 1);
2882 }
2883 break;
2884 case GLSL_TYPE_UINT:
2885 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2886 for (i = 0; i < ir->type->vector_elements; i++) {
2887 if (native_integers)
2888 values[i].u = ir->value.u[i];
2889 else
2890 values[i].f = ir->value.u[i];
2891 }
2892 break;
2893 case GLSL_TYPE_INT:
2894 gl_type = native_integers ? GL_INT : GL_FLOAT;
2895 for (i = 0; i < ir->type->vector_elements; i++) {
2896 if (native_integers)
2897 values[i].i = ir->value.i[i];
2898 else
2899 values[i].f = ir->value.i[i];
2900 }
2901 break;
2902 case GLSL_TYPE_BOOL:
2903 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2904 for (i = 0; i < ir->type->vector_elements; i++) {
2905 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
2906 }
2907 break;
2908 default:
2909 assert(!"Non-float/uint/int/bool constant");
2910 }
2911
2912 this->result = st_src_reg(file, -1, ir->type);
2913 this->result.index = add_constant(file,
2914 values,
2915 ir->type->vector_elements,
2916 gl_type,
2917 &this->result.swizzle);
2918 }
2919
2920 function_entry *
2921 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2922 {
2923 foreach_in_list_use_after(function_entry, entry, &this->function_signatures) {
2924 if (entry->sig == sig)
2925 return entry;
2926 }
2927
2928 entry = ralloc(mem_ctx, function_entry);
2929 entry->sig = sig;
2930 entry->sig_id = this->next_signature_id++;
2931 entry->bgn_inst = NULL;
2932
2933 /* Allocate storage for all the parameters. */
2934 foreach_in_list(ir_variable, param, &sig->parameters) {
2935 variable_storage *storage;
2936
2937 storage = find_variable_storage(param);
2938 assert(!storage);
2939
2940 st_src_reg src = get_temp(param->type);
2941
2942 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
2943 this->variables.push_tail(storage);
2944 }
2945
2946 if (!sig->return_type->is_void()) {
2947 entry->return_reg = get_temp(sig->return_type);
2948 } else {
2949 entry->return_reg = undef_src;
2950 }
2951
2952 this->function_signatures.push_tail(entry);
2953 return entry;
2954 }
2955
2956 void
2957 glsl_to_tgsi_visitor::visit(ir_call *ir)
2958 {
2959 glsl_to_tgsi_instruction *call_inst;
2960 ir_function_signature *sig = ir->callee;
2961 function_entry *entry = get_function_signature(sig);
2962 int i;
2963
2964 /* Process in parameters. */
2965 foreach_two_lists(formal_node, &sig->parameters,
2966 actual_node, &ir->actual_parameters) {
2967 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
2968 ir_variable *param = (ir_variable *) formal_node;
2969
2970 if (param->data.mode == ir_var_function_in ||
2971 param->data.mode == ir_var_function_inout) {
2972 variable_storage *storage = find_variable_storage(param);
2973 assert(storage);
2974
2975 param_rval->accept(this);
2976 st_src_reg r = this->result;
2977
2978 st_dst_reg l;
2979 l.file = storage->file;
2980 l.index = storage->index;
2981 l.reladdr = NULL;
2982 l.writemask = WRITEMASK_XYZW;
2983 l.cond_mask = COND_TR;
2984
2985 for (i = 0; i < type_size(param->type); i++) {
2986 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
2987 l.index++;
2988 r.index++;
2989 }
2990 }
2991 }
2992
2993 /* Emit call instruction */
2994 call_inst = emit_asm(ir, TGSI_OPCODE_CAL);
2995 call_inst->function = entry;
2996
2997 /* Process out parameters. */
2998 foreach_two_lists(formal_node, &sig->parameters,
2999 actual_node, &ir->actual_parameters) {
3000 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
3001 ir_variable *param = (ir_variable *) formal_node;
3002
3003 if (param->data.mode == ir_var_function_out ||
3004 param->data.mode == ir_var_function_inout) {
3005 variable_storage *storage = find_variable_storage(param);
3006 assert(storage);
3007
3008 st_src_reg r;
3009 r.file = storage->file;
3010 r.index = storage->index;
3011 r.reladdr = NULL;
3012 r.swizzle = SWIZZLE_NOOP;
3013 r.negate = 0;
3014
3015 param_rval->accept(this);
3016 st_dst_reg l = st_dst_reg(this->result);
3017
3018 for (i = 0; i < type_size(param->type); i++) {
3019 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3020 l.index++;
3021 r.index++;
3022 }
3023 }
3024 }
3025
3026 /* Process return value. */
3027 this->result = entry->return_reg;
3028 }
3029
3030 void
3031 glsl_to_tgsi_visitor::visit(ir_texture *ir)
3032 {
3033 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
3034 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
3035 st_src_reg levels_src;
3036 st_dst_reg result_dst, coord_dst, cube_sc_dst;
3037 glsl_to_tgsi_instruction *inst = NULL;
3038 unsigned opcode = TGSI_OPCODE_NOP;
3039 const glsl_type *sampler_type = ir->sampler->type;
3040 ir_rvalue *sampler_index =
3041 _mesa_get_sampler_array_nonconst_index(ir->sampler);
3042 bool is_cube_array = false;
3043 unsigned i;
3044
3045 /* if we are a cube array sampler */
3046 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3047 sampler_type->sampler_array)) {
3048 is_cube_array = true;
3049 }
3050
3051 if (ir->coordinate) {
3052 ir->coordinate->accept(this);
3053
3054 /* Put our coords in a temp. We'll need to modify them for shadow,
3055 * projection, or LOD, so the only case we'd use it as is is if
3056 * we're doing plain old texturing. The optimization passes on
3057 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
3058 */
3059 coord = get_temp(glsl_type::vec4_type);
3060 coord_dst = st_dst_reg(coord);
3061 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
3062 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3063 }
3064
3065 if (ir->projector) {
3066 ir->projector->accept(this);
3067 projector = this->result;
3068 }
3069
3070 /* Storage for our result. Ideally for an assignment we'd be using
3071 * the actual storage for the result here, instead.
3072 */
3073 result_src = get_temp(ir->type);
3074 result_dst = st_dst_reg(result_src);
3075
3076 switch (ir->op) {
3077 case ir_tex:
3078 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
3079 if (ir->offset) {
3080 ir->offset->accept(this);
3081 offset[0] = this->result;
3082 }
3083 break;
3084 case ir_txb:
3085 if (is_cube_array ||
3086 sampler_type == glsl_type::samplerCubeShadow_type) {
3087 opcode = TGSI_OPCODE_TXB2;
3088 }
3089 else {
3090 opcode = TGSI_OPCODE_TXB;
3091 }
3092 ir->lod_info.bias->accept(this);
3093 lod_info = this->result;
3094 if (ir->offset) {
3095 ir->offset->accept(this);
3096 offset[0] = this->result;
3097 }
3098 break;
3099 case ir_txl:
3100 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
3101 ir->lod_info.lod->accept(this);
3102 lod_info = this->result;
3103 if (ir->offset) {
3104 ir->offset->accept(this);
3105 offset[0] = this->result;
3106 }
3107 break;
3108 case ir_txd:
3109 opcode = TGSI_OPCODE_TXD;
3110 ir->lod_info.grad.dPdx->accept(this);
3111 dx = this->result;
3112 ir->lod_info.grad.dPdy->accept(this);
3113 dy = this->result;
3114 if (ir->offset) {
3115 ir->offset->accept(this);
3116 offset[0] = this->result;
3117 }
3118 break;
3119 case ir_txs:
3120 opcode = TGSI_OPCODE_TXQ;
3121 ir->lod_info.lod->accept(this);
3122 lod_info = this->result;
3123 break;
3124 case ir_query_levels:
3125 opcode = TGSI_OPCODE_TXQ;
3126 lod_info = undef_src;
3127 levels_src = get_temp(ir->type);
3128 break;
3129 case ir_txf:
3130 opcode = TGSI_OPCODE_TXF;
3131 ir->lod_info.lod->accept(this);
3132 lod_info = this->result;
3133 if (ir->offset) {
3134 ir->offset->accept(this);
3135 offset[0] = this->result;
3136 }
3137 break;
3138 case ir_txf_ms:
3139 opcode = TGSI_OPCODE_TXF;
3140 ir->lod_info.sample_index->accept(this);
3141 sample_index = this->result;
3142 break;
3143 case ir_tg4:
3144 opcode = TGSI_OPCODE_TG4;
3145 ir->lod_info.component->accept(this);
3146 component = this->result;
3147 if (ir->offset) {
3148 ir->offset->accept(this);
3149 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
3150 const glsl_type *elt_type = ir->offset->type->fields.array;
3151 for (i = 0; i < ir->offset->type->length; i++) {
3152 offset[i] = this->result;
3153 offset[i].index += i * type_size(elt_type);
3154 offset[i].type = elt_type->base_type;
3155 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
3156 }
3157 } else {
3158 offset[0] = this->result;
3159 }
3160 }
3161 break;
3162 case ir_lod:
3163 opcode = TGSI_OPCODE_LODQ;
3164 break;
3165 case ir_texture_samples:
3166 opcode = TGSI_OPCODE_TXQS;
3167 break;
3168 case ir_samples_identical:
3169 unreachable("Unexpected ir_samples_identical opcode");
3170 }
3171
3172 if (ir->projector) {
3173 if (opcode == TGSI_OPCODE_TEX) {
3174 /* Slot the projector in as the last component of the coord. */
3175 coord_dst.writemask = WRITEMASK_W;
3176 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
3177 coord_dst.writemask = WRITEMASK_XYZW;
3178 opcode = TGSI_OPCODE_TXP;
3179 } else {
3180 st_src_reg coord_w = coord;
3181 coord_w.swizzle = SWIZZLE_WWWW;
3182
3183 /* For the other TEX opcodes there's no projective version
3184 * since the last slot is taken up by LOD info. Do the
3185 * projective divide now.
3186 */
3187 coord_dst.writemask = WRITEMASK_W;
3188 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
3189
3190 /* In the case where we have to project the coordinates "by hand,"
3191 * the shadow comparator value must also be projected.
3192 */
3193 st_src_reg tmp_src = coord;
3194 if (ir->shadow_comparitor) {
3195 /* Slot the shadow value in as the second to last component of the
3196 * coord.
3197 */
3198 ir->shadow_comparitor->accept(this);
3199
3200 tmp_src = get_temp(glsl_type::vec4_type);
3201 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
3202
3203 /* Projective division not allowed for array samplers. */
3204 assert(!sampler_type->sampler_array);
3205
3206 tmp_dst.writemask = WRITEMASK_Z;
3207 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
3208
3209 tmp_dst.writemask = WRITEMASK_XY;
3210 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
3211 }
3212
3213 coord_dst.writemask = WRITEMASK_XYZ;
3214 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
3215
3216 coord_dst.writemask = WRITEMASK_XYZW;
3217 coord.swizzle = SWIZZLE_XYZW;
3218 }
3219 }
3220
3221 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
3222 * comparator was put in the correct place (and projected) by the code,
3223 * above, that handles by-hand projection.
3224 */
3225 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
3226 /* Slot the shadow value in as the second to last component of the
3227 * coord.
3228 */
3229 ir->shadow_comparitor->accept(this);
3230
3231 if (is_cube_array) {
3232 cube_sc = get_temp(glsl_type::float_type);
3233 cube_sc_dst = st_dst_reg(cube_sc);
3234 cube_sc_dst.writemask = WRITEMASK_X;
3235 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
3236 cube_sc_dst.writemask = WRITEMASK_X;
3237 }
3238 else {
3239 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
3240 sampler_type->sampler_array) ||
3241 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
3242 coord_dst.writemask = WRITEMASK_W;
3243 } else {
3244 coord_dst.writemask = WRITEMASK_Z;
3245 }
3246 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3247 coord_dst.writemask = WRITEMASK_XYZW;
3248 }
3249 }
3250
3251 if (ir->op == ir_txf_ms) {
3252 coord_dst.writemask = WRITEMASK_W;
3253 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
3254 coord_dst.writemask = WRITEMASK_XYZW;
3255 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
3256 opcode == TGSI_OPCODE_TXF) {
3257 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
3258 coord_dst.writemask = WRITEMASK_W;
3259 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
3260 coord_dst.writemask = WRITEMASK_XYZW;
3261 }
3262
3263 if (sampler_index) {
3264 sampler_index->accept(this);
3265 emit_arl(ir, sampler_reladdr, this->result);
3266 }
3267
3268 if (opcode == TGSI_OPCODE_TXD)
3269 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
3270 else if (opcode == TGSI_OPCODE_TXQ) {
3271 if (ir->op == ir_query_levels) {
3272 /* the level is stored in W */
3273 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
3274 result_dst.writemask = WRITEMASK_X;
3275 levels_src.swizzle = SWIZZLE_WWWW;
3276 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
3277 } else
3278 inst = emit_asm(ir, opcode, result_dst, lod_info);
3279 } else if (opcode == TGSI_OPCODE_TXQS) {
3280 inst = emit_asm(ir, opcode, result_dst);
3281 } else if (opcode == TGSI_OPCODE_TXF) {
3282 inst = emit_asm(ir, opcode, result_dst, coord);
3283 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
3284 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
3285 } else if (opcode == TGSI_OPCODE_TEX2) {
3286 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
3287 } else if (opcode == TGSI_OPCODE_TG4) {
3288 if (is_cube_array && ir->shadow_comparitor) {
3289 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
3290 } else {
3291 inst = emit_asm(ir, opcode, result_dst, coord, component);
3292 }
3293 } else
3294 inst = emit_asm(ir, opcode, result_dst, coord);
3295
3296 if (ir->shadow_comparitor)
3297 inst->tex_shadow = GL_TRUE;
3298
3299 inst->sampler.index = _mesa_get_sampler_uniform_value(ir->sampler,
3300 this->shader_program,
3301 this->prog);
3302 if (sampler_index) {
3303 inst->sampler.reladdr = ralloc(mem_ctx, st_src_reg);
3304 memcpy(inst->sampler.reladdr, &sampler_reladdr, sizeof(sampler_reladdr));
3305 inst->sampler_array_size =
3306 ir->sampler->as_dereference_array()->array->type->array_size();
3307 } else {
3308 inst->sampler_array_size = 1;
3309 }
3310
3311 if (ir->offset) {
3312 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
3313 inst->tex_offsets[i] = offset[i];
3314 inst->tex_offset_num_offset = i;
3315 }
3316
3317 switch (sampler_type->sampler_dimensionality) {
3318 case GLSL_SAMPLER_DIM_1D:
3319 inst->tex_target = (sampler_type->sampler_array)
3320 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
3321 break;
3322 case GLSL_SAMPLER_DIM_2D:
3323 inst->tex_target = (sampler_type->sampler_array)
3324 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
3325 break;
3326 case GLSL_SAMPLER_DIM_3D:
3327 inst->tex_target = TEXTURE_3D_INDEX;
3328 break;
3329 case GLSL_SAMPLER_DIM_CUBE:
3330 inst->tex_target = (sampler_type->sampler_array)
3331 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
3332 break;
3333 case GLSL_SAMPLER_DIM_RECT:
3334 inst->tex_target = TEXTURE_RECT_INDEX;
3335 break;
3336 case GLSL_SAMPLER_DIM_BUF:
3337 inst->tex_target = TEXTURE_BUFFER_INDEX;
3338 break;
3339 case GLSL_SAMPLER_DIM_EXTERNAL:
3340 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3341 break;
3342 case GLSL_SAMPLER_DIM_MS:
3343 inst->tex_target = (sampler_type->sampler_array)
3344 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3345 break;
3346 default:
3347 assert(!"Should not get here.");
3348 }
3349
3350 inst->tex_type = ir->type->base_type;
3351
3352 this->result = result_src;
3353 }
3354
3355 void
3356 glsl_to_tgsi_visitor::visit(ir_return *ir)
3357 {
3358 if (ir->get_value()) {
3359 st_dst_reg l;
3360 int i;
3361
3362 assert(current_function);
3363
3364 ir->get_value()->accept(this);
3365 st_src_reg r = this->result;
3366
3367 l = st_dst_reg(current_function->return_reg);
3368
3369 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
3370 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3371 l.index++;
3372 r.index++;
3373 }
3374 }
3375
3376 emit_asm(ir, TGSI_OPCODE_RET);
3377 }
3378
3379 void
3380 glsl_to_tgsi_visitor::visit(ir_discard *ir)
3381 {
3382 if (ir->condition) {
3383 ir->condition->accept(this);
3384 st_src_reg condition = this->result;
3385
3386 /* Convert the bool condition to a float so we can negate. */
3387 if (native_integers) {
3388 st_src_reg temp = get_temp(ir->condition->type);
3389 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
3390 condition, st_src_reg_for_float(1.0));
3391 condition = temp;
3392 }
3393
3394 condition.negate = ~condition.negate;
3395 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
3396 } else {
3397 /* unconditional kil */
3398 emit_asm(ir, TGSI_OPCODE_KILL);
3399 }
3400 }
3401
3402 void
3403 glsl_to_tgsi_visitor::visit(ir_if *ir)
3404 {
3405 unsigned if_opcode;
3406 glsl_to_tgsi_instruction *if_inst;
3407
3408 ir->condition->accept(this);
3409 assert(this->result.file != PROGRAM_UNDEFINED);
3410
3411 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
3412
3413 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
3414
3415 this->instructions.push_tail(if_inst);
3416
3417 visit_exec_list(&ir->then_instructions, this);
3418
3419 if (!ir->else_instructions.is_empty()) {
3420 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
3421 visit_exec_list(&ir->else_instructions, this);
3422 }
3423
3424 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
3425 }
3426
3427
3428 void
3429 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
3430 {
3431 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3432
3433 ir->stream->accept(this);
3434 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
3435 }
3436
3437 void
3438 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
3439 {
3440 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3441
3442 ir->stream->accept(this);
3443 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
3444 }
3445
3446 void
3447 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
3448 {
3449 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
3450 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
3451
3452 emit_asm(ir, TGSI_OPCODE_BARRIER);
3453 }
3454
3455 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
3456 {
3457 result.file = PROGRAM_UNDEFINED;
3458 next_temp = 1;
3459 array_sizes = NULL;
3460 max_num_arrays = 0;
3461 next_array = 0;
3462 num_input_arrays = 0;
3463 num_output_arrays = 0;
3464 next_signature_id = 1;
3465 num_immediates = 0;
3466 current_function = NULL;
3467 num_address_regs = 0;
3468 samplers_used = 0;
3469 indirect_addr_consts = false;
3470 wpos_transform_const = -1;
3471 glsl_version = 0;
3472 native_integers = false;
3473 mem_ctx = ralloc_context(NULL);
3474 ctx = NULL;
3475 prog = NULL;
3476 shader_program = NULL;
3477 shader = NULL;
3478 options = NULL;
3479 have_sqrt = false;
3480 have_fma = false;
3481 }
3482
3483 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
3484 {
3485 free(array_sizes);
3486 ralloc_free(mem_ctx);
3487 }
3488
3489 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
3490 {
3491 delete v;
3492 }
3493
3494
3495 /**
3496 * Count resources used by the given gpu program (number of texture
3497 * samplers, etc).
3498 */
3499 static void
3500 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
3501 {
3502 v->samplers_used = 0;
3503
3504 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
3505 if (inst->info->is_tex) {
3506 for (int i = 0; i < inst->sampler_array_size; i++) {
3507 unsigned idx = inst->sampler.index + i;
3508 v->samplers_used |= 1 << idx;
3509
3510 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
3511 v->sampler_types[idx] = inst->tex_type;
3512 v->sampler_targets[idx] =
3513 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
3514
3515 if (inst->tex_shadow) {
3516 prog->ShadowSamplers |= 1 << (inst->sampler.index + i);
3517 }
3518 }
3519 }
3520 }
3521 prog->SamplersUsed = v->samplers_used;
3522
3523 if (v->shader_program != NULL)
3524 _mesa_update_shader_textures_used(v->shader_program, prog);
3525 }
3526
3527 /**
3528 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3529 * are read from the given src in this instruction
3530 */
3531 static int
3532 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3533 {
3534 int read_mask = 0, comp;
3535
3536 /* Now, given the src swizzle and the written channels, find which
3537 * components are actually read
3538 */
3539 for (comp = 0; comp < 4; ++comp) {
3540 const unsigned coord = GET_SWZ(src.swizzle, comp);
3541 assert(coord < 4);
3542 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3543 read_mask |= 1 << coord;
3544 }
3545
3546 return read_mask;
3547 }
3548
3549 /**
3550 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3551 * instruction is the first instruction to write to register T0. There are
3552 * several lowering passes done in GLSL IR (e.g. branches and
3553 * relative addressing) that create a large number of conditional assignments
3554 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3555 *
3556 * Here is why this conversion is safe:
3557 * CMP T0, T1 T2 T0 can be expanded to:
3558 * if (T1 < 0.0)
3559 * MOV T0, T2;
3560 * else
3561 * MOV T0, T0;
3562 *
3563 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3564 * as the original program. If (T1 < 0.0) evaluates to false, executing
3565 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3566 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3567 * because any instruction that was going to read from T0 after this was going
3568 * to read a garbage value anyway.
3569 */
3570 void
3571 glsl_to_tgsi_visitor::simplify_cmp(void)
3572 {
3573 int tempWritesSize = 0;
3574 unsigned *tempWrites = NULL;
3575 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
3576
3577 memset(outputWrites, 0, sizeof(outputWrites));
3578
3579 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3580 unsigned prevWriteMask = 0;
3581
3582 /* Give up if we encounter relative addressing or flow control. */
3583 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
3584 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
3585 tgsi_get_opcode_info(inst->op)->is_branch ||
3586 inst->op == TGSI_OPCODE_BGNSUB ||
3587 inst->op == TGSI_OPCODE_CONT ||
3588 inst->op == TGSI_OPCODE_END ||
3589 inst->op == TGSI_OPCODE_ENDSUB ||
3590 inst->op == TGSI_OPCODE_RET) {
3591 break;
3592 }
3593
3594 if (inst->dst[0].file == PROGRAM_OUTPUT) {
3595 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
3596 prevWriteMask = outputWrites[inst->dst[0].index];
3597 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
3598 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
3599 if (inst->dst[0].index >= tempWritesSize) {
3600 const int inc = 4096;
3601
3602 tempWrites = (unsigned*)
3603 realloc(tempWrites,
3604 (tempWritesSize + inc) * sizeof(unsigned));
3605 if (!tempWrites)
3606 return;
3607
3608 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
3609 tempWritesSize += inc;
3610 }
3611
3612 prevWriteMask = tempWrites[inst->dst[0].index];
3613 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
3614 } else
3615 continue;
3616
3617 /* For a CMP to be considered a conditional write, the destination
3618 * register and source register two must be the same. */
3619 if (inst->op == TGSI_OPCODE_CMP
3620 && !(inst->dst[0].writemask & prevWriteMask)
3621 && inst->src[2].file == inst->dst[0].file
3622 && inst->src[2].index == inst->dst[0].index
3623 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
3624
3625 inst->op = TGSI_OPCODE_MOV;
3626 inst->src[0] = inst->src[1];
3627 }
3628 }
3629
3630 free(tempWrites);
3631 }
3632
3633 /* Replaces all references to a temporary register index with another index. */
3634 void
3635 glsl_to_tgsi_visitor::rename_temp_registers(int num_renames, struct rename_reg_pair *renames)
3636 {
3637 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3638 unsigned j;
3639 int k;
3640 for (j = 0; j < num_inst_src_regs(inst); j++) {
3641 if (inst->src[j].file == PROGRAM_TEMPORARY)
3642 for (k = 0; k < num_renames; k++)
3643 if (inst->src[j].index == renames[k].old_reg)
3644 inst->src[j].index = renames[k].new_reg;
3645 }
3646
3647 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3648 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
3649 for (k = 0; k < num_renames; k++)
3650 if (inst->tex_offsets[j].index == renames[k].old_reg)
3651 inst->tex_offsets[j].index = renames[k].new_reg;
3652 }
3653
3654 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3655 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3656 for (k = 0; k < num_renames; k++)
3657 if (inst->dst[j].index == renames[k].old_reg)
3658 inst->dst[j].index = renames[k].new_reg;
3659 }
3660 }
3661 }
3662
3663 void
3664 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
3665 {
3666 int depth = 0; /* loop depth */
3667 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3668 unsigned i = 0, j;
3669
3670 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3671 for (j = 0; j < num_inst_src_regs(inst); j++) {
3672 if (inst->src[j].file == PROGRAM_TEMPORARY) {
3673 if (first_reads[inst->src[j].index] == -1)
3674 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
3675 }
3676 }
3677 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3678 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
3679 if (first_reads[inst->tex_offsets[j].index] == -1)
3680 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
3681 }
3682 }
3683 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3684 if(depth++ == 0)
3685 loop_start = i;
3686 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3687 if (--depth == 0)
3688 loop_start = -1;
3689 }
3690 assert(depth >= 0);
3691 i++;
3692 }
3693 }
3694
3695 void
3696 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
3697 {
3698 int depth = 0; /* loop depth */
3699 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3700 unsigned i = 0, j;
3701 int k;
3702 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3703 for (j = 0; j < num_inst_src_regs(inst); j++) {
3704 if (inst->src[j].file == PROGRAM_TEMPORARY)
3705 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
3706 }
3707 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3708 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3709 if (first_writes[inst->dst[j].index] == -1)
3710 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
3711 }
3712 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3713 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
3714 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
3715 }
3716 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3717 if(depth++ == 0)
3718 loop_start = i;
3719 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3720 if (--depth == 0) {
3721 loop_start = -1;
3722 for (k = 0; k < this->next_temp; k++) {
3723 if (last_reads[k] == -2) {
3724 last_reads[k] = i;
3725 }
3726 }
3727 }
3728 }
3729 assert(depth >= 0);
3730 i++;
3731 }
3732 }
3733
3734 void
3735 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
3736 {
3737 int depth = 0; /* loop depth */
3738 int i = 0, k;
3739 unsigned j;
3740
3741 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3742 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3743 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3744 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
3745 }
3746
3747 if (inst->op == TGSI_OPCODE_BGNLOOP)
3748 depth++;
3749 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3750 if (--depth == 0) {
3751 for (k = 0; k < this->next_temp; k++) {
3752 if (last_writes[k] == -2) {
3753 last_writes[k] = i;
3754 }
3755 }
3756 }
3757 assert(depth >= 0);
3758 i++;
3759 }
3760 }
3761
3762 /*
3763 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3764 * channels for copy propagation and updates following instructions to
3765 * use the original versions.
3766 *
3767 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3768 * will occur. As an example, a TXP production before this pass:
3769 *
3770 * 0: MOV TEMP[1], INPUT[4].xyyy;
3771 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3772 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3773 *
3774 * and after:
3775 *
3776 * 0: MOV TEMP[1], INPUT[4].xyyy;
3777 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3778 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3779 *
3780 * which allows for dead code elimination on TEMP[1]'s writes.
3781 */
3782 void
3783 glsl_to_tgsi_visitor::copy_propagate(void)
3784 {
3785 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3786 glsl_to_tgsi_instruction *,
3787 this->next_temp * 4);
3788 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3789 int level = 0;
3790
3791 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3792 assert(inst->dst[0].file != PROGRAM_TEMPORARY
3793 || inst->dst[0].index < this->next_temp);
3794
3795 /* First, do any copy propagation possible into the src regs. */
3796 for (int r = 0; r < 3; r++) {
3797 glsl_to_tgsi_instruction *first = NULL;
3798 bool good = true;
3799 int acp_base = inst->src[r].index * 4;
3800
3801 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3802 inst->src[r].reladdr ||
3803 inst->src[r].reladdr2)
3804 continue;
3805
3806 /* See if we can find entries in the ACP consisting of MOVs
3807 * from the same src register for all the swizzled channels
3808 * of this src register reference.
3809 */
3810 for (int i = 0; i < 4; i++) {
3811 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3812 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3813
3814 if (!copy_chan) {
3815 good = false;
3816 break;
3817 }
3818
3819 assert(acp_level[acp_base + src_chan] <= level);
3820
3821 if (!first) {
3822 first = copy_chan;
3823 } else {
3824 if (first->src[0].file != copy_chan->src[0].file ||
3825 first->src[0].index != copy_chan->src[0].index ||
3826 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
3827 first->src[0].index2D != copy_chan->src[0].index2D) {
3828 good = false;
3829 break;
3830 }
3831 }
3832 }
3833
3834 if (good) {
3835 /* We've now validated that we can copy-propagate to
3836 * replace this src register reference. Do it.
3837 */
3838 inst->src[r].file = first->src[0].file;
3839 inst->src[r].index = first->src[0].index;
3840 inst->src[r].index2D = first->src[0].index2D;
3841 inst->src[r].has_index2 = first->src[0].has_index2;
3842 inst->src[r].double_reg2 = first->src[0].double_reg2;
3843 inst->src[r].array_id = first->src[0].array_id;
3844
3845 int swizzle = 0;
3846 for (int i = 0; i < 4; i++) {
3847 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3848 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3849 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
3850 }
3851 inst->src[r].swizzle = swizzle;
3852 }
3853 }
3854
3855 switch (inst->op) {
3856 case TGSI_OPCODE_BGNLOOP:
3857 case TGSI_OPCODE_ENDLOOP:
3858 /* End of a basic block, clear the ACP entirely. */
3859 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3860 break;
3861
3862 case TGSI_OPCODE_IF:
3863 case TGSI_OPCODE_UIF:
3864 ++level;
3865 break;
3866
3867 case TGSI_OPCODE_ENDIF:
3868 case TGSI_OPCODE_ELSE:
3869 /* Clear all channels written inside the block from the ACP, but
3870 * leaving those that were not touched.
3871 */
3872 for (int r = 0; r < this->next_temp; r++) {
3873 for (int c = 0; c < 4; c++) {
3874 if (!acp[4 * r + c])
3875 continue;
3876
3877 if (acp_level[4 * r + c] >= level)
3878 acp[4 * r + c] = NULL;
3879 }
3880 }
3881 if (inst->op == TGSI_OPCODE_ENDIF)
3882 --level;
3883 break;
3884
3885 default:
3886 /* Continuing the block, clear any written channels from
3887 * the ACP.
3888 */
3889 for (int d = 0; d < 2; d++) {
3890 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
3891 /* Any temporary might be written, so no copy propagation
3892 * across this instruction.
3893 */
3894 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3895 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
3896 inst->dst[d].reladdr) {
3897 /* Any output might be written, so no copy propagation
3898 * from outputs across this instruction.
3899 */
3900 for (int r = 0; r < this->next_temp; r++) {
3901 for (int c = 0; c < 4; c++) {
3902 if (!acp[4 * r + c])
3903 continue;
3904
3905 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3906 acp[4 * r + c] = NULL;
3907 }
3908 }
3909 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
3910 inst->dst[d].file == PROGRAM_OUTPUT) {
3911 /* Clear where it's used as dst. */
3912 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
3913 for (int c = 0; c < 4; c++) {
3914 if (inst->dst[d].writemask & (1 << c))
3915 acp[4 * inst->dst[d].index + c] = NULL;
3916 }
3917 }
3918
3919 /* Clear where it's used as src. */
3920 for (int r = 0; r < this->next_temp; r++) {
3921 for (int c = 0; c < 4; c++) {
3922 if (!acp[4 * r + c])
3923 continue;
3924
3925 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3926
3927 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
3928 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
3929 inst->dst[d].writemask & (1 << src_chan)) {
3930 acp[4 * r + c] = NULL;
3931 }
3932 }
3933 }
3934 }
3935 }
3936 break;
3937 }
3938
3939 /* If this is a copy, add it to the ACP. */
3940 if (inst->op == TGSI_OPCODE_MOV &&
3941 inst->dst[0].file == PROGRAM_TEMPORARY &&
3942 !(inst->dst[0].file == inst->src[0].file &&
3943 inst->dst[0].index == inst->src[0].index) &&
3944 !inst->dst[0].reladdr &&
3945 !inst->dst[0].reladdr2 &&
3946 !inst->saturate &&
3947 inst->src[0].file != PROGRAM_ARRAY &&
3948 !inst->src[0].reladdr &&
3949 !inst->src[0].reladdr2 &&
3950 !inst->src[0].negate) {
3951 for (int i = 0; i < 4; i++) {
3952 if (inst->dst[0].writemask & (1 << i)) {
3953 acp[4 * inst->dst[0].index + i] = inst;
3954 acp_level[4 * inst->dst[0].index + i] = level;
3955 }
3956 }
3957 }
3958 }
3959
3960 ralloc_free(acp_level);
3961 ralloc_free(acp);
3962 }
3963
3964 /*
3965 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3966 * code elimination.
3967 *
3968 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3969 * will occur. As an example, a TXP production after copy propagation but
3970 * before this pass:
3971 *
3972 * 0: MOV TEMP[1], INPUT[4].xyyy;
3973 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3974 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3975 *
3976 * and after this pass:
3977 *
3978 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3979 */
3980 int
3981 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3982 {
3983 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3984 glsl_to_tgsi_instruction *,
3985 this->next_temp * 4);
3986 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3987 int level = 0;
3988 int removed = 0;
3989
3990 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3991 assert(inst->dst[0].file != PROGRAM_TEMPORARY
3992 || inst->dst[0].index < this->next_temp);
3993
3994 switch (inst->op) {
3995 case TGSI_OPCODE_BGNLOOP:
3996 case TGSI_OPCODE_ENDLOOP:
3997 case TGSI_OPCODE_CONT:
3998 case TGSI_OPCODE_BRK:
3999 /* End of a basic block, clear the write array entirely.
4000 *
4001 * This keeps us from killing dead code when the writes are
4002 * on either side of a loop, even when the register isn't touched
4003 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
4004 * dead code of this type, so it shouldn't make a difference as long as
4005 * the dead code elimination pass in the GLSL compiler does its job.
4006 */
4007 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4008 break;
4009
4010 case TGSI_OPCODE_ENDIF:
4011 case TGSI_OPCODE_ELSE:
4012 /* Promote the recorded level of all channels written inside the
4013 * preceding if or else block to the level above the if/else block.
4014 */
4015 for (int r = 0; r < this->next_temp; r++) {
4016 for (int c = 0; c < 4; c++) {
4017 if (!writes[4 * r + c])
4018 continue;
4019
4020 if (write_level[4 * r + c] == level)
4021 write_level[4 * r + c] = level-1;
4022 }
4023 }
4024 if(inst->op == TGSI_OPCODE_ENDIF)
4025 --level;
4026 break;
4027
4028 case TGSI_OPCODE_IF:
4029 case TGSI_OPCODE_UIF:
4030 ++level;
4031 /* fallthrough to default case to mark the condition as read */
4032 default:
4033 /* Continuing the block, clear any channels from the write array that
4034 * are read by this instruction.
4035 */
4036 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
4037 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
4038 /* Any temporary might be read, so no dead code elimination
4039 * across this instruction.
4040 */
4041 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4042 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
4043 /* Clear where it's used as src. */
4044 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
4045 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
4046 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
4047 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
4048
4049 for (int c = 0; c < 4; c++) {
4050 if (src_chans & (1 << c))
4051 writes[4 * inst->src[i].index + c] = NULL;
4052 }
4053 }
4054 }
4055 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
4056 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
4057 /* Any temporary might be read, so no dead code elimination
4058 * across this instruction.
4059 */
4060 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4061 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
4062 /* Clear where it's used as src. */
4063 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
4064 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
4065 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
4066 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
4067
4068 for (int c = 0; c < 4; c++) {
4069 if (src_chans & (1 << c))
4070 writes[4 * inst->tex_offsets[i].index + c] = NULL;
4071 }
4072 }
4073 }
4074 break;
4075 }
4076
4077 /* If this instruction writes to a temporary, add it to the write array.
4078 * If there is already an instruction in the write array for one or more
4079 * of the channels, flag that channel write as dead.
4080 */
4081 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
4082 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
4083 !inst->dst[i].reladdr) {
4084 for (int c = 0; c < 4; c++) {
4085 if (inst->dst[i].writemask & (1 << c)) {
4086 if (writes[4 * inst->dst[i].index + c]) {
4087 if (write_level[4 * inst->dst[i].index + c] < level)
4088 continue;
4089 else
4090 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
4091 }
4092 writes[4 * inst->dst[i].index + c] = inst;
4093 write_level[4 * inst->dst[i].index + c] = level;
4094 }
4095 }
4096 }
4097 }
4098 }
4099
4100 /* Anything still in the write array at this point is dead code. */
4101 for (int r = 0; r < this->next_temp; r++) {
4102 for (int c = 0; c < 4; c++) {
4103 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
4104 if (inst)
4105 inst->dead_mask |= (1 << c);
4106 }
4107 }
4108
4109 /* Now actually remove the instructions that are completely dead and update
4110 * the writemask of other instructions with dead channels.
4111 */
4112 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4113 if (!inst->dead_mask || !inst->dst[0].writemask)
4114 continue;
4115 else if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
4116 inst->remove();
4117 delete inst;
4118 removed++;
4119 } else {
4120 if (inst->dst[0].type == GLSL_TYPE_DOUBLE) {
4121 if (inst->dead_mask == WRITEMASK_XY ||
4122 inst->dead_mask == WRITEMASK_ZW)
4123 inst->dst[0].writemask &= ~(inst->dead_mask);
4124 } else
4125 inst->dst[0].writemask &= ~(inst->dead_mask);
4126 }
4127 }
4128
4129 ralloc_free(write_level);
4130 ralloc_free(writes);
4131
4132 return removed;
4133 }
4134
4135 /* merge DFRACEXP instructions into one. */
4136 void
4137 glsl_to_tgsi_visitor::merge_two_dsts(void)
4138 {
4139 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4140 glsl_to_tgsi_instruction *inst2;
4141 bool merged;
4142 if (num_inst_dst_regs(inst) != 2)
4143 continue;
4144
4145 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
4146 inst->dst[1].file != PROGRAM_UNDEFINED)
4147 continue;
4148
4149 inst2 = (glsl_to_tgsi_instruction *) inst->next;
4150 do {
4151
4152 if (inst->src[0].file == inst2->src[0].file &&
4153 inst->src[0].index == inst2->src[0].index &&
4154 inst->src[0].type == inst2->src[0].type &&
4155 inst->src[0].swizzle == inst2->src[0].swizzle)
4156 break;
4157 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
4158 } while (inst2);
4159
4160 if (!inst2)
4161 continue;
4162 merged = false;
4163 if (inst->dst[0].file == PROGRAM_UNDEFINED) {
4164 merged = true;
4165 inst->dst[0] = inst2->dst[0];
4166 } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
4167 inst->dst[1] = inst2->dst[1];
4168 merged = true;
4169 }
4170
4171 if (merged) {
4172 inst2->remove();
4173 delete inst2;
4174 }
4175 }
4176 }
4177
4178 /* Merges temporary registers together where possible to reduce the number of
4179 * registers needed to run a program.
4180 *
4181 * Produces optimal code only after copy propagation and dead code elimination
4182 * have been run. */
4183 void
4184 glsl_to_tgsi_visitor::merge_registers(void)
4185 {
4186 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
4187 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
4188 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
4189 int i, j;
4190 int num_renames = 0;
4191
4192 /* Read the indices of the last read and first write to each temp register
4193 * into an array so that we don't have to traverse the instruction list as
4194 * much. */
4195 for (i = 0; i < this->next_temp; i++) {
4196 last_reads[i] = -1;
4197 first_writes[i] = -1;
4198 }
4199 get_last_temp_read_first_temp_write(last_reads, first_writes);
4200
4201 /* Start looking for registers with non-overlapping usages that can be
4202 * merged together. */
4203 for (i = 0; i < this->next_temp; i++) {
4204 /* Don't touch unused registers. */
4205 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
4206
4207 for (j = 0; j < this->next_temp; j++) {
4208 /* Don't touch unused registers. */
4209 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
4210
4211 /* We can merge the two registers if the first write to j is after or
4212 * in the same instruction as the last read from i. Note that the
4213 * register at index i will always be used earlier or at the same time
4214 * as the register at index j. */
4215 if (first_writes[i] <= first_writes[j] &&
4216 last_reads[i] <= first_writes[j]) {
4217 renames[num_renames].old_reg = j;
4218 renames[num_renames].new_reg = i;
4219 num_renames++;
4220
4221 /* Update the first_writes and last_reads arrays with the new
4222 * values for the merged register index, and mark the newly unused
4223 * register index as such. */
4224 last_reads[i] = last_reads[j];
4225 first_writes[j] = -1;
4226 last_reads[j] = -1;
4227 }
4228 }
4229 }
4230
4231 rename_temp_registers(num_renames, renames);
4232 ralloc_free(renames);
4233 ralloc_free(last_reads);
4234 ralloc_free(first_writes);
4235 }
4236
4237 /* Reassign indices to temporary registers by reusing unused indices created
4238 * by optimization passes. */
4239 void
4240 glsl_to_tgsi_visitor::renumber_registers(void)
4241 {
4242 int i = 0;
4243 int new_index = 0;
4244 int *first_reads = rzalloc_array(mem_ctx, int, this->next_temp);
4245 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
4246 int num_renames = 0;
4247 for (i = 0; i < this->next_temp; i++) {
4248 first_reads[i] = -1;
4249 }
4250 get_first_temp_read(first_reads);
4251
4252 for (i = 0; i < this->next_temp; i++) {
4253 if (first_reads[i] < 0) continue;
4254 if (i != new_index) {
4255 renames[num_renames].old_reg = i;
4256 renames[num_renames].new_reg = new_index;
4257 num_renames++;
4258 }
4259 new_index++;
4260 }
4261
4262 rename_temp_registers(num_renames, renames);
4263 this->next_temp = new_index;
4264 ralloc_free(renames);
4265 ralloc_free(first_reads);
4266 }
4267
4268 /* ------------------------- TGSI conversion stuff -------------------------- */
4269 struct label {
4270 unsigned branch_target;
4271 unsigned token;
4272 };
4273
4274 /**
4275 * Intermediate state used during shader translation.
4276 */
4277 struct st_translate {
4278 struct ureg_program *ureg;
4279
4280 unsigned temps_size;
4281 struct ureg_dst *temps;
4282
4283 struct ureg_dst *arrays;
4284 unsigned num_temp_arrays;
4285 struct ureg_src *constants;
4286 int num_constants;
4287 struct ureg_src *immediates;
4288 int num_immediates;
4289 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4290 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4291 struct ureg_dst address[3];
4292 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4293 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4294 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
4295 unsigned *array_sizes;
4296 struct array_decl *input_arrays;
4297 struct array_decl *output_arrays;
4298
4299 const GLuint *inputMapping;
4300 const GLuint *outputMapping;
4301
4302 /* For every instruction that contains a label (eg CALL), keep
4303 * details so that we can go back afterwards and emit the correct
4304 * tgsi instruction number for each label.
4305 */
4306 struct label *labels;
4307 unsigned labels_size;
4308 unsigned labels_count;
4309
4310 /* Keep a record of the tgsi instruction number that each mesa
4311 * instruction starts at, will be used to fix up labels after
4312 * translation.
4313 */
4314 unsigned *insn;
4315 unsigned insn_size;
4316 unsigned insn_count;
4317
4318 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4319
4320 boolean error;
4321 };
4322
4323 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4324 const unsigned _mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4325 /* Vertex shader
4326 */
4327 TGSI_SEMANTIC_VERTEXID,
4328 TGSI_SEMANTIC_INSTANCEID,
4329 TGSI_SEMANTIC_VERTEXID_NOBASE,
4330 TGSI_SEMANTIC_BASEVERTEX,
4331
4332 /* Geometry shader
4333 */
4334 TGSI_SEMANTIC_INVOCATIONID,
4335
4336 /* Fragment shader
4337 */
4338 TGSI_SEMANTIC_FACE,
4339 TGSI_SEMANTIC_SAMPLEID,
4340 TGSI_SEMANTIC_SAMPLEPOS,
4341 TGSI_SEMANTIC_SAMPLEMASK,
4342 TGSI_SEMANTIC_HELPER_INVOCATION,
4343
4344 /* Tessellation shaders
4345 */
4346 TGSI_SEMANTIC_TESSCOORD,
4347 TGSI_SEMANTIC_VERTICESIN,
4348 TGSI_SEMANTIC_PRIMID,
4349 TGSI_SEMANTIC_TESSOUTER,
4350 TGSI_SEMANTIC_TESSINNER,
4351 };
4352
4353 /**
4354 * Make note of a branch to a label in the TGSI code.
4355 * After we've emitted all instructions, we'll go over the list
4356 * of labels built here and patch the TGSI code with the actual
4357 * location of each label.
4358 */
4359 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4360 {
4361 unsigned i;
4362
4363 if (t->labels_count + 1 >= t->labels_size) {
4364 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4365 t->labels = (struct label *)realloc(t->labels,
4366 t->labels_size * sizeof(struct label));
4367 if (t->labels == NULL) {
4368 static unsigned dummy;
4369 t->error = TRUE;
4370 return &dummy;
4371 }
4372 }
4373
4374 i = t->labels_count++;
4375 t->labels[i].branch_target = branch_target;
4376 return &t->labels[i].token;
4377 }
4378
4379 /**
4380 * Called prior to emitting the TGSI code for each instruction.
4381 * Allocate additional space for instructions if needed.
4382 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4383 * the next TGSI instruction.
4384 */
4385 static void set_insn_start(struct st_translate *t, unsigned start)
4386 {
4387 if (t->insn_count + 1 >= t->insn_size) {
4388 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4389 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4390 if (t->insn == NULL) {
4391 t->error = TRUE;
4392 return;
4393 }
4394 }
4395
4396 t->insn[t->insn_count++] = start;
4397 }
4398
4399 /**
4400 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4401 */
4402 static struct ureg_src
4403 emit_immediate(struct st_translate *t,
4404 gl_constant_value values[4],
4405 int type, int size)
4406 {
4407 struct ureg_program *ureg = t->ureg;
4408
4409 switch(type)
4410 {
4411 case GL_FLOAT:
4412 return ureg_DECL_immediate(ureg, &values[0].f, size);
4413 case GL_DOUBLE:
4414 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
4415 case GL_INT:
4416 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4417 case GL_UNSIGNED_INT:
4418 case GL_BOOL:
4419 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4420 default:
4421 assert(!"should not get here - type must be float, int, uint, or bool");
4422 return ureg_src_undef();
4423 }
4424 }
4425
4426 /**
4427 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4428 */
4429 static struct ureg_dst
4430 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
4431 unsigned array_id)
4432 {
4433 unsigned array;
4434
4435 switch(file) {
4436 case PROGRAM_UNDEFINED:
4437 return ureg_dst_undef();
4438
4439 case PROGRAM_TEMPORARY:
4440 /* Allocate space for temporaries on demand. */
4441 if (index >= t->temps_size) {
4442 const int inc = 4096;
4443
4444 t->temps = (struct ureg_dst*)
4445 realloc(t->temps,
4446 (t->temps_size + inc) * sizeof(struct ureg_dst));
4447 if (!t->temps)
4448 return ureg_dst_undef();
4449
4450 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
4451 t->temps_size += inc;
4452 }
4453
4454 if (ureg_dst_is_undef(t->temps[index]))
4455 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4456
4457 return t->temps[index];
4458
4459 case PROGRAM_ARRAY:
4460 array = index >> 16;
4461
4462 assert(array < t->num_temp_arrays);
4463
4464 if (ureg_dst_is_undef(t->arrays[array]))
4465 t->arrays[array] = ureg_DECL_array_temporary(
4466 t->ureg, t->array_sizes[array], TRUE);
4467
4468 return ureg_dst_array_offset(t->arrays[array],
4469 (int)(index & 0xFFFF) - 0x8000);
4470
4471 case PROGRAM_OUTPUT:
4472 if (!array_id) {
4473 if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4474 assert(index < FRAG_RESULT_MAX);
4475 else if (t->procType == TGSI_PROCESSOR_TESS_CTRL ||
4476 t->procType == TGSI_PROCESSOR_TESS_EVAL)
4477 assert(index < VARYING_SLOT_TESS_MAX);
4478 else
4479 assert(index < VARYING_SLOT_MAX);
4480
4481 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
4482 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
4483 return t->outputs[t->outputMapping[index]];
4484 }
4485 else {
4486 struct array_decl *decl = &t->output_arrays[array_id-1];
4487 unsigned mesa_index = decl->mesa_index;
4488 int slot = t->outputMapping[mesa_index];
4489
4490 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
4491 assert(t->outputs[slot].ArrayID == array_id);
4492 return ureg_dst_array_offset(t->outputs[slot], index - mesa_index);
4493 }
4494
4495 case PROGRAM_ADDRESS:
4496 return t->address[index];
4497
4498 default:
4499 assert(!"unknown dst register file");
4500 return ureg_dst_undef();
4501 }
4502 }
4503
4504 /**
4505 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4506 */
4507 static struct ureg_src
4508 src_register(struct st_translate *t, const st_src_reg *reg)
4509 {
4510 int index = reg->index;
4511 int double_reg2 = reg->double_reg2 ? 1 : 0;
4512
4513 switch(reg->file) {
4514 case PROGRAM_UNDEFINED:
4515 return ureg_imm4f(t->ureg, 0, 0, 0, 0);
4516
4517 case PROGRAM_TEMPORARY:
4518 case PROGRAM_ARRAY:
4519 case PROGRAM_OUTPUT:
4520 return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
4521
4522 case PROGRAM_UNIFORM:
4523 assert(reg->index >= 0);
4524 return reg->index < t->num_constants ?
4525 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
4526 case PROGRAM_STATE_VAR:
4527 case PROGRAM_CONSTANT: /* ie, immediate */
4528 if (reg->has_index2)
4529 return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
4530 else
4531 return reg->index >= 0 && reg->index < t->num_constants ?
4532 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
4533
4534 case PROGRAM_IMMEDIATE:
4535 assert(reg->index >= 0 && reg->index < t->num_immediates);
4536 return t->immediates[reg->index];
4537
4538 case PROGRAM_INPUT:
4539 /* GLSL inputs are 64-bit containers, so we have to
4540 * map back to the original index and add the offset after
4541 * mapping. */
4542 index -= double_reg2;
4543 if (!reg->array_id) {
4544 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
4545 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
4546 return t->inputs[t->inputMapping[index]];
4547 }
4548 else {
4549 struct array_decl *decl = &t->input_arrays[reg->array_id-1];
4550 unsigned mesa_index = decl->mesa_index;
4551 int slot = t->inputMapping[mesa_index];
4552
4553 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
4554 assert(t->inputs[slot].ArrayID == reg->array_id);
4555 return ureg_src_array_offset(t->inputs[slot], index - mesa_index);
4556 }
4557
4558 case PROGRAM_ADDRESS:
4559 return ureg_src(t->address[reg->index]);
4560
4561 case PROGRAM_SYSTEM_VALUE:
4562 assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
4563 return t->systemValues[reg->index];
4564
4565 default:
4566 assert(!"unknown src register file");
4567 return ureg_src_undef();
4568 }
4569 }
4570
4571 /**
4572 * Create a TGSI ureg_dst register from an st_dst_reg.
4573 */
4574 static struct ureg_dst
4575 translate_dst(struct st_translate *t,
4576 const st_dst_reg *dst_reg,
4577 bool saturate)
4578 {
4579 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
4580 dst_reg->array_id);
4581
4582 if (dst.File == TGSI_FILE_NULL)
4583 return dst;
4584
4585 dst = ureg_writemask(dst, dst_reg->writemask);
4586
4587 if (saturate)
4588 dst = ureg_saturate(dst);
4589
4590 if (dst_reg->reladdr != NULL) {
4591 assert(dst_reg->file != PROGRAM_TEMPORARY);
4592 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4593 }
4594
4595 if (dst_reg->has_index2) {
4596 if (dst_reg->reladdr2)
4597 dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
4598 dst_reg->index2D);
4599 else
4600 dst = ureg_dst_dimension(dst, dst_reg->index2D);
4601 }
4602
4603 return dst;
4604 }
4605
4606 /**
4607 * Create a TGSI ureg_src register from an st_src_reg.
4608 */
4609 static struct ureg_src
4610 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4611 {
4612 struct ureg_src src = src_register(t, src_reg);
4613
4614 if (src_reg->has_index2) {
4615 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
4616 * and UBO constant buffers (buffer, position).
4617 */
4618 if (src_reg->reladdr2)
4619 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
4620 src_reg->index2D);
4621 else
4622 src = ureg_src_dimension(src, src_reg->index2D);
4623 }
4624
4625 src = ureg_swizzle(src,
4626 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4627 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4628 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4629 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4630
4631 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4632 src = ureg_negate(src);
4633
4634 if (src_reg->reladdr != NULL) {
4635 assert(src_reg->file != PROGRAM_TEMPORARY);
4636 src = ureg_src_indirect(src, ureg_src(t->address[0]));
4637 }
4638
4639 return src;
4640 }
4641
4642 static struct tgsi_texture_offset
4643 translate_tex_offset(struct st_translate *t,
4644 const st_src_reg *in_offset, int idx)
4645 {
4646 struct tgsi_texture_offset offset;
4647 struct ureg_src imm_src;
4648 struct ureg_dst dst;
4649 int array;
4650
4651 switch (in_offset->file) {
4652 case PROGRAM_IMMEDIATE:
4653 assert(in_offset->index >= 0 && in_offset->index < t->num_immediates);
4654 imm_src = t->immediates[in_offset->index];
4655
4656 offset.File = imm_src.File;
4657 offset.Index = imm_src.Index;
4658 offset.SwizzleX = imm_src.SwizzleX;
4659 offset.SwizzleY = imm_src.SwizzleY;
4660 offset.SwizzleZ = imm_src.SwizzleZ;
4661 offset.Padding = 0;
4662 break;
4663 case PROGRAM_TEMPORARY:
4664 imm_src = ureg_src(t->temps[in_offset->index]);
4665 offset.File = imm_src.File;
4666 offset.Index = imm_src.Index;
4667 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4668 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4669 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4670 offset.Padding = 0;
4671 break;
4672 case PROGRAM_ARRAY:
4673 array = in_offset->index >> 16;
4674
4675 assert(array >= 0);
4676 assert(array < (int)t->num_temp_arrays);
4677
4678 dst = t->arrays[array];
4679 offset.File = dst.File;
4680 offset.Index = dst.Index + (in_offset->index & 0xFFFF) - 0x8000;
4681 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4682 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4683 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4684 offset.Padding = 0;
4685 break;
4686 default:
4687 break;
4688 }
4689 return offset;
4690 }
4691
4692 static void
4693 compile_tgsi_instruction(struct st_translate *t,
4694 const glsl_to_tgsi_instruction *inst)
4695 {
4696 struct ureg_program *ureg = t->ureg;
4697 GLuint i;
4698 struct ureg_dst dst[2];
4699 struct ureg_src src[4];
4700 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4701
4702 unsigned num_dst;
4703 unsigned num_src;
4704 unsigned tex_target;
4705
4706 num_dst = num_inst_dst_regs(inst);
4707 num_src = num_inst_src_regs(inst);
4708
4709 for (i = 0; i < num_dst; i++)
4710 dst[i] = translate_dst(t,
4711 &inst->dst[i],
4712 inst->saturate);
4713
4714 for (i = 0; i < num_src; i++)
4715 src[i] = translate_src(t, &inst->src[i]);
4716
4717 switch(inst->op) {
4718 case TGSI_OPCODE_BGNLOOP:
4719 case TGSI_OPCODE_CAL:
4720 case TGSI_OPCODE_ELSE:
4721 case TGSI_OPCODE_ENDLOOP:
4722 case TGSI_OPCODE_IF:
4723 case TGSI_OPCODE_UIF:
4724 assert(num_dst == 0);
4725 ureg_label_insn(ureg,
4726 inst->op,
4727 src, num_src,
4728 get_label(t,
4729 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4730 return;
4731
4732 case TGSI_OPCODE_TEX:
4733 case TGSI_OPCODE_TXB:
4734 case TGSI_OPCODE_TXD:
4735 case TGSI_OPCODE_TXL:
4736 case TGSI_OPCODE_TXP:
4737 case TGSI_OPCODE_TXQ:
4738 case TGSI_OPCODE_TXQS:
4739 case TGSI_OPCODE_TXF:
4740 case TGSI_OPCODE_TEX2:
4741 case TGSI_OPCODE_TXB2:
4742 case TGSI_OPCODE_TXL2:
4743 case TGSI_OPCODE_TG4:
4744 case TGSI_OPCODE_LODQ:
4745 src[num_src] = t->samplers[inst->sampler.index];
4746 assert(src[num_src].File != TGSI_FILE_NULL);
4747 if (inst->sampler.reladdr)
4748 src[num_src] =
4749 ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
4750 num_src++;
4751 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4752 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i], i);
4753 }
4754 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4755
4756 ureg_tex_insn(ureg,
4757 inst->op,
4758 dst, num_dst,
4759 tex_target,
4760 texoffsets, inst->tex_offset_num_offset,
4761 src, num_src);
4762 return;
4763
4764 case TGSI_OPCODE_SCS:
4765 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4766 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4767 break;
4768
4769 default:
4770 ureg_insn(ureg,
4771 inst->op,
4772 dst, num_dst,
4773 src, num_src);
4774 break;
4775 }
4776 }
4777
4778 /**
4779 * Emit the TGSI instructions for inverting and adjusting WPOS.
4780 * This code is unavoidable because it also depends on whether
4781 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4782 */
4783 static void
4784 emit_wpos_adjustment( struct st_translate *t,
4785 int wpos_transform_const,
4786 boolean invert,
4787 GLfloat adjX, GLfloat adjY[2])
4788 {
4789 struct ureg_program *ureg = t->ureg;
4790
4791 assert(wpos_transform_const >= 0);
4792
4793 /* Fragment program uses fragment position input.
4794 * Need to replace instances of INPUT[WPOS] with temp T
4795 * where T = INPUT[WPOS] is inverted by Y.
4796 */
4797 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
4798 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4799 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
4800
4801 /* First, apply the coordinate shift: */
4802 if (adjX || adjY[0] || adjY[1]) {
4803 if (adjY[0] != adjY[1]) {
4804 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4805 * depending on whether inversion is actually going to be applied
4806 * or not, which is determined by testing against the inversion
4807 * state variable used below, which will be either +1 or -1.
4808 */
4809 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4810
4811 ureg_CMP(ureg, adj_temp,
4812 ureg_scalar(wpostrans, invert ? 2 : 0),
4813 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4814 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4815 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4816 } else {
4817 ureg_ADD(ureg, wpos_temp, wpos_input,
4818 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4819 }
4820 wpos_input = ureg_src(wpos_temp);
4821 } else {
4822 /* MOV wpos_temp, input[wpos]
4823 */
4824 ureg_MOV( ureg, wpos_temp, wpos_input );
4825 }
4826
4827 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4828 * inversion/identity, or the other way around if we're drawing to an FBO.
4829 */
4830 if (invert) {
4831 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4832 */
4833 ureg_MAD( ureg,
4834 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4835 wpos_input,
4836 ureg_scalar(wpostrans, 0),
4837 ureg_scalar(wpostrans, 1));
4838 } else {
4839 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4840 */
4841 ureg_MAD( ureg,
4842 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4843 wpos_input,
4844 ureg_scalar(wpostrans, 2),
4845 ureg_scalar(wpostrans, 3));
4846 }
4847
4848 /* Use wpos_temp as position input from here on:
4849 */
4850 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
4851 }
4852
4853
4854 /**
4855 * Emit fragment position/ooordinate code.
4856 */
4857 static void
4858 emit_wpos(struct st_context *st,
4859 struct st_translate *t,
4860 const struct gl_program *program,
4861 struct ureg_program *ureg,
4862 int wpos_transform_const)
4863 {
4864 const struct gl_fragment_program *fp =
4865 (const struct gl_fragment_program *) program;
4866 struct pipe_screen *pscreen = st->pipe->screen;
4867 GLfloat adjX = 0.0f;
4868 GLfloat adjY[2] = { 0.0f, 0.0f };
4869 boolean invert = FALSE;
4870
4871 /* Query the pixel center conventions supported by the pipe driver and set
4872 * adjX, adjY to help out if it cannot handle the requested one internally.
4873 *
4874 * The bias of the y-coordinate depends on whether y-inversion takes place
4875 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4876 * drawing to an FBO (causes additional inversion), and whether the the pipe
4877 * driver origin and the requested origin differ (the latter condition is
4878 * stored in the 'invert' variable).
4879 *
4880 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4881 *
4882 * center shift only:
4883 * i -> h: +0.5
4884 * h -> i: -0.5
4885 *
4886 * inversion only:
4887 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4888 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4889 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4890 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4891 *
4892 * inversion and center shift:
4893 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4894 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4895 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4896 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4897 */
4898 if (fp->OriginUpperLeft) {
4899 /* Fragment shader wants origin in upper-left */
4900 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4901 /* the driver supports upper-left origin */
4902 }
4903 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4904 /* the driver supports lower-left origin, need to invert Y */
4905 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
4906 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4907 invert = TRUE;
4908 }
4909 else
4910 assert(0);
4911 }
4912 else {
4913 /* Fragment shader wants origin in lower-left */
4914 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4915 /* the driver supports lower-left origin */
4916 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
4917 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4918 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4919 /* the driver supports upper-left origin, need to invert Y */
4920 invert = TRUE;
4921 else
4922 assert(0);
4923 }
4924
4925 if (fp->PixelCenterInteger) {
4926 /* Fragment shader wants pixel center integer */
4927 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4928 /* the driver supports pixel center integer */
4929 adjY[1] = 1.0f;
4930 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
4931 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4932 }
4933 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4934 /* the driver supports pixel center half integer, need to bias X,Y */
4935 adjX = -0.5f;
4936 adjY[0] = -0.5f;
4937 adjY[1] = 0.5f;
4938 }
4939 else
4940 assert(0);
4941 }
4942 else {
4943 /* Fragment shader wants pixel center half integer */
4944 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4945 /* the driver supports pixel center half integer */
4946 }
4947 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4948 /* the driver supports pixel center integer, need to bias X,Y */
4949 adjX = adjY[0] = adjY[1] = 0.5f;
4950 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
4951 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4952 }
4953 else
4954 assert(0);
4955 }
4956
4957 /* we invert after adjustment so that we avoid the MOV to temporary,
4958 * and reuse the adjustment ADD instead */
4959 emit_wpos_adjustment(t, wpos_transform_const, invert, adjX, adjY);
4960 }
4961
4962 /**
4963 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4964 * TGSI uses +1 for front, -1 for back.
4965 * This function converts the TGSI value to the GL value. Simply clamping/
4966 * saturating the value to [0,1] does the job.
4967 */
4968 static void
4969 emit_face_var(struct gl_context *ctx, struct st_translate *t)
4970 {
4971 struct ureg_program *ureg = t->ureg;
4972 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4973 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
4974
4975 if (ctx->Const.NativeIntegers) {
4976 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
4977 }
4978 else {
4979 /* MOV_SAT face_temp, input[face] */
4980 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
4981 }
4982
4983 /* Use face_temp as face input from here on: */
4984 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
4985 }
4986
4987 static bool
4988 find_array(unsigned attr, struct array_decl *arrays, unsigned count,
4989 unsigned *array_id, unsigned *array_size)
4990 {
4991 unsigned i;
4992
4993 for (i = 0; i < count; i++) {
4994 struct array_decl *decl = &arrays[i];
4995
4996 if (attr == decl->mesa_index) {
4997 *array_id = decl->array_id;
4998 *array_size = decl->array_size;
4999 assert(*array_size);
5000 return true;
5001 }
5002 }
5003 return false;
5004 }
5005
5006 /**
5007 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
5008 * \param program the program to translate
5009 * \param numInputs number of input registers used
5010 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
5011 * input indexes
5012 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
5013 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
5014 * each input
5015 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
5016 * \param interpLocation the TGSI_INTERPOLATE_LOC_* location for each input
5017 * \param numOutputs number of output registers used
5018 * \param outputMapping maps Mesa fragment program outputs to TGSI
5019 * generic outputs
5020 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
5021 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
5022 * each output
5023 *
5024 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
5025 */
5026 extern "C" enum pipe_error
5027 st_translate_program(
5028 struct gl_context *ctx,
5029 uint procType,
5030 struct ureg_program *ureg,
5031 glsl_to_tgsi_visitor *program,
5032 const struct gl_program *proginfo,
5033 GLuint numInputs,
5034 const GLuint inputMapping[],
5035 const GLuint inputSlotToAttr[],
5036 const ubyte inputSemanticName[],
5037 const ubyte inputSemanticIndex[],
5038 const GLuint interpMode[],
5039 const GLuint interpLocation[],
5040 GLuint numOutputs,
5041 const GLuint outputMapping[],
5042 const GLuint outputSlotToAttr[],
5043 const ubyte outputSemanticName[],
5044 const ubyte outputSemanticIndex[])
5045 {
5046 struct st_translate *t;
5047 unsigned i;
5048 enum pipe_error ret = PIPE_OK;
5049
5050 assert(numInputs <= ARRAY_SIZE(t->inputs));
5051 assert(numOutputs <= ARRAY_SIZE(t->outputs));
5052
5053 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_FRONT_FACE] ==
5054 TGSI_SEMANTIC_FACE);
5055 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_VERTEX_ID] ==
5056 TGSI_SEMANTIC_VERTEXID);
5057 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INSTANCE_ID] ==
5058 TGSI_SEMANTIC_INSTANCEID);
5059 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_ID] ==
5060 TGSI_SEMANTIC_SAMPLEID);
5061 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_POS] ==
5062 TGSI_SEMANTIC_SAMPLEPOS);
5063 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_MASK_IN] ==
5064 TGSI_SEMANTIC_SAMPLEMASK);
5065 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INVOCATION_ID] ==
5066 TGSI_SEMANTIC_INVOCATIONID);
5067 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE] ==
5068 TGSI_SEMANTIC_VERTEXID_NOBASE);
5069 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_BASE_VERTEX] ==
5070 TGSI_SEMANTIC_BASEVERTEX);
5071 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_TESS_COORD] ==
5072 TGSI_SEMANTIC_TESSCOORD);
5073 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_HELPER_INVOCATION] ==
5074 TGSI_SEMANTIC_HELPER_INVOCATION);
5075
5076 t = CALLOC_STRUCT(st_translate);
5077 if (!t) {
5078 ret = PIPE_ERROR_OUT_OF_MEMORY;
5079 goto out;
5080 }
5081
5082 t->procType = procType;
5083 t->inputMapping = inputMapping;
5084 t->outputMapping = outputMapping;
5085 t->ureg = ureg;
5086 t->num_temp_arrays = program->next_array;
5087 if (t->num_temp_arrays)
5088 t->arrays = (struct ureg_dst*)
5089 calloc(1, sizeof(t->arrays[0]) * t->num_temp_arrays);
5090
5091 /*
5092 * Declare input attributes.
5093 */
5094 switch (procType) {
5095 case TGSI_PROCESSOR_FRAGMENT:
5096 for (i = 0; i < numInputs; i++) {
5097 unsigned array_id = 0;
5098 unsigned array_size;
5099
5100 if (find_array(inputSlotToAttr[i], program->input_arrays,
5101 program->num_input_arrays, &array_id, &array_size)) {
5102 /* We've found an array. Declare it so. */
5103 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
5104 inputSemanticName[i], inputSemanticIndex[i],
5105 interpMode[i], 0, interpLocation[i],
5106 array_id, array_size);
5107 i += array_size - 1;
5108 }
5109 else {
5110 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
5111 inputSemanticName[i], inputSemanticIndex[i],
5112 interpMode[i], 0, interpLocation[i], 0, 1);
5113 }
5114 }
5115 break;
5116 case TGSI_PROCESSOR_GEOMETRY:
5117 case TGSI_PROCESSOR_TESS_EVAL:
5118 case TGSI_PROCESSOR_TESS_CTRL:
5119 for (i = 0; i < numInputs; i++) {
5120 unsigned array_id = 0;
5121 unsigned array_size;
5122
5123 if (find_array(inputSlotToAttr[i], program->input_arrays,
5124 program->num_input_arrays, &array_id, &array_size)) {
5125 /* We've found an array. Declare it so. */
5126 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
5127 inputSemanticIndex[i],
5128 array_id, array_size);
5129 i += array_size - 1;
5130 }
5131 else {
5132 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
5133 inputSemanticIndex[i], 0, 1);
5134 }
5135 }
5136 break;
5137 case TGSI_PROCESSOR_VERTEX:
5138 for (i = 0; i < numInputs; i++) {
5139 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
5140 }
5141 break;
5142 default:
5143 assert(0);
5144 }
5145
5146 /*
5147 * Declare output attributes.
5148 */
5149 switch (procType) {
5150 case TGSI_PROCESSOR_FRAGMENT:
5151 break;
5152 case TGSI_PROCESSOR_GEOMETRY:
5153 case TGSI_PROCESSOR_TESS_EVAL:
5154 case TGSI_PROCESSOR_TESS_CTRL:
5155 case TGSI_PROCESSOR_VERTEX:
5156 for (i = 0; i < numOutputs; i++) {
5157 unsigned array_id = 0;
5158 unsigned array_size;
5159
5160 if (find_array(outputSlotToAttr[i], program->output_arrays,
5161 program->num_output_arrays, &array_id, &array_size)) {
5162 /* We've found an array. Declare it so. */
5163 t->outputs[i] = ureg_DECL_output_array(ureg,
5164 outputSemanticName[i],
5165 outputSemanticIndex[i],
5166 array_id, array_size);
5167 i += array_size - 1;
5168 }
5169 else {
5170 t->outputs[i] = ureg_DECL_output(ureg,
5171 outputSemanticName[i],
5172 outputSemanticIndex[i]);
5173 }
5174 }
5175 break;
5176 default:
5177 assert(0);
5178 }
5179
5180 if (procType == TGSI_PROCESSOR_FRAGMENT) {
5181 if (proginfo->InputsRead & VARYING_BIT_POS) {
5182 /* Must do this after setting up t->inputs. */
5183 emit_wpos(st_context(ctx), t, proginfo, ureg,
5184 program->wpos_transform_const);
5185 }
5186
5187 if (proginfo->InputsRead & VARYING_BIT_FACE)
5188 emit_face_var(ctx, t);
5189
5190 for (i = 0; i < numOutputs; i++) {
5191 switch (outputSemanticName[i]) {
5192 case TGSI_SEMANTIC_POSITION:
5193 t->outputs[i] = ureg_DECL_output(ureg,
5194 TGSI_SEMANTIC_POSITION, /* Z/Depth */
5195 outputSemanticIndex[i]);
5196 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
5197 break;
5198 case TGSI_SEMANTIC_STENCIL:
5199 t->outputs[i] = ureg_DECL_output(ureg,
5200 TGSI_SEMANTIC_STENCIL, /* Stencil */
5201 outputSemanticIndex[i]);
5202 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
5203 break;
5204 case TGSI_SEMANTIC_COLOR:
5205 t->outputs[i] = ureg_DECL_output(ureg,
5206 TGSI_SEMANTIC_COLOR,
5207 outputSemanticIndex[i]);
5208 break;
5209 case TGSI_SEMANTIC_SAMPLEMASK:
5210 t->outputs[i] = ureg_DECL_output(ureg,
5211 TGSI_SEMANTIC_SAMPLEMASK,
5212 outputSemanticIndex[i]);
5213 /* TODO: If we ever support more than 32 samples, this will have
5214 * to become an array.
5215 */
5216 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5217 break;
5218 default:
5219 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
5220 ret = PIPE_ERROR_BAD_INPUT;
5221 goto out;
5222 }
5223 }
5224 }
5225 else if (procType == TGSI_PROCESSOR_VERTEX) {
5226 for (i = 0; i < numOutputs; i++) {
5227 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
5228 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
5229 ureg_MOV(ureg,
5230 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
5231 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
5232 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5233 }
5234 }
5235 }
5236
5237 /* Declare address register.
5238 */
5239 if (program->num_address_regs > 0) {
5240 assert(program->num_address_regs <= 3);
5241 for (int i = 0; i < program->num_address_regs; i++)
5242 t->address[i] = ureg_DECL_address(ureg);
5243 }
5244
5245 /* Declare misc input registers
5246 */
5247 {
5248 GLbitfield sysInputs = proginfo->SystemValuesRead;
5249 unsigned numSys = 0;
5250 for (i = 0; sysInputs; i++) {
5251 if (sysInputs & (1 << i)) {
5252 unsigned semName = _mesa_sysval_to_semantic[i];
5253 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
5254 if (semName == TGSI_SEMANTIC_INSTANCEID ||
5255 semName == TGSI_SEMANTIC_VERTEXID) {
5256 /* From Gallium perspective, these system values are always
5257 * integer, and require native integer support. However, if
5258 * native integer is supported on the vertex stage but not the
5259 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
5260 * assumes these system values are floats. To resolve the
5261 * inconsistency, we insert a U2F.
5262 */
5263 struct st_context *st = st_context(ctx);
5264 struct pipe_screen *pscreen = st->pipe->screen;
5265 assert(procType == TGSI_PROCESSOR_VERTEX);
5266 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
5267 (void) pscreen;
5268 if (!ctx->Const.NativeIntegers) {
5269 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
5270 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
5271 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
5272 }
5273 }
5274 numSys++;
5275 sysInputs &= ~(1 << i);
5276 }
5277 }
5278 }
5279
5280 t->array_sizes = program->array_sizes;
5281 t->input_arrays = program->input_arrays;
5282 t->output_arrays = program->output_arrays;
5283
5284 /* Emit constants and uniforms. TGSI uses a single index space for these,
5285 * so we put all the translated regs in t->constants.
5286 */
5287 if (proginfo->Parameters) {
5288 t->constants = (struct ureg_src *)
5289 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
5290 if (t->constants == NULL) {
5291 ret = PIPE_ERROR_OUT_OF_MEMORY;
5292 goto out;
5293 }
5294 t->num_constants = proginfo->Parameters->NumParameters;
5295
5296 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
5297 switch (proginfo->Parameters->Parameters[i].Type) {
5298 case PROGRAM_STATE_VAR:
5299 case PROGRAM_UNIFORM:
5300 t->constants[i] = ureg_DECL_constant(ureg, i);
5301 break;
5302
5303 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
5304 * addressing of the const buffer.
5305 * FIXME: Be smarter and recognize param arrays:
5306 * indirect addressing is only valid within the referenced
5307 * array.
5308 */
5309 case PROGRAM_CONSTANT:
5310 if (program->indirect_addr_consts)
5311 t->constants[i] = ureg_DECL_constant(ureg, i);
5312 else
5313 t->constants[i] = emit_immediate(t,
5314 proginfo->Parameters->ParameterValues[i],
5315 proginfo->Parameters->Parameters[i].DataType,
5316 4);
5317 break;
5318 default:
5319 break;
5320 }
5321 }
5322 }
5323
5324 if (program->shader) {
5325 unsigned num_ubos = program->shader->NumUniformBlocks;
5326
5327 for (i = 0; i < num_ubos; i++) {
5328 unsigned size = program->shader->UniformBlocks[i]->UniformBufferSize;
5329 unsigned num_const_vecs = (size + 15) / 16;
5330 unsigned first, last;
5331 assert(num_const_vecs > 0);
5332 first = 0;
5333 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
5334 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
5335 }
5336 }
5337
5338 /* Emit immediate values.
5339 */
5340 t->immediates = (struct ureg_src *)
5341 calloc(program->num_immediates, sizeof(struct ureg_src));
5342 if (t->immediates == NULL) {
5343 ret = PIPE_ERROR_OUT_OF_MEMORY;
5344 goto out;
5345 }
5346 t->num_immediates = program->num_immediates;
5347
5348 i = 0;
5349 foreach_in_list(immediate_storage, imm, &program->immediates) {
5350 assert(i < program->num_immediates);
5351 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
5352 }
5353 assert(i == program->num_immediates);
5354
5355 /* texture samplers */
5356 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
5357 if (program->samplers_used & (1 << i)) {
5358 unsigned type;
5359
5360 t->samplers[i] = ureg_DECL_sampler(ureg, i);
5361
5362 switch (program->sampler_types[i]) {
5363 case GLSL_TYPE_INT:
5364 type = TGSI_RETURN_TYPE_SINT;
5365 break;
5366 case GLSL_TYPE_UINT:
5367 type = TGSI_RETURN_TYPE_UINT;
5368 break;
5369 case GLSL_TYPE_FLOAT:
5370 type = TGSI_RETURN_TYPE_FLOAT;
5371 break;
5372 default:
5373 unreachable("not reached");
5374 }
5375
5376 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
5377 type, type, type, type );
5378 }
5379 }
5380
5381 /* Emit each instruction in turn:
5382 */
5383 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions) {
5384 set_insn_start(t, ureg_get_instruction_number(ureg));
5385 compile_tgsi_instruction(t, inst);
5386 }
5387
5388 /* Fix up all emitted labels:
5389 */
5390 for (i = 0; i < t->labels_count; i++) {
5391 ureg_fixup_label(ureg, t->labels[i].token,
5392 t->insn[t->labels[i].branch_target]);
5393 }
5394
5395 out:
5396 if (t) {
5397 free(t->arrays);
5398 free(t->temps);
5399 free(t->insn);
5400 free(t->labels);
5401 free(t->constants);
5402 t->num_constants = 0;
5403 free(t->immediates);
5404 t->num_immediates = 0;
5405
5406 if (t->error) {
5407 debug_printf("%s: translate error flag set\n", __func__);
5408 }
5409
5410 FREE(t);
5411 }
5412
5413 return ret;
5414 }
5415 /* ----------------------------- End TGSI code ------------------------------ */
5416
5417
5418 /**
5419 * Convert a shader's GLSL IR into a Mesa gl_program, although without
5420 * generating Mesa IR.
5421 */
5422 static struct gl_program *
5423 get_mesa_program(struct gl_context *ctx,
5424 struct gl_shader_program *shader_program,
5425 struct gl_shader *shader)
5426 {
5427 glsl_to_tgsi_visitor* v;
5428 struct gl_program *prog;
5429 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
5430 bool progress;
5431 struct gl_shader_compiler_options *options =
5432 &ctx->Const.ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(shader->Type)];
5433 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5434 unsigned ptarget = st_shader_stage_to_ptarget(shader->Stage);
5435
5436 validate_ir_tree(shader->ir);
5437
5438 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
5439 if (!prog)
5440 return NULL;
5441 prog->Parameters = _mesa_new_parameter_list();
5442 v = new glsl_to_tgsi_visitor();
5443 v->ctx = ctx;
5444 v->prog = prog;
5445 v->shader_program = shader_program;
5446 v->shader = shader;
5447 v->options = options;
5448 v->glsl_version = ctx->Const.GLSLVersion;
5449 v->native_integers = ctx->Const.NativeIntegers;
5450
5451 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
5452 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
5453 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
5454 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
5455
5456 _mesa_copy_linked_program_data(shader->Stage, shader_program, prog);
5457 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
5458 prog->Parameters);
5459
5460 /* Remove reads from output registers. */
5461 lower_output_reads(shader->Stage, shader->ir);
5462
5463 /* Emit intermediate IR for main(). */
5464 visit_exec_list(shader->ir, v);
5465
5466 /* Now emit bodies for any functions that were used. */
5467 do {
5468 progress = GL_FALSE;
5469
5470 foreach_in_list(function_entry, entry, &v->function_signatures) {
5471 if (!entry->bgn_inst) {
5472 v->current_function = entry;
5473
5474 entry->bgn_inst = v->emit_asm(NULL, TGSI_OPCODE_BGNSUB);
5475 entry->bgn_inst->function = entry;
5476
5477 visit_exec_list(&entry->sig->body, v);
5478
5479 glsl_to_tgsi_instruction *last;
5480 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
5481 if (last->op != TGSI_OPCODE_RET)
5482 v->emit_asm(NULL, TGSI_OPCODE_RET);
5483
5484 glsl_to_tgsi_instruction *end;
5485 end = v->emit_asm(NULL, TGSI_OPCODE_ENDSUB);
5486 end->function = entry;
5487
5488 progress = GL_TRUE;
5489 }
5490 }
5491 } while (progress);
5492
5493 #if 0
5494 /* Print out some information (for debugging purposes) used by the
5495 * optimization passes. */
5496 {
5497 int i;
5498 int *first_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
5499 int *first_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
5500 int *last_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
5501 int *last_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
5502
5503 for (i = 0; i < v->next_temp; i++) {
5504 first_writes[i] = -1;
5505 first_reads[i] = -1;
5506 last_writes[i] = -1;
5507 last_reads[i] = -1;
5508 }
5509 v->get_first_temp_read(first_reads);
5510 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
5511 v->get_last_temp_write(last_writes);
5512 for (i = 0; i < v->next_temp; i++)
5513 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
5514 first_writes[i],
5515 last_reads[i],
5516 last_writes[i]);
5517 ralloc_free(first_writes);
5518 ralloc_free(first_reads);
5519 ralloc_free(last_writes);
5520 ralloc_free(last_reads);
5521 }
5522 #endif
5523
5524 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5525 v->simplify_cmp();
5526
5527 if (shader->Type != GL_TESS_CONTROL_SHADER &&
5528 shader->Type != GL_TESS_EVALUATION_SHADER)
5529 v->copy_propagate();
5530
5531 while (v->eliminate_dead_code());
5532
5533 v->merge_two_dsts();
5534 v->merge_registers();
5535 v->renumber_registers();
5536
5537 /* Write the END instruction. */
5538 v->emit_asm(NULL, TGSI_OPCODE_END);
5539
5540 if (ctx->_Shader->Flags & GLSL_DUMP) {
5541 _mesa_log("\n");
5542 _mesa_log("GLSL IR for linked %s program %d:\n",
5543 _mesa_shader_stage_to_string(shader->Stage),
5544 shader_program->Name);
5545 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
5546 _mesa_log("\n\n");
5547 }
5548
5549 prog->Instructions = NULL;
5550 prog->NumInstructions = 0;
5551
5552 do_set_program_inouts(shader->ir, prog, shader->Stage);
5553 shrink_array_declarations(v->input_arrays, v->num_input_arrays,
5554 prog->InputsRead, prog->PatchInputsRead);
5555 shrink_array_declarations(v->output_arrays, v->num_output_arrays,
5556 prog->OutputsWritten, prog->PatchOutputsWritten);
5557 count_resources(v, prog);
5558
5559 /* This must be done before the uniform storage is associated. */
5560 if (shader->Type == GL_FRAGMENT_SHADER &&
5561 prog->InputsRead & VARYING_BIT_POS){
5562 static const gl_state_index wposTransformState[STATE_LENGTH] = {
5563 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
5564 };
5565
5566 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
5567 wposTransformState);
5568 }
5569
5570 _mesa_reference_program(ctx, &shader->Program, prog);
5571
5572 /* This has to be done last. Any operation the can cause
5573 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5574 * program constant) has to happen before creating this linkage.
5575 */
5576 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5577 if (!shader_program->LinkStatus) {
5578 free_glsl_to_tgsi_visitor(v);
5579 return NULL;
5580 }
5581
5582 struct st_vertex_program *stvp;
5583 struct st_fragment_program *stfp;
5584 struct st_geometry_program *stgp;
5585 struct st_tessctrl_program *sttcp;
5586 struct st_tesseval_program *sttep;
5587
5588 switch (shader->Type) {
5589 case GL_VERTEX_SHADER:
5590 stvp = (struct st_vertex_program *)prog;
5591 stvp->glsl_to_tgsi = v;
5592 break;
5593 case GL_FRAGMENT_SHADER:
5594 stfp = (struct st_fragment_program *)prog;
5595 stfp->glsl_to_tgsi = v;
5596 break;
5597 case GL_GEOMETRY_SHADER:
5598 stgp = (struct st_geometry_program *)prog;
5599 stgp->glsl_to_tgsi = v;
5600 break;
5601 case GL_TESS_CONTROL_SHADER:
5602 sttcp = (struct st_tessctrl_program *)prog;
5603 sttcp->glsl_to_tgsi = v;
5604 break;
5605 case GL_TESS_EVALUATION_SHADER:
5606 sttep = (struct st_tesseval_program *)prog;
5607 sttep->glsl_to_tgsi = v;
5608 break;
5609 default:
5610 assert(!"should not be reached");
5611 return NULL;
5612 }
5613
5614 return prog;
5615 }
5616
5617 extern "C" {
5618
5619 static void
5620 st_dump_program_for_shader_db(struct gl_context *ctx,
5621 struct gl_shader_program *prog)
5622 {
5623 /* Dump only successfully compiled and linked shaders to the specified
5624 * file. This is for shader-db.
5625 *
5626 * These options allow some pre-processing of shaders while dumping,
5627 * because some apps have ill-formed shaders.
5628 */
5629 const char *dump_filename = os_get_option("ST_DUMP_SHADERS");
5630 const char *insert_directives = os_get_option("ST_DUMP_INSERT");
5631
5632 if (dump_filename && prog->Name != 0) {
5633 FILE *f = fopen(dump_filename, "a");
5634
5635 if (f) {
5636 for (unsigned i = 0; i < prog->NumShaders; i++) {
5637 const struct gl_shader *sh = prog->Shaders[i];
5638 const char *source;
5639 bool skip_version = false;
5640
5641 if (!sh)
5642 continue;
5643
5644 source = sh->Source;
5645
5646 /* This string mustn't be changed. shader-db uses it to find
5647 * where the shader begins.
5648 */
5649 fprintf(f, "GLSL %s shader %d source for linked program %d:\n",
5650 _mesa_shader_stage_to_string(sh->Stage),
5651 i, prog->Name);
5652
5653 /* Dump the forced version if set. */
5654 if (ctx->Const.ForceGLSLVersion) {
5655 fprintf(f, "#version %i\n", ctx->Const.ForceGLSLVersion);
5656 skip_version = true;
5657 }
5658
5659 /* Insert directives (optional). */
5660 if (insert_directives) {
5661 if (!ctx->Const.ForceGLSLVersion && prog->Version)
5662 fprintf(f, "#version %i\n", prog->Version);
5663 fprintf(f, "%s\n", insert_directives);
5664 skip_version = true;
5665 }
5666
5667 if (skip_version && strncmp(source, "#version ", 9) == 0) {
5668 const char *next_line = strstr(source, "\n");
5669
5670 if (next_line)
5671 source = next_line + 1;
5672 else
5673 continue;
5674 }
5675
5676 fprintf(f, "%s", source);
5677 fprintf(f, "\n");
5678 }
5679 fclose(f);
5680 }
5681 }
5682 }
5683
5684 /**
5685 * Link a shader.
5686 * Called via ctx->Driver.LinkShader()
5687 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5688 * with code lowering and other optimizations.
5689 */
5690 GLboolean
5691 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5692 {
5693 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5694 assert(prog->LinkStatus);
5695
5696 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5697 if (prog->_LinkedShaders[i] == NULL)
5698 continue;
5699
5700 bool progress;
5701 exec_list *ir = prog->_LinkedShaders[i]->ir;
5702 gl_shader_stage stage = _mesa_shader_enum_to_shader_stage(prog->_LinkedShaders[i]->Type);
5703 const struct gl_shader_compiler_options *options =
5704 &ctx->Const.ShaderCompilerOptions[stage];
5705 unsigned ptarget = st_shader_stage_to_ptarget(stage);
5706 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
5707 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
5708 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
5709 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
5710
5711 /* If there are forms of indirect addressing that the driver
5712 * cannot handle, perform the lowering pass.
5713 */
5714 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
5715 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
5716 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
5717 options->EmitNoIndirectInput,
5718 options->EmitNoIndirectOutput,
5719 options->EmitNoIndirectTemp,
5720 options->EmitNoIndirectUniform);
5721 }
5722
5723 if (ctx->Extensions.ARB_shading_language_packing) {
5724 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
5725 LOWER_UNPACK_SNORM_2x16 |
5726 LOWER_PACK_UNORM_2x16 |
5727 LOWER_UNPACK_UNORM_2x16 |
5728 LOWER_PACK_SNORM_4x8 |
5729 LOWER_UNPACK_SNORM_4x8 |
5730 LOWER_UNPACK_UNORM_4x8 |
5731 LOWER_PACK_UNORM_4x8 |
5732 LOWER_PACK_HALF_2x16 |
5733 LOWER_UNPACK_HALF_2x16;
5734
5735 if (ctx->Extensions.ARB_gpu_shader5)
5736 lower_inst |= LOWER_PACK_USE_BFI |
5737 LOWER_PACK_USE_BFE;
5738
5739 lower_packing_builtins(ir, lower_inst);
5740 }
5741
5742 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
5743 lower_offset_arrays(ir);
5744 do_mat_op_to_vec(ir);
5745 lower_instructions(ir,
5746 MOD_TO_FLOOR |
5747 DIV_TO_MUL_RCP |
5748 EXP_TO_EXP2 |
5749 LOG_TO_LOG2 |
5750 LDEXP_TO_ARITH |
5751 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
5752 CARRY_TO_ARITH |
5753 BORROW_TO_ARITH |
5754 (have_dround ? 0 : DOPS_TO_DFRAC) |
5755 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
5756 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
5757 (options->EmitNoSat ? SAT_TO_CLAMP : 0));
5758
5759 do_vec_index_to_cond_assign(ir);
5760 lower_vector_insert(ir, true);
5761 lower_quadop_vector(ir, false);
5762 lower_noise(ir);
5763 if (options->MaxIfDepth == 0) {
5764 lower_discard(ir);
5765 }
5766
5767 do {
5768 progress = false;
5769
5770 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5771
5772 progress = do_common_optimization(ir, true, true, options,
5773 ctx->Const.NativeIntegers)
5774 || progress;
5775
5776 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5777
5778 } while (progress);
5779
5780 validate_ir_tree(ir);
5781 }
5782
5783 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5784 struct gl_program *linked_prog;
5785
5786 if (prog->_LinkedShaders[i] == NULL)
5787 continue;
5788
5789 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5790
5791 if (linked_prog) {
5792 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5793 linked_prog);
5794 if (!ctx->Driver.ProgramStringNotify(ctx,
5795 _mesa_shader_stage_to_program(i),
5796 linked_prog)) {
5797 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5798 NULL);
5799 _mesa_reference_program(ctx, &linked_prog, NULL);
5800 return GL_FALSE;
5801 }
5802 }
5803
5804 _mesa_reference_program(ctx, &linked_prog, NULL);
5805 }
5806
5807 st_dump_program_for_shader_db(ctx, prog);
5808 return GL_TRUE;
5809 }
5810
5811 void
5812 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5813 const GLuint outputMapping[],
5814 struct pipe_stream_output_info *so)
5815 {
5816 unsigned i;
5817 struct gl_transform_feedback_info *info =
5818 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5819
5820 for (i = 0; i < info->NumOutputs; i++) {
5821 so->output[i].register_index =
5822 outputMapping[info->Outputs[i].OutputRegister];
5823 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5824 so->output[i].num_components = info->Outputs[i].NumComponents;
5825 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5826 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5827 so->output[i].stream = info->Outputs[i].StreamId;
5828 }
5829
5830 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5831 so->stride[i] = info->BufferStride[i];
5832 }
5833 so->num_outputs = info->NumOutputs;
5834 }
5835
5836 } /* extern "C" */