glsl_to_tgsi: Assert that the _mesa_sysval_to_semantic mapping is correct
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43
44 #include "main/mtypes.h"
45 #include "main/shaderobj.h"
46 #include "main/uniforms.h"
47 #include "program/hash_table.h"
48
49 extern "C" {
50 #include "main/shaderapi.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58 #include "pipe/p_compiler.h"
59 #include "pipe/p_context.h"
60 #include "pipe/p_screen.h"
61 #include "pipe/p_shader_tokens.h"
62 #include "pipe/p_state.h"
63 #include "util/u_math.h"
64 #include "tgsi/tgsi_ureg.h"
65 #include "tgsi/tgsi_info.h"
66 #include "st_context.h"
67 #include "st_program.h"
68 #include "st_glsl_to_tgsi.h"
69 #include "st_mesa_to_tgsi.h"
70 }
71
72 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
73 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
74 (1 << PROGRAM_CONSTANT) | \
75 (1 << PROGRAM_UNIFORM))
76
77 /**
78 * Maximum number of temporary registers.
79 *
80 * It is too big for stack allocated arrays -- it will cause stack overflow on
81 * Windows and likely Mac OS X.
82 */
83 #define MAX_TEMPS 4096
84
85 /**
86 * Maximum number of arrays
87 */
88 #define MAX_ARRAYS 256
89
90 #define MAX_GLSL_TEXTURE_OFFSET 4
91
92 class st_src_reg;
93 class st_dst_reg;
94
95 static int swizzle_for_size(int size);
96
97 /**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100 class st_src_reg {
101 public:
102 st_src_reg(gl_register_file file, int index, const glsl_type *type)
103 {
104 this->file = file;
105 this->index = index;
106 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107 this->swizzle = swizzle_for_size(type->vector_elements);
108 else
109 this->swizzle = SWIZZLE_XYZW;
110 this->negate = 0;
111 this->index2D = 0;
112 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
113 this->reladdr = NULL;
114 this->reladdr2 = NULL;
115 this->has_index2 = false;
116 }
117
118 st_src_reg(gl_register_file file, int index, int type)
119 {
120 this->type = type;
121 this->file = file;
122 this->index = index;
123 this->index2D = 0;
124 this->swizzle = SWIZZLE_XYZW;
125 this->negate = 0;
126 this->reladdr = NULL;
127 this->reladdr2 = NULL;
128 this->has_index2 = false;
129 }
130
131 st_src_reg(gl_register_file file, int index, int type, int index2D)
132 {
133 this->type = type;
134 this->file = file;
135 this->index = index;
136 this->index2D = index2D;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = NULL;
140 this->reladdr2 = NULL;
141 this->has_index2 = false;
142 }
143
144 st_src_reg()
145 {
146 this->type = GLSL_TYPE_ERROR;
147 this->file = PROGRAM_UNDEFINED;
148 this->index = 0;
149 this->index2D = 0;
150 this->swizzle = 0;
151 this->negate = 0;
152 this->reladdr = NULL;
153 this->reladdr2 = NULL;
154 this->has_index2 = false;
155 }
156
157 explicit st_src_reg(st_dst_reg reg);
158
159 gl_register_file file; /**< PROGRAM_* from Mesa */
160 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
161 int index2D;
162 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
163 int negate; /**< NEGATE_XYZW mask from mesa */
164 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
165 /** Register index should be offset by the integer in this reg. */
166 st_src_reg *reladdr;
167 st_src_reg *reladdr2;
168 bool has_index2;
169 };
170
171 class st_dst_reg {
172 public:
173 st_dst_reg(gl_register_file file, int writemask, int type, int index)
174 {
175 this->file = file;
176 this->index = index;
177 this->writemask = writemask;
178 this->cond_mask = COND_TR;
179 this->reladdr = NULL;
180 this->type = type;
181 }
182
183 st_dst_reg(gl_register_file file, int writemask, int type)
184 {
185 this->file = file;
186 this->index = 0;
187 this->writemask = writemask;
188 this->cond_mask = COND_TR;
189 this->reladdr = NULL;
190 this->type = type;
191 }
192
193 st_dst_reg()
194 {
195 this->type = GLSL_TYPE_ERROR;
196 this->file = PROGRAM_UNDEFINED;
197 this->index = 0;
198 this->writemask = 0;
199 this->cond_mask = COND_TR;
200 this->reladdr = NULL;
201 }
202
203 explicit st_dst_reg(st_src_reg reg);
204
205 gl_register_file file; /**< PROGRAM_* from Mesa */
206 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
207 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
208 GLuint cond_mask:4;
209 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
210 /** Register index should be offset by the integer in this reg. */
211 st_src_reg *reladdr;
212 };
213
214 st_src_reg::st_src_reg(st_dst_reg reg)
215 {
216 this->type = reg.type;
217 this->file = reg.file;
218 this->index = reg.index;
219 this->swizzle = SWIZZLE_XYZW;
220 this->negate = 0;
221 this->reladdr = reg.reladdr;
222 this->index2D = 0;
223 this->reladdr2 = NULL;
224 this->has_index2 = false;
225 }
226
227 st_dst_reg::st_dst_reg(st_src_reg reg)
228 {
229 this->type = reg.type;
230 this->file = reg.file;
231 this->index = reg.index;
232 this->writemask = WRITEMASK_XYZW;
233 this->cond_mask = COND_TR;
234 this->reladdr = reg.reladdr;
235 }
236
237 class glsl_to_tgsi_instruction : public exec_node {
238 public:
239 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
240
241 unsigned op;
242 st_dst_reg dst;
243 st_src_reg src[4];
244 /** Pointer to the ir source this tree came from for debugging */
245 ir_instruction *ir;
246 GLboolean cond_update;
247 bool saturate;
248 int sampler; /**< sampler index */
249 int tex_target; /**< One of TEXTURE_*_INDEX */
250 GLboolean tex_shadow;
251
252 st_src_reg tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
253 unsigned tex_offset_num_offset;
254 int dead_mask; /**< Used in dead code elimination */
255
256 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
257 };
258
259 class variable_storage : public exec_node {
260 public:
261 variable_storage(ir_variable *var, gl_register_file file, int index)
262 : file(file), index(index), var(var)
263 {
264 /* empty */
265 }
266
267 gl_register_file file;
268 int index;
269 ir_variable *var; /* variable that maps to this, if any */
270 };
271
272 class immediate_storage : public exec_node {
273 public:
274 immediate_storage(gl_constant_value *values, int size, int type)
275 {
276 memcpy(this->values, values, size * sizeof(gl_constant_value));
277 this->size = size;
278 this->type = type;
279 }
280
281 gl_constant_value values[4];
282 int size; /**< Number of components (1-4) */
283 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
284 };
285
286 class function_entry : public exec_node {
287 public:
288 ir_function_signature *sig;
289
290 /**
291 * identifier of this function signature used by the program.
292 *
293 * At the point that TGSI instructions for function calls are
294 * generated, we don't know the address of the first instruction of
295 * the function body. So we make the BranchTarget that is called a
296 * small integer and rewrite them during set_branchtargets().
297 */
298 int sig_id;
299
300 /**
301 * Pointer to first instruction of the function body.
302 *
303 * Set during function body emits after main() is processed.
304 */
305 glsl_to_tgsi_instruction *bgn_inst;
306
307 /**
308 * Index of the first instruction of the function body in actual TGSI.
309 *
310 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
311 */
312 int inst;
313
314 /** Storage for the return value. */
315 st_src_reg return_reg;
316 };
317
318 struct glsl_to_tgsi_visitor : public ir_visitor {
319 public:
320 glsl_to_tgsi_visitor();
321 ~glsl_to_tgsi_visitor();
322
323 function_entry *current_function;
324
325 struct gl_context *ctx;
326 struct gl_program *prog;
327 struct gl_shader_program *shader_program;
328 struct gl_shader *shader;
329 struct gl_shader_compiler_options *options;
330
331 int next_temp;
332
333 unsigned array_sizes[MAX_ARRAYS];
334 unsigned next_array;
335
336 int num_address_regs;
337 int samplers_used;
338 bool indirect_addr_consts;
339
340 int glsl_version;
341 bool native_integers;
342 bool have_sqrt;
343
344 variable_storage *find_variable_storage(ir_variable *var);
345
346 int add_constant(gl_register_file file, gl_constant_value values[4],
347 int size, int datatype, GLuint *swizzle_out);
348
349 function_entry *get_function_signature(ir_function_signature *sig);
350
351 st_src_reg get_temp(const glsl_type *type);
352 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
353
354 st_src_reg st_src_reg_for_float(float val);
355 st_src_reg st_src_reg_for_int(int val);
356 st_src_reg st_src_reg_for_type(int type, int val);
357
358 /**
359 * \name Visit methods
360 *
361 * As typical for the visitor pattern, there must be one \c visit method for
362 * each concrete subclass of \c ir_instruction. Virtual base classes within
363 * the hierarchy should not have \c visit methods.
364 */
365 /*@{*/
366 virtual void visit(ir_variable *);
367 virtual void visit(ir_loop *);
368 virtual void visit(ir_loop_jump *);
369 virtual void visit(ir_function_signature *);
370 virtual void visit(ir_function *);
371 virtual void visit(ir_expression *);
372 virtual void visit(ir_swizzle *);
373 virtual void visit(ir_dereference_variable *);
374 virtual void visit(ir_dereference_array *);
375 virtual void visit(ir_dereference_record *);
376 virtual void visit(ir_assignment *);
377 virtual void visit(ir_constant *);
378 virtual void visit(ir_call *);
379 virtual void visit(ir_return *);
380 virtual void visit(ir_discard *);
381 virtual void visit(ir_texture *);
382 virtual void visit(ir_if *);
383 virtual void visit(ir_emit_vertex *);
384 virtual void visit(ir_end_primitive *);
385 /*@}*/
386
387 st_src_reg result;
388
389 /** List of variable_storage */
390 exec_list variables;
391
392 /** List of immediate_storage */
393 exec_list immediates;
394 unsigned num_immediates;
395
396 /** List of function_entry */
397 exec_list function_signatures;
398 int next_signature_id;
399
400 /** List of glsl_to_tgsi_instruction */
401 exec_list instructions;
402
403 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
404
405 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
406 st_dst_reg dst, st_src_reg src0);
407
408 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
409 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
410
411 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
412 st_dst_reg dst,
413 st_src_reg src0, st_src_reg src1, st_src_reg src2);
414
415 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
416 st_dst_reg dst,
417 st_src_reg src0, st_src_reg src1,
418 st_src_reg src2, st_src_reg src3);
419
420 unsigned get_opcode(ir_instruction *ir, unsigned op,
421 st_dst_reg dst,
422 st_src_reg src0, st_src_reg src1);
423
424 /**
425 * Emit the correct dot-product instruction for the type of arguments
426 */
427 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
428 st_dst_reg dst,
429 st_src_reg src0,
430 st_src_reg src1,
431 unsigned elements);
432
433 void emit_scalar(ir_instruction *ir, unsigned op,
434 st_dst_reg dst, st_src_reg src0);
435
436 void emit_scalar(ir_instruction *ir, unsigned op,
437 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
438
439 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
440
441 void emit_scs(ir_instruction *ir, unsigned op,
442 st_dst_reg dst, const st_src_reg &src);
443
444 bool try_emit_mad(ir_expression *ir,
445 int mul_operand);
446 bool try_emit_mad_for_and_not(ir_expression *ir,
447 int mul_operand);
448 bool try_emit_sat(ir_expression *ir);
449
450 void emit_swz(ir_expression *ir);
451
452 bool process_move_condition(ir_rvalue *ir);
453
454 void simplify_cmp(void);
455
456 void rename_temp_register(int index, int new_index);
457 int get_first_temp_read(int index);
458 int get_first_temp_write(int index);
459 int get_last_temp_read(int index);
460 int get_last_temp_write(int index);
461
462 void copy_propagate(void);
463 int eliminate_dead_code(void);
464 void merge_registers(void);
465 void renumber_registers(void);
466
467 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
468 st_dst_reg *l, st_src_reg *r);
469
470 void *mem_ctx;
471 };
472
473 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
474
475 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
476
477 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
478 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
479
480 static void
481 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
482
483 static void
484 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
485 {
486 va_list args;
487 va_start(args, fmt);
488 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
489 va_end(args);
490
491 prog->LinkStatus = GL_FALSE;
492 }
493
494 static int
495 swizzle_for_size(int size)
496 {
497 int size_swizzles[4] = {
498 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
499 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
500 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
501 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
502 };
503
504 assert((size >= 1) && (size <= 4));
505 return size_swizzles[size - 1];
506 }
507
508 static bool
509 is_tex_instruction(unsigned opcode)
510 {
511 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
512 return info->is_tex;
513 }
514
515 static unsigned
516 num_inst_dst_regs(unsigned opcode)
517 {
518 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
519 return info->num_dst;
520 }
521
522 static unsigned
523 num_inst_src_regs(unsigned opcode)
524 {
525 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
526 return info->is_tex ? info->num_src - 1 : info->num_src;
527 }
528
529 glsl_to_tgsi_instruction *
530 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
531 st_dst_reg dst,
532 st_src_reg src0, st_src_reg src1,
533 st_src_reg src2, st_src_reg src3)
534 {
535 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
536 int num_reladdr = 0, i;
537
538 op = get_opcode(ir, op, dst, src0, src1);
539
540 /* If we have to do relative addressing, we want to load the ARL
541 * reg directly for one of the regs, and preload the other reladdr
542 * sources into temps.
543 */
544 num_reladdr += dst.reladdr != NULL;
545 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
546 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
547 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
548 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
549
550 reladdr_to_temp(ir, &src3, &num_reladdr);
551 reladdr_to_temp(ir, &src2, &num_reladdr);
552 reladdr_to_temp(ir, &src1, &num_reladdr);
553 reladdr_to_temp(ir, &src0, &num_reladdr);
554
555 if (dst.reladdr) {
556 emit_arl(ir, address_reg, *dst.reladdr);
557 num_reladdr--;
558 }
559 assert(num_reladdr == 0);
560
561 inst->op = op;
562 inst->dst = dst;
563 inst->src[0] = src0;
564 inst->src[1] = src1;
565 inst->src[2] = src2;
566 inst->src[3] = src3;
567 inst->ir = ir;
568 inst->dead_mask = 0;
569
570 inst->function = NULL;
571
572 /* Update indirect addressing status used by TGSI */
573 if (dst.reladdr) {
574 switch(dst.file) {
575 case PROGRAM_STATE_VAR:
576 case PROGRAM_CONSTANT:
577 case PROGRAM_UNIFORM:
578 this->indirect_addr_consts = true;
579 break;
580 case PROGRAM_IMMEDIATE:
581 assert(!"immediates should not have indirect addressing");
582 break;
583 default:
584 break;
585 }
586 }
587 else {
588 for (i=0; i<4; i++) {
589 if(inst->src[i].reladdr) {
590 switch(inst->src[i].file) {
591 case PROGRAM_STATE_VAR:
592 case PROGRAM_CONSTANT:
593 case PROGRAM_UNIFORM:
594 this->indirect_addr_consts = true;
595 break;
596 case PROGRAM_IMMEDIATE:
597 assert(!"immediates should not have indirect addressing");
598 break;
599 default:
600 break;
601 }
602 }
603 }
604 }
605
606 this->instructions.push_tail(inst);
607
608 return inst;
609 }
610
611 glsl_to_tgsi_instruction *
612 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
613 st_dst_reg dst, st_src_reg src0,
614 st_src_reg src1, st_src_reg src2)
615 {
616 return emit(ir, op, dst, src0, src1, src2, undef_src);
617 }
618
619 glsl_to_tgsi_instruction *
620 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
621 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
622 {
623 return emit(ir, op, dst, src0, src1, undef_src, undef_src);
624 }
625
626 glsl_to_tgsi_instruction *
627 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
628 st_dst_reg dst, st_src_reg src0)
629 {
630 assert(dst.writemask != 0);
631 return emit(ir, op, dst, src0, undef_src, undef_src, undef_src);
632 }
633
634 glsl_to_tgsi_instruction *
635 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
636 {
637 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src, undef_src);
638 }
639
640 /**
641 * Determines whether to use an integer, unsigned integer, or float opcode
642 * based on the operands and input opcode, then emits the result.
643 */
644 unsigned
645 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
646 st_dst_reg dst,
647 st_src_reg src0, st_src_reg src1)
648 {
649 int type = GLSL_TYPE_FLOAT;
650
651 if (op == TGSI_OPCODE_MOV)
652 return op;
653
654 assert(src0.type != GLSL_TYPE_ARRAY);
655 assert(src0.type != GLSL_TYPE_STRUCT);
656 assert(src1.type != GLSL_TYPE_ARRAY);
657 assert(src1.type != GLSL_TYPE_STRUCT);
658
659 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
660 type = GLSL_TYPE_FLOAT;
661 else if (native_integers)
662 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
663
664 #define case4(c, f, i, u) \
665 case TGSI_OPCODE_##c: \
666 if (type == GLSL_TYPE_INT) \
667 op = TGSI_OPCODE_##i; \
668 else if (type == GLSL_TYPE_UINT) \
669 op = TGSI_OPCODE_##u; \
670 else \
671 op = TGSI_OPCODE_##f; \
672 break;
673
674 #define case3(f, i, u) case4(f, f, i, u)
675 #define case2fi(f, i) case4(f, f, i, i)
676 #define case2iu(i, u) case4(i, LAST, i, u)
677
678 #define casecomp(c, f, i, u) \
679 case TGSI_OPCODE_##c: \
680 if (type == GLSL_TYPE_INT) \
681 op = TGSI_OPCODE_##i; \
682 else if (type == GLSL_TYPE_UINT) \
683 op = TGSI_OPCODE_##u; \
684 else if (native_integers) \
685 op = TGSI_OPCODE_##f; \
686 else \
687 op = TGSI_OPCODE_##c; \
688 break;
689
690 switch(op) {
691 case2fi(ADD, UADD);
692 case2fi(MUL, UMUL);
693 case2fi(MAD, UMAD);
694 case3(DIV, IDIV, UDIV);
695 case3(MAX, IMAX, UMAX);
696 case3(MIN, IMIN, UMIN);
697 case2iu(MOD, UMOD);
698
699 casecomp(SEQ, FSEQ, USEQ, USEQ);
700 casecomp(SNE, FSNE, USNE, USNE);
701 casecomp(SGE, FSGE, ISGE, USGE);
702 casecomp(SLT, FSLT, ISLT, USLT);
703
704 case2iu(ISHR, USHR);
705
706 case2fi(SSG, ISSG);
707 case3(ABS, IABS, IABS);
708
709 case2iu(IBFE, UBFE);
710 case2iu(IMSB, UMSB);
711 case2iu(IMUL_HI, UMUL_HI);
712 default: break;
713 }
714
715 assert(op != TGSI_OPCODE_LAST);
716 return op;
717 }
718
719 glsl_to_tgsi_instruction *
720 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
721 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
722 unsigned elements)
723 {
724 static const unsigned dot_opcodes[] = {
725 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
726 };
727
728 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
729 }
730
731 /**
732 * Emits TGSI scalar opcodes to produce unique answers across channels.
733 *
734 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
735 * channel determines the result across all channels. So to do a vec4
736 * of this operation, we want to emit a scalar per source channel used
737 * to produce dest channels.
738 */
739 void
740 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
741 st_dst_reg dst,
742 st_src_reg orig_src0, st_src_reg orig_src1)
743 {
744 int i, j;
745 int done_mask = ~dst.writemask;
746
747 /* TGSI RCP is a scalar operation splatting results to all channels,
748 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
749 * dst channels.
750 */
751 for (i = 0; i < 4; i++) {
752 GLuint this_mask = (1 << i);
753 glsl_to_tgsi_instruction *inst;
754 st_src_reg src0 = orig_src0;
755 st_src_reg src1 = orig_src1;
756
757 if (done_mask & this_mask)
758 continue;
759
760 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
761 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
762 for (j = i + 1; j < 4; j++) {
763 /* If there is another enabled component in the destination that is
764 * derived from the same inputs, generate its value on this pass as
765 * well.
766 */
767 if (!(done_mask & (1 << j)) &&
768 GET_SWZ(src0.swizzle, j) == src0_swiz &&
769 GET_SWZ(src1.swizzle, j) == src1_swiz) {
770 this_mask |= (1 << j);
771 }
772 }
773 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
774 src0_swiz, src0_swiz);
775 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
776 src1_swiz, src1_swiz);
777
778 inst = emit(ir, op, dst, src0, src1);
779 inst->dst.writemask = this_mask;
780 done_mask |= this_mask;
781 }
782 }
783
784 void
785 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
786 st_dst_reg dst, st_src_reg src0)
787 {
788 st_src_reg undef = undef_src;
789
790 undef.swizzle = SWIZZLE_XXXX;
791
792 emit_scalar(ir, op, dst, src0, undef);
793 }
794
795 void
796 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
797 st_dst_reg dst, st_src_reg src0)
798 {
799 int op = TGSI_OPCODE_ARL;
800
801 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
802 op = TGSI_OPCODE_UARL;
803
804 assert(dst.file == PROGRAM_ADDRESS);
805 if (dst.index >= this->num_address_regs)
806 this->num_address_regs = dst.index + 1;
807
808 emit(NULL, op, dst, src0);
809 }
810
811 /**
812 * Emit an TGSI_OPCODE_SCS instruction
813 *
814 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
815 * Instead of splatting its result across all four components of the
816 * destination, it writes one value to the \c x component and another value to
817 * the \c y component.
818 *
819 * \param ir IR instruction being processed
820 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
821 * on which value is desired.
822 * \param dst Destination register
823 * \param src Source register
824 */
825 void
826 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
827 st_dst_reg dst,
828 const st_src_reg &src)
829 {
830 /* Vertex programs cannot use the SCS opcode.
831 */
832 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
833 emit_scalar(ir, op, dst, src);
834 return;
835 }
836
837 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
838 const unsigned scs_mask = (1U << component);
839 int done_mask = ~dst.writemask;
840 st_src_reg tmp;
841
842 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
843
844 /* If there are compnents in the destination that differ from the component
845 * that will be written by the SCS instrution, we'll need a temporary.
846 */
847 if (scs_mask != unsigned(dst.writemask)) {
848 tmp = get_temp(glsl_type::vec4_type);
849 }
850
851 for (unsigned i = 0; i < 4; i++) {
852 unsigned this_mask = (1U << i);
853 st_src_reg src0 = src;
854
855 if ((done_mask & this_mask) != 0)
856 continue;
857
858 /* The source swizzle specified which component of the source generates
859 * sine / cosine for the current component in the destination. The SCS
860 * instruction requires that this value be swizzle to the X component.
861 * Replace the current swizzle with a swizzle that puts the source in
862 * the X component.
863 */
864 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
865
866 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
867 src0_swiz, src0_swiz);
868 for (unsigned j = i + 1; j < 4; j++) {
869 /* If there is another enabled component in the destination that is
870 * derived from the same inputs, generate its value on this pass as
871 * well.
872 */
873 if (!(done_mask & (1 << j)) &&
874 GET_SWZ(src0.swizzle, j) == src0_swiz) {
875 this_mask |= (1 << j);
876 }
877 }
878
879 if (this_mask != scs_mask) {
880 glsl_to_tgsi_instruction *inst;
881 st_dst_reg tmp_dst = st_dst_reg(tmp);
882
883 /* Emit the SCS instruction.
884 */
885 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
886 inst->dst.writemask = scs_mask;
887
888 /* Move the result of the SCS instruction to the desired location in
889 * the destination.
890 */
891 tmp.swizzle = MAKE_SWIZZLE4(component, component,
892 component, component);
893 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
894 inst->dst.writemask = this_mask;
895 } else {
896 /* Emit the SCS instruction to write directly to the destination.
897 */
898 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
899 inst->dst.writemask = scs_mask;
900 }
901
902 done_mask |= this_mask;
903 }
904 }
905
906 int
907 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
908 gl_constant_value values[4], int size, int datatype,
909 GLuint *swizzle_out)
910 {
911 if (file == PROGRAM_CONSTANT) {
912 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
913 size, datatype, swizzle_out);
914 } else {
915 int index = 0;
916 immediate_storage *entry;
917 assert(file == PROGRAM_IMMEDIATE);
918
919 /* Search immediate storage to see if we already have an identical
920 * immediate that we can use instead of adding a duplicate entry.
921 */
922 foreach_in_list(immediate_storage, entry, &this->immediates) {
923 if (entry->size == size &&
924 entry->type == datatype &&
925 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
926 return index;
927 }
928 index++;
929 }
930
931 /* Add this immediate to the list. */
932 entry = new(mem_ctx) immediate_storage(values, size, datatype);
933 this->immediates.push_tail(entry);
934 this->num_immediates++;
935 return index;
936 }
937 }
938
939 st_src_reg
940 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
941 {
942 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
943 union gl_constant_value uval;
944
945 uval.f = val;
946 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
947
948 return src;
949 }
950
951 st_src_reg
952 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
953 {
954 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
955 union gl_constant_value uval;
956
957 assert(native_integers);
958
959 uval.i = val;
960 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
961
962 return src;
963 }
964
965 st_src_reg
966 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
967 {
968 if (native_integers)
969 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
970 st_src_reg_for_int(val);
971 else
972 return st_src_reg_for_float(val);
973 }
974
975 static int
976 type_size(const struct glsl_type *type)
977 {
978 unsigned int i;
979 int size;
980
981 switch (type->base_type) {
982 case GLSL_TYPE_UINT:
983 case GLSL_TYPE_INT:
984 case GLSL_TYPE_FLOAT:
985 case GLSL_TYPE_BOOL:
986 if (type->is_matrix()) {
987 return type->matrix_columns;
988 } else {
989 /* Regardless of size of vector, it gets a vec4. This is bad
990 * packing for things like floats, but otherwise arrays become a
991 * mess. Hopefully a later pass over the code can pack scalars
992 * down if appropriate.
993 */
994 return 1;
995 }
996 case GLSL_TYPE_ARRAY:
997 assert(type->length > 0);
998 return type_size(type->fields.array) * type->length;
999 case GLSL_TYPE_STRUCT:
1000 size = 0;
1001 for (i = 0; i < type->length; i++) {
1002 size += type_size(type->fields.structure[i].type);
1003 }
1004 return size;
1005 case GLSL_TYPE_SAMPLER:
1006 case GLSL_TYPE_IMAGE:
1007 /* Samplers take up one slot in UNIFORMS[], but they're baked in
1008 * at link time.
1009 */
1010 return 1;
1011 case GLSL_TYPE_ATOMIC_UINT:
1012 case GLSL_TYPE_INTERFACE:
1013 case GLSL_TYPE_VOID:
1014 case GLSL_TYPE_ERROR:
1015 assert(!"Invalid type in type_size");
1016 break;
1017 }
1018 return 0;
1019 }
1020
1021 /**
1022 * In the initial pass of codegen, we assign temporary numbers to
1023 * intermediate results. (not SSA -- variable assignments will reuse
1024 * storage).
1025 */
1026 st_src_reg
1027 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1028 {
1029 st_src_reg src;
1030
1031 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1032 src.reladdr = NULL;
1033 src.negate = 0;
1034
1035 if (!options->EmitNoIndirectTemp &&
1036 (type->is_array() || type->is_matrix())) {
1037
1038 src.file = PROGRAM_ARRAY;
1039 src.index = next_array << 16 | 0x8000;
1040 array_sizes[next_array] = type_size(type);
1041 ++next_array;
1042
1043 } else {
1044 src.file = PROGRAM_TEMPORARY;
1045 src.index = next_temp;
1046 next_temp += type_size(type);
1047 }
1048
1049 if (type->is_array() || type->is_record()) {
1050 src.swizzle = SWIZZLE_NOOP;
1051 } else {
1052 src.swizzle = swizzle_for_size(type->vector_elements);
1053 }
1054
1055 return src;
1056 }
1057
1058 variable_storage *
1059 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1060 {
1061
1062 foreach_in_list(variable_storage, entry, &this->variables) {
1063 if (entry->var == var)
1064 return entry;
1065 }
1066
1067 return NULL;
1068 }
1069
1070 void
1071 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1072 {
1073 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1074 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1075
1076 fp->OriginUpperLeft = ir->data.origin_upper_left;
1077 fp->PixelCenterInteger = ir->data.pixel_center_integer;
1078 }
1079
1080 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1081 unsigned int i;
1082 const ir_state_slot *const slots = ir->state_slots;
1083 assert(ir->state_slots != NULL);
1084
1085 /* Check if this statevar's setup in the STATE file exactly
1086 * matches how we'll want to reference it as a
1087 * struct/array/whatever. If not, then we need to move it into
1088 * temporary storage and hope that it'll get copy-propagated
1089 * out.
1090 */
1091 for (i = 0; i < ir->num_state_slots; i++) {
1092 if (slots[i].swizzle != SWIZZLE_XYZW) {
1093 break;
1094 }
1095 }
1096
1097 variable_storage *storage;
1098 st_dst_reg dst;
1099 if (i == ir->num_state_slots) {
1100 /* We'll set the index later. */
1101 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1102 this->variables.push_tail(storage);
1103
1104 dst = undef_dst;
1105 } else {
1106 /* The variable_storage constructor allocates slots based on the size
1107 * of the type. However, this had better match the number of state
1108 * elements that we're going to copy into the new temporary.
1109 */
1110 assert((int) ir->num_state_slots == type_size(ir->type));
1111
1112 dst = st_dst_reg(get_temp(ir->type));
1113
1114 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1115
1116 this->variables.push_tail(storage);
1117 }
1118
1119
1120 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1121 int index = _mesa_add_state_reference(this->prog->Parameters,
1122 (gl_state_index *)slots[i].tokens);
1123
1124 if (storage->file == PROGRAM_STATE_VAR) {
1125 if (storage->index == -1) {
1126 storage->index = index;
1127 } else {
1128 assert(index == storage->index + (int)i);
1129 }
1130 } else {
1131 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1132 * the data being moved since MOV does not care about the type of
1133 * data it is moving, and we don't want to declare registers with
1134 * array or struct types.
1135 */
1136 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1137 src.swizzle = slots[i].swizzle;
1138 emit(ir, TGSI_OPCODE_MOV, dst, src);
1139 /* even a float takes up a whole vec4 reg in a struct/array. */
1140 dst.index++;
1141 }
1142 }
1143
1144 if (storage->file == PROGRAM_TEMPORARY &&
1145 dst.index != storage->index + (int) ir->num_state_slots) {
1146 fail_link(this->shader_program,
1147 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1148 ir->name, dst.index - storage->index,
1149 type_size(ir->type));
1150 }
1151 }
1152 }
1153
1154 void
1155 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1156 {
1157 emit(NULL, TGSI_OPCODE_BGNLOOP);
1158
1159 visit_exec_list(&ir->body_instructions, this);
1160
1161 emit(NULL, TGSI_OPCODE_ENDLOOP);
1162 }
1163
1164 void
1165 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1166 {
1167 switch (ir->mode) {
1168 case ir_loop_jump::jump_break:
1169 emit(NULL, TGSI_OPCODE_BRK);
1170 break;
1171 case ir_loop_jump::jump_continue:
1172 emit(NULL, TGSI_OPCODE_CONT);
1173 break;
1174 }
1175 }
1176
1177
1178 void
1179 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1180 {
1181 assert(0);
1182 (void)ir;
1183 }
1184
1185 void
1186 glsl_to_tgsi_visitor::visit(ir_function *ir)
1187 {
1188 /* Ignore function bodies other than main() -- we shouldn't see calls to
1189 * them since they should all be inlined before we get to glsl_to_tgsi.
1190 */
1191 if (strcmp(ir->name, "main") == 0) {
1192 const ir_function_signature *sig;
1193 exec_list empty;
1194
1195 sig = ir->matching_signature(NULL, &empty, false);
1196
1197 assert(sig);
1198
1199 foreach_in_list(ir_instruction, ir, &sig->body) {
1200 ir->accept(this);
1201 }
1202 }
1203 }
1204
1205 bool
1206 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1207 {
1208 int nonmul_operand = 1 - mul_operand;
1209 st_src_reg a, b, c;
1210 st_dst_reg result_dst;
1211
1212 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1213 if (!expr || expr->operation != ir_binop_mul)
1214 return false;
1215
1216 expr->operands[0]->accept(this);
1217 a = this->result;
1218 expr->operands[1]->accept(this);
1219 b = this->result;
1220 ir->operands[nonmul_operand]->accept(this);
1221 c = this->result;
1222
1223 this->result = get_temp(ir->type);
1224 result_dst = st_dst_reg(this->result);
1225 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1226 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1227
1228 return true;
1229 }
1230
1231 /**
1232 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1233 *
1234 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1235 * implemented using multiplication, and logical-or is implemented using
1236 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1237 * As result, the logical expression (a & !b) can be rewritten as:
1238 *
1239 * - a * !b
1240 * - a * (1 - b)
1241 * - (a * 1) - (a * b)
1242 * - a + -(a * b)
1243 * - a + (a * -b)
1244 *
1245 * This final expression can be implemented as a single MAD(a, -b, a)
1246 * instruction.
1247 */
1248 bool
1249 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1250 {
1251 const int other_operand = 1 - try_operand;
1252 st_src_reg a, b;
1253
1254 ir_expression *expr = ir->operands[try_operand]->as_expression();
1255 if (!expr || expr->operation != ir_unop_logic_not)
1256 return false;
1257
1258 ir->operands[other_operand]->accept(this);
1259 a = this->result;
1260 expr->operands[0]->accept(this);
1261 b = this->result;
1262
1263 b.negate = ~b.negate;
1264
1265 this->result = get_temp(ir->type);
1266 emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1267
1268 return true;
1269 }
1270
1271 bool
1272 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1273 {
1274 /* Emit saturates in the vertex shader only if SM 3.0 is supported.
1275 */
1276 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1277 !st_context(this->ctx)->has_shader_model3) {
1278 return false;
1279 }
1280
1281 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1282 if (!sat_src)
1283 return false;
1284
1285 sat_src->accept(this);
1286 st_src_reg src = this->result;
1287
1288 /* If we generated an expression instruction into a temporary in
1289 * processing the saturate's operand, apply the saturate to that
1290 * instruction. Otherwise, generate a MOV to do the saturate.
1291 *
1292 * Note that we have to be careful to only do this optimization if
1293 * the instruction in question was what generated src->result. For
1294 * example, ir_dereference_array might generate a MUL instruction
1295 * to create the reladdr, and return us a src reg using that
1296 * reladdr. That MUL result is not the value we're trying to
1297 * saturate.
1298 */
1299 ir_expression *sat_src_expr = sat_src->as_expression();
1300 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1301 sat_src_expr->operation == ir_binop_add ||
1302 sat_src_expr->operation == ir_binop_dot)) {
1303 glsl_to_tgsi_instruction *new_inst;
1304 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1305 new_inst->saturate = true;
1306 } else {
1307 this->result = get_temp(ir->type);
1308 st_dst_reg result_dst = st_dst_reg(this->result);
1309 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1310 glsl_to_tgsi_instruction *inst;
1311 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1312 inst->saturate = true;
1313 }
1314
1315 return true;
1316 }
1317
1318 void
1319 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1320 st_src_reg *reg, int *num_reladdr)
1321 {
1322 if (!reg->reladdr && !reg->reladdr2)
1323 return;
1324
1325 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1326 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1327
1328 if (*num_reladdr != 1) {
1329 st_src_reg temp = get_temp(glsl_type::vec4_type);
1330
1331 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1332 *reg = temp;
1333 }
1334
1335 (*num_reladdr)--;
1336 }
1337
1338 void
1339 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1340 {
1341 unsigned int operand;
1342 st_src_reg op[Elements(ir->operands)];
1343 st_src_reg result_src;
1344 st_dst_reg result_dst;
1345
1346 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1347 */
1348 if (ir->operation == ir_binop_add) {
1349 if (try_emit_mad(ir, 1))
1350 return;
1351 if (try_emit_mad(ir, 0))
1352 return;
1353 }
1354
1355 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1356 */
1357 if (!native_integers && ir->operation == ir_binop_logic_and) {
1358 if (try_emit_mad_for_and_not(ir, 1))
1359 return;
1360 if (try_emit_mad_for_and_not(ir, 0))
1361 return;
1362 }
1363
1364 if (try_emit_sat(ir))
1365 return;
1366
1367 if (ir->operation == ir_quadop_vector)
1368 assert(!"ir_quadop_vector should have been lowered");
1369
1370 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1371 this->result.file = PROGRAM_UNDEFINED;
1372 ir->operands[operand]->accept(this);
1373 if (this->result.file == PROGRAM_UNDEFINED) {
1374 printf("Failed to get tree for expression operand:\n");
1375 ir->operands[operand]->print();
1376 printf("\n");
1377 exit(1);
1378 }
1379 op[operand] = this->result;
1380
1381 /* Matrix expression operands should have been broken down to vector
1382 * operations already.
1383 */
1384 assert(!ir->operands[operand]->type->is_matrix());
1385 }
1386
1387 int vector_elements = ir->operands[0]->type->vector_elements;
1388 if (ir->operands[1]) {
1389 vector_elements = MAX2(vector_elements,
1390 ir->operands[1]->type->vector_elements);
1391 }
1392
1393 this->result.file = PROGRAM_UNDEFINED;
1394
1395 /* Storage for our result. Ideally for an assignment we'd be using
1396 * the actual storage for the result here, instead.
1397 */
1398 result_src = get_temp(ir->type);
1399 /* convenience for the emit functions below. */
1400 result_dst = st_dst_reg(result_src);
1401 /* Limit writes to the channels that will be used by result_src later.
1402 * This does limit this temp's use as a temporary for multi-instruction
1403 * sequences.
1404 */
1405 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1406
1407 switch (ir->operation) {
1408 case ir_unop_logic_not:
1409 if (result_dst.type != GLSL_TYPE_FLOAT)
1410 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1411 else {
1412 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1413 * older GPUs implement SEQ using multiple instructions (i915 uses two
1414 * SGE instructions and a MUL instruction). Since our logic values are
1415 * 0.0 and 1.0, 1-x also implements !x.
1416 */
1417 op[0].negate = ~op[0].negate;
1418 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1419 }
1420 break;
1421 case ir_unop_neg:
1422 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1423 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1424 else {
1425 op[0].negate = ~op[0].negate;
1426 result_src = op[0];
1427 }
1428 break;
1429 case ir_unop_abs:
1430 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1431 break;
1432 case ir_unop_sign:
1433 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1434 break;
1435 case ir_unop_rcp:
1436 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1437 break;
1438
1439 case ir_unop_exp2:
1440 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1441 break;
1442 case ir_unop_exp:
1443 case ir_unop_log:
1444 assert(!"not reached: should be handled by ir_explog_to_explog2");
1445 break;
1446 case ir_unop_log2:
1447 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1448 break;
1449 case ir_unop_sin:
1450 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1451 break;
1452 case ir_unop_cos:
1453 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1454 break;
1455 case ir_unop_sin_reduced:
1456 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1457 break;
1458 case ir_unop_cos_reduced:
1459 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1460 break;
1461
1462 case ir_unop_dFdx:
1463 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1464 break;
1465 case ir_unop_dFdy:
1466 {
1467 /* The X component contains 1 or -1 depending on whether the framebuffer
1468 * is a FBO or the window system buffer, respectively.
1469 * It is then multiplied with the source operand of DDY.
1470 */
1471 static const gl_state_index transform_y_state[STATE_LENGTH]
1472 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1473
1474 unsigned transform_y_index =
1475 _mesa_add_state_reference(this->prog->Parameters,
1476 transform_y_state);
1477
1478 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1479 transform_y_index,
1480 glsl_type::vec4_type);
1481 transform_y.swizzle = SWIZZLE_XXXX;
1482
1483 st_src_reg temp = get_temp(glsl_type::vec4_type);
1484
1485 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1486 emit(ir, TGSI_OPCODE_DDY, result_dst, temp);
1487 break;
1488 }
1489
1490 case ir_unop_noise: {
1491 /* At some point, a motivated person could add a better
1492 * implementation of noise. Currently not even the nvidia
1493 * binary drivers do anything more than this. In any case, the
1494 * place to do this is in the GL state tracker, not the poor
1495 * driver.
1496 */
1497 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1498 break;
1499 }
1500
1501 case ir_binop_add:
1502 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1503 break;
1504 case ir_binop_sub:
1505 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1506 break;
1507
1508 case ir_binop_mul:
1509 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1510 break;
1511 case ir_binop_div:
1512 if (result_dst.type == GLSL_TYPE_FLOAT)
1513 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1514 else
1515 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1516 break;
1517 case ir_binop_mod:
1518 if (result_dst.type == GLSL_TYPE_FLOAT)
1519 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1520 else
1521 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1522 break;
1523
1524 case ir_binop_less:
1525 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1526 break;
1527 case ir_binop_greater:
1528 emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1529 break;
1530 case ir_binop_lequal:
1531 emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1532 break;
1533 case ir_binop_gequal:
1534 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1535 break;
1536 case ir_binop_equal:
1537 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1538 break;
1539 case ir_binop_nequal:
1540 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1541 break;
1542 case ir_binop_all_equal:
1543 /* "==" operator producing a scalar boolean. */
1544 if (ir->operands[0]->type->is_vector() ||
1545 ir->operands[1]->type->is_vector()) {
1546 st_src_reg temp = get_temp(native_integers ?
1547 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1548 glsl_type::vec4_type);
1549
1550 if (native_integers) {
1551 st_dst_reg temp_dst = st_dst_reg(temp);
1552 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1553
1554 emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1555
1556 /* Emit 1-3 AND operations to combine the SEQ results. */
1557 switch (ir->operands[0]->type->vector_elements) {
1558 case 2:
1559 break;
1560 case 3:
1561 temp_dst.writemask = WRITEMASK_Y;
1562 temp1.swizzle = SWIZZLE_YYYY;
1563 temp2.swizzle = SWIZZLE_ZZZZ;
1564 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1565 break;
1566 case 4:
1567 temp_dst.writemask = WRITEMASK_X;
1568 temp1.swizzle = SWIZZLE_XXXX;
1569 temp2.swizzle = SWIZZLE_YYYY;
1570 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1571 temp_dst.writemask = WRITEMASK_Y;
1572 temp1.swizzle = SWIZZLE_ZZZZ;
1573 temp2.swizzle = SWIZZLE_WWWW;
1574 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1575 }
1576
1577 temp1.swizzle = SWIZZLE_XXXX;
1578 temp2.swizzle = SWIZZLE_YYYY;
1579 emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1580 } else {
1581 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1582
1583 /* After the dot-product, the value will be an integer on the
1584 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1585 */
1586 emit_dp(ir, result_dst, temp, temp, vector_elements);
1587
1588 /* Negating the result of the dot-product gives values on the range
1589 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1590 * This is achieved using SGE.
1591 */
1592 st_src_reg sge_src = result_src;
1593 sge_src.negate = ~sge_src.negate;
1594 emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1595 }
1596 } else {
1597 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1598 }
1599 break;
1600 case ir_binop_any_nequal:
1601 /* "!=" operator producing a scalar boolean. */
1602 if (ir->operands[0]->type->is_vector() ||
1603 ir->operands[1]->type->is_vector()) {
1604 st_src_reg temp = get_temp(native_integers ?
1605 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1606 glsl_type::vec4_type);
1607 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1608
1609 if (native_integers) {
1610 st_dst_reg temp_dst = st_dst_reg(temp);
1611 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1612
1613 /* Emit 1-3 OR operations to combine the SNE results. */
1614 switch (ir->operands[0]->type->vector_elements) {
1615 case 2:
1616 break;
1617 case 3:
1618 temp_dst.writemask = WRITEMASK_Y;
1619 temp1.swizzle = SWIZZLE_YYYY;
1620 temp2.swizzle = SWIZZLE_ZZZZ;
1621 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1622 break;
1623 case 4:
1624 temp_dst.writemask = WRITEMASK_X;
1625 temp1.swizzle = SWIZZLE_XXXX;
1626 temp2.swizzle = SWIZZLE_YYYY;
1627 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1628 temp_dst.writemask = WRITEMASK_Y;
1629 temp1.swizzle = SWIZZLE_ZZZZ;
1630 temp2.swizzle = SWIZZLE_WWWW;
1631 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1632 }
1633
1634 temp1.swizzle = SWIZZLE_XXXX;
1635 temp2.swizzle = SWIZZLE_YYYY;
1636 emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1637 } else {
1638 /* After the dot-product, the value will be an integer on the
1639 * range [0,4]. Zero stays zero, and positive values become 1.0.
1640 */
1641 glsl_to_tgsi_instruction *const dp =
1642 emit_dp(ir, result_dst, temp, temp, vector_elements);
1643 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1644 /* The clamping to [0,1] can be done for free in the fragment
1645 * shader with a saturate.
1646 */
1647 dp->saturate = true;
1648 } else {
1649 /* Negating the result of the dot-product gives values on the range
1650 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1651 * achieved using SLT.
1652 */
1653 st_src_reg slt_src = result_src;
1654 slt_src.negate = ~slt_src.negate;
1655 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1656 }
1657 }
1658 } else {
1659 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1660 }
1661 break;
1662
1663 case ir_unop_any: {
1664 assert(ir->operands[0]->type->is_vector());
1665
1666 if (native_integers) {
1667 int dst_swizzle = 0, op0_swizzle, i;
1668 st_src_reg accum = op[0];
1669
1670 op0_swizzle = op[0].swizzle;
1671 accum.swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 0),
1672 GET_SWZ(op0_swizzle, 0),
1673 GET_SWZ(op0_swizzle, 0),
1674 GET_SWZ(op0_swizzle, 0));
1675 for (i = 0; i < 4; i++) {
1676 if (result_dst.writemask & (1 << i)) {
1677 dst_swizzle = MAKE_SWIZZLE4(i, i, i, i);
1678 break;
1679 }
1680 }
1681 assert(i != 4);
1682 assert(ir->operands[0]->type->is_boolean());
1683
1684 /* OR all the components together, since they should be either 0 or ~0
1685 */
1686 switch (ir->operands[0]->type->vector_elements) {
1687 case 4:
1688 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 3),
1689 GET_SWZ(op0_swizzle, 3),
1690 GET_SWZ(op0_swizzle, 3),
1691 GET_SWZ(op0_swizzle, 3));
1692 emit(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1693 accum = st_src_reg(result_dst);
1694 accum.swizzle = dst_swizzle;
1695 /* fallthrough */
1696 case 3:
1697 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 2),
1698 GET_SWZ(op0_swizzle, 2),
1699 GET_SWZ(op0_swizzle, 2),
1700 GET_SWZ(op0_swizzle, 2));
1701 emit(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1702 accum = st_src_reg(result_dst);
1703 accum.swizzle = dst_swizzle;
1704 /* fallthrough */
1705 case 2:
1706 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 1),
1707 GET_SWZ(op0_swizzle, 1),
1708 GET_SWZ(op0_swizzle, 1),
1709 GET_SWZ(op0_swizzle, 1));
1710 emit(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1711 break;
1712 default:
1713 assert(!"Unexpected vector size");
1714 break;
1715 }
1716 } else {
1717 /* After the dot-product, the value will be an integer on the
1718 * range [0,4]. Zero stays zero, and positive values become 1.0.
1719 */
1720 glsl_to_tgsi_instruction *const dp =
1721 emit_dp(ir, result_dst, op[0], op[0],
1722 ir->operands[0]->type->vector_elements);
1723 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1724 result_dst.type == GLSL_TYPE_FLOAT) {
1725 /* The clamping to [0,1] can be done for free in the fragment
1726 * shader with a saturate.
1727 */
1728 dp->saturate = true;
1729 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1730 /* Negating the result of the dot-product gives values on the range
1731 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1732 * is achieved using SLT.
1733 */
1734 st_src_reg slt_src = result_src;
1735 slt_src.negate = ~slt_src.negate;
1736 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1737 }
1738 else {
1739 /* Use SNE 0 if integers are being used as boolean values. */
1740 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1741 }
1742 }
1743 break;
1744 }
1745
1746 case ir_binop_logic_xor:
1747 if (native_integers)
1748 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1749 else
1750 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1751 break;
1752
1753 case ir_binop_logic_or: {
1754 if (native_integers) {
1755 /* If integers are used as booleans, we can use an actual "or"
1756 * instruction.
1757 */
1758 assert(native_integers);
1759 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1760 } else {
1761 /* After the addition, the value will be an integer on the
1762 * range [0,2]. Zero stays zero, and positive values become 1.0.
1763 */
1764 glsl_to_tgsi_instruction *add =
1765 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1766 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1767 /* The clamping to [0,1] can be done for free in the fragment
1768 * shader with a saturate if floats are being used as boolean values.
1769 */
1770 add->saturate = true;
1771 } else {
1772 /* Negating the result of the addition gives values on the range
1773 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1774 * is achieved using SLT.
1775 */
1776 st_src_reg slt_src = result_src;
1777 slt_src.negate = ~slt_src.negate;
1778 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1779 }
1780 }
1781 break;
1782 }
1783
1784 case ir_binop_logic_and:
1785 /* If native integers are disabled, the bool args are stored as float 0.0
1786 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1787 * actual AND opcode.
1788 */
1789 if (native_integers)
1790 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1791 else
1792 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1793 break;
1794
1795 case ir_binop_dot:
1796 assert(ir->operands[0]->type->is_vector());
1797 assert(ir->operands[0]->type == ir->operands[1]->type);
1798 emit_dp(ir, result_dst, op[0], op[1],
1799 ir->operands[0]->type->vector_elements);
1800 break;
1801
1802 case ir_unop_sqrt:
1803 if (have_sqrt) {
1804 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1805 }
1806 else {
1807 /* sqrt(x) = x * rsq(x). */
1808 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1809 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1810 /* For incoming channels <= 0, set the result to 0. */
1811 op[0].negate = ~op[0].negate;
1812 emit(ir, TGSI_OPCODE_CMP, result_dst,
1813 op[0], result_src, st_src_reg_for_float(0.0));
1814 }
1815 break;
1816 case ir_unop_rsq:
1817 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1818 break;
1819 case ir_unop_i2f:
1820 if (native_integers) {
1821 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1822 break;
1823 }
1824 /* fallthrough to next case otherwise */
1825 case ir_unop_b2f:
1826 if (native_integers) {
1827 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1828 break;
1829 }
1830 /* fallthrough to next case otherwise */
1831 case ir_unop_i2u:
1832 case ir_unop_u2i:
1833 /* Converting between signed and unsigned integers is a no-op. */
1834 result_src = op[0];
1835 break;
1836 case ir_unop_b2i:
1837 if (native_integers) {
1838 /* Booleans are stored as integers using ~0 for true and 0 for false.
1839 * GLSL requires that int(bool) return 1 for true and 0 for false.
1840 * This conversion is done with AND, but it could be done with NEG.
1841 */
1842 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1843 } else {
1844 /* Booleans and integers are both stored as floats when native
1845 * integers are disabled.
1846 */
1847 result_src = op[0];
1848 }
1849 break;
1850 case ir_unop_f2i:
1851 if (native_integers)
1852 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1853 else
1854 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1855 break;
1856 case ir_unop_f2u:
1857 if (native_integers)
1858 emit(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1859 else
1860 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1861 break;
1862 case ir_unop_bitcast_f2i:
1863 result_src = op[0];
1864 result_src.type = GLSL_TYPE_INT;
1865 break;
1866 case ir_unop_bitcast_f2u:
1867 result_src = op[0];
1868 result_src.type = GLSL_TYPE_UINT;
1869 break;
1870 case ir_unop_bitcast_i2f:
1871 case ir_unop_bitcast_u2f:
1872 result_src = op[0];
1873 result_src.type = GLSL_TYPE_FLOAT;
1874 break;
1875 case ir_unop_f2b:
1876 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1877 break;
1878 case ir_unop_i2b:
1879 if (native_integers)
1880 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1881 else
1882 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1883 break;
1884 case ir_unop_trunc:
1885 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1886 break;
1887 case ir_unop_ceil:
1888 emit(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1889 break;
1890 case ir_unop_floor:
1891 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1892 break;
1893 case ir_unop_round_even:
1894 emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1895 break;
1896 case ir_unop_fract:
1897 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1898 break;
1899
1900 case ir_binop_min:
1901 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1902 break;
1903 case ir_binop_max:
1904 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1905 break;
1906 case ir_binop_pow:
1907 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1908 break;
1909
1910 case ir_unop_bit_not:
1911 if (native_integers) {
1912 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1913 break;
1914 }
1915 case ir_unop_u2f:
1916 if (native_integers) {
1917 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1918 break;
1919 }
1920 case ir_binop_lshift:
1921 if (native_integers) {
1922 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1923 break;
1924 }
1925 case ir_binop_rshift:
1926 if (native_integers) {
1927 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1928 break;
1929 }
1930 case ir_binop_bit_and:
1931 if (native_integers) {
1932 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1933 break;
1934 }
1935 case ir_binop_bit_xor:
1936 if (native_integers) {
1937 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1938 break;
1939 }
1940 case ir_binop_bit_or:
1941 if (native_integers) {
1942 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1943 break;
1944 }
1945
1946 assert(!"GLSL 1.30 features unsupported");
1947 break;
1948
1949 case ir_binop_ubo_load: {
1950 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1951 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1952 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1953 unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
1954 st_src_reg index_reg = get_temp(glsl_type::uint_type);
1955 st_src_reg cbuf;
1956
1957 cbuf.type = glsl_type::vec4_type->base_type;
1958 cbuf.file = PROGRAM_CONSTANT;
1959 cbuf.index = 0;
1960 cbuf.reladdr = NULL;
1961 cbuf.negate = 0;
1962
1963 assert(ir->type->is_vector() || ir->type->is_scalar());
1964
1965 if (const_offset_ir) {
1966 /* Constant index into constant buffer */
1967 cbuf.reladdr = NULL;
1968 cbuf.index = const_offset / 16;
1969 }
1970 else {
1971 /* Relative/variable index into constant buffer */
1972 emit(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1],
1973 st_src_reg_for_int(4));
1974 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1975 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
1976 }
1977
1978 if (const_uniform_block) {
1979 /* Constant constant buffer */
1980 cbuf.reladdr2 = NULL;
1981 cbuf.index2D = const_block;
1982 cbuf.has_index2 = true;
1983 }
1984 else {
1985 /* Relative/variable constant buffer */
1986 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
1987 cbuf.index2D = 1;
1988 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
1989 cbuf.has_index2 = true;
1990 }
1991
1992 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
1993 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
1994 const_offset % 16 / 4,
1995 const_offset % 16 / 4,
1996 const_offset % 16 / 4);
1997
1998 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1999 emit(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2000 } else {
2001 emit(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2002 }
2003 break;
2004 }
2005 case ir_triop_lrp:
2006 /* note: we have to reorder the three args here */
2007 emit(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2008 break;
2009 case ir_triop_csel:
2010 if (this->ctx->Const.NativeIntegers)
2011 emit(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2012 else {
2013 op[0].negate = ~op[0].negate;
2014 emit(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2015 }
2016 break;
2017 case ir_triop_bitfield_extract:
2018 emit(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2019 break;
2020 case ir_quadop_bitfield_insert:
2021 emit(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2022 break;
2023 case ir_unop_bitfield_reverse:
2024 emit(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2025 break;
2026 case ir_unop_bit_count:
2027 emit(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2028 break;
2029 case ir_unop_find_msb:
2030 emit(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2031 break;
2032 case ir_unop_find_lsb:
2033 emit(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2034 break;
2035 case ir_binop_imul_high:
2036 emit(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2037 break;
2038 case ir_triop_fma:
2039 /* NOTE: Perhaps there should be a special opcode that enforces fused
2040 * mul-add. Just use MAD for now.
2041 */
2042 emit(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2043 break;
2044 case ir_unop_interpolate_at_centroid:
2045 emit(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2046 break;
2047 case ir_binop_interpolate_at_offset:
2048 emit(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], op[1]);
2049 break;
2050 case ir_binop_interpolate_at_sample:
2051 emit(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2052 break;
2053 case ir_unop_pack_snorm_2x16:
2054 case ir_unop_pack_unorm_2x16:
2055 case ir_unop_pack_half_2x16:
2056 case ir_unop_pack_snorm_4x8:
2057 case ir_unop_pack_unorm_4x8:
2058 case ir_unop_unpack_snorm_2x16:
2059 case ir_unop_unpack_unorm_2x16:
2060 case ir_unop_unpack_half_2x16:
2061 case ir_unop_unpack_half_2x16_split_x:
2062 case ir_unop_unpack_half_2x16_split_y:
2063 case ir_unop_unpack_snorm_4x8:
2064 case ir_unop_unpack_unorm_4x8:
2065 case ir_binop_pack_half_2x16_split:
2066 case ir_binop_bfm:
2067 case ir_triop_bfi:
2068 case ir_quadop_vector:
2069 case ir_binop_vector_extract:
2070 case ir_triop_vector_insert:
2071 case ir_binop_ldexp:
2072 case ir_binop_carry:
2073 case ir_binop_borrow:
2074 /* This operation is not supported, or should have already been handled.
2075 */
2076 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2077 break;
2078 }
2079
2080 this->result = result_src;
2081 }
2082
2083
2084 void
2085 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2086 {
2087 st_src_reg src;
2088 int i;
2089 int swizzle[4];
2090
2091 /* Note that this is only swizzles in expressions, not those on the left
2092 * hand side of an assignment, which do write masking. See ir_assignment
2093 * for that.
2094 */
2095
2096 ir->val->accept(this);
2097 src = this->result;
2098 assert(src.file != PROGRAM_UNDEFINED);
2099
2100 for (i = 0; i < 4; i++) {
2101 if (i < ir->type->vector_elements) {
2102 switch (i) {
2103 case 0:
2104 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2105 break;
2106 case 1:
2107 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2108 break;
2109 case 2:
2110 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2111 break;
2112 case 3:
2113 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2114 break;
2115 }
2116 } else {
2117 /* If the type is smaller than a vec4, replicate the last
2118 * channel out.
2119 */
2120 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2121 }
2122 }
2123
2124 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2125
2126 this->result = src;
2127 }
2128
2129 void
2130 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2131 {
2132 variable_storage *entry = find_variable_storage(ir->var);
2133 ir_variable *var = ir->var;
2134
2135 if (!entry) {
2136 switch (var->data.mode) {
2137 case ir_var_uniform:
2138 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2139 var->data.location);
2140 this->variables.push_tail(entry);
2141 break;
2142 case ir_var_shader_in:
2143 /* The linker assigns locations for varyings and attributes,
2144 * including deprecated builtins (like gl_Color), user-assign
2145 * generic attributes (glBindVertexLocation), and
2146 * user-defined varyings.
2147 */
2148 assert(var->data.location != -1);
2149 entry = new(mem_ctx) variable_storage(var,
2150 PROGRAM_INPUT,
2151 var->data.location);
2152 break;
2153 case ir_var_shader_out:
2154 assert(var->data.location != -1);
2155 entry = new(mem_ctx) variable_storage(var,
2156 PROGRAM_OUTPUT,
2157 var->data.location
2158 + var->data.index);
2159 break;
2160 case ir_var_system_value:
2161 entry = new(mem_ctx) variable_storage(var,
2162 PROGRAM_SYSTEM_VALUE,
2163 var->data.location);
2164 break;
2165 case ir_var_auto:
2166 case ir_var_temporary:
2167 st_src_reg src = get_temp(var->type);
2168
2169 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2170 this->variables.push_tail(entry);
2171
2172 break;
2173 }
2174
2175 if (!entry) {
2176 printf("Failed to make storage for %s\n", var->name);
2177 exit(1);
2178 }
2179 }
2180
2181 this->result = st_src_reg(entry->file, entry->index, var->type);
2182 if (!native_integers)
2183 this->result.type = GLSL_TYPE_FLOAT;
2184 }
2185
2186 void
2187 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2188 {
2189 ir_constant *index;
2190 st_src_reg src;
2191 int element_size = type_size(ir->type);
2192 bool is_2D_input;
2193
2194 index = ir->array_index->constant_expression_value();
2195
2196 ir->array->accept(this);
2197 src = this->result;
2198
2199 is_2D_input = this->prog->Target == GL_GEOMETRY_PROGRAM_NV &&
2200 src.file == PROGRAM_INPUT &&
2201 ir->array->ir_type != ir_type_dereference_array;
2202
2203 if (is_2D_input)
2204 element_size = 1;
2205
2206 if (index) {
2207 if (is_2D_input) {
2208 src.index2D = index->value.i[0];
2209 src.has_index2 = true;
2210 } else
2211 src.index += index->value.i[0] * element_size;
2212 } else {
2213 /* Variable index array dereference. It eats the "vec4" of the
2214 * base of the array and an index that offsets the TGSI register
2215 * index.
2216 */
2217 ir->array_index->accept(this);
2218
2219 st_src_reg index_reg;
2220
2221 if (element_size == 1) {
2222 index_reg = this->result;
2223 } else {
2224 index_reg = get_temp(native_integers ?
2225 glsl_type::int_type : glsl_type::float_type);
2226
2227 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2228 this->result, st_src_reg_for_type(index_reg.type, element_size));
2229 }
2230
2231 /* If there was already a relative address register involved, add the
2232 * new and the old together to get the new offset.
2233 */
2234 if (!is_2D_input && src.reladdr != NULL) {
2235 st_src_reg accum_reg = get_temp(native_integers ?
2236 glsl_type::int_type : glsl_type::float_type);
2237
2238 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2239 index_reg, *src.reladdr);
2240
2241 index_reg = accum_reg;
2242 }
2243
2244 if (is_2D_input) {
2245 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2246 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2247 src.index2D = 0;
2248 src.has_index2 = true;
2249 } else {
2250 src.reladdr = ralloc(mem_ctx, st_src_reg);
2251 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2252 }
2253 }
2254
2255 /* If the type is smaller than a vec4, replicate the last channel out. */
2256 if (ir->type->is_scalar() || ir->type->is_vector())
2257 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2258 else
2259 src.swizzle = SWIZZLE_NOOP;
2260
2261 /* Change the register type to the element type of the array. */
2262 src.type = ir->type->base_type;
2263
2264 this->result = src;
2265 }
2266
2267 void
2268 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2269 {
2270 unsigned int i;
2271 const glsl_type *struct_type = ir->record->type;
2272 int offset = 0;
2273
2274 ir->record->accept(this);
2275
2276 for (i = 0; i < struct_type->length; i++) {
2277 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2278 break;
2279 offset += type_size(struct_type->fields.structure[i].type);
2280 }
2281
2282 /* If the type is smaller than a vec4, replicate the last channel out. */
2283 if (ir->type->is_scalar() || ir->type->is_vector())
2284 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2285 else
2286 this->result.swizzle = SWIZZLE_NOOP;
2287
2288 this->result.index += offset;
2289 this->result.type = ir->type->base_type;
2290 }
2291
2292 /**
2293 * We want to be careful in assignment setup to hit the actual storage
2294 * instead of potentially using a temporary like we might with the
2295 * ir_dereference handler.
2296 */
2297 static st_dst_reg
2298 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2299 {
2300 /* The LHS must be a dereference. If the LHS is a variable indexed array
2301 * access of a vector, it must be separated into a series conditional moves
2302 * before reaching this point (see ir_vec_index_to_cond_assign).
2303 */
2304 assert(ir->as_dereference());
2305 ir_dereference_array *deref_array = ir->as_dereference_array();
2306 if (deref_array) {
2307 assert(!deref_array->array->type->is_vector());
2308 }
2309
2310 /* Use the rvalue deref handler for the most part. We'll ignore
2311 * swizzles in it and write swizzles using writemask, though.
2312 */
2313 ir->accept(v);
2314 return st_dst_reg(v->result);
2315 }
2316
2317 /**
2318 * Process the condition of a conditional assignment
2319 *
2320 * Examines the condition of a conditional assignment to generate the optimal
2321 * first operand of a \c CMP instruction. If the condition is a relational
2322 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2323 * used as the source for the \c CMP instruction. Otherwise the comparison
2324 * is processed to a boolean result, and the boolean result is used as the
2325 * operand to the CMP instruction.
2326 */
2327 bool
2328 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2329 {
2330 ir_rvalue *src_ir = ir;
2331 bool negate = true;
2332 bool switch_order = false;
2333
2334 ir_expression *const expr = ir->as_expression();
2335 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2336 bool zero_on_left = false;
2337
2338 if (expr->operands[0]->is_zero()) {
2339 src_ir = expr->operands[1];
2340 zero_on_left = true;
2341 } else if (expr->operands[1]->is_zero()) {
2342 src_ir = expr->operands[0];
2343 zero_on_left = false;
2344 }
2345
2346 /* a is - 0 + - 0 +
2347 * (a < 0) T F F ( a < 0) T F F
2348 * (0 < a) F F T (-a < 0) F F T
2349 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2350 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2351 * (a > 0) F F T (-a < 0) F F T
2352 * (0 > a) T F F ( a < 0) T F F
2353 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2354 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2355 *
2356 * Note that exchanging the order of 0 and 'a' in the comparison simply
2357 * means that the value of 'a' should be negated.
2358 */
2359 if (src_ir != ir) {
2360 switch (expr->operation) {
2361 case ir_binop_less:
2362 switch_order = false;
2363 negate = zero_on_left;
2364 break;
2365
2366 case ir_binop_greater:
2367 switch_order = false;
2368 negate = !zero_on_left;
2369 break;
2370
2371 case ir_binop_lequal:
2372 switch_order = true;
2373 negate = !zero_on_left;
2374 break;
2375
2376 case ir_binop_gequal:
2377 switch_order = true;
2378 negate = zero_on_left;
2379 break;
2380
2381 default:
2382 /* This isn't the right kind of comparison afterall, so make sure
2383 * the whole condition is visited.
2384 */
2385 src_ir = ir;
2386 break;
2387 }
2388 }
2389 }
2390
2391 src_ir->accept(this);
2392
2393 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2394 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2395 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2396 * computing the condition.
2397 */
2398 if (negate)
2399 this->result.negate = ~this->result.negate;
2400
2401 return switch_order;
2402 }
2403
2404 void
2405 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2406 st_dst_reg *l, st_src_reg *r)
2407 {
2408 if (type->base_type == GLSL_TYPE_STRUCT) {
2409 for (unsigned int i = 0; i < type->length; i++) {
2410 emit_block_mov(ir, type->fields.structure[i].type, l, r);
2411 }
2412 return;
2413 }
2414
2415 if (type->is_array()) {
2416 for (unsigned int i = 0; i < type->length; i++) {
2417 emit_block_mov(ir, type->fields.array, l, r);
2418 }
2419 return;
2420 }
2421
2422 if (type->is_matrix()) {
2423 const struct glsl_type *vec_type;
2424
2425 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
2426 type->vector_elements, 1);
2427
2428 for (int i = 0; i < type->matrix_columns; i++) {
2429 emit_block_mov(ir, vec_type, l, r);
2430 }
2431 return;
2432 }
2433
2434 assert(type->is_scalar() || type->is_vector());
2435
2436 r->type = type->base_type;
2437 emit(ir, TGSI_OPCODE_MOV, *l, *r);
2438 l->index++;
2439 r->index++;
2440 }
2441
2442 void
2443 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2444 {
2445 st_dst_reg l;
2446 st_src_reg r;
2447 int i;
2448
2449 ir->rhs->accept(this);
2450 r = this->result;
2451
2452 l = get_assignment_lhs(ir->lhs, this);
2453
2454 /* FINISHME: This should really set to the correct maximal writemask for each
2455 * FINISHME: component written (in the loops below). This case can only
2456 * FINISHME: occur for matrices, arrays, and structures.
2457 */
2458 if (ir->write_mask == 0) {
2459 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2460 l.writemask = WRITEMASK_XYZW;
2461 } else if (ir->lhs->type->is_scalar() &&
2462 ir->lhs->variable_referenced()->data.mode == ir_var_shader_out) {
2463 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2464 * FINISHME: W component of fragment shader output zero, work correctly.
2465 */
2466 l.writemask = WRITEMASK_XYZW;
2467 } else {
2468 int swizzles[4];
2469 int first_enabled_chan = 0;
2470 int rhs_chan = 0;
2471
2472 l.writemask = ir->write_mask;
2473
2474 for (int i = 0; i < 4; i++) {
2475 if (l.writemask & (1 << i)) {
2476 first_enabled_chan = GET_SWZ(r.swizzle, i);
2477 break;
2478 }
2479 }
2480
2481 /* Swizzle a small RHS vector into the channels being written.
2482 *
2483 * glsl ir treats write_mask as dictating how many channels are
2484 * present on the RHS while TGSI treats write_mask as just
2485 * showing which channels of the vec4 RHS get written.
2486 */
2487 for (int i = 0; i < 4; i++) {
2488 if (l.writemask & (1 << i))
2489 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2490 else
2491 swizzles[i] = first_enabled_chan;
2492 }
2493 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2494 swizzles[2], swizzles[3]);
2495 }
2496
2497 assert(l.file != PROGRAM_UNDEFINED);
2498 assert(r.file != PROGRAM_UNDEFINED);
2499
2500 if (ir->condition) {
2501 const bool switch_order = this->process_move_condition(ir->condition);
2502 st_src_reg condition = this->result;
2503
2504 for (i = 0; i < type_size(ir->lhs->type); i++) {
2505 st_src_reg l_src = st_src_reg(l);
2506 st_src_reg condition_temp = condition;
2507 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2508
2509 if (native_integers) {
2510 /* This is necessary because TGSI's CMP instruction expects the
2511 * condition to be a float, and we store booleans as integers.
2512 * TODO: really want to avoid i2f path and use UCMP. Requires
2513 * changes to process_move_condition though too.
2514 */
2515 condition_temp = get_temp(glsl_type::vec4_type);
2516 condition.negate = 0;
2517 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2518 condition_temp.swizzle = condition.swizzle;
2519 }
2520
2521 if (switch_order) {
2522 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2523 } else {
2524 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2525 }
2526
2527 l.index++;
2528 r.index++;
2529 }
2530 } else if (ir->rhs->as_expression() &&
2531 this->instructions.get_tail() &&
2532 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2533 type_size(ir->lhs->type) == 1 &&
2534 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2535 /* To avoid emitting an extra MOV when assigning an expression to a
2536 * variable, emit the last instruction of the expression again, but
2537 * replace the destination register with the target of the assignment.
2538 * Dead code elimination will remove the original instruction.
2539 */
2540 glsl_to_tgsi_instruction *inst, *new_inst;
2541 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2542 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2543 new_inst->saturate = inst->saturate;
2544 inst->dead_mask = inst->dst.writemask;
2545 } else {
2546 emit_block_mov(ir, ir->rhs->type, &l, &r);
2547 }
2548 }
2549
2550
2551 void
2552 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2553 {
2554 st_src_reg src;
2555 GLfloat stack_vals[4] = { 0 };
2556 gl_constant_value *values = (gl_constant_value *) stack_vals;
2557 GLenum gl_type = GL_NONE;
2558 unsigned int i;
2559 static int in_array = 0;
2560 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2561
2562 /* Unfortunately, 4 floats is all we can get into
2563 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2564 * aggregate constant and move each constant value into it. If we
2565 * get lucky, copy propagation will eliminate the extra moves.
2566 */
2567 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2568 st_src_reg temp_base = get_temp(ir->type);
2569 st_dst_reg temp = st_dst_reg(temp_base);
2570
2571 foreach_in_list(ir_constant, field_value, &ir->components) {
2572 int size = type_size(field_value->type);
2573
2574 assert(size > 0);
2575
2576 field_value->accept(this);
2577 src = this->result;
2578
2579 for (i = 0; i < (unsigned int)size; i++) {
2580 emit(ir, TGSI_OPCODE_MOV, temp, src);
2581
2582 src.index++;
2583 temp.index++;
2584 }
2585 }
2586 this->result = temp_base;
2587 return;
2588 }
2589
2590 if (ir->type->is_array()) {
2591 st_src_reg temp_base = get_temp(ir->type);
2592 st_dst_reg temp = st_dst_reg(temp_base);
2593 int size = type_size(ir->type->fields.array);
2594
2595 assert(size > 0);
2596 in_array++;
2597
2598 for (i = 0; i < ir->type->length; i++) {
2599 ir->array_elements[i]->accept(this);
2600 src = this->result;
2601 for (int j = 0; j < size; j++) {
2602 emit(ir, TGSI_OPCODE_MOV, temp, src);
2603
2604 src.index++;
2605 temp.index++;
2606 }
2607 }
2608 this->result = temp_base;
2609 in_array--;
2610 return;
2611 }
2612
2613 if (ir->type->is_matrix()) {
2614 st_src_reg mat = get_temp(ir->type);
2615 st_dst_reg mat_column = st_dst_reg(mat);
2616
2617 for (i = 0; i < ir->type->matrix_columns; i++) {
2618 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2619 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2620
2621 src = st_src_reg(file, -1, ir->type->base_type);
2622 src.index = add_constant(file,
2623 values,
2624 ir->type->vector_elements,
2625 GL_FLOAT,
2626 &src.swizzle);
2627 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2628
2629 mat_column.index++;
2630 }
2631
2632 this->result = mat;
2633 return;
2634 }
2635
2636 switch (ir->type->base_type) {
2637 case GLSL_TYPE_FLOAT:
2638 gl_type = GL_FLOAT;
2639 for (i = 0; i < ir->type->vector_elements; i++) {
2640 values[i].f = ir->value.f[i];
2641 }
2642 break;
2643 case GLSL_TYPE_UINT:
2644 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2645 for (i = 0; i < ir->type->vector_elements; i++) {
2646 if (native_integers)
2647 values[i].u = ir->value.u[i];
2648 else
2649 values[i].f = ir->value.u[i];
2650 }
2651 break;
2652 case GLSL_TYPE_INT:
2653 gl_type = native_integers ? GL_INT : GL_FLOAT;
2654 for (i = 0; i < ir->type->vector_elements; i++) {
2655 if (native_integers)
2656 values[i].i = ir->value.i[i];
2657 else
2658 values[i].f = ir->value.i[i];
2659 }
2660 break;
2661 case GLSL_TYPE_BOOL:
2662 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2663 for (i = 0; i < ir->type->vector_elements; i++) {
2664 if (native_integers)
2665 values[i].u = ir->value.b[i] ? ~0 : 0;
2666 else
2667 values[i].f = ir->value.b[i];
2668 }
2669 break;
2670 default:
2671 assert(!"Non-float/uint/int/bool constant");
2672 }
2673
2674 this->result = st_src_reg(file, -1, ir->type);
2675 this->result.index = add_constant(file,
2676 values,
2677 ir->type->vector_elements,
2678 gl_type,
2679 &this->result.swizzle);
2680 }
2681
2682 function_entry *
2683 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2684 {
2685 foreach_in_list_use_after(function_entry, entry, &this->function_signatures) {
2686 if (entry->sig == sig)
2687 return entry;
2688 }
2689
2690 entry = ralloc(mem_ctx, function_entry);
2691 entry->sig = sig;
2692 entry->sig_id = this->next_signature_id++;
2693 entry->bgn_inst = NULL;
2694
2695 /* Allocate storage for all the parameters. */
2696 foreach_in_list(ir_variable, param, &sig->parameters) {
2697 variable_storage *storage;
2698
2699 storage = find_variable_storage(param);
2700 assert(!storage);
2701
2702 st_src_reg src = get_temp(param->type);
2703
2704 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
2705 this->variables.push_tail(storage);
2706 }
2707
2708 if (!sig->return_type->is_void()) {
2709 entry->return_reg = get_temp(sig->return_type);
2710 } else {
2711 entry->return_reg = undef_src;
2712 }
2713
2714 this->function_signatures.push_tail(entry);
2715 return entry;
2716 }
2717
2718 void
2719 glsl_to_tgsi_visitor::visit(ir_call *ir)
2720 {
2721 glsl_to_tgsi_instruction *call_inst;
2722 ir_function_signature *sig = ir->callee;
2723 function_entry *entry = get_function_signature(sig);
2724 int i;
2725
2726 /* Process in parameters. */
2727 foreach_two_lists(formal_node, &sig->parameters,
2728 actual_node, &ir->actual_parameters) {
2729 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
2730 ir_variable *param = (ir_variable *) formal_node;
2731
2732 if (param->data.mode == ir_var_function_in ||
2733 param->data.mode == ir_var_function_inout) {
2734 variable_storage *storage = find_variable_storage(param);
2735 assert(storage);
2736
2737 param_rval->accept(this);
2738 st_src_reg r = this->result;
2739
2740 st_dst_reg l;
2741 l.file = storage->file;
2742 l.index = storage->index;
2743 l.reladdr = NULL;
2744 l.writemask = WRITEMASK_XYZW;
2745 l.cond_mask = COND_TR;
2746
2747 for (i = 0; i < type_size(param->type); i++) {
2748 emit(ir, TGSI_OPCODE_MOV, l, r);
2749 l.index++;
2750 r.index++;
2751 }
2752 }
2753 }
2754
2755 /* Emit call instruction */
2756 call_inst = emit(ir, TGSI_OPCODE_CAL);
2757 call_inst->function = entry;
2758
2759 /* Process out parameters. */
2760 foreach_two_lists(formal_node, &sig->parameters,
2761 actual_node, &ir->actual_parameters) {
2762 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
2763 ir_variable *param = (ir_variable *) formal_node;
2764
2765 if (param->data.mode == ir_var_function_out ||
2766 param->data.mode == ir_var_function_inout) {
2767 variable_storage *storage = find_variable_storage(param);
2768 assert(storage);
2769
2770 st_src_reg r;
2771 r.file = storage->file;
2772 r.index = storage->index;
2773 r.reladdr = NULL;
2774 r.swizzle = SWIZZLE_NOOP;
2775 r.negate = 0;
2776
2777 param_rval->accept(this);
2778 st_dst_reg l = st_dst_reg(this->result);
2779
2780 for (i = 0; i < type_size(param->type); i++) {
2781 emit(ir, TGSI_OPCODE_MOV, l, r);
2782 l.index++;
2783 r.index++;
2784 }
2785 }
2786 }
2787
2788 /* Process return value. */
2789 this->result = entry->return_reg;
2790 }
2791
2792 void
2793 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2794 {
2795 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
2796 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
2797 st_src_reg levels_src;
2798 st_dst_reg result_dst, coord_dst, cube_sc_dst;
2799 glsl_to_tgsi_instruction *inst = NULL;
2800 unsigned opcode = TGSI_OPCODE_NOP;
2801 const glsl_type *sampler_type = ir->sampler->type;
2802 bool is_cube_array = false;
2803 unsigned i;
2804
2805 /* if we are a cube array sampler */
2806 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2807 sampler_type->sampler_array)) {
2808 is_cube_array = true;
2809 }
2810
2811 if (ir->coordinate) {
2812 ir->coordinate->accept(this);
2813
2814 /* Put our coords in a temp. We'll need to modify them for shadow,
2815 * projection, or LOD, so the only case we'd use it as is is if
2816 * we're doing plain old texturing. The optimization passes on
2817 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2818 */
2819 coord = get_temp(glsl_type::vec4_type);
2820 coord_dst = st_dst_reg(coord);
2821 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
2822 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2823 }
2824
2825 if (ir->projector) {
2826 ir->projector->accept(this);
2827 projector = this->result;
2828 }
2829
2830 /* Storage for our result. Ideally for an assignment we'd be using
2831 * the actual storage for the result here, instead.
2832 */
2833 result_src = get_temp(ir->type);
2834 result_dst = st_dst_reg(result_src);
2835
2836 switch (ir->op) {
2837 case ir_tex:
2838 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
2839 if (ir->offset) {
2840 ir->offset->accept(this);
2841 offset[0] = this->result;
2842 }
2843 break;
2844 case ir_txb:
2845 if (is_cube_array ||
2846 sampler_type == glsl_type::samplerCubeShadow_type) {
2847 opcode = TGSI_OPCODE_TXB2;
2848 }
2849 else {
2850 opcode = TGSI_OPCODE_TXB;
2851 }
2852 ir->lod_info.bias->accept(this);
2853 lod_info = this->result;
2854 if (ir->offset) {
2855 ir->offset->accept(this);
2856 offset[0] = this->result;
2857 }
2858 break;
2859 case ir_txl:
2860 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
2861 ir->lod_info.lod->accept(this);
2862 lod_info = this->result;
2863 if (ir->offset) {
2864 ir->offset->accept(this);
2865 offset[0] = this->result;
2866 }
2867 break;
2868 case ir_txd:
2869 opcode = TGSI_OPCODE_TXD;
2870 ir->lod_info.grad.dPdx->accept(this);
2871 dx = this->result;
2872 ir->lod_info.grad.dPdy->accept(this);
2873 dy = this->result;
2874 if (ir->offset) {
2875 ir->offset->accept(this);
2876 offset[0] = this->result;
2877 }
2878 break;
2879 case ir_txs:
2880 opcode = TGSI_OPCODE_TXQ;
2881 ir->lod_info.lod->accept(this);
2882 lod_info = this->result;
2883 break;
2884 case ir_query_levels:
2885 opcode = TGSI_OPCODE_TXQ;
2886 lod_info = st_src_reg(PROGRAM_IMMEDIATE, 0, GLSL_TYPE_INT);
2887 levels_src = get_temp(ir->type);
2888 break;
2889 case ir_txf:
2890 opcode = TGSI_OPCODE_TXF;
2891 ir->lod_info.lod->accept(this);
2892 lod_info = this->result;
2893 if (ir->offset) {
2894 ir->offset->accept(this);
2895 offset[0] = this->result;
2896 }
2897 break;
2898 case ir_txf_ms:
2899 opcode = TGSI_OPCODE_TXF;
2900 ir->lod_info.sample_index->accept(this);
2901 sample_index = this->result;
2902 break;
2903 case ir_tg4:
2904 opcode = TGSI_OPCODE_TG4;
2905 ir->lod_info.component->accept(this);
2906 component = this->result;
2907 if (ir->offset) {
2908 ir->offset->accept(this);
2909 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
2910 const glsl_type *elt_type = ir->offset->type->fields.array;
2911 for (i = 0; i < ir->offset->type->length; i++) {
2912 offset[i] = this->result;
2913 offset[i].index += i * type_size(elt_type);
2914 offset[i].type = elt_type->base_type;
2915 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
2916 }
2917 } else {
2918 offset[0] = this->result;
2919 }
2920 }
2921 break;
2922 case ir_lod:
2923 opcode = TGSI_OPCODE_LODQ;
2924 break;
2925 }
2926
2927 if (ir->projector) {
2928 if (opcode == TGSI_OPCODE_TEX) {
2929 /* Slot the projector in as the last component of the coord. */
2930 coord_dst.writemask = WRITEMASK_W;
2931 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2932 coord_dst.writemask = WRITEMASK_XYZW;
2933 opcode = TGSI_OPCODE_TXP;
2934 } else {
2935 st_src_reg coord_w = coord;
2936 coord_w.swizzle = SWIZZLE_WWWW;
2937
2938 /* For the other TEX opcodes there's no projective version
2939 * since the last slot is taken up by LOD info. Do the
2940 * projective divide now.
2941 */
2942 coord_dst.writemask = WRITEMASK_W;
2943 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2944
2945 /* In the case where we have to project the coordinates "by hand,"
2946 * the shadow comparator value must also be projected.
2947 */
2948 st_src_reg tmp_src = coord;
2949 if (ir->shadow_comparitor) {
2950 /* Slot the shadow value in as the second to last component of the
2951 * coord.
2952 */
2953 ir->shadow_comparitor->accept(this);
2954
2955 tmp_src = get_temp(glsl_type::vec4_type);
2956 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2957
2958 /* Projective division not allowed for array samplers. */
2959 assert(!sampler_type->sampler_array);
2960
2961 tmp_dst.writemask = WRITEMASK_Z;
2962 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2963
2964 tmp_dst.writemask = WRITEMASK_XY;
2965 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2966 }
2967
2968 coord_dst.writemask = WRITEMASK_XYZ;
2969 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2970
2971 coord_dst.writemask = WRITEMASK_XYZW;
2972 coord.swizzle = SWIZZLE_XYZW;
2973 }
2974 }
2975
2976 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2977 * comparator was put in the correct place (and projected) by the code,
2978 * above, that handles by-hand projection.
2979 */
2980 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2981 /* Slot the shadow value in as the second to last component of the
2982 * coord.
2983 */
2984 ir->shadow_comparitor->accept(this);
2985
2986 if (is_cube_array) {
2987 cube_sc = get_temp(glsl_type::float_type);
2988 cube_sc_dst = st_dst_reg(cube_sc);
2989 cube_sc_dst.writemask = WRITEMASK_X;
2990 emit(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
2991 cube_sc_dst.writemask = WRITEMASK_X;
2992 }
2993 else {
2994 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2995 sampler_type->sampler_array) ||
2996 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
2997 coord_dst.writemask = WRITEMASK_W;
2998 } else {
2999 coord_dst.writemask = WRITEMASK_Z;
3000 }
3001
3002 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3003 coord_dst.writemask = WRITEMASK_XYZW;
3004 }
3005 }
3006
3007 if (ir->op == ir_txf_ms) {
3008 coord_dst.writemask = WRITEMASK_W;
3009 emit(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
3010 coord_dst.writemask = WRITEMASK_XYZW;
3011 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
3012 opcode == TGSI_OPCODE_TXF) {
3013 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
3014 coord_dst.writemask = WRITEMASK_W;
3015 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
3016 coord_dst.writemask = WRITEMASK_XYZW;
3017 }
3018
3019 if (opcode == TGSI_OPCODE_TXD)
3020 inst = emit(ir, opcode, result_dst, coord, dx, dy);
3021 else if (opcode == TGSI_OPCODE_TXQ) {
3022 if (ir->op == ir_query_levels) {
3023 /* the level is stored in W */
3024 inst = emit(ir, opcode, st_dst_reg(levels_src), lod_info);
3025 result_dst.writemask = WRITEMASK_X;
3026 levels_src.swizzle = SWIZZLE_WWWW;
3027 emit(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
3028 } else
3029 inst = emit(ir, opcode, result_dst, lod_info);
3030 } else if (opcode == TGSI_OPCODE_TXF) {
3031 inst = emit(ir, opcode, result_dst, coord);
3032 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
3033 inst = emit(ir, opcode, result_dst, coord, lod_info);
3034 } else if (opcode == TGSI_OPCODE_TEX2) {
3035 inst = emit(ir, opcode, result_dst, coord, cube_sc);
3036 } else if (opcode == TGSI_OPCODE_TG4) {
3037 if (is_cube_array && ir->shadow_comparitor) {
3038 inst = emit(ir, opcode, result_dst, coord, cube_sc);
3039 } else {
3040 inst = emit(ir, opcode, result_dst, coord, component);
3041 }
3042 } else
3043 inst = emit(ir, opcode, result_dst, coord);
3044
3045 if (ir->shadow_comparitor)
3046 inst->tex_shadow = GL_TRUE;
3047
3048 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
3049 this->shader_program,
3050 this->prog);
3051
3052 if (ir->offset) {
3053 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
3054 inst->tex_offsets[i] = offset[i];
3055 inst->tex_offset_num_offset = i;
3056 }
3057
3058 switch (sampler_type->sampler_dimensionality) {
3059 case GLSL_SAMPLER_DIM_1D:
3060 inst->tex_target = (sampler_type->sampler_array)
3061 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
3062 break;
3063 case GLSL_SAMPLER_DIM_2D:
3064 inst->tex_target = (sampler_type->sampler_array)
3065 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
3066 break;
3067 case GLSL_SAMPLER_DIM_3D:
3068 inst->tex_target = TEXTURE_3D_INDEX;
3069 break;
3070 case GLSL_SAMPLER_DIM_CUBE:
3071 inst->tex_target = (sampler_type->sampler_array)
3072 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
3073 break;
3074 case GLSL_SAMPLER_DIM_RECT:
3075 inst->tex_target = TEXTURE_RECT_INDEX;
3076 break;
3077 case GLSL_SAMPLER_DIM_BUF:
3078 inst->tex_target = TEXTURE_BUFFER_INDEX;
3079 break;
3080 case GLSL_SAMPLER_DIM_EXTERNAL:
3081 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3082 break;
3083 case GLSL_SAMPLER_DIM_MS:
3084 inst->tex_target = (sampler_type->sampler_array)
3085 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3086 break;
3087 default:
3088 assert(!"Should not get here.");
3089 }
3090
3091 this->result = result_src;
3092 }
3093
3094 void
3095 glsl_to_tgsi_visitor::visit(ir_return *ir)
3096 {
3097 if (ir->get_value()) {
3098 st_dst_reg l;
3099 int i;
3100
3101 assert(current_function);
3102
3103 ir->get_value()->accept(this);
3104 st_src_reg r = this->result;
3105
3106 l = st_dst_reg(current_function->return_reg);
3107
3108 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
3109 emit(ir, TGSI_OPCODE_MOV, l, r);
3110 l.index++;
3111 r.index++;
3112 }
3113 }
3114
3115 emit(ir, TGSI_OPCODE_RET);
3116 }
3117
3118 void
3119 glsl_to_tgsi_visitor::visit(ir_discard *ir)
3120 {
3121 if (ir->condition) {
3122 ir->condition->accept(this);
3123 this->result.negate = ~this->result.negate;
3124 emit(ir, TGSI_OPCODE_KILL_IF, undef_dst, this->result);
3125 } else {
3126 /* unconditional kil */
3127 emit(ir, TGSI_OPCODE_KILL);
3128 }
3129 }
3130
3131 void
3132 glsl_to_tgsi_visitor::visit(ir_if *ir)
3133 {
3134 unsigned if_opcode;
3135 glsl_to_tgsi_instruction *if_inst;
3136
3137 ir->condition->accept(this);
3138 assert(this->result.file != PROGRAM_UNDEFINED);
3139
3140 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
3141
3142 if_inst = emit(ir->condition, if_opcode, undef_dst, this->result);
3143
3144 this->instructions.push_tail(if_inst);
3145
3146 visit_exec_list(&ir->then_instructions, this);
3147
3148 if (!ir->else_instructions.is_empty()) {
3149 emit(ir->condition, TGSI_OPCODE_ELSE);
3150 visit_exec_list(&ir->else_instructions, this);
3151 }
3152
3153 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
3154 }
3155
3156
3157 void
3158 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
3159 {
3160 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3161
3162 ir->stream->accept(this);
3163 emit(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
3164 }
3165
3166 void
3167 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
3168 {
3169 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3170
3171 ir->stream->accept(this);
3172 emit(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
3173 }
3174
3175 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
3176 {
3177 result.file = PROGRAM_UNDEFINED;
3178 next_temp = 1;
3179 next_array = 0;
3180 next_signature_id = 1;
3181 num_immediates = 0;
3182 current_function = NULL;
3183 num_address_regs = 0;
3184 samplers_used = 0;
3185 indirect_addr_consts = false;
3186 glsl_version = 0;
3187 native_integers = false;
3188 mem_ctx = ralloc_context(NULL);
3189 ctx = NULL;
3190 prog = NULL;
3191 shader_program = NULL;
3192 shader = NULL;
3193 options = NULL;
3194 }
3195
3196 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
3197 {
3198 ralloc_free(mem_ctx);
3199 }
3200
3201 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
3202 {
3203 delete v;
3204 }
3205
3206
3207 /**
3208 * Count resources used by the given gpu program (number of texture
3209 * samplers, etc).
3210 */
3211 static void
3212 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
3213 {
3214 v->samplers_used = 0;
3215
3216 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
3217 if (is_tex_instruction(inst->op)) {
3218 v->samplers_used |= 1 << inst->sampler;
3219
3220 if (inst->tex_shadow) {
3221 prog->ShadowSamplers |= 1 << inst->sampler;
3222 }
3223 }
3224 }
3225
3226 prog->SamplersUsed = v->samplers_used;
3227
3228 if (v->shader_program != NULL)
3229 _mesa_update_shader_textures_used(v->shader_program, prog);
3230 }
3231
3232 static void
3233 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
3234 struct gl_shader_program *shader_program,
3235 const char *name, const glsl_type *type,
3236 ir_constant *val)
3237 {
3238 if (type->is_record()) {
3239 ir_constant *field_constant;
3240
3241 field_constant = (ir_constant *)val->components.get_head();
3242
3243 for (unsigned int i = 0; i < type->length; i++) {
3244 const glsl_type *field_type = type->fields.structure[i].type;
3245 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
3246 type->fields.structure[i].name);
3247 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
3248 field_type, field_constant);
3249 field_constant = (ir_constant *)field_constant->next;
3250 }
3251 return;
3252 }
3253
3254 unsigned offset;
3255 unsigned index = _mesa_get_uniform_location(ctx, shader_program, name,
3256 &offset);
3257 if (offset == GL_INVALID_INDEX) {
3258 fail_link(shader_program,
3259 "Couldn't find uniform for initializer %s\n", name);
3260 return;
3261 }
3262 int loc = _mesa_uniform_merge_location_offset(shader_program, index, offset);
3263
3264 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
3265 ir_constant *element;
3266 const glsl_type *element_type;
3267 if (type->is_array()) {
3268 element = val->array_elements[i];
3269 element_type = type->fields.array;
3270 } else {
3271 element = val;
3272 element_type = type;
3273 }
3274
3275 void *values;
3276
3277 if (element_type->base_type == GLSL_TYPE_BOOL) {
3278 int *conv = ralloc_array(mem_ctx, int, element_type->components());
3279 for (unsigned int j = 0; j < element_type->components(); j++) {
3280 conv[j] = element->value.b[j];
3281 }
3282 values = (void *)conv;
3283 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
3284 element_type->vector_elements,
3285 1);
3286 } else {
3287 values = &element->value;
3288 }
3289
3290 if (element_type->is_matrix()) {
3291 _mesa_uniform_matrix(ctx, shader_program,
3292 element_type->matrix_columns,
3293 element_type->vector_elements,
3294 loc, 1, GL_FALSE, (GLfloat *)values);
3295 } else {
3296 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
3297 values, element_type->gl_type);
3298 }
3299
3300 loc++;
3301 }
3302 }
3303
3304 /**
3305 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3306 * are read from the given src in this instruction
3307 */
3308 static int
3309 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3310 {
3311 int read_mask = 0, comp;
3312
3313 /* Now, given the src swizzle and the written channels, find which
3314 * components are actually read
3315 */
3316 for (comp = 0; comp < 4; ++comp) {
3317 const unsigned coord = GET_SWZ(src.swizzle, comp);
3318 ASSERT(coord < 4);
3319 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3320 read_mask |= 1 << coord;
3321 }
3322
3323 return read_mask;
3324 }
3325
3326 /**
3327 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3328 * instruction is the first instruction to write to register T0. There are
3329 * several lowering passes done in GLSL IR (e.g. branches and
3330 * relative addressing) that create a large number of conditional assignments
3331 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3332 *
3333 * Here is why this conversion is safe:
3334 * CMP T0, T1 T2 T0 can be expanded to:
3335 * if (T1 < 0.0)
3336 * MOV T0, T2;
3337 * else
3338 * MOV T0, T0;
3339 *
3340 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3341 * as the original program. If (T1 < 0.0) evaluates to false, executing
3342 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3343 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3344 * because any instruction that was going to read from T0 after this was going
3345 * to read a garbage value anyway.
3346 */
3347 void
3348 glsl_to_tgsi_visitor::simplify_cmp(void)
3349 {
3350 unsigned *tempWrites;
3351 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3352
3353 tempWrites = new unsigned[MAX_TEMPS];
3354 if (!tempWrites) {
3355 return;
3356 }
3357 memset(tempWrites, 0, sizeof(unsigned) * MAX_TEMPS);
3358 memset(outputWrites, 0, sizeof(outputWrites));
3359
3360 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3361 unsigned prevWriteMask = 0;
3362
3363 /* Give up if we encounter relative addressing or flow control. */
3364 if (inst->dst.reladdr ||
3365 tgsi_get_opcode_info(inst->op)->is_branch ||
3366 inst->op == TGSI_OPCODE_BGNSUB ||
3367 inst->op == TGSI_OPCODE_CONT ||
3368 inst->op == TGSI_OPCODE_END ||
3369 inst->op == TGSI_OPCODE_ENDSUB ||
3370 inst->op == TGSI_OPCODE_RET) {
3371 break;
3372 }
3373
3374 if (inst->dst.file == PROGRAM_OUTPUT) {
3375 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3376 prevWriteMask = outputWrites[inst->dst.index];
3377 outputWrites[inst->dst.index] |= inst->dst.writemask;
3378 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3379 assert(inst->dst.index < MAX_TEMPS);
3380 prevWriteMask = tempWrites[inst->dst.index];
3381 tempWrites[inst->dst.index] |= inst->dst.writemask;
3382 } else
3383 continue;
3384
3385 /* For a CMP to be considered a conditional write, the destination
3386 * register and source register two must be the same. */
3387 if (inst->op == TGSI_OPCODE_CMP
3388 && !(inst->dst.writemask & prevWriteMask)
3389 && inst->src[2].file == inst->dst.file
3390 && inst->src[2].index == inst->dst.index
3391 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3392
3393 inst->op = TGSI_OPCODE_MOV;
3394 inst->src[0] = inst->src[1];
3395 }
3396 }
3397
3398 delete [] tempWrites;
3399 }
3400
3401 /* Replaces all references to a temporary register index with another index. */
3402 void
3403 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3404 {
3405 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3406 unsigned j;
3407
3408 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3409 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3410 inst->src[j].index == index) {
3411 inst->src[j].index = new_index;
3412 }
3413 }
3414
3415 for (j=0; j < inst->tex_offset_num_offset; j++) {
3416 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3417 inst->tex_offsets[j].index == index) {
3418 inst->tex_offsets[j].index = new_index;
3419 }
3420 }
3421
3422 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3423 inst->dst.index = new_index;
3424 }
3425 }
3426 }
3427
3428 int
3429 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3430 {
3431 int depth = 0; /* loop depth */
3432 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3433 unsigned i = 0, j;
3434
3435 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3436 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3437 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3438 inst->src[j].index == index) {
3439 return (depth == 0) ? i : loop_start;
3440 }
3441 }
3442 for (j=0; j < inst->tex_offset_num_offset; j++) {
3443 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3444 inst->tex_offsets[j].index == index) {
3445 return (depth == 0) ? i : loop_start;
3446 }
3447 }
3448
3449 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3450 if(depth++ == 0)
3451 loop_start = i;
3452 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3453 if (--depth == 0)
3454 loop_start = -1;
3455 }
3456 assert(depth >= 0);
3457
3458 i++;
3459 }
3460
3461 return -1;
3462 }
3463
3464 int
3465 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3466 {
3467 int depth = 0; /* loop depth */
3468 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3469 int i = 0;
3470
3471 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3472 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3473 return (depth == 0) ? i : loop_start;
3474 }
3475
3476 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3477 if(depth++ == 0)
3478 loop_start = i;
3479 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3480 if (--depth == 0)
3481 loop_start = -1;
3482 }
3483 assert(depth >= 0);
3484
3485 i++;
3486 }
3487
3488 return -1;
3489 }
3490
3491 int
3492 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3493 {
3494 int depth = 0; /* loop depth */
3495 int last = -1; /* index of last instruction that reads the temporary */
3496 unsigned i = 0, j;
3497
3498 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3499 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3500 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3501 inst->src[j].index == index) {
3502 last = (depth == 0) ? i : -2;
3503 }
3504 }
3505 for (j=0; j < inst->tex_offset_num_offset; j++) {
3506 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3507 inst->tex_offsets[j].index == index)
3508 last = (depth == 0) ? i : -2;
3509 }
3510
3511 if (inst->op == TGSI_OPCODE_BGNLOOP)
3512 depth++;
3513 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3514 if (--depth == 0 && last == -2)
3515 last = i;
3516 assert(depth >= 0);
3517
3518 i++;
3519 }
3520
3521 assert(last >= -1);
3522 return last;
3523 }
3524
3525 int
3526 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3527 {
3528 int depth = 0; /* loop depth */
3529 int last = -1; /* index of last instruction that writes to the temporary */
3530 int i = 0;
3531
3532 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3533 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3534 last = (depth == 0) ? i : -2;
3535
3536 if (inst->op == TGSI_OPCODE_BGNLOOP)
3537 depth++;
3538 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3539 if (--depth == 0 && last == -2)
3540 last = i;
3541 assert(depth >= 0);
3542
3543 i++;
3544 }
3545
3546 assert(last >= -1);
3547 return last;
3548 }
3549
3550 /*
3551 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3552 * channels for copy propagation and updates following instructions to
3553 * use the original versions.
3554 *
3555 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3556 * will occur. As an example, a TXP production before this pass:
3557 *
3558 * 0: MOV TEMP[1], INPUT[4].xyyy;
3559 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3560 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3561 *
3562 * and after:
3563 *
3564 * 0: MOV TEMP[1], INPUT[4].xyyy;
3565 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3566 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3567 *
3568 * which allows for dead code elimination on TEMP[1]'s writes.
3569 */
3570 void
3571 glsl_to_tgsi_visitor::copy_propagate(void)
3572 {
3573 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3574 glsl_to_tgsi_instruction *,
3575 this->next_temp * 4);
3576 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3577 int level = 0;
3578
3579 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3580 assert(inst->dst.file != PROGRAM_TEMPORARY
3581 || inst->dst.index < this->next_temp);
3582
3583 /* First, do any copy propagation possible into the src regs. */
3584 for (int r = 0; r < 3; r++) {
3585 glsl_to_tgsi_instruction *first = NULL;
3586 bool good = true;
3587 int acp_base = inst->src[r].index * 4;
3588
3589 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3590 inst->src[r].reladdr ||
3591 inst->src[r].reladdr2)
3592 continue;
3593
3594 /* See if we can find entries in the ACP consisting of MOVs
3595 * from the same src register for all the swizzled channels
3596 * of this src register reference.
3597 */
3598 for (int i = 0; i < 4; i++) {
3599 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3600 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3601
3602 if (!copy_chan) {
3603 good = false;
3604 break;
3605 }
3606
3607 assert(acp_level[acp_base + src_chan] <= level);
3608
3609 if (!first) {
3610 first = copy_chan;
3611 } else {
3612 if (first->src[0].file != copy_chan->src[0].file ||
3613 first->src[0].index != copy_chan->src[0].index) {
3614 good = false;
3615 break;
3616 }
3617 }
3618 }
3619
3620 if (good) {
3621 /* We've now validated that we can copy-propagate to
3622 * replace this src register reference. Do it.
3623 */
3624 inst->src[r].file = first->src[0].file;
3625 inst->src[r].index = first->src[0].index;
3626 inst->src[r].index2D = first->src[0].index2D;
3627 inst->src[r].has_index2 = first->src[0].has_index2;
3628
3629 int swizzle = 0;
3630 for (int i = 0; i < 4; i++) {
3631 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3632 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3633 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3634 (3 * i));
3635 }
3636 inst->src[r].swizzle = swizzle;
3637 }
3638 }
3639
3640 switch (inst->op) {
3641 case TGSI_OPCODE_BGNLOOP:
3642 case TGSI_OPCODE_ENDLOOP:
3643 /* End of a basic block, clear the ACP entirely. */
3644 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3645 break;
3646
3647 case TGSI_OPCODE_IF:
3648 case TGSI_OPCODE_UIF:
3649 ++level;
3650 break;
3651
3652 case TGSI_OPCODE_ENDIF:
3653 case TGSI_OPCODE_ELSE:
3654 /* Clear all channels written inside the block from the ACP, but
3655 * leaving those that were not touched.
3656 */
3657 for (int r = 0; r < this->next_temp; r++) {
3658 for (int c = 0; c < 4; c++) {
3659 if (!acp[4 * r + c])
3660 continue;
3661
3662 if (acp_level[4 * r + c] >= level)
3663 acp[4 * r + c] = NULL;
3664 }
3665 }
3666 if (inst->op == TGSI_OPCODE_ENDIF)
3667 --level;
3668 break;
3669
3670 default:
3671 /* Continuing the block, clear any written channels from
3672 * the ACP.
3673 */
3674 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3675 /* Any temporary might be written, so no copy propagation
3676 * across this instruction.
3677 */
3678 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3679 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3680 inst->dst.reladdr) {
3681 /* Any output might be written, so no copy propagation
3682 * from outputs across this instruction.
3683 */
3684 for (int r = 0; r < this->next_temp; r++) {
3685 for (int c = 0; c < 4; c++) {
3686 if (!acp[4 * r + c])
3687 continue;
3688
3689 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3690 acp[4 * r + c] = NULL;
3691 }
3692 }
3693 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3694 inst->dst.file == PROGRAM_OUTPUT) {
3695 /* Clear where it's used as dst. */
3696 if (inst->dst.file == PROGRAM_TEMPORARY) {
3697 for (int c = 0; c < 4; c++) {
3698 if (inst->dst.writemask & (1 << c)) {
3699 acp[4 * inst->dst.index + c] = NULL;
3700 }
3701 }
3702 }
3703
3704 /* Clear where it's used as src. */
3705 for (int r = 0; r < this->next_temp; r++) {
3706 for (int c = 0; c < 4; c++) {
3707 if (!acp[4 * r + c])
3708 continue;
3709
3710 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3711
3712 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3713 acp[4 * r + c]->src[0].index == inst->dst.index &&
3714 inst->dst.writemask & (1 << src_chan))
3715 {
3716 acp[4 * r + c] = NULL;
3717 }
3718 }
3719 }
3720 }
3721 break;
3722 }
3723
3724 /* If this is a copy, add it to the ACP. */
3725 if (inst->op == TGSI_OPCODE_MOV &&
3726 inst->dst.file == PROGRAM_TEMPORARY &&
3727 !(inst->dst.file == inst->src[0].file &&
3728 inst->dst.index == inst->src[0].index) &&
3729 !inst->dst.reladdr &&
3730 !inst->saturate &&
3731 !inst->src[0].reladdr &&
3732 !inst->src[0].reladdr2 &&
3733 !inst->src[0].negate) {
3734 for (int i = 0; i < 4; i++) {
3735 if (inst->dst.writemask & (1 << i)) {
3736 acp[4 * inst->dst.index + i] = inst;
3737 acp_level[4 * inst->dst.index + i] = level;
3738 }
3739 }
3740 }
3741 }
3742
3743 ralloc_free(acp_level);
3744 ralloc_free(acp);
3745 }
3746
3747 /*
3748 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3749 * code elimination.
3750 *
3751 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3752 * will occur. As an example, a TXP production after copy propagation but
3753 * before this pass:
3754 *
3755 * 0: MOV TEMP[1], INPUT[4].xyyy;
3756 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3757 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3758 *
3759 * and after this pass:
3760 *
3761 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3762 */
3763 int
3764 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3765 {
3766 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3767 glsl_to_tgsi_instruction *,
3768 this->next_temp * 4);
3769 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3770 int level = 0;
3771 int removed = 0;
3772
3773 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3774 assert(inst->dst.file != PROGRAM_TEMPORARY
3775 || inst->dst.index < this->next_temp);
3776
3777 switch (inst->op) {
3778 case TGSI_OPCODE_BGNLOOP:
3779 case TGSI_OPCODE_ENDLOOP:
3780 case TGSI_OPCODE_CONT:
3781 case TGSI_OPCODE_BRK:
3782 /* End of a basic block, clear the write array entirely.
3783 *
3784 * This keeps us from killing dead code when the writes are
3785 * on either side of a loop, even when the register isn't touched
3786 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
3787 * dead code of this type, so it shouldn't make a difference as long as
3788 * the dead code elimination pass in the GLSL compiler does its job.
3789 */
3790 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3791 break;
3792
3793 case TGSI_OPCODE_ENDIF:
3794 case TGSI_OPCODE_ELSE:
3795 /* Promote the recorded level of all channels written inside the
3796 * preceding if or else block to the level above the if/else block.
3797 */
3798 for (int r = 0; r < this->next_temp; r++) {
3799 for (int c = 0; c < 4; c++) {
3800 if (!writes[4 * r + c])
3801 continue;
3802
3803 if (write_level[4 * r + c] == level)
3804 write_level[4 * r + c] = level-1;
3805 }
3806 }
3807
3808 if(inst->op == TGSI_OPCODE_ENDIF)
3809 --level;
3810
3811 break;
3812
3813 case TGSI_OPCODE_IF:
3814 case TGSI_OPCODE_UIF:
3815 ++level;
3816 /* fallthrough to default case to mark the condition as read */
3817
3818 default:
3819 /* Continuing the block, clear any channels from the write array that
3820 * are read by this instruction.
3821 */
3822 for (unsigned i = 0; i < Elements(inst->src); i++) {
3823 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3824 /* Any temporary might be read, so no dead code elimination
3825 * across this instruction.
3826 */
3827 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3828 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3829 /* Clear where it's used as src. */
3830 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3831 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3832 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3833 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3834
3835 for (int c = 0; c < 4; c++) {
3836 if (src_chans & (1 << c)) {
3837 writes[4 * inst->src[i].index + c] = NULL;
3838 }
3839 }
3840 }
3841 }
3842 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
3843 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
3844 /* Any temporary might be read, so no dead code elimination
3845 * across this instruction.
3846 */
3847 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3848 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
3849 /* Clear where it's used as src. */
3850 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
3851 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
3852 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
3853 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
3854
3855 for (int c = 0; c < 4; c++) {
3856 if (src_chans & (1 << c)) {
3857 writes[4 * inst->tex_offsets[i].index + c] = NULL;
3858 }
3859 }
3860 }
3861 }
3862 break;
3863 }
3864
3865 /* If this instruction writes to a temporary, add it to the write array.
3866 * If there is already an instruction in the write array for one or more
3867 * of the channels, flag that channel write as dead.
3868 */
3869 if (inst->dst.file == PROGRAM_TEMPORARY &&
3870 !inst->dst.reladdr &&
3871 !inst->saturate) {
3872 for (int c = 0; c < 4; c++) {
3873 if (inst->dst.writemask & (1 << c)) {
3874 if (writes[4 * inst->dst.index + c]) {
3875 if (write_level[4 * inst->dst.index + c] < level)
3876 continue;
3877 else
3878 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3879 }
3880 writes[4 * inst->dst.index + c] = inst;
3881 write_level[4 * inst->dst.index + c] = level;
3882 }
3883 }
3884 }
3885 }
3886
3887 /* Anything still in the write array at this point is dead code. */
3888 for (int r = 0; r < this->next_temp; r++) {
3889 for (int c = 0; c < 4; c++) {
3890 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3891 if (inst)
3892 inst->dead_mask |= (1 << c);
3893 }
3894 }
3895
3896 /* Now actually remove the instructions that are completely dead and update
3897 * the writemask of other instructions with dead channels.
3898 */
3899 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
3900 if (!inst->dead_mask || !inst->dst.writemask)
3901 continue;
3902 else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3903 inst->remove();
3904 delete inst;
3905 removed++;
3906 } else
3907 inst->dst.writemask &= ~(inst->dead_mask);
3908 }
3909
3910 ralloc_free(write_level);
3911 ralloc_free(writes);
3912
3913 return removed;
3914 }
3915
3916 /* Merges temporary registers together where possible to reduce the number of
3917 * registers needed to run a program.
3918 *
3919 * Produces optimal code only after copy propagation and dead code elimination
3920 * have been run. */
3921 void
3922 glsl_to_tgsi_visitor::merge_registers(void)
3923 {
3924 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3925 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3926 int i, j;
3927
3928 /* Read the indices of the last read and first write to each temp register
3929 * into an array so that we don't have to traverse the instruction list as
3930 * much. */
3931 for (i=0; i < this->next_temp; i++) {
3932 last_reads[i] = get_last_temp_read(i);
3933 first_writes[i] = get_first_temp_write(i);
3934 }
3935
3936 /* Start looking for registers with non-overlapping usages that can be
3937 * merged together. */
3938 for (i=0; i < this->next_temp; i++) {
3939 /* Don't touch unused registers. */
3940 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3941
3942 for (j=0; j < this->next_temp; j++) {
3943 /* Don't touch unused registers. */
3944 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3945
3946 /* We can merge the two registers if the first write to j is after or
3947 * in the same instruction as the last read from i. Note that the
3948 * register at index i will always be used earlier or at the same time
3949 * as the register at index j. */
3950 if (first_writes[i] <= first_writes[j] &&
3951 last_reads[i] <= first_writes[j])
3952 {
3953 rename_temp_register(j, i); /* Replace all references to j with i.*/
3954
3955 /* Update the first_writes and last_reads arrays with the new
3956 * values for the merged register index, and mark the newly unused
3957 * register index as such. */
3958 last_reads[i] = last_reads[j];
3959 first_writes[j] = -1;
3960 last_reads[j] = -1;
3961 }
3962 }
3963 }
3964
3965 ralloc_free(last_reads);
3966 ralloc_free(first_writes);
3967 }
3968
3969 /* Reassign indices to temporary registers by reusing unused indices created
3970 * by optimization passes. */
3971 void
3972 glsl_to_tgsi_visitor::renumber_registers(void)
3973 {
3974 int i = 0;
3975 int new_index = 0;
3976
3977 for (i=0; i < this->next_temp; i++) {
3978 if (get_first_temp_read(i) < 0) continue;
3979 if (i != new_index)
3980 rename_temp_register(i, new_index);
3981 new_index++;
3982 }
3983
3984 this->next_temp = new_index;
3985 }
3986
3987 /**
3988 * Returns a fragment program which implements the current pixel transfer ops.
3989 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3990 */
3991 extern "C" void
3992 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3993 glsl_to_tgsi_visitor *original,
3994 int scale_and_bias, int pixel_maps)
3995 {
3996 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3997 struct st_context *st = st_context(original->ctx);
3998 struct gl_program *prog = &fp->Base.Base;
3999 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
4000 st_src_reg coord, src0;
4001 st_dst_reg dst0;
4002 glsl_to_tgsi_instruction *inst;
4003
4004 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
4005 v->ctx = original->ctx;
4006 v->prog = prog;
4007 v->shader_program = NULL;
4008 v->shader = NULL;
4009 v->glsl_version = original->glsl_version;
4010 v->native_integers = original->native_integers;
4011 v->options = original->options;
4012 v->next_temp = original->next_temp;
4013 v->num_address_regs = original->num_address_regs;
4014 v->samplers_used = prog->SamplersUsed = original->samplers_used;
4015 v->indirect_addr_consts = original->indirect_addr_consts;
4016 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
4017 v->num_immediates = original->num_immediates;
4018
4019 /*
4020 * Get initial pixel color from the texture.
4021 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
4022 */
4023 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
4024 src0 = v->get_temp(glsl_type::vec4_type);
4025 dst0 = st_dst_reg(src0);
4026 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
4027 inst->sampler = 0;
4028 inst->tex_target = TEXTURE_2D_INDEX;
4029
4030 prog->InputsRead |= VARYING_BIT_TEX0;
4031 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
4032 v->samplers_used |= (1 << 0);
4033
4034 if (scale_and_bias) {
4035 static const gl_state_index scale_state[STATE_LENGTH] =
4036 { STATE_INTERNAL, STATE_PT_SCALE,
4037 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
4038 static const gl_state_index bias_state[STATE_LENGTH] =
4039 { STATE_INTERNAL, STATE_PT_BIAS,
4040 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
4041 GLint scale_p, bias_p;
4042 st_src_reg scale, bias;
4043
4044 scale_p = _mesa_add_state_reference(params, scale_state);
4045 bias_p = _mesa_add_state_reference(params, bias_state);
4046
4047 /* MAD colorTemp, colorTemp, scale, bias; */
4048 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
4049 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
4050 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
4051 }
4052
4053 if (pixel_maps) {
4054 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
4055 st_dst_reg temp_dst = st_dst_reg(temp);
4056
4057 assert(st->pixel_xfer.pixelmap_texture);
4058
4059 /* With a little effort, we can do four pixel map look-ups with
4060 * two TEX instructions:
4061 */
4062
4063 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
4064 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
4065 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
4066 inst->sampler = 1;
4067 inst->tex_target = TEXTURE_2D_INDEX;
4068
4069 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
4070 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
4071 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
4072 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
4073 inst->sampler = 1;
4074 inst->tex_target = TEXTURE_2D_INDEX;
4075
4076 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
4077 v->samplers_used |= (1 << 1);
4078
4079 /* MOV colorTemp, temp; */
4080 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
4081 }
4082
4083 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4084 * new visitor. */
4085 foreach_in_list(glsl_to_tgsi_instruction, inst, &original->instructions) {
4086 glsl_to_tgsi_instruction *newinst;
4087 st_src_reg src_regs[3];
4088
4089 if (inst->dst.file == PROGRAM_OUTPUT)
4090 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4091
4092 for (int i=0; i<3; i++) {
4093 src_regs[i] = inst->src[i];
4094 if (src_regs[i].file == PROGRAM_INPUT &&
4095 src_regs[i].index == VARYING_SLOT_COL0)
4096 {
4097 src_regs[i].file = PROGRAM_TEMPORARY;
4098 src_regs[i].index = src0.index;
4099 }
4100 else if (src_regs[i].file == PROGRAM_INPUT)
4101 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
4102 }
4103
4104 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4105 newinst->tex_target = inst->tex_target;
4106 }
4107
4108 /* Make modifications to fragment program info. */
4109 prog->Parameters = _mesa_combine_parameter_lists(params,
4110 original->prog->Parameters);
4111 _mesa_free_parameter_list(params);
4112 count_resources(v, prog);
4113 fp->glsl_to_tgsi = v;
4114 }
4115
4116 /**
4117 * Make fragment program for glBitmap:
4118 * Sample the texture and kill the fragment if the bit is 0.
4119 * This program will be combined with the user's fragment program.
4120 *
4121 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
4122 */
4123 extern "C" void
4124 get_bitmap_visitor(struct st_fragment_program *fp,
4125 glsl_to_tgsi_visitor *original, int samplerIndex)
4126 {
4127 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
4128 struct st_context *st = st_context(original->ctx);
4129 struct gl_program *prog = &fp->Base.Base;
4130 st_src_reg coord, src0;
4131 st_dst_reg dst0;
4132 glsl_to_tgsi_instruction *inst;
4133
4134 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
4135 v->ctx = original->ctx;
4136 v->prog = prog;
4137 v->shader_program = NULL;
4138 v->shader = NULL;
4139 v->glsl_version = original->glsl_version;
4140 v->native_integers = original->native_integers;
4141 v->options = original->options;
4142 v->next_temp = original->next_temp;
4143 v->num_address_regs = original->num_address_regs;
4144 v->samplers_used = prog->SamplersUsed = original->samplers_used;
4145 v->indirect_addr_consts = original->indirect_addr_consts;
4146 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
4147 v->num_immediates = original->num_immediates;
4148
4149 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
4150 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
4151 src0 = v->get_temp(glsl_type::vec4_type);
4152 dst0 = st_dst_reg(src0);
4153 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
4154 inst->sampler = samplerIndex;
4155 inst->tex_target = TEXTURE_2D_INDEX;
4156
4157 prog->InputsRead |= VARYING_BIT_TEX0;
4158 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
4159 v->samplers_used |= (1 << samplerIndex);
4160
4161 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
4162 src0.negate = NEGATE_XYZW;
4163 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
4164 src0.swizzle = SWIZZLE_XXXX;
4165 inst = v->emit(NULL, TGSI_OPCODE_KILL_IF, undef_dst, src0);
4166
4167 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4168 * new visitor. */
4169 foreach_in_list(glsl_to_tgsi_instruction, inst, &original->instructions) {
4170 glsl_to_tgsi_instruction *newinst;
4171 st_src_reg src_regs[3];
4172
4173 if (inst->dst.file == PROGRAM_OUTPUT)
4174 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4175
4176 for (int i=0; i<3; i++) {
4177 src_regs[i] = inst->src[i];
4178 if (src_regs[i].file == PROGRAM_INPUT)
4179 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
4180 }
4181
4182 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4183 newinst->tex_target = inst->tex_target;
4184 }
4185
4186 /* Make modifications to fragment program info. */
4187 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
4188 count_resources(v, prog);
4189 fp->glsl_to_tgsi = v;
4190 }
4191
4192 /* ------------------------- TGSI conversion stuff -------------------------- */
4193 struct label {
4194 unsigned branch_target;
4195 unsigned token;
4196 };
4197
4198 /**
4199 * Intermediate state used during shader translation.
4200 */
4201 struct st_translate {
4202 struct ureg_program *ureg;
4203
4204 struct ureg_dst temps[MAX_TEMPS];
4205 struct ureg_dst arrays[MAX_ARRAYS];
4206 struct ureg_src *constants;
4207 struct ureg_src *immediates;
4208 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4209 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4210 struct ureg_dst address[2];
4211 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4212 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4213 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
4214 unsigned array_sizes[MAX_ARRAYS];
4215
4216 const GLuint *inputMapping;
4217 const GLuint *outputMapping;
4218
4219 /* For every instruction that contains a label (eg CALL), keep
4220 * details so that we can go back afterwards and emit the correct
4221 * tgsi instruction number for each label.
4222 */
4223 struct label *labels;
4224 unsigned labels_size;
4225 unsigned labels_count;
4226
4227 /* Keep a record of the tgsi instruction number that each mesa
4228 * instruction starts at, will be used to fix up labels after
4229 * translation.
4230 */
4231 unsigned *insn;
4232 unsigned insn_size;
4233 unsigned insn_count;
4234
4235 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4236
4237 boolean error;
4238 };
4239
4240 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4241 const unsigned _mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4242 TGSI_SEMANTIC_FACE,
4243 TGSI_SEMANTIC_VERTEXID,
4244 TGSI_SEMANTIC_INSTANCEID,
4245 TGSI_SEMANTIC_SAMPLEID,
4246 TGSI_SEMANTIC_SAMPLEPOS,
4247 TGSI_SEMANTIC_SAMPLEMASK,
4248 TGSI_SEMANTIC_INVOCATIONID,
4249 };
4250
4251 /**
4252 * Make note of a branch to a label in the TGSI code.
4253 * After we've emitted all instructions, we'll go over the list
4254 * of labels built here and patch the TGSI code with the actual
4255 * location of each label.
4256 */
4257 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4258 {
4259 unsigned i;
4260
4261 if (t->labels_count + 1 >= t->labels_size) {
4262 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4263 t->labels = (struct label *)realloc(t->labels,
4264 t->labels_size * sizeof(struct label));
4265 if (t->labels == NULL) {
4266 static unsigned dummy;
4267 t->error = TRUE;
4268 return &dummy;
4269 }
4270 }
4271
4272 i = t->labels_count++;
4273 t->labels[i].branch_target = branch_target;
4274 return &t->labels[i].token;
4275 }
4276
4277 /**
4278 * Called prior to emitting the TGSI code for each instruction.
4279 * Allocate additional space for instructions if needed.
4280 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4281 * the next TGSI instruction.
4282 */
4283 static void set_insn_start(struct st_translate *t, unsigned start)
4284 {
4285 if (t->insn_count + 1 >= t->insn_size) {
4286 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4287 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4288 if (t->insn == NULL) {
4289 t->error = TRUE;
4290 return;
4291 }
4292 }
4293
4294 t->insn[t->insn_count++] = start;
4295 }
4296
4297 /**
4298 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4299 */
4300 static struct ureg_src
4301 emit_immediate(struct st_translate *t,
4302 gl_constant_value values[4],
4303 int type, int size)
4304 {
4305 struct ureg_program *ureg = t->ureg;
4306
4307 switch(type)
4308 {
4309 case GL_FLOAT:
4310 return ureg_DECL_immediate(ureg, &values[0].f, size);
4311 case GL_INT:
4312 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4313 case GL_UNSIGNED_INT:
4314 case GL_BOOL:
4315 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4316 default:
4317 assert(!"should not get here - type must be float, int, uint, or bool");
4318 return ureg_src_undef();
4319 }
4320 }
4321
4322 /**
4323 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4324 */
4325 static struct ureg_dst
4326 dst_register(struct st_translate *t,
4327 gl_register_file file,
4328 GLuint index)
4329 {
4330 unsigned array;
4331
4332 switch(file) {
4333 case PROGRAM_UNDEFINED:
4334 return ureg_dst_undef();
4335
4336 case PROGRAM_TEMPORARY:
4337 assert(index < Elements(t->temps));
4338
4339 if (ureg_dst_is_undef(t->temps[index]))
4340 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4341
4342 return t->temps[index];
4343
4344 case PROGRAM_ARRAY:
4345 array = index >> 16;
4346
4347 assert(array < Elements(t->arrays));
4348
4349 if (ureg_dst_is_undef(t->arrays[array]))
4350 t->arrays[array] = ureg_DECL_array_temporary(
4351 t->ureg, t->array_sizes[array], TRUE);
4352
4353 return ureg_dst_array_offset(t->arrays[array],
4354 (int)(index & 0xFFFF) - 0x8000);
4355
4356 case PROGRAM_OUTPUT:
4357 if (t->procType == TGSI_PROCESSOR_VERTEX)
4358 assert(index < VARYING_SLOT_MAX);
4359 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4360 assert(index < FRAG_RESULT_MAX);
4361 else
4362 assert(index < VARYING_SLOT_MAX);
4363
4364 assert(t->outputMapping[index] < Elements(t->outputs));
4365
4366 return t->outputs[t->outputMapping[index]];
4367
4368 case PROGRAM_ADDRESS:
4369 return t->address[index];
4370
4371 default:
4372 assert(!"unknown dst register file");
4373 return ureg_dst_undef();
4374 }
4375 }
4376
4377 /**
4378 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4379 */
4380 static struct ureg_src
4381 src_register(struct st_translate *t, const struct st_src_reg *reg)
4382 {
4383 switch(reg->file) {
4384 case PROGRAM_UNDEFINED:
4385 return ureg_src_undef();
4386
4387 case PROGRAM_TEMPORARY:
4388 case PROGRAM_ARRAY:
4389 return ureg_src(dst_register(t, reg->file, reg->index));
4390
4391 case PROGRAM_UNIFORM:
4392 assert(reg->index >= 0);
4393 return t->constants[reg->index];
4394 case PROGRAM_STATE_VAR:
4395 case PROGRAM_CONSTANT: /* ie, immediate */
4396 if (reg->has_index2)
4397 return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
4398 else if (reg->index < 0)
4399 return ureg_DECL_constant(t->ureg, 0);
4400 else
4401 return t->constants[reg->index];
4402
4403 case PROGRAM_IMMEDIATE:
4404 return t->immediates[reg->index];
4405
4406 case PROGRAM_INPUT:
4407 assert(t->inputMapping[reg->index] < Elements(t->inputs));
4408 return t->inputs[t->inputMapping[reg->index]];
4409
4410 case PROGRAM_OUTPUT:
4411 assert(t->outputMapping[reg->index] < Elements(t->outputs));
4412 return ureg_src(t->outputs[t->outputMapping[reg->index]]); /* not needed? */
4413
4414 case PROGRAM_ADDRESS:
4415 return ureg_src(t->address[reg->index]);
4416
4417 case PROGRAM_SYSTEM_VALUE:
4418 assert(reg->index < (int) Elements(t->systemValues));
4419 return t->systemValues[reg->index];
4420
4421 default:
4422 assert(!"unknown src register file");
4423 return ureg_src_undef();
4424 }
4425 }
4426
4427 /**
4428 * Create a TGSI ureg_dst register from an st_dst_reg.
4429 */
4430 static struct ureg_dst
4431 translate_dst(struct st_translate *t,
4432 const st_dst_reg *dst_reg,
4433 bool saturate, bool clamp_color)
4434 {
4435 struct ureg_dst dst = dst_register(t,
4436 dst_reg->file,
4437 dst_reg->index);
4438
4439 dst = ureg_writemask(dst, dst_reg->writemask);
4440
4441 if (saturate)
4442 dst = ureg_saturate(dst);
4443 else if (clamp_color && dst_reg->file == PROGRAM_OUTPUT) {
4444 /* Clamp colors for ARB_color_buffer_float. */
4445 switch (t->procType) {
4446 case TGSI_PROCESSOR_VERTEX:
4447 /* XXX if the geometry shader is present, this must be done there
4448 * instead of here. */
4449 if (dst_reg->index == VARYING_SLOT_COL0 ||
4450 dst_reg->index == VARYING_SLOT_COL1 ||
4451 dst_reg->index == VARYING_SLOT_BFC0 ||
4452 dst_reg->index == VARYING_SLOT_BFC1) {
4453 dst = ureg_saturate(dst);
4454 }
4455 break;
4456
4457 case TGSI_PROCESSOR_FRAGMENT:
4458 if (dst_reg->index == FRAG_RESULT_COLOR ||
4459 dst_reg->index >= FRAG_RESULT_DATA0) {
4460 dst = ureg_saturate(dst);
4461 }
4462 break;
4463 }
4464 }
4465
4466 if (dst_reg->reladdr != NULL) {
4467 assert(dst_reg->file != PROGRAM_TEMPORARY);
4468 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4469 }
4470
4471 return dst;
4472 }
4473
4474 /**
4475 * Create a TGSI ureg_src register from an st_src_reg.
4476 */
4477 static struct ureg_src
4478 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4479 {
4480 struct ureg_src src = src_register(t, src_reg);
4481
4482 if (src_reg->has_index2) {
4483 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
4484 * and UBO constant buffers (buffer, position).
4485 */
4486 if (src_reg->reladdr2)
4487 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
4488 src_reg->index2D);
4489 else
4490 src = ureg_src_dimension(src, src_reg->index2D);
4491 }
4492
4493 src = ureg_swizzle(src,
4494 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4495 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4496 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4497 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4498
4499 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4500 src = ureg_negate(src);
4501
4502 if (src_reg->reladdr != NULL) {
4503 assert(src_reg->file != PROGRAM_TEMPORARY);
4504 src = ureg_src_indirect(src, ureg_src(t->address[0]));
4505 }
4506
4507 return src;
4508 }
4509
4510 static struct tgsi_texture_offset
4511 translate_tex_offset(struct st_translate *t,
4512 const st_src_reg *in_offset, int idx)
4513 {
4514 struct tgsi_texture_offset offset;
4515 struct ureg_src imm_src;
4516 struct ureg_dst dst;
4517 int array;
4518
4519 switch (in_offset->file) {
4520 case PROGRAM_IMMEDIATE:
4521 imm_src = t->immediates[in_offset->index];
4522
4523 offset.File = imm_src.File;
4524 offset.Index = imm_src.Index;
4525 offset.SwizzleX = imm_src.SwizzleX;
4526 offset.SwizzleY = imm_src.SwizzleY;
4527 offset.SwizzleZ = imm_src.SwizzleZ;
4528 offset.Padding = 0;
4529 break;
4530 case PROGRAM_TEMPORARY:
4531 imm_src = ureg_src(t->temps[in_offset->index]);
4532 offset.File = imm_src.File;
4533 offset.Index = imm_src.Index;
4534 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4535 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4536 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4537 offset.Padding = 0;
4538 break;
4539 case PROGRAM_ARRAY:
4540 array = in_offset->index >> 16;
4541
4542 assert(array >= 0);
4543 assert(array < (int) Elements(t->arrays));
4544
4545 dst = t->arrays[array];
4546 offset.File = dst.File;
4547 offset.Index = dst.Index + (in_offset->index & 0xFFFF) - 0x8000;
4548 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4549 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4550 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4551 offset.Padding = 0;
4552 break;
4553 default:
4554 break;
4555 }
4556 return offset;
4557 }
4558
4559 static void
4560 compile_tgsi_instruction(struct st_translate *t,
4561 const glsl_to_tgsi_instruction *inst,
4562 bool clamp_dst_color_output)
4563 {
4564 struct ureg_program *ureg = t->ureg;
4565 GLuint i;
4566 struct ureg_dst dst[1];
4567 struct ureg_src src[4];
4568 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4569
4570 unsigned num_dst;
4571 unsigned num_src;
4572 unsigned tex_target;
4573
4574 num_dst = num_inst_dst_regs(inst->op);
4575 num_src = num_inst_src_regs(inst->op);
4576
4577 if (num_dst)
4578 dst[0] = translate_dst(t,
4579 &inst->dst,
4580 inst->saturate,
4581 clamp_dst_color_output);
4582
4583 for (i = 0; i < num_src; i++)
4584 src[i] = translate_src(t, &inst->src[i]);
4585
4586 switch(inst->op) {
4587 case TGSI_OPCODE_BGNLOOP:
4588 case TGSI_OPCODE_CAL:
4589 case TGSI_OPCODE_ELSE:
4590 case TGSI_OPCODE_ENDLOOP:
4591 case TGSI_OPCODE_IF:
4592 case TGSI_OPCODE_UIF:
4593 assert(num_dst == 0);
4594 ureg_label_insn(ureg,
4595 inst->op,
4596 src, num_src,
4597 get_label(t,
4598 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4599 return;
4600
4601 case TGSI_OPCODE_TEX:
4602 case TGSI_OPCODE_TXB:
4603 case TGSI_OPCODE_TXD:
4604 case TGSI_OPCODE_TXL:
4605 case TGSI_OPCODE_TXP:
4606 case TGSI_OPCODE_TXQ:
4607 case TGSI_OPCODE_TXF:
4608 case TGSI_OPCODE_TEX2:
4609 case TGSI_OPCODE_TXB2:
4610 case TGSI_OPCODE_TXL2:
4611 case TGSI_OPCODE_TG4:
4612 case TGSI_OPCODE_LODQ:
4613 src[num_src++] = t->samplers[inst->sampler];
4614 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4615 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i], i);
4616 }
4617 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4618
4619 ureg_tex_insn(ureg,
4620 inst->op,
4621 dst, num_dst,
4622 tex_target,
4623 texoffsets, inst->tex_offset_num_offset,
4624 src, num_src);
4625 return;
4626
4627 case TGSI_OPCODE_SCS:
4628 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4629 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4630 break;
4631
4632 default:
4633 ureg_insn(ureg,
4634 inst->op,
4635 dst, num_dst,
4636 src, num_src);
4637 break;
4638 }
4639 }
4640
4641 /**
4642 * Emit the TGSI instructions for inverting and adjusting WPOS.
4643 * This code is unavoidable because it also depends on whether
4644 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4645 */
4646 static void
4647 emit_wpos_adjustment( struct st_translate *t,
4648 const struct gl_program *program,
4649 boolean invert,
4650 GLfloat adjX, GLfloat adjY[2])
4651 {
4652 struct ureg_program *ureg = t->ureg;
4653
4654 /* Fragment program uses fragment position input.
4655 * Need to replace instances of INPUT[WPOS] with temp T
4656 * where T = INPUT[WPOS] by y is inverted.
4657 */
4658 static const gl_state_index wposTransformState[STATE_LENGTH]
4659 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4660 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4661
4662 /* XXX: note we are modifying the incoming shader here! Need to
4663 * do this before emitting the constant decls below, or this
4664 * will be missed:
4665 */
4666 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4667 wposTransformState);
4668
4669 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4670 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4671 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
4672
4673 /* First, apply the coordinate shift: */
4674 if (adjX || adjY[0] || adjY[1]) {
4675 if (adjY[0] != adjY[1]) {
4676 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4677 * depending on whether inversion is actually going to be applied
4678 * or not, which is determined by testing against the inversion
4679 * state variable used below, which will be either +1 or -1.
4680 */
4681 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4682
4683 ureg_CMP(ureg, adj_temp,
4684 ureg_scalar(wpostrans, invert ? 2 : 0),
4685 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4686 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4687 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4688 } else {
4689 ureg_ADD(ureg, wpos_temp, wpos_input,
4690 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4691 }
4692 wpos_input = ureg_src(wpos_temp);
4693 } else {
4694 /* MOV wpos_temp, input[wpos]
4695 */
4696 ureg_MOV( ureg, wpos_temp, wpos_input );
4697 }
4698
4699 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4700 * inversion/identity, or the other way around if we're drawing to an FBO.
4701 */
4702 if (invert) {
4703 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4704 */
4705 ureg_MAD( ureg,
4706 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4707 wpos_input,
4708 ureg_scalar(wpostrans, 0),
4709 ureg_scalar(wpostrans, 1));
4710 } else {
4711 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4712 */
4713 ureg_MAD( ureg,
4714 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4715 wpos_input,
4716 ureg_scalar(wpostrans, 2),
4717 ureg_scalar(wpostrans, 3));
4718 }
4719
4720 /* Use wpos_temp as position input from here on:
4721 */
4722 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
4723 }
4724
4725
4726 /**
4727 * Emit fragment position/ooordinate code.
4728 */
4729 static void
4730 emit_wpos(struct st_context *st,
4731 struct st_translate *t,
4732 const struct gl_program *program,
4733 struct ureg_program *ureg)
4734 {
4735 const struct gl_fragment_program *fp =
4736 (const struct gl_fragment_program *) program;
4737 struct pipe_screen *pscreen = st->pipe->screen;
4738 GLfloat adjX = 0.0f;
4739 GLfloat adjY[2] = { 0.0f, 0.0f };
4740 boolean invert = FALSE;
4741
4742 /* Query the pixel center conventions supported by the pipe driver and set
4743 * adjX, adjY to help out if it cannot handle the requested one internally.
4744 *
4745 * The bias of the y-coordinate depends on whether y-inversion takes place
4746 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4747 * drawing to an FBO (causes additional inversion), and whether the the pipe
4748 * driver origin and the requested origin differ (the latter condition is
4749 * stored in the 'invert' variable).
4750 *
4751 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4752 *
4753 * center shift only:
4754 * i -> h: +0.5
4755 * h -> i: -0.5
4756 *
4757 * inversion only:
4758 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4759 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4760 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4761 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4762 *
4763 * inversion and center shift:
4764 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4765 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4766 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4767 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4768 */
4769 if (fp->OriginUpperLeft) {
4770 /* Fragment shader wants origin in upper-left */
4771 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4772 /* the driver supports upper-left origin */
4773 }
4774 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4775 /* the driver supports lower-left origin, need to invert Y */
4776 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4777 invert = TRUE;
4778 }
4779 else
4780 assert(0);
4781 }
4782 else {
4783 /* Fragment shader wants origin in lower-left */
4784 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4785 /* the driver supports lower-left origin */
4786 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4787 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4788 /* the driver supports upper-left origin, need to invert Y */
4789 invert = TRUE;
4790 else
4791 assert(0);
4792 }
4793
4794 if (fp->PixelCenterInteger) {
4795 /* Fragment shader wants pixel center integer */
4796 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4797 /* the driver supports pixel center integer */
4798 adjY[1] = 1.0f;
4799 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4800 }
4801 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4802 /* the driver supports pixel center half integer, need to bias X,Y */
4803 adjX = -0.5f;
4804 adjY[0] = -0.5f;
4805 adjY[1] = 0.5f;
4806 }
4807 else
4808 assert(0);
4809 }
4810 else {
4811 /* Fragment shader wants pixel center half integer */
4812 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4813 /* the driver supports pixel center half integer */
4814 }
4815 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4816 /* the driver supports pixel center integer, need to bias X,Y */
4817 adjX = adjY[0] = adjY[1] = 0.5f;
4818 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4819 }
4820 else
4821 assert(0);
4822 }
4823
4824 /* we invert after adjustment so that we avoid the MOV to temporary,
4825 * and reuse the adjustment ADD instead */
4826 emit_wpos_adjustment(t, program, invert, adjX, adjY);
4827 }
4828
4829 /**
4830 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4831 * TGSI uses +1 for front, -1 for back.
4832 * This function converts the TGSI value to the GL value. Simply clamping/
4833 * saturating the value to [0,1] does the job.
4834 */
4835 static void
4836 emit_face_var(struct st_translate *t)
4837 {
4838 struct ureg_program *ureg = t->ureg;
4839 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4840 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
4841
4842 /* MOV_SAT face_temp, input[face] */
4843 face_temp = ureg_saturate(face_temp);
4844 ureg_MOV(ureg, face_temp, face_input);
4845
4846 /* Use face_temp as face input from here on: */
4847 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
4848 }
4849
4850 static void
4851 emit_edgeflags(struct st_translate *t)
4852 {
4853 struct ureg_program *ureg = t->ureg;
4854 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VARYING_SLOT_EDGE]];
4855 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4856
4857 ureg_MOV(ureg, edge_dst, edge_src);
4858 }
4859
4860 /**
4861 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4862 * \param program the program to translate
4863 * \param numInputs number of input registers used
4864 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4865 * input indexes
4866 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4867 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4868 * each input
4869 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4870 * \param interpLocation the TGSI_INTERPOLATE_LOC_* location for each input
4871 * \param numOutputs number of output registers used
4872 * \param outputMapping maps Mesa fragment program outputs to TGSI
4873 * generic outputs
4874 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4875 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4876 * each output
4877 *
4878 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4879 */
4880 extern "C" enum pipe_error
4881 st_translate_program(
4882 struct gl_context *ctx,
4883 uint procType,
4884 struct ureg_program *ureg,
4885 glsl_to_tgsi_visitor *program,
4886 const struct gl_program *proginfo,
4887 GLuint numInputs,
4888 const GLuint inputMapping[],
4889 const ubyte inputSemanticName[],
4890 const ubyte inputSemanticIndex[],
4891 const GLuint interpMode[],
4892 const GLuint interpLocation[],
4893 GLuint numOutputs,
4894 const GLuint outputMapping[],
4895 const ubyte outputSemanticName[],
4896 const ubyte outputSemanticIndex[],
4897 boolean passthrough_edgeflags,
4898 boolean clamp_color)
4899 {
4900 struct st_translate *t;
4901 unsigned i;
4902 enum pipe_error ret = PIPE_OK;
4903
4904 assert(numInputs <= Elements(t->inputs));
4905 assert(numOutputs <= Elements(t->outputs));
4906
4907 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_FRONT_FACE] ==
4908 TGSI_SEMANTIC_FACE);
4909 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_VERTEX_ID] ==
4910 TGSI_SEMANTIC_VERTEXID);
4911 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INSTANCE_ID] ==
4912 TGSI_SEMANTIC_INSTANCEID);
4913 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_ID] ==
4914 TGSI_SEMANTIC_SAMPLEID);
4915 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_POS] ==
4916 TGSI_SEMANTIC_SAMPLEPOS);
4917 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_MASK_IN] ==
4918 TGSI_SEMANTIC_SAMPLEMASK);
4919 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INVOCATION_ID] ==
4920 TGSI_SEMANTIC_INVOCATIONID);
4921
4922 t = CALLOC_STRUCT(st_translate);
4923 if (!t) {
4924 ret = PIPE_ERROR_OUT_OF_MEMORY;
4925 goto out;
4926 }
4927
4928 memset(t, 0, sizeof *t);
4929
4930 t->procType = procType;
4931 t->inputMapping = inputMapping;
4932 t->outputMapping = outputMapping;
4933 t->ureg = ureg;
4934
4935 if (program->shader_program) {
4936 for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4937 struct gl_uniform_storage *const storage =
4938 &program->shader_program->UniformStorage[i];
4939
4940 _mesa_uniform_detach_all_driver_storage(storage);
4941 }
4942 }
4943
4944 /*
4945 * Declare input attributes.
4946 */
4947 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4948 for (i = 0; i < numInputs; i++) {
4949 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
4950 inputSemanticName[i],
4951 inputSemanticIndex[i],
4952 interpMode[i], 0,
4953 interpLocation[i]);
4954 }
4955
4956 if (proginfo->InputsRead & VARYING_BIT_POS) {
4957 /* Must do this after setting up t->inputs, and before
4958 * emitting constant references, below:
4959 */
4960 emit_wpos(st_context(ctx), t, proginfo, ureg);
4961 }
4962
4963 if (proginfo->InputsRead & VARYING_BIT_FACE)
4964 emit_face_var(t);
4965
4966 /*
4967 * Declare output attributes.
4968 */
4969 for (i = 0; i < numOutputs; i++) {
4970 switch (outputSemanticName[i]) {
4971 case TGSI_SEMANTIC_POSITION:
4972 t->outputs[i] = ureg_DECL_output(ureg,
4973 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4974 outputSemanticIndex[i]);
4975 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4976 break;
4977 case TGSI_SEMANTIC_STENCIL:
4978 t->outputs[i] = ureg_DECL_output(ureg,
4979 TGSI_SEMANTIC_STENCIL, /* Stencil */
4980 outputSemanticIndex[i]);
4981 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4982 break;
4983 case TGSI_SEMANTIC_COLOR:
4984 t->outputs[i] = ureg_DECL_output(ureg,
4985 TGSI_SEMANTIC_COLOR,
4986 outputSemanticIndex[i]);
4987 break;
4988 case TGSI_SEMANTIC_SAMPLEMASK:
4989 t->outputs[i] = ureg_DECL_output(ureg,
4990 TGSI_SEMANTIC_SAMPLEMASK,
4991 outputSemanticIndex[i]);
4992 /* TODO: If we ever support more than 32 samples, this will have
4993 * to become an array.
4994 */
4995 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
4996 break;
4997 default:
4998 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4999 ret = PIPE_ERROR_BAD_INPUT;
5000 goto out;
5001 }
5002 }
5003 }
5004 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
5005 for (i = 0; i < numInputs; i++) {
5006 t->inputs[i] = ureg_DECL_gs_input(ureg,
5007 i,
5008 inputSemanticName[i],
5009 inputSemanticIndex[i]);
5010 }
5011
5012 for (i = 0; i < numOutputs; i++) {
5013 t->outputs[i] = ureg_DECL_output(ureg,
5014 outputSemanticName[i],
5015 outputSemanticIndex[i]);
5016 }
5017 }
5018 else {
5019 assert(procType == TGSI_PROCESSOR_VERTEX);
5020
5021 for (i = 0; i < numInputs; i++) {
5022 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
5023 }
5024
5025 for (i = 0; i < numOutputs; i++) {
5026 t->outputs[i] = ureg_DECL_output(ureg,
5027 outputSemanticName[i],
5028 outputSemanticIndex[i]);
5029 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
5030 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
5031 ureg_MOV(ureg,
5032 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
5033 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
5034 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5035 }
5036 }
5037 if (passthrough_edgeflags)
5038 emit_edgeflags(t);
5039 }
5040
5041 /* Declare address register.
5042 */
5043 if (program->num_address_regs > 0) {
5044 assert(program->num_address_regs <= 2);
5045 t->address[0] = ureg_DECL_address(ureg);
5046 if (program->num_address_regs == 2)
5047 t->address[1] = ureg_DECL_address(ureg);
5048 }
5049
5050 /* Declare misc input registers
5051 */
5052 {
5053 GLbitfield sysInputs = proginfo->SystemValuesRead;
5054 unsigned numSys = 0;
5055 for (i = 0; sysInputs; i++) {
5056 if (sysInputs & (1 << i)) {
5057 unsigned semName = _mesa_sysval_to_semantic[i];
5058 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
5059 if (semName == TGSI_SEMANTIC_INSTANCEID ||
5060 semName == TGSI_SEMANTIC_VERTEXID) {
5061 /* From Gallium perspective, these system values are always
5062 * integer, and require native integer support. However, if
5063 * native integer is supported on the vertex stage but not the
5064 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
5065 * assumes these system values are floats. To resolve the
5066 * inconsistency, we insert a U2F.
5067 */
5068 struct st_context *st = st_context(ctx);
5069 struct pipe_screen *pscreen = st->pipe->screen;
5070 assert(procType == TGSI_PROCESSOR_VERTEX);
5071 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
5072 if (!ctx->Const.NativeIntegers) {
5073 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
5074 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
5075 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
5076 }
5077 }
5078 numSys++;
5079 sysInputs &= ~(1 << i);
5080 }
5081 }
5082 }
5083
5084 /* Copy over array sizes
5085 */
5086 memcpy(t->array_sizes, program->array_sizes, sizeof(unsigned) * program->next_array);
5087
5088 /* Emit constants and uniforms. TGSI uses a single index space for these,
5089 * so we put all the translated regs in t->constants.
5090 */
5091 if (proginfo->Parameters) {
5092 t->constants = (struct ureg_src *)
5093 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
5094 if (t->constants == NULL) {
5095 ret = PIPE_ERROR_OUT_OF_MEMORY;
5096 goto out;
5097 }
5098
5099 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
5100 switch (proginfo->Parameters->Parameters[i].Type) {
5101 case PROGRAM_STATE_VAR:
5102 case PROGRAM_UNIFORM:
5103 t->constants[i] = ureg_DECL_constant(ureg, i);
5104 break;
5105
5106 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
5107 * addressing of the const buffer.
5108 * FIXME: Be smarter and recognize param arrays:
5109 * indirect addressing is only valid within the referenced
5110 * array.
5111 */
5112 case PROGRAM_CONSTANT:
5113 if (program->indirect_addr_consts)
5114 t->constants[i] = ureg_DECL_constant(ureg, i);
5115 else
5116 t->constants[i] = emit_immediate(t,
5117 proginfo->Parameters->ParameterValues[i],
5118 proginfo->Parameters->Parameters[i].DataType,
5119 4);
5120 break;
5121 default:
5122 break;
5123 }
5124 }
5125 }
5126
5127 if (program->shader) {
5128 unsigned num_ubos = program->shader->NumUniformBlocks;
5129
5130 for (i = 0; i < num_ubos; i++) {
5131 unsigned size = program->shader->UniformBlocks[i].UniformBufferSize;
5132 unsigned num_const_vecs = (size + 15) / 16;
5133 unsigned first, last;
5134 assert(num_const_vecs > 0);
5135 first = 0;
5136 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
5137 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
5138 }
5139 }
5140
5141 /* Emit immediate values.
5142 */
5143 t->immediates = (struct ureg_src *)
5144 calloc(program->num_immediates, sizeof(struct ureg_src));
5145 if (t->immediates == NULL) {
5146 ret = PIPE_ERROR_OUT_OF_MEMORY;
5147 goto out;
5148 }
5149 i = 0;
5150 foreach_in_list(immediate_storage, imm, &program->immediates) {
5151 assert(i < program->num_immediates);
5152 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
5153 }
5154 assert(i == program->num_immediates);
5155
5156 /* texture samplers */
5157 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
5158 if (program->samplers_used & (1 << i)) {
5159 t->samplers[i] = ureg_DECL_sampler(ureg, i);
5160 }
5161 }
5162
5163 /* Emit each instruction in turn:
5164 */
5165 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions) {
5166 set_insn_start(t, ureg_get_instruction_number(ureg));
5167 compile_tgsi_instruction(t, inst, clamp_color);
5168 }
5169
5170 /* Fix up all emitted labels:
5171 */
5172 for (i = 0; i < t->labels_count; i++) {
5173 ureg_fixup_label(ureg, t->labels[i].token,
5174 t->insn[t->labels[i].branch_target]);
5175 }
5176
5177 if (program->shader_program) {
5178 /* This has to be done last. Any operation the can cause
5179 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5180 * program constant) has to happen before creating this linkage.
5181 */
5182 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5183 if (program->shader_program->_LinkedShaders[i] == NULL)
5184 continue;
5185
5186 _mesa_associate_uniform_storage(ctx, program->shader_program,
5187 program->shader_program->_LinkedShaders[i]->Program->Parameters);
5188 }
5189 }
5190
5191 out:
5192 if (t) {
5193 free(t->insn);
5194 free(t->labels);
5195 free(t->constants);
5196 free(t->immediates);
5197
5198 if (t->error) {
5199 debug_printf("%s: translate error flag set\n", __FUNCTION__);
5200 }
5201
5202 free(t);
5203 }
5204
5205 return ret;
5206 }
5207 /* ----------------------------- End TGSI code ------------------------------ */
5208
5209
5210 static unsigned
5211 shader_stage_to_ptarget(gl_shader_stage stage)
5212 {
5213 switch (stage) {
5214 case MESA_SHADER_VERTEX:
5215 return PIPE_SHADER_VERTEX;
5216 case MESA_SHADER_FRAGMENT:
5217 return PIPE_SHADER_FRAGMENT;
5218 case MESA_SHADER_GEOMETRY:
5219 return PIPE_SHADER_GEOMETRY;
5220 case MESA_SHADER_COMPUTE:
5221 return PIPE_SHADER_COMPUTE;
5222 }
5223
5224 assert(!"should not be reached");
5225 return PIPE_SHADER_VERTEX;
5226 }
5227
5228
5229 /**
5230 * Convert a shader's GLSL IR into a Mesa gl_program, although without
5231 * generating Mesa IR.
5232 */
5233 static struct gl_program *
5234 get_mesa_program(struct gl_context *ctx,
5235 struct gl_shader_program *shader_program,
5236 struct gl_shader *shader)
5237 {
5238 glsl_to_tgsi_visitor* v;
5239 struct gl_program *prog;
5240 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
5241 bool progress;
5242 struct gl_shader_compiler_options *options =
5243 &ctx->ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(shader->Type)];
5244 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5245 unsigned ptarget = shader_stage_to_ptarget(shader->Stage);
5246
5247 validate_ir_tree(shader->ir);
5248
5249 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
5250 if (!prog)
5251 return NULL;
5252 prog->Parameters = _mesa_new_parameter_list();
5253 v = new glsl_to_tgsi_visitor();
5254 v->ctx = ctx;
5255 v->prog = prog;
5256 v->shader_program = shader_program;
5257 v->shader = shader;
5258 v->options = options;
5259 v->glsl_version = ctx->Const.GLSLVersion;
5260 v->native_integers = ctx->Const.NativeIntegers;
5261
5262 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
5263 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
5264
5265 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
5266 prog->Parameters);
5267
5268 /* Remove reads from output registers. */
5269 lower_output_reads(shader->ir);
5270
5271 /* Emit intermediate IR for main(). */
5272 visit_exec_list(shader->ir, v);
5273
5274 /* Now emit bodies for any functions that were used. */
5275 do {
5276 progress = GL_FALSE;
5277
5278 foreach_in_list(function_entry, entry, &v->function_signatures) {
5279 if (!entry->bgn_inst) {
5280 v->current_function = entry;
5281
5282 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
5283 entry->bgn_inst->function = entry;
5284
5285 visit_exec_list(&entry->sig->body, v);
5286
5287 glsl_to_tgsi_instruction *last;
5288 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
5289 if (last->op != TGSI_OPCODE_RET)
5290 v->emit(NULL, TGSI_OPCODE_RET);
5291
5292 glsl_to_tgsi_instruction *end;
5293 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
5294 end->function = entry;
5295
5296 progress = GL_TRUE;
5297 }
5298 }
5299 } while (progress);
5300
5301 #if 0
5302 /* Print out some information (for debugging purposes) used by the
5303 * optimization passes. */
5304 for (i=0; i < v->next_temp; i++) {
5305 int fr = v->get_first_temp_read(i);
5306 int fw = v->get_first_temp_write(i);
5307 int lr = v->get_last_temp_read(i);
5308 int lw = v->get_last_temp_write(i);
5309
5310 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
5311 assert(fw <= fr);
5312 }
5313 #endif
5314
5315 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5316 v->simplify_cmp();
5317 v->copy_propagate();
5318 while (v->eliminate_dead_code());
5319
5320 v->merge_registers();
5321 v->renumber_registers();
5322
5323 /* Write the END instruction. */
5324 v->emit(NULL, TGSI_OPCODE_END);
5325
5326 if (ctx->_Shader->Flags & GLSL_DUMP) {
5327 printf("\n");
5328 printf("GLSL IR for linked %s program %d:\n",
5329 _mesa_shader_stage_to_string(shader->Stage),
5330 shader_program->Name);
5331 _mesa_print_ir(stdout, shader->ir, NULL);
5332 printf("\n");
5333 printf("\n");
5334 fflush(stdout);
5335 }
5336
5337 prog->Instructions = NULL;
5338 prog->NumInstructions = 0;
5339
5340 do_set_program_inouts(shader->ir, prog, shader->Stage);
5341 count_resources(v, prog);
5342
5343 _mesa_reference_program(ctx, &shader->Program, prog);
5344
5345 /* This has to be done last. Any operation the can cause
5346 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5347 * program constant) has to happen before creating this linkage.
5348 */
5349 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5350 if (!shader_program->LinkStatus) {
5351 return NULL;
5352 }
5353
5354 struct st_vertex_program *stvp;
5355 struct st_fragment_program *stfp;
5356 struct st_geometry_program *stgp;
5357
5358 switch (shader->Type) {
5359 case GL_VERTEX_SHADER:
5360 stvp = (struct st_vertex_program *)prog;
5361 stvp->glsl_to_tgsi = v;
5362 break;
5363 case GL_FRAGMENT_SHADER:
5364 stfp = (struct st_fragment_program *)prog;
5365 stfp->glsl_to_tgsi = v;
5366 break;
5367 case GL_GEOMETRY_SHADER:
5368 stgp = (struct st_geometry_program *)prog;
5369 stgp->glsl_to_tgsi = v;
5370 stgp->Base.InputType = shader_program->Geom.InputType;
5371 stgp->Base.OutputType = shader_program->Geom.OutputType;
5372 stgp->Base.VerticesOut = shader_program->Geom.VerticesOut;
5373 stgp->Base.Invocations = shader_program->Geom.Invocations;
5374 break;
5375 default:
5376 assert(!"should not be reached");
5377 return NULL;
5378 }
5379
5380 return prog;
5381 }
5382
5383 extern "C" {
5384
5385 struct gl_shader *
5386 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
5387 {
5388 struct gl_shader *shader;
5389 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
5390 type == GL_GEOMETRY_SHADER_ARB);
5391 shader = rzalloc(NULL, struct gl_shader);
5392 if (shader) {
5393 shader->Type = type;
5394 shader->Stage = _mesa_shader_enum_to_shader_stage(type);
5395 shader->Name = name;
5396 _mesa_init_shader(ctx, shader);
5397 }
5398 return shader;
5399 }
5400
5401 struct gl_shader_program *
5402 st_new_shader_program(struct gl_context *ctx, GLuint name)
5403 {
5404 struct gl_shader_program *shProg;
5405 shProg = rzalloc(NULL, struct gl_shader_program);
5406 if (shProg) {
5407 shProg->Name = name;
5408 _mesa_init_shader_program(ctx, shProg);
5409 }
5410 return shProg;
5411 }
5412
5413 /**
5414 * Link a shader.
5415 * Called via ctx->Driver.LinkShader()
5416 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5417 * with code lowering and other optimizations.
5418 */
5419 GLboolean
5420 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5421 {
5422 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5423 assert(prog->LinkStatus);
5424
5425 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5426 if (prog->_LinkedShaders[i] == NULL)
5427 continue;
5428
5429 bool progress;
5430 exec_list *ir = prog->_LinkedShaders[i]->ir;
5431 const struct gl_shader_compiler_options *options =
5432 &ctx->ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(prog->_LinkedShaders[i]->Type)];
5433
5434 /* If there are forms of indirect addressing that the driver
5435 * cannot handle, perform the lowering pass.
5436 */
5437 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
5438 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
5439 lower_variable_index_to_cond_assign(ir,
5440 options->EmitNoIndirectInput,
5441 options->EmitNoIndirectOutput,
5442 options->EmitNoIndirectTemp,
5443 options->EmitNoIndirectUniform);
5444 }
5445
5446 if (ctx->Extensions.ARB_shading_language_packing) {
5447 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
5448 LOWER_UNPACK_SNORM_2x16 |
5449 LOWER_PACK_UNORM_2x16 |
5450 LOWER_UNPACK_UNORM_2x16 |
5451 LOWER_PACK_SNORM_4x8 |
5452 LOWER_UNPACK_SNORM_4x8 |
5453 LOWER_UNPACK_UNORM_4x8 |
5454 LOWER_PACK_UNORM_4x8 |
5455 LOWER_PACK_HALF_2x16 |
5456 LOWER_UNPACK_HALF_2x16;
5457
5458 lower_packing_builtins(ir, lower_inst);
5459 }
5460
5461 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
5462 lower_offset_arrays(ir);
5463 do_mat_op_to_vec(ir);
5464 lower_instructions(ir,
5465 MOD_TO_FRACT |
5466 DIV_TO_MUL_RCP |
5467 EXP_TO_EXP2 |
5468 LOG_TO_LOG2 |
5469 LDEXP_TO_ARITH |
5470 CARRY_TO_ARITH |
5471 BORROW_TO_ARITH |
5472 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
5473 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0));
5474
5475 lower_ubo_reference(prog->_LinkedShaders[i], ir);
5476 do_vec_index_to_cond_assign(ir);
5477 lower_vector_insert(ir, true);
5478 lower_quadop_vector(ir, false);
5479 lower_noise(ir);
5480 if (options->MaxIfDepth == 0) {
5481 lower_discard(ir);
5482 }
5483
5484 do {
5485 progress = false;
5486
5487 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5488
5489 progress = do_common_optimization(ir, true, true, options,
5490 ctx->Const.NativeIntegers)
5491 || progress;
5492
5493 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5494
5495 } while (progress);
5496
5497 validate_ir_tree(ir);
5498 }
5499
5500 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5501 struct gl_program *linked_prog;
5502
5503 if (prog->_LinkedShaders[i] == NULL)
5504 continue;
5505
5506 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5507
5508 if (linked_prog) {
5509 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5510 linked_prog);
5511 if (!ctx->Driver.ProgramStringNotify(ctx,
5512 _mesa_shader_stage_to_program(i),
5513 linked_prog)) {
5514 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5515 NULL);
5516 _mesa_reference_program(ctx, &linked_prog, NULL);
5517 return GL_FALSE;
5518 }
5519 }
5520
5521 _mesa_reference_program(ctx, &linked_prog, NULL);
5522 }
5523
5524 return GL_TRUE;
5525 }
5526
5527 void
5528 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5529 const GLuint outputMapping[],
5530 struct pipe_stream_output_info *so)
5531 {
5532 unsigned i;
5533 struct gl_transform_feedback_info *info =
5534 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5535
5536 for (i = 0; i < info->NumOutputs; i++) {
5537 so->output[i].register_index =
5538 outputMapping[info->Outputs[i].OutputRegister];
5539 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5540 so->output[i].num_components = info->Outputs[i].NumComponents;
5541 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5542 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5543 so->output[i].stream = info->Outputs[i].StreamId;
5544 }
5545
5546 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5547 so->stride[i] = info->BufferStride[i];
5548 }
5549 so->num_outputs = info->NumOutputs;
5550 }
5551
5552 } /* extern "C" */