b7218eff15c552d6fbd3d05ce1e450781578f56f
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43
44 #include "main/mtypes.h"
45 #include "main/shaderobj.h"
46 #include "main/uniforms.h"
47 #include "program/hash_table.h"
48
49 extern "C" {
50 #include "main/shaderapi.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58 #include "pipe/p_compiler.h"
59 #include "pipe/p_context.h"
60 #include "pipe/p_screen.h"
61 #include "pipe/p_shader_tokens.h"
62 #include "pipe/p_state.h"
63 #include "util/u_math.h"
64 #include "tgsi/tgsi_ureg.h"
65 #include "tgsi/tgsi_info.h"
66 #include "st_context.h"
67 #include "st_program.h"
68 #include "st_glsl_to_tgsi.h"
69 #include "st_mesa_to_tgsi.h"
70 }
71
72 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
73 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
74 (1 << PROGRAM_CONSTANT) | \
75 (1 << PROGRAM_UNIFORM))
76
77 /**
78 * Maximum number of temporary registers.
79 *
80 * It is too big for stack allocated arrays -- it will cause stack overflow on
81 * Windows and likely Mac OS X.
82 */
83 #define MAX_TEMPS 4096
84
85 /**
86 * Maximum number of arrays
87 */
88 #define MAX_ARRAYS 256
89
90 #define MAX_GLSL_TEXTURE_OFFSET 4
91
92 class st_src_reg;
93 class st_dst_reg;
94
95 static int swizzle_for_size(int size);
96
97 /**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100 class st_src_reg {
101 public:
102 st_src_reg(gl_register_file file, int index, const glsl_type *type)
103 {
104 this->file = file;
105 this->index = index;
106 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107 this->swizzle = swizzle_for_size(type->vector_elements);
108 else
109 this->swizzle = SWIZZLE_XYZW;
110 this->negate = 0;
111 this->index2D = 0;
112 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
113 this->reladdr = NULL;
114 this->reladdr2 = NULL;
115 this->has_index2 = false;
116 }
117
118 st_src_reg(gl_register_file file, int index, int type)
119 {
120 this->type = type;
121 this->file = file;
122 this->index = index;
123 this->index2D = 0;
124 this->swizzle = SWIZZLE_XYZW;
125 this->negate = 0;
126 this->reladdr = NULL;
127 this->reladdr2 = NULL;
128 this->has_index2 = false;
129 }
130
131 st_src_reg(gl_register_file file, int index, int type, int index2D)
132 {
133 this->type = type;
134 this->file = file;
135 this->index = index;
136 this->index2D = index2D;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = NULL;
140 this->reladdr2 = NULL;
141 this->has_index2 = false;
142 }
143
144 st_src_reg()
145 {
146 this->type = GLSL_TYPE_ERROR;
147 this->file = PROGRAM_UNDEFINED;
148 this->index = 0;
149 this->index2D = 0;
150 this->swizzle = 0;
151 this->negate = 0;
152 this->reladdr = NULL;
153 this->reladdr2 = NULL;
154 this->has_index2 = false;
155 }
156
157 explicit st_src_reg(st_dst_reg reg);
158
159 gl_register_file file; /**< PROGRAM_* from Mesa */
160 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
161 int index2D;
162 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
163 int negate; /**< NEGATE_XYZW mask from mesa */
164 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
165 /** Register index should be offset by the integer in this reg. */
166 st_src_reg *reladdr;
167 st_src_reg *reladdr2;
168 bool has_index2;
169 };
170
171 class st_dst_reg {
172 public:
173 st_dst_reg(gl_register_file file, int writemask, int type, int index)
174 {
175 this->file = file;
176 this->index = index;
177 this->writemask = writemask;
178 this->cond_mask = COND_TR;
179 this->reladdr = NULL;
180 this->type = type;
181 }
182
183 st_dst_reg(gl_register_file file, int writemask, int type)
184 {
185 this->file = file;
186 this->index = 0;
187 this->writemask = writemask;
188 this->cond_mask = COND_TR;
189 this->reladdr = NULL;
190 this->type = type;
191 }
192
193 st_dst_reg()
194 {
195 this->type = GLSL_TYPE_ERROR;
196 this->file = PROGRAM_UNDEFINED;
197 this->index = 0;
198 this->writemask = 0;
199 this->cond_mask = COND_TR;
200 this->reladdr = NULL;
201 }
202
203 explicit st_dst_reg(st_src_reg reg);
204
205 gl_register_file file; /**< PROGRAM_* from Mesa */
206 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
207 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
208 GLuint cond_mask:4;
209 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
210 /** Register index should be offset by the integer in this reg. */
211 st_src_reg *reladdr;
212 };
213
214 st_src_reg::st_src_reg(st_dst_reg reg)
215 {
216 this->type = reg.type;
217 this->file = reg.file;
218 this->index = reg.index;
219 this->swizzle = SWIZZLE_XYZW;
220 this->negate = 0;
221 this->reladdr = reg.reladdr;
222 this->index2D = 0;
223 this->reladdr2 = NULL;
224 this->has_index2 = false;
225 }
226
227 st_dst_reg::st_dst_reg(st_src_reg reg)
228 {
229 this->type = reg.type;
230 this->file = reg.file;
231 this->index = reg.index;
232 this->writemask = WRITEMASK_XYZW;
233 this->cond_mask = COND_TR;
234 this->reladdr = reg.reladdr;
235 }
236
237 class glsl_to_tgsi_instruction : public exec_node {
238 public:
239 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
240
241 unsigned op;
242 st_dst_reg dst;
243 st_src_reg src[4];
244 /** Pointer to the ir source this tree came from for debugging */
245 ir_instruction *ir;
246 GLboolean cond_update;
247 bool saturate;
248 int sampler; /**< sampler index */
249 int tex_target; /**< One of TEXTURE_*_INDEX */
250 GLboolean tex_shadow;
251
252 st_src_reg tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
253 unsigned tex_offset_num_offset;
254 int dead_mask; /**< Used in dead code elimination */
255
256 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
257 };
258
259 class variable_storage : public exec_node {
260 public:
261 variable_storage(ir_variable *var, gl_register_file file, int index)
262 : file(file), index(index), var(var)
263 {
264 /* empty */
265 }
266
267 gl_register_file file;
268 int index;
269 ir_variable *var; /* variable that maps to this, if any */
270 };
271
272 class immediate_storage : public exec_node {
273 public:
274 immediate_storage(gl_constant_value *values, int size, int type)
275 {
276 memcpy(this->values, values, size * sizeof(gl_constant_value));
277 this->size = size;
278 this->type = type;
279 }
280
281 gl_constant_value values[4];
282 int size; /**< Number of components (1-4) */
283 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
284 };
285
286 class function_entry : public exec_node {
287 public:
288 ir_function_signature *sig;
289
290 /**
291 * identifier of this function signature used by the program.
292 *
293 * At the point that TGSI instructions for function calls are
294 * generated, we don't know the address of the first instruction of
295 * the function body. So we make the BranchTarget that is called a
296 * small integer and rewrite them during set_branchtargets().
297 */
298 int sig_id;
299
300 /**
301 * Pointer to first instruction of the function body.
302 *
303 * Set during function body emits after main() is processed.
304 */
305 glsl_to_tgsi_instruction *bgn_inst;
306
307 /**
308 * Index of the first instruction of the function body in actual TGSI.
309 *
310 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
311 */
312 int inst;
313
314 /** Storage for the return value. */
315 st_src_reg return_reg;
316 };
317
318 struct glsl_to_tgsi_visitor : public ir_visitor {
319 public:
320 glsl_to_tgsi_visitor();
321 ~glsl_to_tgsi_visitor();
322
323 function_entry *current_function;
324
325 struct gl_context *ctx;
326 struct gl_program *prog;
327 struct gl_shader_program *shader_program;
328 struct gl_shader *shader;
329 struct gl_shader_compiler_options *options;
330
331 int next_temp;
332
333 unsigned array_sizes[MAX_ARRAYS];
334 unsigned next_array;
335
336 int num_address_regs;
337 int samplers_used;
338 bool indirect_addr_consts;
339
340 int glsl_version;
341 bool native_integers;
342 bool have_sqrt;
343
344 variable_storage *find_variable_storage(ir_variable *var);
345
346 int add_constant(gl_register_file file, gl_constant_value values[4],
347 int size, int datatype, GLuint *swizzle_out);
348
349 function_entry *get_function_signature(ir_function_signature *sig);
350
351 st_src_reg get_temp(const glsl_type *type);
352 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
353
354 st_src_reg st_src_reg_for_float(float val);
355 st_src_reg st_src_reg_for_int(int val);
356 st_src_reg st_src_reg_for_type(int type, int val);
357
358 /**
359 * \name Visit methods
360 *
361 * As typical for the visitor pattern, there must be one \c visit method for
362 * each concrete subclass of \c ir_instruction. Virtual base classes within
363 * the hierarchy should not have \c visit methods.
364 */
365 /*@{*/
366 virtual void visit(ir_variable *);
367 virtual void visit(ir_loop *);
368 virtual void visit(ir_loop_jump *);
369 virtual void visit(ir_function_signature *);
370 virtual void visit(ir_function *);
371 virtual void visit(ir_expression *);
372 virtual void visit(ir_swizzle *);
373 virtual void visit(ir_dereference_variable *);
374 virtual void visit(ir_dereference_array *);
375 virtual void visit(ir_dereference_record *);
376 virtual void visit(ir_assignment *);
377 virtual void visit(ir_constant *);
378 virtual void visit(ir_call *);
379 virtual void visit(ir_return *);
380 virtual void visit(ir_discard *);
381 virtual void visit(ir_texture *);
382 virtual void visit(ir_if *);
383 virtual void visit(ir_emit_vertex *);
384 virtual void visit(ir_end_primitive *);
385 /*@}*/
386
387 st_src_reg result;
388
389 /** List of variable_storage */
390 exec_list variables;
391
392 /** List of immediate_storage */
393 exec_list immediates;
394 unsigned num_immediates;
395
396 /** List of function_entry */
397 exec_list function_signatures;
398 int next_signature_id;
399
400 /** List of glsl_to_tgsi_instruction */
401 exec_list instructions;
402
403 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
404
405 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
406 st_dst_reg dst, st_src_reg src0);
407
408 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
409 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
410
411 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
412 st_dst_reg dst,
413 st_src_reg src0, st_src_reg src1, st_src_reg src2);
414
415 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
416 st_dst_reg dst,
417 st_src_reg src0, st_src_reg src1,
418 st_src_reg src2, st_src_reg src3);
419
420 unsigned get_opcode(ir_instruction *ir, unsigned op,
421 st_dst_reg dst,
422 st_src_reg src0, st_src_reg src1);
423
424 /**
425 * Emit the correct dot-product instruction for the type of arguments
426 */
427 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
428 st_dst_reg dst,
429 st_src_reg src0,
430 st_src_reg src1,
431 unsigned elements);
432
433 void emit_scalar(ir_instruction *ir, unsigned op,
434 st_dst_reg dst, st_src_reg src0);
435
436 void emit_scalar(ir_instruction *ir, unsigned op,
437 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
438
439 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
440
441 void emit_scs(ir_instruction *ir, unsigned op,
442 st_dst_reg dst, const st_src_reg &src);
443
444 bool try_emit_mad(ir_expression *ir,
445 int mul_operand);
446 bool try_emit_mad_for_and_not(ir_expression *ir,
447 int mul_operand);
448 bool try_emit_sat(ir_expression *ir);
449
450 void emit_swz(ir_expression *ir);
451
452 bool process_move_condition(ir_rvalue *ir);
453
454 void simplify_cmp(void);
455
456 void rename_temp_register(int index, int new_index);
457 int get_first_temp_read(int index);
458 int get_first_temp_write(int index);
459 int get_last_temp_read(int index);
460 int get_last_temp_write(int index);
461
462 void copy_propagate(void);
463 int eliminate_dead_code(void);
464 void merge_registers(void);
465 void renumber_registers(void);
466
467 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
468 st_dst_reg *l, st_src_reg *r);
469
470 void *mem_ctx;
471 };
472
473 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
474
475 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
476
477 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
478 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
479
480 static void
481 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
482
483 static void
484 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
485 {
486 va_list args;
487 va_start(args, fmt);
488 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
489 va_end(args);
490
491 prog->LinkStatus = GL_FALSE;
492 }
493
494 static int
495 swizzle_for_size(int size)
496 {
497 int size_swizzles[4] = {
498 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
499 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
500 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
501 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
502 };
503
504 assert((size >= 1) && (size <= 4));
505 return size_swizzles[size - 1];
506 }
507
508 static bool
509 is_tex_instruction(unsigned opcode)
510 {
511 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
512 return info->is_tex;
513 }
514
515 static unsigned
516 num_inst_dst_regs(unsigned opcode)
517 {
518 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
519 return info->num_dst;
520 }
521
522 static unsigned
523 num_inst_src_regs(unsigned opcode)
524 {
525 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
526 return info->is_tex ? info->num_src - 1 : info->num_src;
527 }
528
529 glsl_to_tgsi_instruction *
530 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
531 st_dst_reg dst,
532 st_src_reg src0, st_src_reg src1,
533 st_src_reg src2, st_src_reg src3)
534 {
535 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
536 int num_reladdr = 0, i;
537
538 op = get_opcode(ir, op, dst, src0, src1);
539
540 /* If we have to do relative addressing, we want to load the ARL
541 * reg directly for one of the regs, and preload the other reladdr
542 * sources into temps.
543 */
544 num_reladdr += dst.reladdr != NULL;
545 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
546 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
547 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
548 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
549
550 reladdr_to_temp(ir, &src3, &num_reladdr);
551 reladdr_to_temp(ir, &src2, &num_reladdr);
552 reladdr_to_temp(ir, &src1, &num_reladdr);
553 reladdr_to_temp(ir, &src0, &num_reladdr);
554
555 if (dst.reladdr) {
556 emit_arl(ir, address_reg, *dst.reladdr);
557 num_reladdr--;
558 }
559 assert(num_reladdr == 0);
560
561 inst->op = op;
562 inst->dst = dst;
563 inst->src[0] = src0;
564 inst->src[1] = src1;
565 inst->src[2] = src2;
566 inst->src[3] = src3;
567 inst->ir = ir;
568 inst->dead_mask = 0;
569
570 inst->function = NULL;
571
572 /* Update indirect addressing status used by TGSI */
573 if (dst.reladdr) {
574 switch(dst.file) {
575 case PROGRAM_STATE_VAR:
576 case PROGRAM_CONSTANT:
577 case PROGRAM_UNIFORM:
578 this->indirect_addr_consts = true;
579 break;
580 case PROGRAM_IMMEDIATE:
581 assert(!"immediates should not have indirect addressing");
582 break;
583 default:
584 break;
585 }
586 }
587 else {
588 for (i=0; i<4; i++) {
589 if(inst->src[i].reladdr) {
590 switch(inst->src[i].file) {
591 case PROGRAM_STATE_VAR:
592 case PROGRAM_CONSTANT:
593 case PROGRAM_UNIFORM:
594 this->indirect_addr_consts = true;
595 break;
596 case PROGRAM_IMMEDIATE:
597 assert(!"immediates should not have indirect addressing");
598 break;
599 default:
600 break;
601 }
602 }
603 }
604 }
605
606 this->instructions.push_tail(inst);
607
608 return inst;
609 }
610
611 glsl_to_tgsi_instruction *
612 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
613 st_dst_reg dst, st_src_reg src0,
614 st_src_reg src1, st_src_reg src2)
615 {
616 return emit(ir, op, dst, src0, src1, src2, undef_src);
617 }
618
619 glsl_to_tgsi_instruction *
620 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
621 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
622 {
623 return emit(ir, op, dst, src0, src1, undef_src, undef_src);
624 }
625
626 glsl_to_tgsi_instruction *
627 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
628 st_dst_reg dst, st_src_reg src0)
629 {
630 assert(dst.writemask != 0);
631 return emit(ir, op, dst, src0, undef_src, undef_src, undef_src);
632 }
633
634 glsl_to_tgsi_instruction *
635 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
636 {
637 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src, undef_src);
638 }
639
640 /**
641 * Determines whether to use an integer, unsigned integer, or float opcode
642 * based on the operands and input opcode, then emits the result.
643 */
644 unsigned
645 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
646 st_dst_reg dst,
647 st_src_reg src0, st_src_reg src1)
648 {
649 int type = GLSL_TYPE_FLOAT;
650
651 if (op == TGSI_OPCODE_MOV)
652 return op;
653
654 assert(src0.type != GLSL_TYPE_ARRAY);
655 assert(src0.type != GLSL_TYPE_STRUCT);
656 assert(src1.type != GLSL_TYPE_ARRAY);
657 assert(src1.type != GLSL_TYPE_STRUCT);
658
659 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
660 type = GLSL_TYPE_FLOAT;
661 else if (native_integers)
662 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
663
664 #define case4(c, f, i, u) \
665 case TGSI_OPCODE_##c: \
666 if (type == GLSL_TYPE_INT) \
667 op = TGSI_OPCODE_##i; \
668 else if (type == GLSL_TYPE_UINT) \
669 op = TGSI_OPCODE_##u; \
670 else \
671 op = TGSI_OPCODE_##f; \
672 break;
673
674 #define case3(f, i, u) case4(f, f, i, u)
675 #define case2fi(f, i) case4(f, f, i, i)
676 #define case2iu(i, u) case4(i, LAST, i, u)
677
678 #define casecomp(c, f, i, u) \
679 case TGSI_OPCODE_##c: \
680 if (type == GLSL_TYPE_INT) \
681 op = TGSI_OPCODE_##i; \
682 else if (type == GLSL_TYPE_UINT) \
683 op = TGSI_OPCODE_##u; \
684 else if (native_integers) \
685 op = TGSI_OPCODE_##f; \
686 else \
687 op = TGSI_OPCODE_##c; \
688 break;
689
690 switch(op) {
691 case2fi(ADD, UADD);
692 case2fi(MUL, UMUL);
693 case2fi(MAD, UMAD);
694 case3(DIV, IDIV, UDIV);
695 case3(MAX, IMAX, UMAX);
696 case3(MIN, IMIN, UMIN);
697 case2iu(MOD, UMOD);
698
699 casecomp(SEQ, FSEQ, USEQ, USEQ);
700 casecomp(SNE, FSNE, USNE, USNE);
701 casecomp(SGE, FSGE, ISGE, USGE);
702 casecomp(SLT, FSLT, ISLT, USLT);
703
704 case2iu(ISHR, USHR);
705
706 case2fi(SSG, ISSG);
707 case3(ABS, IABS, IABS);
708
709 case2iu(IBFE, UBFE);
710 case2iu(IMSB, UMSB);
711 case2iu(IMUL_HI, UMUL_HI);
712 default: break;
713 }
714
715 assert(op != TGSI_OPCODE_LAST);
716 return op;
717 }
718
719 glsl_to_tgsi_instruction *
720 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
721 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
722 unsigned elements)
723 {
724 static const unsigned dot_opcodes[] = {
725 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
726 };
727
728 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
729 }
730
731 /**
732 * Emits TGSI scalar opcodes to produce unique answers across channels.
733 *
734 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
735 * channel determines the result across all channels. So to do a vec4
736 * of this operation, we want to emit a scalar per source channel used
737 * to produce dest channels.
738 */
739 void
740 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
741 st_dst_reg dst,
742 st_src_reg orig_src0, st_src_reg orig_src1)
743 {
744 int i, j;
745 int done_mask = ~dst.writemask;
746
747 /* TGSI RCP is a scalar operation splatting results to all channels,
748 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
749 * dst channels.
750 */
751 for (i = 0; i < 4; i++) {
752 GLuint this_mask = (1 << i);
753 glsl_to_tgsi_instruction *inst;
754 st_src_reg src0 = orig_src0;
755 st_src_reg src1 = orig_src1;
756
757 if (done_mask & this_mask)
758 continue;
759
760 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
761 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
762 for (j = i + 1; j < 4; j++) {
763 /* If there is another enabled component in the destination that is
764 * derived from the same inputs, generate its value on this pass as
765 * well.
766 */
767 if (!(done_mask & (1 << j)) &&
768 GET_SWZ(src0.swizzle, j) == src0_swiz &&
769 GET_SWZ(src1.swizzle, j) == src1_swiz) {
770 this_mask |= (1 << j);
771 }
772 }
773 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
774 src0_swiz, src0_swiz);
775 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
776 src1_swiz, src1_swiz);
777
778 inst = emit(ir, op, dst, src0, src1);
779 inst->dst.writemask = this_mask;
780 done_mask |= this_mask;
781 }
782 }
783
784 void
785 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
786 st_dst_reg dst, st_src_reg src0)
787 {
788 st_src_reg undef = undef_src;
789
790 undef.swizzle = SWIZZLE_XXXX;
791
792 emit_scalar(ir, op, dst, src0, undef);
793 }
794
795 void
796 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
797 st_dst_reg dst, st_src_reg src0)
798 {
799 int op = TGSI_OPCODE_ARL;
800
801 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
802 op = TGSI_OPCODE_UARL;
803
804 assert(dst.file == PROGRAM_ADDRESS);
805 if (dst.index >= this->num_address_regs)
806 this->num_address_regs = dst.index + 1;
807
808 emit(NULL, op, dst, src0);
809 }
810
811 /**
812 * Emit an TGSI_OPCODE_SCS instruction
813 *
814 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
815 * Instead of splatting its result across all four components of the
816 * destination, it writes one value to the \c x component and another value to
817 * the \c y component.
818 *
819 * \param ir IR instruction being processed
820 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
821 * on which value is desired.
822 * \param dst Destination register
823 * \param src Source register
824 */
825 void
826 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
827 st_dst_reg dst,
828 const st_src_reg &src)
829 {
830 /* Vertex programs cannot use the SCS opcode.
831 */
832 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
833 emit_scalar(ir, op, dst, src);
834 return;
835 }
836
837 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
838 const unsigned scs_mask = (1U << component);
839 int done_mask = ~dst.writemask;
840 st_src_reg tmp;
841
842 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
843
844 /* If there are compnents in the destination that differ from the component
845 * that will be written by the SCS instrution, we'll need a temporary.
846 */
847 if (scs_mask != unsigned(dst.writemask)) {
848 tmp = get_temp(glsl_type::vec4_type);
849 }
850
851 for (unsigned i = 0; i < 4; i++) {
852 unsigned this_mask = (1U << i);
853 st_src_reg src0 = src;
854
855 if ((done_mask & this_mask) != 0)
856 continue;
857
858 /* The source swizzle specified which component of the source generates
859 * sine / cosine for the current component in the destination. The SCS
860 * instruction requires that this value be swizzle to the X component.
861 * Replace the current swizzle with a swizzle that puts the source in
862 * the X component.
863 */
864 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
865
866 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
867 src0_swiz, src0_swiz);
868 for (unsigned j = i + 1; j < 4; j++) {
869 /* If there is another enabled component in the destination that is
870 * derived from the same inputs, generate its value on this pass as
871 * well.
872 */
873 if (!(done_mask & (1 << j)) &&
874 GET_SWZ(src0.swizzle, j) == src0_swiz) {
875 this_mask |= (1 << j);
876 }
877 }
878
879 if (this_mask != scs_mask) {
880 glsl_to_tgsi_instruction *inst;
881 st_dst_reg tmp_dst = st_dst_reg(tmp);
882
883 /* Emit the SCS instruction.
884 */
885 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
886 inst->dst.writemask = scs_mask;
887
888 /* Move the result of the SCS instruction to the desired location in
889 * the destination.
890 */
891 tmp.swizzle = MAKE_SWIZZLE4(component, component,
892 component, component);
893 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
894 inst->dst.writemask = this_mask;
895 } else {
896 /* Emit the SCS instruction to write directly to the destination.
897 */
898 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
899 inst->dst.writemask = scs_mask;
900 }
901
902 done_mask |= this_mask;
903 }
904 }
905
906 int
907 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
908 gl_constant_value values[4], int size, int datatype,
909 GLuint *swizzle_out)
910 {
911 if (file == PROGRAM_CONSTANT) {
912 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
913 size, datatype, swizzle_out);
914 } else {
915 int index = 0;
916 immediate_storage *entry;
917 assert(file == PROGRAM_IMMEDIATE);
918
919 /* Search immediate storage to see if we already have an identical
920 * immediate that we can use instead of adding a duplicate entry.
921 */
922 foreach_list(node, &this->immediates) {
923 entry = (immediate_storage *) node;
924
925 if (entry->size == size &&
926 entry->type == datatype &&
927 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
928 return index;
929 }
930 index++;
931 }
932
933 /* Add this immediate to the list. */
934 entry = new(mem_ctx) immediate_storage(values, size, datatype);
935 this->immediates.push_tail(entry);
936 this->num_immediates++;
937 return index;
938 }
939 }
940
941 st_src_reg
942 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
943 {
944 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
945 union gl_constant_value uval;
946
947 uval.f = val;
948 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
949
950 return src;
951 }
952
953 st_src_reg
954 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
955 {
956 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
957 union gl_constant_value uval;
958
959 assert(native_integers);
960
961 uval.i = val;
962 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
963
964 return src;
965 }
966
967 st_src_reg
968 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
969 {
970 if (native_integers)
971 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
972 st_src_reg_for_int(val);
973 else
974 return st_src_reg_for_float(val);
975 }
976
977 static int
978 type_size(const struct glsl_type *type)
979 {
980 unsigned int i;
981 int size;
982
983 switch (type->base_type) {
984 case GLSL_TYPE_UINT:
985 case GLSL_TYPE_INT:
986 case GLSL_TYPE_FLOAT:
987 case GLSL_TYPE_BOOL:
988 if (type->is_matrix()) {
989 return type->matrix_columns;
990 } else {
991 /* Regardless of size of vector, it gets a vec4. This is bad
992 * packing for things like floats, but otherwise arrays become a
993 * mess. Hopefully a later pass over the code can pack scalars
994 * down if appropriate.
995 */
996 return 1;
997 }
998 case GLSL_TYPE_ARRAY:
999 assert(type->length > 0);
1000 return type_size(type->fields.array) * type->length;
1001 case GLSL_TYPE_STRUCT:
1002 size = 0;
1003 for (i = 0; i < type->length; i++) {
1004 size += type_size(type->fields.structure[i].type);
1005 }
1006 return size;
1007 case GLSL_TYPE_SAMPLER:
1008 case GLSL_TYPE_IMAGE:
1009 /* Samplers take up one slot in UNIFORMS[], but they're baked in
1010 * at link time.
1011 */
1012 return 1;
1013 case GLSL_TYPE_ATOMIC_UINT:
1014 case GLSL_TYPE_INTERFACE:
1015 case GLSL_TYPE_VOID:
1016 case GLSL_TYPE_ERROR:
1017 assert(!"Invalid type in type_size");
1018 break;
1019 }
1020 return 0;
1021 }
1022
1023 /**
1024 * In the initial pass of codegen, we assign temporary numbers to
1025 * intermediate results. (not SSA -- variable assignments will reuse
1026 * storage).
1027 */
1028 st_src_reg
1029 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1030 {
1031 st_src_reg src;
1032
1033 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1034 src.reladdr = NULL;
1035 src.negate = 0;
1036
1037 if (!options->EmitNoIndirectTemp &&
1038 (type->is_array() || type->is_matrix())) {
1039
1040 src.file = PROGRAM_ARRAY;
1041 src.index = next_array << 16 | 0x8000;
1042 array_sizes[next_array] = type_size(type);
1043 ++next_array;
1044
1045 } else {
1046 src.file = PROGRAM_TEMPORARY;
1047 src.index = next_temp;
1048 next_temp += type_size(type);
1049 }
1050
1051 if (type->is_array() || type->is_record()) {
1052 src.swizzle = SWIZZLE_NOOP;
1053 } else {
1054 src.swizzle = swizzle_for_size(type->vector_elements);
1055 }
1056
1057 return src;
1058 }
1059
1060 variable_storage *
1061 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1062 {
1063
1064 variable_storage *entry;
1065
1066 foreach_list(node, &this->variables) {
1067 entry = (variable_storage *) node;
1068
1069 if (entry->var == var)
1070 return entry;
1071 }
1072
1073 return NULL;
1074 }
1075
1076 void
1077 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1078 {
1079 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1080 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1081
1082 fp->OriginUpperLeft = ir->data.origin_upper_left;
1083 fp->PixelCenterInteger = ir->data.pixel_center_integer;
1084 }
1085
1086 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1087 unsigned int i;
1088 const ir_state_slot *const slots = ir->state_slots;
1089 assert(ir->state_slots != NULL);
1090
1091 /* Check if this statevar's setup in the STATE file exactly
1092 * matches how we'll want to reference it as a
1093 * struct/array/whatever. If not, then we need to move it into
1094 * temporary storage and hope that it'll get copy-propagated
1095 * out.
1096 */
1097 for (i = 0; i < ir->num_state_slots; i++) {
1098 if (slots[i].swizzle != SWIZZLE_XYZW) {
1099 break;
1100 }
1101 }
1102
1103 variable_storage *storage;
1104 st_dst_reg dst;
1105 if (i == ir->num_state_slots) {
1106 /* We'll set the index later. */
1107 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1108 this->variables.push_tail(storage);
1109
1110 dst = undef_dst;
1111 } else {
1112 /* The variable_storage constructor allocates slots based on the size
1113 * of the type. However, this had better match the number of state
1114 * elements that we're going to copy into the new temporary.
1115 */
1116 assert((int) ir->num_state_slots == type_size(ir->type));
1117
1118 dst = st_dst_reg(get_temp(ir->type));
1119
1120 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1121
1122 this->variables.push_tail(storage);
1123 }
1124
1125
1126 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1127 int index = _mesa_add_state_reference(this->prog->Parameters,
1128 (gl_state_index *)slots[i].tokens);
1129
1130 if (storage->file == PROGRAM_STATE_VAR) {
1131 if (storage->index == -1) {
1132 storage->index = index;
1133 } else {
1134 assert(index == storage->index + (int)i);
1135 }
1136 } else {
1137 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1138 * the data being moved since MOV does not care about the type of
1139 * data it is moving, and we don't want to declare registers with
1140 * array or struct types.
1141 */
1142 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1143 src.swizzle = slots[i].swizzle;
1144 emit(ir, TGSI_OPCODE_MOV, dst, src);
1145 /* even a float takes up a whole vec4 reg in a struct/array. */
1146 dst.index++;
1147 }
1148 }
1149
1150 if (storage->file == PROGRAM_TEMPORARY &&
1151 dst.index != storage->index + (int) ir->num_state_slots) {
1152 fail_link(this->shader_program,
1153 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1154 ir->name, dst.index - storage->index,
1155 type_size(ir->type));
1156 }
1157 }
1158 }
1159
1160 void
1161 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1162 {
1163 emit(NULL, TGSI_OPCODE_BGNLOOP);
1164
1165 visit_exec_list(&ir->body_instructions, this);
1166
1167 emit(NULL, TGSI_OPCODE_ENDLOOP);
1168 }
1169
1170 void
1171 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1172 {
1173 switch (ir->mode) {
1174 case ir_loop_jump::jump_break:
1175 emit(NULL, TGSI_OPCODE_BRK);
1176 break;
1177 case ir_loop_jump::jump_continue:
1178 emit(NULL, TGSI_OPCODE_CONT);
1179 break;
1180 }
1181 }
1182
1183
1184 void
1185 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1186 {
1187 assert(0);
1188 (void)ir;
1189 }
1190
1191 void
1192 glsl_to_tgsi_visitor::visit(ir_function *ir)
1193 {
1194 /* Ignore function bodies other than main() -- we shouldn't see calls to
1195 * them since they should all be inlined before we get to glsl_to_tgsi.
1196 */
1197 if (strcmp(ir->name, "main") == 0) {
1198 const ir_function_signature *sig;
1199 exec_list empty;
1200
1201 sig = ir->matching_signature(NULL, &empty);
1202
1203 assert(sig);
1204
1205 foreach_list(node, &sig->body) {
1206 ir_instruction *ir = (ir_instruction *) node;
1207
1208 ir->accept(this);
1209 }
1210 }
1211 }
1212
1213 bool
1214 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1215 {
1216 int nonmul_operand = 1 - mul_operand;
1217 st_src_reg a, b, c;
1218 st_dst_reg result_dst;
1219
1220 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1221 if (!expr || expr->operation != ir_binop_mul)
1222 return false;
1223
1224 expr->operands[0]->accept(this);
1225 a = this->result;
1226 expr->operands[1]->accept(this);
1227 b = this->result;
1228 ir->operands[nonmul_operand]->accept(this);
1229 c = this->result;
1230
1231 this->result = get_temp(ir->type);
1232 result_dst = st_dst_reg(this->result);
1233 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1234 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1235
1236 return true;
1237 }
1238
1239 /**
1240 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1241 *
1242 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1243 * implemented using multiplication, and logical-or is implemented using
1244 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1245 * As result, the logical expression (a & !b) can be rewritten as:
1246 *
1247 * - a * !b
1248 * - a * (1 - b)
1249 * - (a * 1) - (a * b)
1250 * - a + -(a * b)
1251 * - a + (a * -b)
1252 *
1253 * This final expression can be implemented as a single MAD(a, -b, a)
1254 * instruction.
1255 */
1256 bool
1257 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1258 {
1259 const int other_operand = 1 - try_operand;
1260 st_src_reg a, b;
1261
1262 ir_expression *expr = ir->operands[try_operand]->as_expression();
1263 if (!expr || expr->operation != ir_unop_logic_not)
1264 return false;
1265
1266 ir->operands[other_operand]->accept(this);
1267 a = this->result;
1268 expr->operands[0]->accept(this);
1269 b = this->result;
1270
1271 b.negate = ~b.negate;
1272
1273 this->result = get_temp(ir->type);
1274 emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1275
1276 return true;
1277 }
1278
1279 bool
1280 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1281 {
1282 /* Emit saturates in the vertex shader only if SM 3.0 is supported.
1283 */
1284 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1285 !st_context(this->ctx)->has_shader_model3) {
1286 return false;
1287 }
1288
1289 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1290 if (!sat_src)
1291 return false;
1292
1293 sat_src->accept(this);
1294 st_src_reg src = this->result;
1295
1296 /* If we generated an expression instruction into a temporary in
1297 * processing the saturate's operand, apply the saturate to that
1298 * instruction. Otherwise, generate a MOV to do the saturate.
1299 *
1300 * Note that we have to be careful to only do this optimization if
1301 * the instruction in question was what generated src->result. For
1302 * example, ir_dereference_array might generate a MUL instruction
1303 * to create the reladdr, and return us a src reg using that
1304 * reladdr. That MUL result is not the value we're trying to
1305 * saturate.
1306 */
1307 ir_expression *sat_src_expr = sat_src->as_expression();
1308 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1309 sat_src_expr->operation == ir_binop_add ||
1310 sat_src_expr->operation == ir_binop_dot)) {
1311 glsl_to_tgsi_instruction *new_inst;
1312 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1313 new_inst->saturate = true;
1314 } else {
1315 this->result = get_temp(ir->type);
1316 st_dst_reg result_dst = st_dst_reg(this->result);
1317 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1318 glsl_to_tgsi_instruction *inst;
1319 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1320 inst->saturate = true;
1321 }
1322
1323 return true;
1324 }
1325
1326 void
1327 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1328 st_src_reg *reg, int *num_reladdr)
1329 {
1330 if (!reg->reladdr && !reg->reladdr2)
1331 return;
1332
1333 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1334 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1335
1336 if (*num_reladdr != 1) {
1337 st_src_reg temp = get_temp(glsl_type::vec4_type);
1338
1339 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1340 *reg = temp;
1341 }
1342
1343 (*num_reladdr)--;
1344 }
1345
1346 void
1347 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1348 {
1349 unsigned int operand;
1350 st_src_reg op[Elements(ir->operands)];
1351 st_src_reg result_src;
1352 st_dst_reg result_dst;
1353
1354 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1355 */
1356 if (ir->operation == ir_binop_add) {
1357 if (try_emit_mad(ir, 1))
1358 return;
1359 if (try_emit_mad(ir, 0))
1360 return;
1361 }
1362
1363 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1364 */
1365 if (ir->operation == ir_binop_logic_and) {
1366 if (try_emit_mad_for_and_not(ir, 1))
1367 return;
1368 if (try_emit_mad_for_and_not(ir, 0))
1369 return;
1370 }
1371
1372 if (try_emit_sat(ir))
1373 return;
1374
1375 if (ir->operation == ir_quadop_vector)
1376 assert(!"ir_quadop_vector should have been lowered");
1377
1378 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1379 this->result.file = PROGRAM_UNDEFINED;
1380 ir->operands[operand]->accept(this);
1381 if (this->result.file == PROGRAM_UNDEFINED) {
1382 printf("Failed to get tree for expression operand:\n");
1383 ir->operands[operand]->print();
1384 printf("\n");
1385 exit(1);
1386 }
1387 op[operand] = this->result;
1388
1389 /* Matrix expression operands should have been broken down to vector
1390 * operations already.
1391 */
1392 assert(!ir->operands[operand]->type->is_matrix());
1393 }
1394
1395 int vector_elements = ir->operands[0]->type->vector_elements;
1396 if (ir->operands[1]) {
1397 vector_elements = MAX2(vector_elements,
1398 ir->operands[1]->type->vector_elements);
1399 }
1400
1401 this->result.file = PROGRAM_UNDEFINED;
1402
1403 /* Storage for our result. Ideally for an assignment we'd be using
1404 * the actual storage for the result here, instead.
1405 */
1406 result_src = get_temp(ir->type);
1407 /* convenience for the emit functions below. */
1408 result_dst = st_dst_reg(result_src);
1409 /* Limit writes to the channels that will be used by result_src later.
1410 * This does limit this temp's use as a temporary for multi-instruction
1411 * sequences.
1412 */
1413 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1414
1415 switch (ir->operation) {
1416 case ir_unop_logic_not:
1417 if (result_dst.type != GLSL_TYPE_FLOAT)
1418 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1419 else {
1420 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1421 * older GPUs implement SEQ using multiple instructions (i915 uses two
1422 * SGE instructions and a MUL instruction). Since our logic values are
1423 * 0.0 and 1.0, 1-x also implements !x.
1424 */
1425 op[0].negate = ~op[0].negate;
1426 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1427 }
1428 break;
1429 case ir_unop_neg:
1430 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1431 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1432 else {
1433 op[0].negate = ~op[0].negate;
1434 result_src = op[0];
1435 }
1436 break;
1437 case ir_unop_abs:
1438 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1439 break;
1440 case ir_unop_sign:
1441 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1442 break;
1443 case ir_unop_rcp:
1444 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1445 break;
1446
1447 case ir_unop_exp2:
1448 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1449 break;
1450 case ir_unop_exp:
1451 case ir_unop_log:
1452 assert(!"not reached: should be handled by ir_explog_to_explog2");
1453 break;
1454 case ir_unop_log2:
1455 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1456 break;
1457 case ir_unop_sin:
1458 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1459 break;
1460 case ir_unop_cos:
1461 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1462 break;
1463 case ir_unop_sin_reduced:
1464 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1465 break;
1466 case ir_unop_cos_reduced:
1467 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1468 break;
1469
1470 case ir_unop_dFdx:
1471 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1472 break;
1473 case ir_unop_dFdy:
1474 {
1475 /* The X component contains 1 or -1 depending on whether the framebuffer
1476 * is a FBO or the window system buffer, respectively.
1477 * It is then multiplied with the source operand of DDY.
1478 */
1479 static const gl_state_index transform_y_state[STATE_LENGTH]
1480 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1481
1482 unsigned transform_y_index =
1483 _mesa_add_state_reference(this->prog->Parameters,
1484 transform_y_state);
1485
1486 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1487 transform_y_index,
1488 glsl_type::vec4_type);
1489 transform_y.swizzle = SWIZZLE_XXXX;
1490
1491 st_src_reg temp = get_temp(glsl_type::vec4_type);
1492
1493 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1494 emit(ir, TGSI_OPCODE_DDY, result_dst, temp);
1495 break;
1496 }
1497
1498 case ir_unop_noise: {
1499 /* At some point, a motivated person could add a better
1500 * implementation of noise. Currently not even the nvidia
1501 * binary drivers do anything more than this. In any case, the
1502 * place to do this is in the GL state tracker, not the poor
1503 * driver.
1504 */
1505 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1506 break;
1507 }
1508
1509 case ir_binop_add:
1510 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1511 break;
1512 case ir_binop_sub:
1513 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1514 break;
1515
1516 case ir_binop_mul:
1517 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1518 break;
1519 case ir_binop_div:
1520 if (result_dst.type == GLSL_TYPE_FLOAT)
1521 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1522 else
1523 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1524 break;
1525 case ir_binop_mod:
1526 if (result_dst.type == GLSL_TYPE_FLOAT)
1527 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1528 else
1529 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1530 break;
1531
1532 case ir_binop_less:
1533 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1534 break;
1535 case ir_binop_greater:
1536 emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1537 break;
1538 case ir_binop_lequal:
1539 emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1540 break;
1541 case ir_binop_gequal:
1542 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1543 break;
1544 case ir_binop_equal:
1545 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1546 break;
1547 case ir_binop_nequal:
1548 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1549 break;
1550 case ir_binop_all_equal:
1551 /* "==" operator producing a scalar boolean. */
1552 if (ir->operands[0]->type->is_vector() ||
1553 ir->operands[1]->type->is_vector()) {
1554 st_src_reg temp = get_temp(native_integers ?
1555 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1556 glsl_type::vec4_type);
1557
1558 if (native_integers) {
1559 st_dst_reg temp_dst = st_dst_reg(temp);
1560 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1561
1562 emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1563
1564 /* Emit 1-3 AND operations to combine the SEQ results. */
1565 switch (ir->operands[0]->type->vector_elements) {
1566 case 2:
1567 break;
1568 case 3:
1569 temp_dst.writemask = WRITEMASK_Y;
1570 temp1.swizzle = SWIZZLE_YYYY;
1571 temp2.swizzle = SWIZZLE_ZZZZ;
1572 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1573 break;
1574 case 4:
1575 temp_dst.writemask = WRITEMASK_X;
1576 temp1.swizzle = SWIZZLE_XXXX;
1577 temp2.swizzle = SWIZZLE_YYYY;
1578 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1579 temp_dst.writemask = WRITEMASK_Y;
1580 temp1.swizzle = SWIZZLE_ZZZZ;
1581 temp2.swizzle = SWIZZLE_WWWW;
1582 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1583 }
1584
1585 temp1.swizzle = SWIZZLE_XXXX;
1586 temp2.swizzle = SWIZZLE_YYYY;
1587 emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1588 } else {
1589 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1590
1591 /* After the dot-product, the value will be an integer on the
1592 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1593 */
1594 emit_dp(ir, result_dst, temp, temp, vector_elements);
1595
1596 /* Negating the result of the dot-product gives values on the range
1597 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1598 * This is achieved using SGE.
1599 */
1600 st_src_reg sge_src = result_src;
1601 sge_src.negate = ~sge_src.negate;
1602 emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1603 }
1604 } else {
1605 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1606 }
1607 break;
1608 case ir_binop_any_nequal:
1609 /* "!=" operator producing a scalar boolean. */
1610 if (ir->operands[0]->type->is_vector() ||
1611 ir->operands[1]->type->is_vector()) {
1612 st_src_reg temp = get_temp(native_integers ?
1613 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1614 glsl_type::vec4_type);
1615 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1616
1617 if (native_integers) {
1618 st_dst_reg temp_dst = st_dst_reg(temp);
1619 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1620
1621 /* Emit 1-3 OR operations to combine the SNE results. */
1622 switch (ir->operands[0]->type->vector_elements) {
1623 case 2:
1624 break;
1625 case 3:
1626 temp_dst.writemask = WRITEMASK_Y;
1627 temp1.swizzle = SWIZZLE_YYYY;
1628 temp2.swizzle = SWIZZLE_ZZZZ;
1629 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1630 break;
1631 case 4:
1632 temp_dst.writemask = WRITEMASK_X;
1633 temp1.swizzle = SWIZZLE_XXXX;
1634 temp2.swizzle = SWIZZLE_YYYY;
1635 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1636 temp_dst.writemask = WRITEMASK_Y;
1637 temp1.swizzle = SWIZZLE_ZZZZ;
1638 temp2.swizzle = SWIZZLE_WWWW;
1639 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1640 }
1641
1642 temp1.swizzle = SWIZZLE_XXXX;
1643 temp2.swizzle = SWIZZLE_YYYY;
1644 emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1645 } else {
1646 /* After the dot-product, the value will be an integer on the
1647 * range [0,4]. Zero stays zero, and positive values become 1.0.
1648 */
1649 glsl_to_tgsi_instruction *const dp =
1650 emit_dp(ir, result_dst, temp, temp, vector_elements);
1651 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1652 /* The clamping to [0,1] can be done for free in the fragment
1653 * shader with a saturate.
1654 */
1655 dp->saturate = true;
1656 } else {
1657 /* Negating the result of the dot-product gives values on the range
1658 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1659 * achieved using SLT.
1660 */
1661 st_src_reg slt_src = result_src;
1662 slt_src.negate = ~slt_src.negate;
1663 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1664 }
1665 }
1666 } else {
1667 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1668 }
1669 break;
1670
1671 case ir_unop_any: {
1672 assert(ir->operands[0]->type->is_vector());
1673
1674 if (native_integers) {
1675 int dst_swizzle = 0, op0_swizzle, i;
1676 st_src_reg accum = op[0];
1677
1678 op0_swizzle = op[0].swizzle;
1679 accum.swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 0),
1680 GET_SWZ(op0_swizzle, 0),
1681 GET_SWZ(op0_swizzle, 0),
1682 GET_SWZ(op0_swizzle, 0));
1683 for (i = 0; i < 4; i++) {
1684 if (result_dst.writemask & (1 << i)) {
1685 dst_swizzle = MAKE_SWIZZLE4(i, i, i, i);
1686 break;
1687 }
1688 }
1689 assert(i != 4);
1690 assert(ir->operands[0]->type->is_boolean());
1691
1692 /* OR all the components together, since they should be either 0 or ~0
1693 */
1694 switch (ir->operands[0]->type->vector_elements) {
1695 case 4:
1696 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 3),
1697 GET_SWZ(op0_swizzle, 3),
1698 GET_SWZ(op0_swizzle, 3),
1699 GET_SWZ(op0_swizzle, 3));
1700 emit(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1701 accum = st_src_reg(result_dst);
1702 accum.swizzle = dst_swizzle;
1703 /* fallthrough */
1704 case 3:
1705 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 2),
1706 GET_SWZ(op0_swizzle, 2),
1707 GET_SWZ(op0_swizzle, 2),
1708 GET_SWZ(op0_swizzle, 2));
1709 emit(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1710 accum = st_src_reg(result_dst);
1711 accum.swizzle = dst_swizzle;
1712 /* fallthrough */
1713 case 2:
1714 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 1),
1715 GET_SWZ(op0_swizzle, 1),
1716 GET_SWZ(op0_swizzle, 1),
1717 GET_SWZ(op0_swizzle, 1));
1718 emit(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1719 break;
1720 default:
1721 assert(!"Unexpected vector size");
1722 break;
1723 }
1724 } else {
1725 /* After the dot-product, the value will be an integer on the
1726 * range [0,4]. Zero stays zero, and positive values become 1.0.
1727 */
1728 glsl_to_tgsi_instruction *const dp =
1729 emit_dp(ir, result_dst, op[0], op[0],
1730 ir->operands[0]->type->vector_elements);
1731 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1732 result_dst.type == GLSL_TYPE_FLOAT) {
1733 /* The clamping to [0,1] can be done for free in the fragment
1734 * shader with a saturate.
1735 */
1736 dp->saturate = true;
1737 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1738 /* Negating the result of the dot-product gives values on the range
1739 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1740 * is achieved using SLT.
1741 */
1742 st_src_reg slt_src = result_src;
1743 slt_src.negate = ~slt_src.negate;
1744 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1745 }
1746 else {
1747 /* Use SNE 0 if integers are being used as boolean values. */
1748 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1749 }
1750 }
1751 break;
1752 }
1753
1754 case ir_binop_logic_xor:
1755 if (native_integers)
1756 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1757 else
1758 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1759 break;
1760
1761 case ir_binop_logic_or: {
1762 if (native_integers) {
1763 /* If integers are used as booleans, we can use an actual "or"
1764 * instruction.
1765 */
1766 assert(native_integers);
1767 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1768 } else {
1769 /* After the addition, the value will be an integer on the
1770 * range [0,2]. Zero stays zero, and positive values become 1.0.
1771 */
1772 glsl_to_tgsi_instruction *add =
1773 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1774 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1775 /* The clamping to [0,1] can be done for free in the fragment
1776 * shader with a saturate if floats are being used as boolean values.
1777 */
1778 add->saturate = true;
1779 } else {
1780 /* Negating the result of the addition gives values on the range
1781 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1782 * is achieved using SLT.
1783 */
1784 st_src_reg slt_src = result_src;
1785 slt_src.negate = ~slt_src.negate;
1786 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1787 }
1788 }
1789 break;
1790 }
1791
1792 case ir_binop_logic_and:
1793 /* If native integers are disabled, the bool args are stored as float 0.0
1794 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1795 * actual AND opcode.
1796 */
1797 if (native_integers)
1798 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1799 else
1800 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1801 break;
1802
1803 case ir_binop_dot:
1804 assert(ir->operands[0]->type->is_vector());
1805 assert(ir->operands[0]->type == ir->operands[1]->type);
1806 emit_dp(ir, result_dst, op[0], op[1],
1807 ir->operands[0]->type->vector_elements);
1808 break;
1809
1810 case ir_unop_sqrt:
1811 if (have_sqrt) {
1812 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1813 }
1814 else {
1815 /* sqrt(x) = x * rsq(x). */
1816 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1817 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1818 /* For incoming channels <= 0, set the result to 0. */
1819 op[0].negate = ~op[0].negate;
1820 emit(ir, TGSI_OPCODE_CMP, result_dst,
1821 op[0], result_src, st_src_reg_for_float(0.0));
1822 }
1823 break;
1824 case ir_unop_rsq:
1825 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1826 break;
1827 case ir_unop_i2f:
1828 if (native_integers) {
1829 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1830 break;
1831 }
1832 /* fallthrough to next case otherwise */
1833 case ir_unop_b2f:
1834 if (native_integers) {
1835 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1836 break;
1837 }
1838 /* fallthrough to next case otherwise */
1839 case ir_unop_i2u:
1840 case ir_unop_u2i:
1841 /* Converting between signed and unsigned integers is a no-op. */
1842 result_src = op[0];
1843 break;
1844 case ir_unop_b2i:
1845 if (native_integers) {
1846 /* Booleans are stored as integers using ~0 for true and 0 for false.
1847 * GLSL requires that int(bool) return 1 for true and 0 for false.
1848 * This conversion is done with AND, but it could be done with NEG.
1849 */
1850 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1851 } else {
1852 /* Booleans and integers are both stored as floats when native
1853 * integers are disabled.
1854 */
1855 result_src = op[0];
1856 }
1857 break;
1858 case ir_unop_f2i:
1859 if (native_integers)
1860 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1861 else
1862 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1863 break;
1864 case ir_unop_f2u:
1865 if (native_integers)
1866 emit(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1867 else
1868 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1869 break;
1870 case ir_unop_bitcast_f2i:
1871 result_src = op[0];
1872 result_src.type = GLSL_TYPE_INT;
1873 break;
1874 case ir_unop_bitcast_f2u:
1875 result_src = op[0];
1876 result_src.type = GLSL_TYPE_UINT;
1877 break;
1878 case ir_unop_bitcast_i2f:
1879 case ir_unop_bitcast_u2f:
1880 result_src = op[0];
1881 result_src.type = GLSL_TYPE_FLOAT;
1882 break;
1883 case ir_unop_f2b:
1884 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1885 break;
1886 case ir_unop_i2b:
1887 if (native_integers)
1888 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1889 else
1890 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1891 break;
1892 case ir_unop_trunc:
1893 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1894 break;
1895 case ir_unop_ceil:
1896 emit(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1897 break;
1898 case ir_unop_floor:
1899 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1900 break;
1901 case ir_unop_round_even:
1902 emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1903 break;
1904 case ir_unop_fract:
1905 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1906 break;
1907
1908 case ir_binop_min:
1909 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1910 break;
1911 case ir_binop_max:
1912 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1913 break;
1914 case ir_binop_pow:
1915 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1916 break;
1917
1918 case ir_unop_bit_not:
1919 if (native_integers) {
1920 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1921 break;
1922 }
1923 case ir_unop_u2f:
1924 if (native_integers) {
1925 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1926 break;
1927 }
1928 case ir_binop_lshift:
1929 if (native_integers) {
1930 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1931 break;
1932 }
1933 case ir_binop_rshift:
1934 if (native_integers) {
1935 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1936 break;
1937 }
1938 case ir_binop_bit_and:
1939 if (native_integers) {
1940 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1941 break;
1942 }
1943 case ir_binop_bit_xor:
1944 if (native_integers) {
1945 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1946 break;
1947 }
1948 case ir_binop_bit_or:
1949 if (native_integers) {
1950 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1951 break;
1952 }
1953
1954 assert(!"GLSL 1.30 features unsupported");
1955 break;
1956
1957 case ir_binop_ubo_load: {
1958 ir_constant *uniform_block = ir->operands[0]->as_constant();
1959 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1960 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1961 st_src_reg index_reg = get_temp(glsl_type::uint_type);
1962 st_src_reg cbuf;
1963
1964 cbuf.type = glsl_type::vec4_type->base_type;
1965 cbuf.file = PROGRAM_CONSTANT;
1966 cbuf.index = 0;
1967 cbuf.index2D = uniform_block->value.u[0] + 1;
1968 cbuf.reladdr = NULL;
1969 cbuf.negate = 0;
1970
1971 assert(ir->type->is_vector() || ir->type->is_scalar());
1972
1973 if (const_offset_ir) {
1974 index_reg = st_src_reg_for_int(const_offset / 16);
1975 } else {
1976 emit(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1], st_src_reg_for_int(4));
1977 }
1978
1979 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
1980 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
1981 const_offset % 16 / 4,
1982 const_offset % 16 / 4,
1983 const_offset % 16 / 4);
1984
1985 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1986 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
1987
1988 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1989 emit(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
1990 } else {
1991 emit(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
1992 }
1993 break;
1994 }
1995 case ir_triop_lrp:
1996 /* note: we have to reorder the three args here */
1997 emit(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1998 break;
1999 case ir_triop_csel:
2000 if (this->ctx->Const.NativeIntegers)
2001 emit(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2002 else {
2003 op[0].negate = ~op[0].negate;
2004 emit(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2005 }
2006 break;
2007 case ir_triop_bitfield_extract:
2008 emit(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2009 break;
2010 case ir_quadop_bitfield_insert:
2011 emit(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2012 break;
2013 case ir_unop_bitfield_reverse:
2014 emit(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2015 break;
2016 case ir_unop_bit_count:
2017 emit(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2018 break;
2019 case ir_unop_find_msb:
2020 emit(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2021 break;
2022 case ir_unop_find_lsb:
2023 emit(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2024 break;
2025 case ir_binop_imul_high:
2026 emit(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2027 break;
2028 case ir_triop_fma:
2029 /* NOTE: Perhaps there should be a special opcode that enforces fused
2030 * mul-add. Just use MAD for now.
2031 */
2032 emit(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2033 break;
2034 case ir_unop_pack_snorm_2x16:
2035 case ir_unop_pack_unorm_2x16:
2036 case ir_unop_pack_half_2x16:
2037 case ir_unop_pack_snorm_4x8:
2038 case ir_unop_pack_unorm_4x8:
2039 case ir_unop_unpack_snorm_2x16:
2040 case ir_unop_unpack_unorm_2x16:
2041 case ir_unop_unpack_half_2x16:
2042 case ir_unop_unpack_half_2x16_split_x:
2043 case ir_unop_unpack_half_2x16_split_y:
2044 case ir_unop_unpack_snorm_4x8:
2045 case ir_unop_unpack_unorm_4x8:
2046 case ir_binop_pack_half_2x16_split:
2047 case ir_binop_bfm:
2048 case ir_triop_bfi:
2049 case ir_quadop_vector:
2050 case ir_binop_vector_extract:
2051 case ir_triop_vector_insert:
2052 case ir_binop_ldexp:
2053 case ir_binop_carry:
2054 case ir_binop_borrow:
2055 /* This operation is not supported, or should have already been handled.
2056 */
2057 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2058 break;
2059 }
2060
2061 this->result = result_src;
2062 }
2063
2064
2065 void
2066 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2067 {
2068 st_src_reg src;
2069 int i;
2070 int swizzle[4];
2071
2072 /* Note that this is only swizzles in expressions, not those on the left
2073 * hand side of an assignment, which do write masking. See ir_assignment
2074 * for that.
2075 */
2076
2077 ir->val->accept(this);
2078 src = this->result;
2079 assert(src.file != PROGRAM_UNDEFINED);
2080
2081 for (i = 0; i < 4; i++) {
2082 if (i < ir->type->vector_elements) {
2083 switch (i) {
2084 case 0:
2085 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2086 break;
2087 case 1:
2088 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2089 break;
2090 case 2:
2091 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2092 break;
2093 case 3:
2094 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2095 break;
2096 }
2097 } else {
2098 /* If the type is smaller than a vec4, replicate the last
2099 * channel out.
2100 */
2101 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2102 }
2103 }
2104
2105 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2106
2107 this->result = src;
2108 }
2109
2110 void
2111 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2112 {
2113 variable_storage *entry = find_variable_storage(ir->var);
2114 ir_variable *var = ir->var;
2115
2116 if (!entry) {
2117 switch (var->data.mode) {
2118 case ir_var_uniform:
2119 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2120 var->data.location);
2121 this->variables.push_tail(entry);
2122 break;
2123 case ir_var_shader_in:
2124 /* The linker assigns locations for varyings and attributes,
2125 * including deprecated builtins (like gl_Color), user-assign
2126 * generic attributes (glBindVertexLocation), and
2127 * user-defined varyings.
2128 */
2129 assert(var->data.location != -1);
2130 entry = new(mem_ctx) variable_storage(var,
2131 PROGRAM_INPUT,
2132 var->data.location);
2133 break;
2134 case ir_var_shader_out:
2135 assert(var->data.location != -1);
2136 entry = new(mem_ctx) variable_storage(var,
2137 PROGRAM_OUTPUT,
2138 var->data.location
2139 + var->data.index);
2140 break;
2141 case ir_var_system_value:
2142 entry = new(mem_ctx) variable_storage(var,
2143 PROGRAM_SYSTEM_VALUE,
2144 var->data.location);
2145 break;
2146 case ir_var_auto:
2147 case ir_var_temporary:
2148 st_src_reg src = get_temp(var->type);
2149
2150 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2151 this->variables.push_tail(entry);
2152
2153 break;
2154 }
2155
2156 if (!entry) {
2157 printf("Failed to make storage for %s\n", var->name);
2158 exit(1);
2159 }
2160 }
2161
2162 this->result = st_src_reg(entry->file, entry->index, var->type);
2163 if (!native_integers)
2164 this->result.type = GLSL_TYPE_FLOAT;
2165 }
2166
2167 void
2168 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2169 {
2170 ir_constant *index;
2171 st_src_reg src;
2172 int element_size = type_size(ir->type);
2173 bool is_2D_input;
2174
2175 index = ir->array_index->constant_expression_value();
2176
2177 ir->array->accept(this);
2178 src = this->result;
2179
2180 is_2D_input = this->prog->Target == GL_GEOMETRY_PROGRAM_NV &&
2181 src.file == PROGRAM_INPUT &&
2182 ir->array->ir_type != ir_type_dereference_array;
2183
2184 if (is_2D_input)
2185 element_size = 1;
2186
2187 if (index) {
2188 if (is_2D_input) {
2189 src.index2D = index->value.i[0];
2190 src.has_index2 = true;
2191 } else
2192 src.index += index->value.i[0] * element_size;
2193 } else {
2194 /* Variable index array dereference. It eats the "vec4" of the
2195 * base of the array and an index that offsets the TGSI register
2196 * index.
2197 */
2198 ir->array_index->accept(this);
2199
2200 st_src_reg index_reg;
2201
2202 if (element_size == 1) {
2203 index_reg = this->result;
2204 } else {
2205 index_reg = get_temp(native_integers ?
2206 glsl_type::int_type : glsl_type::float_type);
2207
2208 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2209 this->result, st_src_reg_for_type(index_reg.type, element_size));
2210 }
2211
2212 /* If there was already a relative address register involved, add the
2213 * new and the old together to get the new offset.
2214 */
2215 if (!is_2D_input && src.reladdr != NULL) {
2216 st_src_reg accum_reg = get_temp(native_integers ?
2217 glsl_type::int_type : glsl_type::float_type);
2218
2219 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2220 index_reg, *src.reladdr);
2221
2222 index_reg = accum_reg;
2223 }
2224
2225 if (is_2D_input) {
2226 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2227 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2228 src.index2D = 0;
2229 src.has_index2 = true;
2230 } else {
2231 src.reladdr = ralloc(mem_ctx, st_src_reg);
2232 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2233 }
2234 }
2235
2236 /* If the type is smaller than a vec4, replicate the last channel out. */
2237 if (ir->type->is_scalar() || ir->type->is_vector())
2238 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2239 else
2240 src.swizzle = SWIZZLE_NOOP;
2241
2242 /* Change the register type to the element type of the array. */
2243 src.type = ir->type->base_type;
2244
2245 this->result = src;
2246 }
2247
2248 void
2249 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2250 {
2251 unsigned int i;
2252 const glsl_type *struct_type = ir->record->type;
2253 int offset = 0;
2254
2255 ir->record->accept(this);
2256
2257 for (i = 0; i < struct_type->length; i++) {
2258 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2259 break;
2260 offset += type_size(struct_type->fields.structure[i].type);
2261 }
2262
2263 /* If the type is smaller than a vec4, replicate the last channel out. */
2264 if (ir->type->is_scalar() || ir->type->is_vector())
2265 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2266 else
2267 this->result.swizzle = SWIZZLE_NOOP;
2268
2269 this->result.index += offset;
2270 this->result.type = ir->type->base_type;
2271 }
2272
2273 /**
2274 * We want to be careful in assignment setup to hit the actual storage
2275 * instead of potentially using a temporary like we might with the
2276 * ir_dereference handler.
2277 */
2278 static st_dst_reg
2279 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2280 {
2281 /* The LHS must be a dereference. If the LHS is a variable indexed array
2282 * access of a vector, it must be separated into a series conditional moves
2283 * before reaching this point (see ir_vec_index_to_cond_assign).
2284 */
2285 assert(ir->as_dereference());
2286 ir_dereference_array *deref_array = ir->as_dereference_array();
2287 if (deref_array) {
2288 assert(!deref_array->array->type->is_vector());
2289 }
2290
2291 /* Use the rvalue deref handler for the most part. We'll ignore
2292 * swizzles in it and write swizzles using writemask, though.
2293 */
2294 ir->accept(v);
2295 return st_dst_reg(v->result);
2296 }
2297
2298 /**
2299 * Process the condition of a conditional assignment
2300 *
2301 * Examines the condition of a conditional assignment to generate the optimal
2302 * first operand of a \c CMP instruction. If the condition is a relational
2303 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2304 * used as the source for the \c CMP instruction. Otherwise the comparison
2305 * is processed to a boolean result, and the boolean result is used as the
2306 * operand to the CMP instruction.
2307 */
2308 bool
2309 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2310 {
2311 ir_rvalue *src_ir = ir;
2312 bool negate = true;
2313 bool switch_order = false;
2314
2315 ir_expression *const expr = ir->as_expression();
2316 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2317 bool zero_on_left = false;
2318
2319 if (expr->operands[0]->is_zero()) {
2320 src_ir = expr->operands[1];
2321 zero_on_left = true;
2322 } else if (expr->operands[1]->is_zero()) {
2323 src_ir = expr->operands[0];
2324 zero_on_left = false;
2325 }
2326
2327 /* a is - 0 + - 0 +
2328 * (a < 0) T F F ( a < 0) T F F
2329 * (0 < a) F F T (-a < 0) F F T
2330 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2331 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2332 * (a > 0) F F T (-a < 0) F F T
2333 * (0 > a) T F F ( a < 0) T F F
2334 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2335 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2336 *
2337 * Note that exchanging the order of 0 and 'a' in the comparison simply
2338 * means that the value of 'a' should be negated.
2339 */
2340 if (src_ir != ir) {
2341 switch (expr->operation) {
2342 case ir_binop_less:
2343 switch_order = false;
2344 negate = zero_on_left;
2345 break;
2346
2347 case ir_binop_greater:
2348 switch_order = false;
2349 negate = !zero_on_left;
2350 break;
2351
2352 case ir_binop_lequal:
2353 switch_order = true;
2354 negate = !zero_on_left;
2355 break;
2356
2357 case ir_binop_gequal:
2358 switch_order = true;
2359 negate = zero_on_left;
2360 break;
2361
2362 default:
2363 /* This isn't the right kind of comparison afterall, so make sure
2364 * the whole condition is visited.
2365 */
2366 src_ir = ir;
2367 break;
2368 }
2369 }
2370 }
2371
2372 src_ir->accept(this);
2373
2374 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2375 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2376 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2377 * computing the condition.
2378 */
2379 if (negate)
2380 this->result.negate = ~this->result.negate;
2381
2382 return switch_order;
2383 }
2384
2385 void
2386 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2387 st_dst_reg *l, st_src_reg *r)
2388 {
2389 if (type->base_type == GLSL_TYPE_STRUCT) {
2390 for (unsigned int i = 0; i < type->length; i++) {
2391 emit_block_mov(ir, type->fields.structure[i].type, l, r);
2392 }
2393 return;
2394 }
2395
2396 if (type->is_array()) {
2397 for (unsigned int i = 0; i < type->length; i++) {
2398 emit_block_mov(ir, type->fields.array, l, r);
2399 }
2400 return;
2401 }
2402
2403 if (type->is_matrix()) {
2404 const struct glsl_type *vec_type;
2405
2406 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
2407 type->vector_elements, 1);
2408
2409 for (int i = 0; i < type->matrix_columns; i++) {
2410 emit_block_mov(ir, vec_type, l, r);
2411 }
2412 return;
2413 }
2414
2415 assert(type->is_scalar() || type->is_vector());
2416
2417 r->type = type->base_type;
2418 emit(ir, TGSI_OPCODE_MOV, *l, *r);
2419 l->index++;
2420 r->index++;
2421 }
2422
2423 void
2424 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2425 {
2426 st_dst_reg l;
2427 st_src_reg r;
2428 int i;
2429
2430 ir->rhs->accept(this);
2431 r = this->result;
2432
2433 l = get_assignment_lhs(ir->lhs, this);
2434
2435 /* FINISHME: This should really set to the correct maximal writemask for each
2436 * FINISHME: component written (in the loops below). This case can only
2437 * FINISHME: occur for matrices, arrays, and structures.
2438 */
2439 if (ir->write_mask == 0) {
2440 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2441 l.writemask = WRITEMASK_XYZW;
2442 } else if (ir->lhs->type->is_scalar() &&
2443 ir->lhs->variable_referenced()->data.mode == ir_var_shader_out) {
2444 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2445 * FINISHME: W component of fragment shader output zero, work correctly.
2446 */
2447 l.writemask = WRITEMASK_XYZW;
2448 } else {
2449 int swizzles[4];
2450 int first_enabled_chan = 0;
2451 int rhs_chan = 0;
2452
2453 l.writemask = ir->write_mask;
2454
2455 for (int i = 0; i < 4; i++) {
2456 if (l.writemask & (1 << i)) {
2457 first_enabled_chan = GET_SWZ(r.swizzle, i);
2458 break;
2459 }
2460 }
2461
2462 /* Swizzle a small RHS vector into the channels being written.
2463 *
2464 * glsl ir treats write_mask as dictating how many channels are
2465 * present on the RHS while TGSI treats write_mask as just
2466 * showing which channels of the vec4 RHS get written.
2467 */
2468 for (int i = 0; i < 4; i++) {
2469 if (l.writemask & (1 << i))
2470 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2471 else
2472 swizzles[i] = first_enabled_chan;
2473 }
2474 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2475 swizzles[2], swizzles[3]);
2476 }
2477
2478 assert(l.file != PROGRAM_UNDEFINED);
2479 assert(r.file != PROGRAM_UNDEFINED);
2480
2481 if (ir->condition) {
2482 const bool switch_order = this->process_move_condition(ir->condition);
2483 st_src_reg condition = this->result;
2484
2485 for (i = 0; i < type_size(ir->lhs->type); i++) {
2486 st_src_reg l_src = st_src_reg(l);
2487 st_src_reg condition_temp = condition;
2488 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2489
2490 if (native_integers) {
2491 /* This is necessary because TGSI's CMP instruction expects the
2492 * condition to be a float, and we store booleans as integers.
2493 * TODO: really want to avoid i2f path and use UCMP. Requires
2494 * changes to process_move_condition though too.
2495 */
2496 condition_temp = get_temp(glsl_type::vec4_type);
2497 condition.negate = 0;
2498 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2499 condition_temp.swizzle = condition.swizzle;
2500 }
2501
2502 if (switch_order) {
2503 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2504 } else {
2505 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2506 }
2507
2508 l.index++;
2509 r.index++;
2510 }
2511 } else if (ir->rhs->as_expression() &&
2512 this->instructions.get_tail() &&
2513 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2514 type_size(ir->lhs->type) == 1 &&
2515 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2516 /* To avoid emitting an extra MOV when assigning an expression to a
2517 * variable, emit the last instruction of the expression again, but
2518 * replace the destination register with the target of the assignment.
2519 * Dead code elimination will remove the original instruction.
2520 */
2521 glsl_to_tgsi_instruction *inst, *new_inst;
2522 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2523 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2524 new_inst->saturate = inst->saturate;
2525 inst->dead_mask = inst->dst.writemask;
2526 } else {
2527 emit_block_mov(ir, ir->rhs->type, &l, &r);
2528 }
2529 }
2530
2531
2532 void
2533 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2534 {
2535 st_src_reg src;
2536 GLfloat stack_vals[4] = { 0 };
2537 gl_constant_value *values = (gl_constant_value *) stack_vals;
2538 GLenum gl_type = GL_NONE;
2539 unsigned int i;
2540 static int in_array = 0;
2541 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2542
2543 /* Unfortunately, 4 floats is all we can get into
2544 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2545 * aggregate constant and move each constant value into it. If we
2546 * get lucky, copy propagation will eliminate the extra moves.
2547 */
2548 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2549 st_src_reg temp_base = get_temp(ir->type);
2550 st_dst_reg temp = st_dst_reg(temp_base);
2551
2552 foreach_list(node, &ir->components) {
2553 ir_constant *field_value = (ir_constant *) node;
2554 int size = type_size(field_value->type);
2555
2556 assert(size > 0);
2557
2558 field_value->accept(this);
2559 src = this->result;
2560
2561 for (i = 0; i < (unsigned int)size; i++) {
2562 emit(ir, TGSI_OPCODE_MOV, temp, src);
2563
2564 src.index++;
2565 temp.index++;
2566 }
2567 }
2568 this->result = temp_base;
2569 return;
2570 }
2571
2572 if (ir->type->is_array()) {
2573 st_src_reg temp_base = get_temp(ir->type);
2574 st_dst_reg temp = st_dst_reg(temp_base);
2575 int size = type_size(ir->type->fields.array);
2576
2577 assert(size > 0);
2578 in_array++;
2579
2580 for (i = 0; i < ir->type->length; i++) {
2581 ir->array_elements[i]->accept(this);
2582 src = this->result;
2583 for (int j = 0; j < size; j++) {
2584 emit(ir, TGSI_OPCODE_MOV, temp, src);
2585
2586 src.index++;
2587 temp.index++;
2588 }
2589 }
2590 this->result = temp_base;
2591 in_array--;
2592 return;
2593 }
2594
2595 if (ir->type->is_matrix()) {
2596 st_src_reg mat = get_temp(ir->type);
2597 st_dst_reg mat_column = st_dst_reg(mat);
2598
2599 for (i = 0; i < ir->type->matrix_columns; i++) {
2600 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2601 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2602
2603 src = st_src_reg(file, -1, ir->type->base_type);
2604 src.index = add_constant(file,
2605 values,
2606 ir->type->vector_elements,
2607 GL_FLOAT,
2608 &src.swizzle);
2609 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2610
2611 mat_column.index++;
2612 }
2613
2614 this->result = mat;
2615 return;
2616 }
2617
2618 switch (ir->type->base_type) {
2619 case GLSL_TYPE_FLOAT:
2620 gl_type = GL_FLOAT;
2621 for (i = 0; i < ir->type->vector_elements; i++) {
2622 values[i].f = ir->value.f[i];
2623 }
2624 break;
2625 case GLSL_TYPE_UINT:
2626 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2627 for (i = 0; i < ir->type->vector_elements; i++) {
2628 if (native_integers)
2629 values[i].u = ir->value.u[i];
2630 else
2631 values[i].f = ir->value.u[i];
2632 }
2633 break;
2634 case GLSL_TYPE_INT:
2635 gl_type = native_integers ? GL_INT : GL_FLOAT;
2636 for (i = 0; i < ir->type->vector_elements; i++) {
2637 if (native_integers)
2638 values[i].i = ir->value.i[i];
2639 else
2640 values[i].f = ir->value.i[i];
2641 }
2642 break;
2643 case GLSL_TYPE_BOOL:
2644 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2645 for (i = 0; i < ir->type->vector_elements; i++) {
2646 if (native_integers)
2647 values[i].u = ir->value.b[i] ? ~0 : 0;
2648 else
2649 values[i].f = ir->value.b[i];
2650 }
2651 break;
2652 default:
2653 assert(!"Non-float/uint/int/bool constant");
2654 }
2655
2656 this->result = st_src_reg(file, -1, ir->type);
2657 this->result.index = add_constant(file,
2658 values,
2659 ir->type->vector_elements,
2660 gl_type,
2661 &this->result.swizzle);
2662 }
2663
2664 function_entry *
2665 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2666 {
2667 function_entry *entry;
2668
2669 foreach_list(node, &this->function_signatures) {
2670 entry = (function_entry *) node;
2671
2672 if (entry->sig == sig)
2673 return entry;
2674 }
2675
2676 entry = ralloc(mem_ctx, function_entry);
2677 entry->sig = sig;
2678 entry->sig_id = this->next_signature_id++;
2679 entry->bgn_inst = NULL;
2680
2681 /* Allocate storage for all the parameters. */
2682 foreach_list(node, &sig->parameters) {
2683 ir_variable *param = (ir_variable *) node;
2684 variable_storage *storage;
2685
2686 storage = find_variable_storage(param);
2687 assert(!storage);
2688
2689 st_src_reg src = get_temp(param->type);
2690
2691 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
2692 this->variables.push_tail(storage);
2693 }
2694
2695 if (!sig->return_type->is_void()) {
2696 entry->return_reg = get_temp(sig->return_type);
2697 } else {
2698 entry->return_reg = undef_src;
2699 }
2700
2701 this->function_signatures.push_tail(entry);
2702 return entry;
2703 }
2704
2705 void
2706 glsl_to_tgsi_visitor::visit(ir_call *ir)
2707 {
2708 glsl_to_tgsi_instruction *call_inst;
2709 ir_function_signature *sig = ir->callee;
2710 function_entry *entry = get_function_signature(sig);
2711 int i;
2712
2713 /* Process in parameters. */
2714 foreach_two_lists(formal_node, &sig->parameters,
2715 actual_node, &ir->actual_parameters) {
2716 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
2717 ir_variable *param = (ir_variable *) formal_node;
2718
2719 if (param->data.mode == ir_var_function_in ||
2720 param->data.mode == ir_var_function_inout) {
2721 variable_storage *storage = find_variable_storage(param);
2722 assert(storage);
2723
2724 param_rval->accept(this);
2725 st_src_reg r = this->result;
2726
2727 st_dst_reg l;
2728 l.file = storage->file;
2729 l.index = storage->index;
2730 l.reladdr = NULL;
2731 l.writemask = WRITEMASK_XYZW;
2732 l.cond_mask = COND_TR;
2733
2734 for (i = 0; i < type_size(param->type); i++) {
2735 emit(ir, TGSI_OPCODE_MOV, l, r);
2736 l.index++;
2737 r.index++;
2738 }
2739 }
2740 }
2741
2742 /* Emit call instruction */
2743 call_inst = emit(ir, TGSI_OPCODE_CAL);
2744 call_inst->function = entry;
2745
2746 /* Process out parameters. */
2747 foreach_two_lists(formal_node, &sig->parameters,
2748 actual_node, &ir->actual_parameters) {
2749 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
2750 ir_variable *param = (ir_variable *) formal_node;
2751
2752 if (param->data.mode == ir_var_function_out ||
2753 param->data.mode == ir_var_function_inout) {
2754 variable_storage *storage = find_variable_storage(param);
2755 assert(storage);
2756
2757 st_src_reg r;
2758 r.file = storage->file;
2759 r.index = storage->index;
2760 r.reladdr = NULL;
2761 r.swizzle = SWIZZLE_NOOP;
2762 r.negate = 0;
2763
2764 param_rval->accept(this);
2765 st_dst_reg l = st_dst_reg(this->result);
2766
2767 for (i = 0; i < type_size(param->type); i++) {
2768 emit(ir, TGSI_OPCODE_MOV, l, r);
2769 l.index++;
2770 r.index++;
2771 }
2772 }
2773 }
2774
2775 /* Process return value. */
2776 this->result = entry->return_reg;
2777 }
2778
2779 void
2780 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2781 {
2782 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
2783 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
2784 st_src_reg levels_src;
2785 st_dst_reg result_dst, coord_dst, cube_sc_dst;
2786 glsl_to_tgsi_instruction *inst = NULL;
2787 unsigned opcode = TGSI_OPCODE_NOP;
2788 const glsl_type *sampler_type = ir->sampler->type;
2789 bool is_cube_array = false;
2790 unsigned i;
2791
2792 /* if we are a cube array sampler */
2793 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2794 sampler_type->sampler_array)) {
2795 is_cube_array = true;
2796 }
2797
2798 if (ir->coordinate) {
2799 ir->coordinate->accept(this);
2800
2801 /* Put our coords in a temp. We'll need to modify them for shadow,
2802 * projection, or LOD, so the only case we'd use it as is is if
2803 * we're doing plain old texturing. The optimization passes on
2804 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2805 */
2806 coord = get_temp(glsl_type::vec4_type);
2807 coord_dst = st_dst_reg(coord);
2808 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
2809 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2810 }
2811
2812 if (ir->projector) {
2813 ir->projector->accept(this);
2814 projector = this->result;
2815 }
2816
2817 /* Storage for our result. Ideally for an assignment we'd be using
2818 * the actual storage for the result here, instead.
2819 */
2820 result_src = get_temp(ir->type);
2821 result_dst = st_dst_reg(result_src);
2822
2823 switch (ir->op) {
2824 case ir_tex:
2825 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
2826 if (ir->offset) {
2827 ir->offset->accept(this);
2828 offset[0] = this->result;
2829 }
2830 break;
2831 case ir_txb:
2832 opcode = is_cube_array ? TGSI_OPCODE_TXB2 : TGSI_OPCODE_TXB;
2833 ir->lod_info.bias->accept(this);
2834 lod_info = this->result;
2835 if (ir->offset) {
2836 ir->offset->accept(this);
2837 offset[0] = this->result;
2838 }
2839 break;
2840 case ir_txl:
2841 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
2842 ir->lod_info.lod->accept(this);
2843 lod_info = this->result;
2844 if (ir->offset) {
2845 ir->offset->accept(this);
2846 offset[0] = this->result;
2847 }
2848 break;
2849 case ir_txd:
2850 opcode = TGSI_OPCODE_TXD;
2851 ir->lod_info.grad.dPdx->accept(this);
2852 dx = this->result;
2853 ir->lod_info.grad.dPdy->accept(this);
2854 dy = this->result;
2855 if (ir->offset) {
2856 ir->offset->accept(this);
2857 offset[0] = this->result;
2858 }
2859 break;
2860 case ir_txs:
2861 opcode = TGSI_OPCODE_TXQ;
2862 ir->lod_info.lod->accept(this);
2863 lod_info = this->result;
2864 break;
2865 case ir_query_levels:
2866 opcode = TGSI_OPCODE_TXQ;
2867 lod_info = st_src_reg(PROGRAM_IMMEDIATE, 0, GLSL_TYPE_INT);
2868 levels_src = get_temp(ir->type);
2869 break;
2870 case ir_txf:
2871 opcode = TGSI_OPCODE_TXF;
2872 ir->lod_info.lod->accept(this);
2873 lod_info = this->result;
2874 if (ir->offset) {
2875 ir->offset->accept(this);
2876 offset[0] = this->result;
2877 }
2878 break;
2879 case ir_txf_ms:
2880 opcode = TGSI_OPCODE_TXF;
2881 ir->lod_info.sample_index->accept(this);
2882 sample_index = this->result;
2883 break;
2884 case ir_tg4:
2885 opcode = TGSI_OPCODE_TG4;
2886 ir->lod_info.component->accept(this);
2887 component = this->result;
2888 if (ir->offset) {
2889 ir->offset->accept(this);
2890 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
2891 const glsl_type *elt_type = ir->offset->type->fields.array;
2892 for (i = 0; i < ir->offset->type->length; i++) {
2893 offset[i] = this->result;
2894 offset[i].index += i * type_size(elt_type);
2895 offset[i].type = elt_type->base_type;
2896 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
2897 }
2898 } else {
2899 offset[0] = this->result;
2900 }
2901 }
2902 break;
2903 case ir_lod:
2904 opcode = TGSI_OPCODE_LODQ;
2905 break;
2906 }
2907
2908 if (ir->projector) {
2909 if (opcode == TGSI_OPCODE_TEX) {
2910 /* Slot the projector in as the last component of the coord. */
2911 coord_dst.writemask = WRITEMASK_W;
2912 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2913 coord_dst.writemask = WRITEMASK_XYZW;
2914 opcode = TGSI_OPCODE_TXP;
2915 } else {
2916 st_src_reg coord_w = coord;
2917 coord_w.swizzle = SWIZZLE_WWWW;
2918
2919 /* For the other TEX opcodes there's no projective version
2920 * since the last slot is taken up by LOD info. Do the
2921 * projective divide now.
2922 */
2923 coord_dst.writemask = WRITEMASK_W;
2924 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2925
2926 /* In the case where we have to project the coordinates "by hand,"
2927 * the shadow comparator value must also be projected.
2928 */
2929 st_src_reg tmp_src = coord;
2930 if (ir->shadow_comparitor) {
2931 /* Slot the shadow value in as the second to last component of the
2932 * coord.
2933 */
2934 ir->shadow_comparitor->accept(this);
2935
2936 tmp_src = get_temp(glsl_type::vec4_type);
2937 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2938
2939 /* Projective division not allowed for array samplers. */
2940 assert(!sampler_type->sampler_array);
2941
2942 tmp_dst.writemask = WRITEMASK_Z;
2943 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2944
2945 tmp_dst.writemask = WRITEMASK_XY;
2946 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2947 }
2948
2949 coord_dst.writemask = WRITEMASK_XYZ;
2950 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2951
2952 coord_dst.writemask = WRITEMASK_XYZW;
2953 coord.swizzle = SWIZZLE_XYZW;
2954 }
2955 }
2956
2957 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2958 * comparator was put in the correct place (and projected) by the code,
2959 * above, that handles by-hand projection.
2960 */
2961 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2962 /* Slot the shadow value in as the second to last component of the
2963 * coord.
2964 */
2965 ir->shadow_comparitor->accept(this);
2966
2967 if (is_cube_array) {
2968 cube_sc = get_temp(glsl_type::float_type);
2969 cube_sc_dst = st_dst_reg(cube_sc);
2970 cube_sc_dst.writemask = WRITEMASK_X;
2971 emit(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
2972 cube_sc_dst.writemask = WRITEMASK_X;
2973 }
2974 else {
2975 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2976 sampler_type->sampler_array) ||
2977 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
2978 coord_dst.writemask = WRITEMASK_W;
2979 } else {
2980 coord_dst.writemask = WRITEMASK_Z;
2981 }
2982
2983 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2984 coord_dst.writemask = WRITEMASK_XYZW;
2985 }
2986 }
2987
2988 if (ir->op == ir_txf_ms) {
2989 coord_dst.writemask = WRITEMASK_W;
2990 emit(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
2991 coord_dst.writemask = WRITEMASK_XYZW;
2992 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2993 opcode == TGSI_OPCODE_TXF) {
2994 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2995 coord_dst.writemask = WRITEMASK_W;
2996 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2997 coord_dst.writemask = WRITEMASK_XYZW;
2998 }
2999
3000 if (opcode == TGSI_OPCODE_TXD)
3001 inst = emit(ir, opcode, result_dst, coord, dx, dy);
3002 else if (opcode == TGSI_OPCODE_TXQ) {
3003 if (ir->op == ir_query_levels) {
3004 /* the level is stored in W */
3005 inst = emit(ir, opcode, st_dst_reg(levels_src), lod_info);
3006 result_dst.writemask = WRITEMASK_X;
3007 levels_src.swizzle = SWIZZLE_WWWW;
3008 emit(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
3009 } else
3010 inst = emit(ir, opcode, result_dst, lod_info);
3011 } else if (opcode == TGSI_OPCODE_TXF) {
3012 inst = emit(ir, opcode, result_dst, coord);
3013 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
3014 inst = emit(ir, opcode, result_dst, coord, lod_info);
3015 } else if (opcode == TGSI_OPCODE_TEX2) {
3016 inst = emit(ir, opcode, result_dst, coord, cube_sc);
3017 } else if (opcode == TGSI_OPCODE_TG4) {
3018 if (is_cube_array && ir->shadow_comparitor) {
3019 inst = emit(ir, opcode, result_dst, coord, cube_sc);
3020 } else {
3021 inst = emit(ir, opcode, result_dst, coord, component);
3022 }
3023 } else
3024 inst = emit(ir, opcode, result_dst, coord);
3025
3026 if (ir->shadow_comparitor)
3027 inst->tex_shadow = GL_TRUE;
3028
3029 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
3030 this->shader_program,
3031 this->prog);
3032
3033 if (ir->offset) {
3034 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
3035 inst->tex_offsets[i] = offset[i];
3036 inst->tex_offset_num_offset = i;
3037 }
3038
3039 switch (sampler_type->sampler_dimensionality) {
3040 case GLSL_SAMPLER_DIM_1D:
3041 inst->tex_target = (sampler_type->sampler_array)
3042 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
3043 break;
3044 case GLSL_SAMPLER_DIM_2D:
3045 inst->tex_target = (sampler_type->sampler_array)
3046 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
3047 break;
3048 case GLSL_SAMPLER_DIM_3D:
3049 inst->tex_target = TEXTURE_3D_INDEX;
3050 break;
3051 case GLSL_SAMPLER_DIM_CUBE:
3052 inst->tex_target = (sampler_type->sampler_array)
3053 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
3054 break;
3055 case GLSL_SAMPLER_DIM_RECT:
3056 inst->tex_target = TEXTURE_RECT_INDEX;
3057 break;
3058 case GLSL_SAMPLER_DIM_BUF:
3059 inst->tex_target = TEXTURE_BUFFER_INDEX;
3060 break;
3061 case GLSL_SAMPLER_DIM_EXTERNAL:
3062 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3063 break;
3064 case GLSL_SAMPLER_DIM_MS:
3065 inst->tex_target = (sampler_type->sampler_array)
3066 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3067 break;
3068 default:
3069 assert(!"Should not get here.");
3070 }
3071
3072 this->result = result_src;
3073 }
3074
3075 void
3076 glsl_to_tgsi_visitor::visit(ir_return *ir)
3077 {
3078 if (ir->get_value()) {
3079 st_dst_reg l;
3080 int i;
3081
3082 assert(current_function);
3083
3084 ir->get_value()->accept(this);
3085 st_src_reg r = this->result;
3086
3087 l = st_dst_reg(current_function->return_reg);
3088
3089 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
3090 emit(ir, TGSI_OPCODE_MOV, l, r);
3091 l.index++;
3092 r.index++;
3093 }
3094 }
3095
3096 emit(ir, TGSI_OPCODE_RET);
3097 }
3098
3099 void
3100 glsl_to_tgsi_visitor::visit(ir_discard *ir)
3101 {
3102 if (ir->condition) {
3103 ir->condition->accept(this);
3104 this->result.negate = ~this->result.negate;
3105 emit(ir, TGSI_OPCODE_KILL_IF, undef_dst, this->result);
3106 } else {
3107 /* unconditional kil */
3108 emit(ir, TGSI_OPCODE_KILL);
3109 }
3110 }
3111
3112 void
3113 glsl_to_tgsi_visitor::visit(ir_if *ir)
3114 {
3115 unsigned if_opcode;
3116 glsl_to_tgsi_instruction *if_inst;
3117
3118 ir->condition->accept(this);
3119 assert(this->result.file != PROGRAM_UNDEFINED);
3120
3121 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
3122
3123 if_inst = emit(ir->condition, if_opcode, undef_dst, this->result);
3124
3125 this->instructions.push_tail(if_inst);
3126
3127 visit_exec_list(&ir->then_instructions, this);
3128
3129 if (!ir->else_instructions.is_empty()) {
3130 emit(ir->condition, TGSI_OPCODE_ELSE);
3131 visit_exec_list(&ir->else_instructions, this);
3132 }
3133
3134 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
3135 }
3136
3137
3138 void
3139 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
3140 {
3141 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3142 emit(ir, TGSI_OPCODE_EMIT, undef_dst, st_src_reg_for_int(0));
3143 }
3144
3145 void
3146 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
3147 {
3148 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3149 emit(ir, TGSI_OPCODE_ENDPRIM, undef_dst, st_src_reg_for_int(0));
3150 }
3151
3152 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
3153 {
3154 result.file = PROGRAM_UNDEFINED;
3155 next_temp = 1;
3156 next_array = 0;
3157 next_signature_id = 1;
3158 num_immediates = 0;
3159 current_function = NULL;
3160 num_address_regs = 0;
3161 samplers_used = 0;
3162 indirect_addr_consts = false;
3163 glsl_version = 0;
3164 native_integers = false;
3165 mem_ctx = ralloc_context(NULL);
3166 ctx = NULL;
3167 prog = NULL;
3168 shader_program = NULL;
3169 shader = NULL;
3170 options = NULL;
3171 }
3172
3173 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
3174 {
3175 ralloc_free(mem_ctx);
3176 }
3177
3178 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
3179 {
3180 delete v;
3181 }
3182
3183
3184 /**
3185 * Count resources used by the given gpu program (number of texture
3186 * samplers, etc).
3187 */
3188 static void
3189 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
3190 {
3191 v->samplers_used = 0;
3192
3193 foreach_list(node, &v->instructions) {
3194 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3195
3196 if (is_tex_instruction(inst->op)) {
3197 v->samplers_used |= 1 << inst->sampler;
3198
3199 if (inst->tex_shadow) {
3200 prog->ShadowSamplers |= 1 << inst->sampler;
3201 }
3202 }
3203 }
3204
3205 prog->SamplersUsed = v->samplers_used;
3206
3207 if (v->shader_program != NULL)
3208 _mesa_update_shader_textures_used(v->shader_program, prog);
3209 }
3210
3211 static void
3212 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
3213 struct gl_shader_program *shader_program,
3214 const char *name, const glsl_type *type,
3215 ir_constant *val)
3216 {
3217 if (type->is_record()) {
3218 ir_constant *field_constant;
3219
3220 field_constant = (ir_constant *)val->components.get_head();
3221
3222 for (unsigned int i = 0; i < type->length; i++) {
3223 const glsl_type *field_type = type->fields.structure[i].type;
3224 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
3225 type->fields.structure[i].name);
3226 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
3227 field_type, field_constant);
3228 field_constant = (ir_constant *)field_constant->next;
3229 }
3230 return;
3231 }
3232
3233 unsigned offset;
3234 unsigned index = _mesa_get_uniform_location(ctx, shader_program, name,
3235 &offset);
3236 if (offset == GL_INVALID_INDEX) {
3237 fail_link(shader_program,
3238 "Couldn't find uniform for initializer %s\n", name);
3239 return;
3240 }
3241 int loc = _mesa_uniform_merge_location_offset(shader_program, index, offset);
3242
3243 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
3244 ir_constant *element;
3245 const glsl_type *element_type;
3246 if (type->is_array()) {
3247 element = val->array_elements[i];
3248 element_type = type->fields.array;
3249 } else {
3250 element = val;
3251 element_type = type;
3252 }
3253
3254 void *values;
3255
3256 if (element_type->base_type == GLSL_TYPE_BOOL) {
3257 int *conv = ralloc_array(mem_ctx, int, element_type->components());
3258 for (unsigned int j = 0; j < element_type->components(); j++) {
3259 conv[j] = element->value.b[j];
3260 }
3261 values = (void *)conv;
3262 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
3263 element_type->vector_elements,
3264 1);
3265 } else {
3266 values = &element->value;
3267 }
3268
3269 if (element_type->is_matrix()) {
3270 _mesa_uniform_matrix(ctx, shader_program,
3271 element_type->matrix_columns,
3272 element_type->vector_elements,
3273 loc, 1, GL_FALSE, (GLfloat *)values);
3274 } else {
3275 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
3276 values, element_type->gl_type);
3277 }
3278
3279 loc++;
3280 }
3281 }
3282
3283 /**
3284 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3285 * are read from the given src in this instruction
3286 */
3287 static int
3288 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3289 {
3290 int read_mask = 0, comp;
3291
3292 /* Now, given the src swizzle and the written channels, find which
3293 * components are actually read
3294 */
3295 for (comp = 0; comp < 4; ++comp) {
3296 const unsigned coord = GET_SWZ(src.swizzle, comp);
3297 ASSERT(coord < 4);
3298 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3299 read_mask |= 1 << coord;
3300 }
3301
3302 return read_mask;
3303 }
3304
3305 /**
3306 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3307 * instruction is the first instruction to write to register T0. There are
3308 * several lowering passes done in GLSL IR (e.g. branches and
3309 * relative addressing) that create a large number of conditional assignments
3310 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3311 *
3312 * Here is why this conversion is safe:
3313 * CMP T0, T1 T2 T0 can be expanded to:
3314 * if (T1 < 0.0)
3315 * MOV T0, T2;
3316 * else
3317 * MOV T0, T0;
3318 *
3319 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3320 * as the original program. If (T1 < 0.0) evaluates to false, executing
3321 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3322 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3323 * because any instruction that was going to read from T0 after this was going
3324 * to read a garbage value anyway.
3325 */
3326 void
3327 glsl_to_tgsi_visitor::simplify_cmp(void)
3328 {
3329 unsigned *tempWrites;
3330 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3331
3332 tempWrites = new unsigned[MAX_TEMPS];
3333 if (!tempWrites) {
3334 return;
3335 }
3336 memset(tempWrites, 0, sizeof(unsigned) * MAX_TEMPS);
3337 memset(outputWrites, 0, sizeof(outputWrites));
3338
3339 foreach_list(node, &this->instructions) {
3340 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3341 unsigned prevWriteMask = 0;
3342
3343 /* Give up if we encounter relative addressing or flow control. */
3344 if (inst->dst.reladdr ||
3345 tgsi_get_opcode_info(inst->op)->is_branch ||
3346 inst->op == TGSI_OPCODE_BGNSUB ||
3347 inst->op == TGSI_OPCODE_CONT ||
3348 inst->op == TGSI_OPCODE_END ||
3349 inst->op == TGSI_OPCODE_ENDSUB ||
3350 inst->op == TGSI_OPCODE_RET) {
3351 break;
3352 }
3353
3354 if (inst->dst.file == PROGRAM_OUTPUT) {
3355 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3356 prevWriteMask = outputWrites[inst->dst.index];
3357 outputWrites[inst->dst.index] |= inst->dst.writemask;
3358 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3359 assert(inst->dst.index < MAX_TEMPS);
3360 prevWriteMask = tempWrites[inst->dst.index];
3361 tempWrites[inst->dst.index] |= inst->dst.writemask;
3362 } else
3363 continue;
3364
3365 /* For a CMP to be considered a conditional write, the destination
3366 * register and source register two must be the same. */
3367 if (inst->op == TGSI_OPCODE_CMP
3368 && !(inst->dst.writemask & prevWriteMask)
3369 && inst->src[2].file == inst->dst.file
3370 && inst->src[2].index == inst->dst.index
3371 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3372
3373 inst->op = TGSI_OPCODE_MOV;
3374 inst->src[0] = inst->src[1];
3375 }
3376 }
3377
3378 delete [] tempWrites;
3379 }
3380
3381 /* Replaces all references to a temporary register index with another index. */
3382 void
3383 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3384 {
3385 foreach_list(node, &this->instructions) {
3386 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3387 unsigned j;
3388
3389 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3390 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3391 inst->src[j].index == index) {
3392 inst->src[j].index = new_index;
3393 }
3394 }
3395
3396 for (j=0; j < inst->tex_offset_num_offset; j++) {
3397 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3398 inst->tex_offsets[j].index == index) {
3399 inst->tex_offsets[j].index = new_index;
3400 }
3401 }
3402
3403 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3404 inst->dst.index = new_index;
3405 }
3406 }
3407 }
3408
3409 int
3410 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3411 {
3412 int depth = 0; /* loop depth */
3413 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3414 unsigned i = 0, j;
3415
3416 foreach_list(node, &this->instructions) {
3417 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3418
3419 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3420 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3421 inst->src[j].index == index) {
3422 return (depth == 0) ? i : loop_start;
3423 }
3424 }
3425 for (j=0; j < inst->tex_offset_num_offset; j++) {
3426 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3427 inst->tex_offsets[j].index == index) {
3428 return (depth == 0) ? i : loop_start;
3429 }
3430 }
3431
3432 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3433 if(depth++ == 0)
3434 loop_start = i;
3435 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3436 if (--depth == 0)
3437 loop_start = -1;
3438 }
3439 assert(depth >= 0);
3440
3441 i++;
3442 }
3443
3444 return -1;
3445 }
3446
3447 int
3448 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3449 {
3450 int depth = 0; /* loop depth */
3451 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3452 int i = 0;
3453
3454 foreach_list(node, &this->instructions) {
3455 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3456
3457 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3458 return (depth == 0) ? i : loop_start;
3459 }
3460
3461 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3462 if(depth++ == 0)
3463 loop_start = i;
3464 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3465 if (--depth == 0)
3466 loop_start = -1;
3467 }
3468 assert(depth >= 0);
3469
3470 i++;
3471 }
3472
3473 return -1;
3474 }
3475
3476 int
3477 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3478 {
3479 int depth = 0; /* loop depth */
3480 int last = -1; /* index of last instruction that reads the temporary */
3481 unsigned i = 0, j;
3482
3483 foreach_list(node, &this->instructions) {
3484 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3485
3486 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3487 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3488 inst->src[j].index == index) {
3489 last = (depth == 0) ? i : -2;
3490 }
3491 }
3492 for (j=0; j < inst->tex_offset_num_offset; j++) {
3493 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3494 inst->tex_offsets[j].index == index)
3495 last = (depth == 0) ? i : -2;
3496 }
3497
3498 if (inst->op == TGSI_OPCODE_BGNLOOP)
3499 depth++;
3500 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3501 if (--depth == 0 && last == -2)
3502 last = i;
3503 assert(depth >= 0);
3504
3505 i++;
3506 }
3507
3508 assert(last >= -1);
3509 return last;
3510 }
3511
3512 int
3513 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3514 {
3515 int depth = 0; /* loop depth */
3516 int last = -1; /* index of last instruction that writes to the temporary */
3517 int i = 0;
3518
3519 foreach_list(node, &this->instructions) {
3520 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3521
3522 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3523 last = (depth == 0) ? i : -2;
3524
3525 if (inst->op == TGSI_OPCODE_BGNLOOP)
3526 depth++;
3527 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3528 if (--depth == 0 && last == -2)
3529 last = i;
3530 assert(depth >= 0);
3531
3532 i++;
3533 }
3534
3535 assert(last >= -1);
3536 return last;
3537 }
3538
3539 /*
3540 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3541 * channels for copy propagation and updates following instructions to
3542 * use the original versions.
3543 *
3544 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3545 * will occur. As an example, a TXP production before this pass:
3546 *
3547 * 0: MOV TEMP[1], INPUT[4].xyyy;
3548 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3549 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3550 *
3551 * and after:
3552 *
3553 * 0: MOV TEMP[1], INPUT[4].xyyy;
3554 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3555 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3556 *
3557 * which allows for dead code elimination on TEMP[1]'s writes.
3558 */
3559 void
3560 glsl_to_tgsi_visitor::copy_propagate(void)
3561 {
3562 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3563 glsl_to_tgsi_instruction *,
3564 this->next_temp * 4);
3565 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3566 int level = 0;
3567
3568 foreach_list(node, &this->instructions) {
3569 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3570
3571 assert(inst->dst.file != PROGRAM_TEMPORARY
3572 || inst->dst.index < this->next_temp);
3573
3574 /* First, do any copy propagation possible into the src regs. */
3575 for (int r = 0; r < 3; r++) {
3576 glsl_to_tgsi_instruction *first = NULL;
3577 bool good = true;
3578 int acp_base = inst->src[r].index * 4;
3579
3580 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3581 inst->src[r].reladdr ||
3582 inst->src[r].reladdr2)
3583 continue;
3584
3585 /* See if we can find entries in the ACP consisting of MOVs
3586 * from the same src register for all the swizzled channels
3587 * of this src register reference.
3588 */
3589 for (int i = 0; i < 4; i++) {
3590 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3591 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3592
3593 if (!copy_chan) {
3594 good = false;
3595 break;
3596 }
3597
3598 assert(acp_level[acp_base + src_chan] <= level);
3599
3600 if (!first) {
3601 first = copy_chan;
3602 } else {
3603 if (first->src[0].file != copy_chan->src[0].file ||
3604 first->src[0].index != copy_chan->src[0].index) {
3605 good = false;
3606 break;
3607 }
3608 }
3609 }
3610
3611 if (good) {
3612 /* We've now validated that we can copy-propagate to
3613 * replace this src register reference. Do it.
3614 */
3615 inst->src[r].file = first->src[0].file;
3616 inst->src[r].index = first->src[0].index;
3617 inst->src[r].index2D = first->src[0].index2D;
3618 inst->src[r].has_index2 = first->src[0].has_index2;
3619
3620 int swizzle = 0;
3621 for (int i = 0; i < 4; i++) {
3622 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3623 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3624 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3625 (3 * i));
3626 }
3627 inst->src[r].swizzle = swizzle;
3628 }
3629 }
3630
3631 switch (inst->op) {
3632 case TGSI_OPCODE_BGNLOOP:
3633 case TGSI_OPCODE_ENDLOOP:
3634 /* End of a basic block, clear the ACP entirely. */
3635 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3636 break;
3637
3638 case TGSI_OPCODE_IF:
3639 case TGSI_OPCODE_UIF:
3640 ++level;
3641 break;
3642
3643 case TGSI_OPCODE_ENDIF:
3644 case TGSI_OPCODE_ELSE:
3645 /* Clear all channels written inside the block from the ACP, but
3646 * leaving those that were not touched.
3647 */
3648 for (int r = 0; r < this->next_temp; r++) {
3649 for (int c = 0; c < 4; c++) {
3650 if (!acp[4 * r + c])
3651 continue;
3652
3653 if (acp_level[4 * r + c] >= level)
3654 acp[4 * r + c] = NULL;
3655 }
3656 }
3657 if (inst->op == TGSI_OPCODE_ENDIF)
3658 --level;
3659 break;
3660
3661 default:
3662 /* Continuing the block, clear any written channels from
3663 * the ACP.
3664 */
3665 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3666 /* Any temporary might be written, so no copy propagation
3667 * across this instruction.
3668 */
3669 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3670 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3671 inst->dst.reladdr) {
3672 /* Any output might be written, so no copy propagation
3673 * from outputs across this instruction.
3674 */
3675 for (int r = 0; r < this->next_temp; r++) {
3676 for (int c = 0; c < 4; c++) {
3677 if (!acp[4 * r + c])
3678 continue;
3679
3680 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3681 acp[4 * r + c] = NULL;
3682 }
3683 }
3684 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3685 inst->dst.file == PROGRAM_OUTPUT) {
3686 /* Clear where it's used as dst. */
3687 if (inst->dst.file == PROGRAM_TEMPORARY) {
3688 for (int c = 0; c < 4; c++) {
3689 if (inst->dst.writemask & (1 << c)) {
3690 acp[4 * inst->dst.index + c] = NULL;
3691 }
3692 }
3693 }
3694
3695 /* Clear where it's used as src. */
3696 for (int r = 0; r < this->next_temp; r++) {
3697 for (int c = 0; c < 4; c++) {
3698 if (!acp[4 * r + c])
3699 continue;
3700
3701 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3702
3703 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3704 acp[4 * r + c]->src[0].index == inst->dst.index &&
3705 inst->dst.writemask & (1 << src_chan))
3706 {
3707 acp[4 * r + c] = NULL;
3708 }
3709 }
3710 }
3711 }
3712 break;
3713 }
3714
3715 /* If this is a copy, add it to the ACP. */
3716 if (inst->op == TGSI_OPCODE_MOV &&
3717 inst->dst.file == PROGRAM_TEMPORARY &&
3718 !(inst->dst.file == inst->src[0].file &&
3719 inst->dst.index == inst->src[0].index) &&
3720 !inst->dst.reladdr &&
3721 !inst->saturate &&
3722 !inst->src[0].reladdr &&
3723 !inst->src[0].reladdr2 &&
3724 !inst->src[0].negate) {
3725 for (int i = 0; i < 4; i++) {
3726 if (inst->dst.writemask & (1 << i)) {
3727 acp[4 * inst->dst.index + i] = inst;
3728 acp_level[4 * inst->dst.index + i] = level;
3729 }
3730 }
3731 }
3732 }
3733
3734 ralloc_free(acp_level);
3735 ralloc_free(acp);
3736 }
3737
3738 /*
3739 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3740 * code elimination.
3741 *
3742 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3743 * will occur. As an example, a TXP production after copy propagation but
3744 * before this pass:
3745 *
3746 * 0: MOV TEMP[1], INPUT[4].xyyy;
3747 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3748 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3749 *
3750 * and after this pass:
3751 *
3752 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3753 */
3754 int
3755 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3756 {
3757 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3758 glsl_to_tgsi_instruction *,
3759 this->next_temp * 4);
3760 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3761 int level = 0;
3762 int removed = 0;
3763
3764 foreach_list(node, &this->instructions) {
3765 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3766
3767 assert(inst->dst.file != PROGRAM_TEMPORARY
3768 || inst->dst.index < this->next_temp);
3769
3770 switch (inst->op) {
3771 case TGSI_OPCODE_BGNLOOP:
3772 case TGSI_OPCODE_ENDLOOP:
3773 case TGSI_OPCODE_CONT:
3774 case TGSI_OPCODE_BRK:
3775 /* End of a basic block, clear the write array entirely.
3776 *
3777 * This keeps us from killing dead code when the writes are
3778 * on either side of a loop, even when the register isn't touched
3779 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
3780 * dead code of this type, so it shouldn't make a difference as long as
3781 * the dead code elimination pass in the GLSL compiler does its job.
3782 */
3783 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3784 break;
3785
3786 case TGSI_OPCODE_ENDIF:
3787 case TGSI_OPCODE_ELSE:
3788 /* Promote the recorded level of all channels written inside the
3789 * preceding if or else block to the level above the if/else block.
3790 */
3791 for (int r = 0; r < this->next_temp; r++) {
3792 for (int c = 0; c < 4; c++) {
3793 if (!writes[4 * r + c])
3794 continue;
3795
3796 if (write_level[4 * r + c] == level)
3797 write_level[4 * r + c] = level-1;
3798 }
3799 }
3800
3801 if(inst->op == TGSI_OPCODE_ENDIF)
3802 --level;
3803
3804 break;
3805
3806 case TGSI_OPCODE_IF:
3807 case TGSI_OPCODE_UIF:
3808 ++level;
3809 /* fallthrough to default case to mark the condition as read */
3810
3811 default:
3812 /* Continuing the block, clear any channels from the write array that
3813 * are read by this instruction.
3814 */
3815 for (unsigned i = 0; i < Elements(inst->src); i++) {
3816 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3817 /* Any temporary might be read, so no dead code elimination
3818 * across this instruction.
3819 */
3820 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3821 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3822 /* Clear where it's used as src. */
3823 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3824 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3825 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3826 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3827
3828 for (int c = 0; c < 4; c++) {
3829 if (src_chans & (1 << c)) {
3830 writes[4 * inst->src[i].index + c] = NULL;
3831 }
3832 }
3833 }
3834 }
3835 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
3836 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
3837 /* Any temporary might be read, so no dead code elimination
3838 * across this instruction.
3839 */
3840 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3841 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
3842 /* Clear where it's used as src. */
3843 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
3844 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
3845 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
3846 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
3847
3848 for (int c = 0; c < 4; c++) {
3849 if (src_chans & (1 << c)) {
3850 writes[4 * inst->tex_offsets[i].index + c] = NULL;
3851 }
3852 }
3853 }
3854 }
3855 break;
3856 }
3857
3858 /* If this instruction writes to a temporary, add it to the write array.
3859 * If there is already an instruction in the write array for one or more
3860 * of the channels, flag that channel write as dead.
3861 */
3862 if (inst->dst.file == PROGRAM_TEMPORARY &&
3863 !inst->dst.reladdr &&
3864 !inst->saturate) {
3865 for (int c = 0; c < 4; c++) {
3866 if (inst->dst.writemask & (1 << c)) {
3867 if (writes[4 * inst->dst.index + c]) {
3868 if (write_level[4 * inst->dst.index + c] < level)
3869 continue;
3870 else
3871 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3872 }
3873 writes[4 * inst->dst.index + c] = inst;
3874 write_level[4 * inst->dst.index + c] = level;
3875 }
3876 }
3877 }
3878 }
3879
3880 /* Anything still in the write array at this point is dead code. */
3881 for (int r = 0; r < this->next_temp; r++) {
3882 for (int c = 0; c < 4; c++) {
3883 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3884 if (inst)
3885 inst->dead_mask |= (1 << c);
3886 }
3887 }
3888
3889 /* Now actually remove the instructions that are completely dead and update
3890 * the writemask of other instructions with dead channels.
3891 */
3892 foreach_list_safe(node, &this->instructions) {
3893 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3894
3895 if (!inst->dead_mask || !inst->dst.writemask)
3896 continue;
3897 else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3898 inst->remove();
3899 delete inst;
3900 removed++;
3901 } else
3902 inst->dst.writemask &= ~(inst->dead_mask);
3903 }
3904
3905 ralloc_free(write_level);
3906 ralloc_free(writes);
3907
3908 return removed;
3909 }
3910
3911 /* Merges temporary registers together where possible to reduce the number of
3912 * registers needed to run a program.
3913 *
3914 * Produces optimal code only after copy propagation and dead code elimination
3915 * have been run. */
3916 void
3917 glsl_to_tgsi_visitor::merge_registers(void)
3918 {
3919 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3920 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3921 int i, j;
3922
3923 /* Read the indices of the last read and first write to each temp register
3924 * into an array so that we don't have to traverse the instruction list as
3925 * much. */
3926 for (i=0; i < this->next_temp; i++) {
3927 last_reads[i] = get_last_temp_read(i);
3928 first_writes[i] = get_first_temp_write(i);
3929 }
3930
3931 /* Start looking for registers with non-overlapping usages that can be
3932 * merged together. */
3933 for (i=0; i < this->next_temp; i++) {
3934 /* Don't touch unused registers. */
3935 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3936
3937 for (j=0; j < this->next_temp; j++) {
3938 /* Don't touch unused registers. */
3939 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3940
3941 /* We can merge the two registers if the first write to j is after or
3942 * in the same instruction as the last read from i. Note that the
3943 * register at index i will always be used earlier or at the same time
3944 * as the register at index j. */
3945 if (first_writes[i] <= first_writes[j] &&
3946 last_reads[i] <= first_writes[j])
3947 {
3948 rename_temp_register(j, i); /* Replace all references to j with i.*/
3949
3950 /* Update the first_writes and last_reads arrays with the new
3951 * values for the merged register index, and mark the newly unused
3952 * register index as such. */
3953 last_reads[i] = last_reads[j];
3954 first_writes[j] = -1;
3955 last_reads[j] = -1;
3956 }
3957 }
3958 }
3959
3960 ralloc_free(last_reads);
3961 ralloc_free(first_writes);
3962 }
3963
3964 /* Reassign indices to temporary registers by reusing unused indices created
3965 * by optimization passes. */
3966 void
3967 glsl_to_tgsi_visitor::renumber_registers(void)
3968 {
3969 int i = 0;
3970 int new_index = 0;
3971
3972 for (i=0; i < this->next_temp; i++) {
3973 if (get_first_temp_read(i) < 0) continue;
3974 if (i != new_index)
3975 rename_temp_register(i, new_index);
3976 new_index++;
3977 }
3978
3979 this->next_temp = new_index;
3980 }
3981
3982 /**
3983 * Returns a fragment program which implements the current pixel transfer ops.
3984 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3985 */
3986 extern "C" void
3987 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3988 glsl_to_tgsi_visitor *original,
3989 int scale_and_bias, int pixel_maps)
3990 {
3991 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3992 struct st_context *st = st_context(original->ctx);
3993 struct gl_program *prog = &fp->Base.Base;
3994 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3995 st_src_reg coord, src0;
3996 st_dst_reg dst0;
3997 glsl_to_tgsi_instruction *inst;
3998
3999 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
4000 v->ctx = original->ctx;
4001 v->prog = prog;
4002 v->shader_program = NULL;
4003 v->shader = NULL;
4004 v->glsl_version = original->glsl_version;
4005 v->native_integers = original->native_integers;
4006 v->options = original->options;
4007 v->next_temp = original->next_temp;
4008 v->num_address_regs = original->num_address_regs;
4009 v->samplers_used = prog->SamplersUsed = original->samplers_used;
4010 v->indirect_addr_consts = original->indirect_addr_consts;
4011 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
4012 v->num_immediates = original->num_immediates;
4013
4014 /*
4015 * Get initial pixel color from the texture.
4016 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
4017 */
4018 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
4019 src0 = v->get_temp(glsl_type::vec4_type);
4020 dst0 = st_dst_reg(src0);
4021 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
4022 inst->sampler = 0;
4023 inst->tex_target = TEXTURE_2D_INDEX;
4024
4025 prog->InputsRead |= VARYING_BIT_TEX0;
4026 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
4027 v->samplers_used |= (1 << 0);
4028
4029 if (scale_and_bias) {
4030 static const gl_state_index scale_state[STATE_LENGTH] =
4031 { STATE_INTERNAL, STATE_PT_SCALE,
4032 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
4033 static const gl_state_index bias_state[STATE_LENGTH] =
4034 { STATE_INTERNAL, STATE_PT_BIAS,
4035 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
4036 GLint scale_p, bias_p;
4037 st_src_reg scale, bias;
4038
4039 scale_p = _mesa_add_state_reference(params, scale_state);
4040 bias_p = _mesa_add_state_reference(params, bias_state);
4041
4042 /* MAD colorTemp, colorTemp, scale, bias; */
4043 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
4044 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
4045 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
4046 }
4047
4048 if (pixel_maps) {
4049 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
4050 st_dst_reg temp_dst = st_dst_reg(temp);
4051
4052 assert(st->pixel_xfer.pixelmap_texture);
4053
4054 /* With a little effort, we can do four pixel map look-ups with
4055 * two TEX instructions:
4056 */
4057
4058 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
4059 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
4060 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
4061 inst->sampler = 1;
4062 inst->tex_target = TEXTURE_2D_INDEX;
4063
4064 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
4065 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
4066 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
4067 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
4068 inst->sampler = 1;
4069 inst->tex_target = TEXTURE_2D_INDEX;
4070
4071 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
4072 v->samplers_used |= (1 << 1);
4073
4074 /* MOV colorTemp, temp; */
4075 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
4076 }
4077
4078 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4079 * new visitor. */
4080 foreach_list(node, &original->instructions) {
4081 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
4082 glsl_to_tgsi_instruction *newinst;
4083 st_src_reg src_regs[3];
4084
4085 if (inst->dst.file == PROGRAM_OUTPUT)
4086 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4087
4088 for (int i=0; i<3; i++) {
4089 src_regs[i] = inst->src[i];
4090 if (src_regs[i].file == PROGRAM_INPUT &&
4091 src_regs[i].index == VARYING_SLOT_COL0)
4092 {
4093 src_regs[i].file = PROGRAM_TEMPORARY;
4094 src_regs[i].index = src0.index;
4095 }
4096 else if (src_regs[i].file == PROGRAM_INPUT)
4097 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
4098 }
4099
4100 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4101 newinst->tex_target = inst->tex_target;
4102 }
4103
4104 /* Make modifications to fragment program info. */
4105 prog->Parameters = _mesa_combine_parameter_lists(params,
4106 original->prog->Parameters);
4107 _mesa_free_parameter_list(params);
4108 count_resources(v, prog);
4109 fp->glsl_to_tgsi = v;
4110 }
4111
4112 /**
4113 * Make fragment program for glBitmap:
4114 * Sample the texture and kill the fragment if the bit is 0.
4115 * This program will be combined with the user's fragment program.
4116 *
4117 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
4118 */
4119 extern "C" void
4120 get_bitmap_visitor(struct st_fragment_program *fp,
4121 glsl_to_tgsi_visitor *original, int samplerIndex)
4122 {
4123 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
4124 struct st_context *st = st_context(original->ctx);
4125 struct gl_program *prog = &fp->Base.Base;
4126 st_src_reg coord, src0;
4127 st_dst_reg dst0;
4128 glsl_to_tgsi_instruction *inst;
4129
4130 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
4131 v->ctx = original->ctx;
4132 v->prog = prog;
4133 v->shader_program = NULL;
4134 v->shader = NULL;
4135 v->glsl_version = original->glsl_version;
4136 v->native_integers = original->native_integers;
4137 v->options = original->options;
4138 v->next_temp = original->next_temp;
4139 v->num_address_regs = original->num_address_regs;
4140 v->samplers_used = prog->SamplersUsed = original->samplers_used;
4141 v->indirect_addr_consts = original->indirect_addr_consts;
4142 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
4143 v->num_immediates = original->num_immediates;
4144
4145 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
4146 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
4147 src0 = v->get_temp(glsl_type::vec4_type);
4148 dst0 = st_dst_reg(src0);
4149 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
4150 inst->sampler = samplerIndex;
4151 inst->tex_target = TEXTURE_2D_INDEX;
4152
4153 prog->InputsRead |= VARYING_BIT_TEX0;
4154 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
4155 v->samplers_used |= (1 << samplerIndex);
4156
4157 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
4158 src0.negate = NEGATE_XYZW;
4159 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
4160 src0.swizzle = SWIZZLE_XXXX;
4161 inst = v->emit(NULL, TGSI_OPCODE_KILL_IF, undef_dst, src0);
4162
4163 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4164 * new visitor. */
4165 foreach_list(node, &original->instructions) {
4166 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
4167 glsl_to_tgsi_instruction *newinst;
4168 st_src_reg src_regs[3];
4169
4170 if (inst->dst.file == PROGRAM_OUTPUT)
4171 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4172
4173 for (int i=0; i<3; i++) {
4174 src_regs[i] = inst->src[i];
4175 if (src_regs[i].file == PROGRAM_INPUT)
4176 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
4177 }
4178
4179 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4180 newinst->tex_target = inst->tex_target;
4181 }
4182
4183 /* Make modifications to fragment program info. */
4184 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
4185 count_resources(v, prog);
4186 fp->glsl_to_tgsi = v;
4187 }
4188
4189 /* ------------------------- TGSI conversion stuff -------------------------- */
4190 struct label {
4191 unsigned branch_target;
4192 unsigned token;
4193 };
4194
4195 /**
4196 * Intermediate state used during shader translation.
4197 */
4198 struct st_translate {
4199 struct ureg_program *ureg;
4200
4201 struct ureg_dst temps[MAX_TEMPS];
4202 struct ureg_dst arrays[MAX_ARRAYS];
4203 struct ureg_src *constants;
4204 struct ureg_src *immediates;
4205 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4206 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4207 struct ureg_dst address[2];
4208 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4209 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4210 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
4211 unsigned array_sizes[MAX_ARRAYS];
4212
4213 const GLuint *inputMapping;
4214 const GLuint *outputMapping;
4215
4216 /* For every instruction that contains a label (eg CALL), keep
4217 * details so that we can go back afterwards and emit the correct
4218 * tgsi instruction number for each label.
4219 */
4220 struct label *labels;
4221 unsigned labels_size;
4222 unsigned labels_count;
4223
4224 /* Keep a record of the tgsi instruction number that each mesa
4225 * instruction starts at, will be used to fix up labels after
4226 * translation.
4227 */
4228 unsigned *insn;
4229 unsigned insn_size;
4230 unsigned insn_count;
4231
4232 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4233
4234 boolean error;
4235 };
4236
4237 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4238 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4239 TGSI_SEMANTIC_FACE,
4240 TGSI_SEMANTIC_VERTEXID,
4241 TGSI_SEMANTIC_INSTANCEID,
4242 TGSI_SEMANTIC_SAMPLEID,
4243 TGSI_SEMANTIC_SAMPLEPOS,
4244 TGSI_SEMANTIC_SAMPLEMASK,
4245 TGSI_SEMANTIC_INVOCATIONID,
4246 };
4247
4248 /**
4249 * Make note of a branch to a label in the TGSI code.
4250 * After we've emitted all instructions, we'll go over the list
4251 * of labels built here and patch the TGSI code with the actual
4252 * location of each label.
4253 */
4254 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4255 {
4256 unsigned i;
4257
4258 if (t->labels_count + 1 >= t->labels_size) {
4259 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4260 t->labels = (struct label *)realloc(t->labels,
4261 t->labels_size * sizeof(struct label));
4262 if (t->labels == NULL) {
4263 static unsigned dummy;
4264 t->error = TRUE;
4265 return &dummy;
4266 }
4267 }
4268
4269 i = t->labels_count++;
4270 t->labels[i].branch_target = branch_target;
4271 return &t->labels[i].token;
4272 }
4273
4274 /**
4275 * Called prior to emitting the TGSI code for each instruction.
4276 * Allocate additional space for instructions if needed.
4277 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4278 * the next TGSI instruction.
4279 */
4280 static void set_insn_start(struct st_translate *t, unsigned start)
4281 {
4282 if (t->insn_count + 1 >= t->insn_size) {
4283 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4284 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4285 if (t->insn == NULL) {
4286 t->error = TRUE;
4287 return;
4288 }
4289 }
4290
4291 t->insn[t->insn_count++] = start;
4292 }
4293
4294 /**
4295 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4296 */
4297 static struct ureg_src
4298 emit_immediate(struct st_translate *t,
4299 gl_constant_value values[4],
4300 int type, int size)
4301 {
4302 struct ureg_program *ureg = t->ureg;
4303
4304 switch(type)
4305 {
4306 case GL_FLOAT:
4307 return ureg_DECL_immediate(ureg, &values[0].f, size);
4308 case GL_INT:
4309 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4310 case GL_UNSIGNED_INT:
4311 case GL_BOOL:
4312 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4313 default:
4314 assert(!"should not get here - type must be float, int, uint, or bool");
4315 return ureg_src_undef();
4316 }
4317 }
4318
4319 /**
4320 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4321 */
4322 static struct ureg_dst
4323 dst_register(struct st_translate *t,
4324 gl_register_file file,
4325 GLuint index)
4326 {
4327 unsigned array;
4328
4329 switch(file) {
4330 case PROGRAM_UNDEFINED:
4331 return ureg_dst_undef();
4332
4333 case PROGRAM_TEMPORARY:
4334 assert(index >= 0);
4335 assert(index < (int) Elements(t->temps));
4336
4337 if (ureg_dst_is_undef(t->temps[index]))
4338 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4339
4340 return t->temps[index];
4341
4342 case PROGRAM_ARRAY:
4343 array = index >> 16;
4344
4345 assert(array >= 0);
4346 assert(array < (int) Elements(t->arrays));
4347
4348 if (ureg_dst_is_undef(t->arrays[array]))
4349 t->arrays[array] = ureg_DECL_array_temporary(
4350 t->ureg, t->array_sizes[array], TRUE);
4351
4352 return ureg_dst_array_offset(t->arrays[array],
4353 (int)(index & 0xFFFF) - 0x8000);
4354
4355 case PROGRAM_OUTPUT:
4356 if (t->procType == TGSI_PROCESSOR_VERTEX)
4357 assert(index < VARYING_SLOT_MAX);
4358 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4359 assert(index < FRAG_RESULT_MAX);
4360 else
4361 assert(index < VARYING_SLOT_MAX);
4362
4363 assert(t->outputMapping[index] < Elements(t->outputs));
4364
4365 return t->outputs[t->outputMapping[index]];
4366
4367 case PROGRAM_ADDRESS:
4368 return t->address[index];
4369
4370 default:
4371 assert(!"unknown dst register file");
4372 return ureg_dst_undef();
4373 }
4374 }
4375
4376 /**
4377 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4378 */
4379 static struct ureg_src
4380 src_register(struct st_translate *t,
4381 gl_register_file file,
4382 GLint index, GLint index2D)
4383 {
4384 switch(file) {
4385 case PROGRAM_UNDEFINED:
4386 return ureg_src_undef();
4387
4388 case PROGRAM_TEMPORARY:
4389 case PROGRAM_ARRAY:
4390 return ureg_src(dst_register(t, file, index));
4391
4392 case PROGRAM_UNIFORM:
4393 assert(index >= 0);
4394 return t->constants[index];
4395 case PROGRAM_STATE_VAR:
4396 case PROGRAM_CONSTANT: /* ie, immediate */
4397 if (index2D) {
4398 struct ureg_src src;
4399 src = ureg_src_register(TGSI_FILE_CONSTANT, 0);
4400 src.Dimension = 1;
4401 src.DimensionIndex = index2D;
4402 return src;
4403 } else if (index < 0)
4404 return ureg_DECL_constant(t->ureg, 0);
4405 else
4406 return t->constants[index];
4407
4408 case PROGRAM_IMMEDIATE:
4409 return t->immediates[index];
4410
4411 case PROGRAM_INPUT:
4412 assert(t->inputMapping[index] < Elements(t->inputs));
4413 return t->inputs[t->inputMapping[index]];
4414
4415 case PROGRAM_OUTPUT:
4416 assert(t->outputMapping[index] < Elements(t->outputs));
4417 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4418
4419 case PROGRAM_ADDRESS:
4420 return ureg_src(t->address[index]);
4421
4422 case PROGRAM_SYSTEM_VALUE:
4423 assert(index < (int) Elements(t->systemValues));
4424 return t->systemValues[index];
4425
4426 default:
4427 assert(!"unknown src register file");
4428 return ureg_src_undef();
4429 }
4430 }
4431
4432 /**
4433 * Create a TGSI ureg_dst register from an st_dst_reg.
4434 */
4435 static struct ureg_dst
4436 translate_dst(struct st_translate *t,
4437 const st_dst_reg *dst_reg,
4438 bool saturate, bool clamp_color)
4439 {
4440 struct ureg_dst dst = dst_register(t,
4441 dst_reg->file,
4442 dst_reg->index);
4443
4444 dst = ureg_writemask(dst, dst_reg->writemask);
4445
4446 if (saturate)
4447 dst = ureg_saturate(dst);
4448 else if (clamp_color && dst_reg->file == PROGRAM_OUTPUT) {
4449 /* Clamp colors for ARB_color_buffer_float. */
4450 switch (t->procType) {
4451 case TGSI_PROCESSOR_VERTEX:
4452 /* XXX if the geometry shader is present, this must be done there
4453 * instead of here. */
4454 if (dst_reg->index == VARYING_SLOT_COL0 ||
4455 dst_reg->index == VARYING_SLOT_COL1 ||
4456 dst_reg->index == VARYING_SLOT_BFC0 ||
4457 dst_reg->index == VARYING_SLOT_BFC1) {
4458 dst = ureg_saturate(dst);
4459 }
4460 break;
4461
4462 case TGSI_PROCESSOR_FRAGMENT:
4463 if (dst_reg->index == FRAG_RESULT_COLOR ||
4464 dst_reg->index >= FRAG_RESULT_DATA0) {
4465 dst = ureg_saturate(dst);
4466 }
4467 break;
4468 }
4469 }
4470
4471 if (dst_reg->reladdr != NULL) {
4472 assert(dst_reg->file != PROGRAM_TEMPORARY);
4473 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4474 }
4475
4476 return dst;
4477 }
4478
4479 /**
4480 * Create a TGSI ureg_src register from an st_src_reg.
4481 */
4482 static struct ureg_src
4483 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4484 {
4485 struct ureg_src src = src_register(t, src_reg->file, src_reg->index, src_reg->index2D);
4486
4487 if (t->procType == TGSI_PROCESSOR_GEOMETRY && src_reg->has_index2) {
4488 src = src_register(t, src_reg->file, src_reg->index, src_reg->index2D);
4489 if (src_reg->reladdr2)
4490 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
4491 src_reg->index2D);
4492 else
4493 src = ureg_src_dimension(src, src_reg->index2D);
4494 }
4495
4496 src = ureg_swizzle(src,
4497 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4498 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4499 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4500 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4501
4502 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4503 src = ureg_negate(src);
4504
4505 if (src_reg->reladdr != NULL) {
4506 assert(src_reg->file != PROGRAM_TEMPORARY);
4507 src = ureg_src_indirect(src, ureg_src(t->address[0]));
4508 }
4509
4510 return src;
4511 }
4512
4513 static struct tgsi_texture_offset
4514 translate_tex_offset(struct st_translate *t,
4515 const st_src_reg *in_offset, int idx)
4516 {
4517 struct tgsi_texture_offset offset;
4518 struct ureg_src imm_src;
4519 struct ureg_dst dst;
4520 int array;
4521
4522 switch (in_offset->file) {
4523 case PROGRAM_IMMEDIATE:
4524 imm_src = t->immediates[in_offset->index];
4525
4526 offset.File = imm_src.File;
4527 offset.Index = imm_src.Index;
4528 offset.SwizzleX = imm_src.SwizzleX;
4529 offset.SwizzleY = imm_src.SwizzleY;
4530 offset.SwizzleZ = imm_src.SwizzleZ;
4531 offset.Padding = 0;
4532 break;
4533 case PROGRAM_TEMPORARY:
4534 imm_src = ureg_src(t->temps[in_offset->index]);
4535 offset.File = imm_src.File;
4536 offset.Index = imm_src.Index;
4537 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4538 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4539 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4540 offset.Padding = 0;
4541 break;
4542 case PROGRAM_ARRAY:
4543 array = in_offset->index >> 16;
4544
4545 assert(array >= 0);
4546 assert(array < (int) Elements(t->arrays));
4547
4548 dst = t->arrays[array];
4549 offset.File = dst.File;
4550 offset.Index = dst.Index + (in_offset->index & 0xFFFF) - 0x8000;
4551 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4552 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4553 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4554 offset.Padding = 0;
4555 break;
4556 default:
4557 break;
4558 }
4559 return offset;
4560 }
4561
4562 static void
4563 compile_tgsi_instruction(struct st_translate *t,
4564 const glsl_to_tgsi_instruction *inst,
4565 bool clamp_dst_color_output)
4566 {
4567 struct ureg_program *ureg = t->ureg;
4568 GLuint i;
4569 struct ureg_dst dst[1];
4570 struct ureg_src src[4];
4571 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4572
4573 unsigned num_dst;
4574 unsigned num_src;
4575 unsigned tex_target;
4576
4577 num_dst = num_inst_dst_regs(inst->op);
4578 num_src = num_inst_src_regs(inst->op);
4579
4580 if (num_dst)
4581 dst[0] = translate_dst(t,
4582 &inst->dst,
4583 inst->saturate,
4584 clamp_dst_color_output);
4585
4586 for (i = 0; i < num_src; i++)
4587 src[i] = translate_src(t, &inst->src[i]);
4588
4589 switch(inst->op) {
4590 case TGSI_OPCODE_BGNLOOP:
4591 case TGSI_OPCODE_CAL:
4592 case TGSI_OPCODE_ELSE:
4593 case TGSI_OPCODE_ENDLOOP:
4594 case TGSI_OPCODE_IF:
4595 case TGSI_OPCODE_UIF:
4596 assert(num_dst == 0);
4597 ureg_label_insn(ureg,
4598 inst->op,
4599 src, num_src,
4600 get_label(t,
4601 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4602 return;
4603
4604 case TGSI_OPCODE_TEX:
4605 case TGSI_OPCODE_TXB:
4606 case TGSI_OPCODE_TXD:
4607 case TGSI_OPCODE_TXL:
4608 case TGSI_OPCODE_TXP:
4609 case TGSI_OPCODE_TXQ:
4610 case TGSI_OPCODE_TXF:
4611 case TGSI_OPCODE_TEX2:
4612 case TGSI_OPCODE_TXB2:
4613 case TGSI_OPCODE_TXL2:
4614 case TGSI_OPCODE_TG4:
4615 case TGSI_OPCODE_LODQ:
4616 src[num_src++] = t->samplers[inst->sampler];
4617 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4618 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i], i);
4619 }
4620 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4621
4622 ureg_tex_insn(ureg,
4623 inst->op,
4624 dst, num_dst,
4625 tex_target,
4626 texoffsets, inst->tex_offset_num_offset,
4627 src, num_src);
4628 return;
4629
4630 case TGSI_OPCODE_SCS:
4631 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4632 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4633 break;
4634
4635 default:
4636 ureg_insn(ureg,
4637 inst->op,
4638 dst, num_dst,
4639 src, num_src);
4640 break;
4641 }
4642 }
4643
4644 /**
4645 * Emit the TGSI instructions for inverting and adjusting WPOS.
4646 * This code is unavoidable because it also depends on whether
4647 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4648 */
4649 static void
4650 emit_wpos_adjustment( struct st_translate *t,
4651 const struct gl_program *program,
4652 boolean invert,
4653 GLfloat adjX, GLfloat adjY[2])
4654 {
4655 struct ureg_program *ureg = t->ureg;
4656
4657 /* Fragment program uses fragment position input.
4658 * Need to replace instances of INPUT[WPOS] with temp T
4659 * where T = INPUT[WPOS] by y is inverted.
4660 */
4661 static const gl_state_index wposTransformState[STATE_LENGTH]
4662 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4663 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4664
4665 /* XXX: note we are modifying the incoming shader here! Need to
4666 * do this before emitting the constant decls below, or this
4667 * will be missed:
4668 */
4669 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4670 wposTransformState);
4671
4672 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4673 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4674 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
4675
4676 /* First, apply the coordinate shift: */
4677 if (adjX || adjY[0] || adjY[1]) {
4678 if (adjY[0] != adjY[1]) {
4679 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4680 * depending on whether inversion is actually going to be applied
4681 * or not, which is determined by testing against the inversion
4682 * state variable used below, which will be either +1 or -1.
4683 */
4684 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4685
4686 ureg_CMP(ureg, adj_temp,
4687 ureg_scalar(wpostrans, invert ? 2 : 0),
4688 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4689 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4690 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4691 } else {
4692 ureg_ADD(ureg, wpos_temp, wpos_input,
4693 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4694 }
4695 wpos_input = ureg_src(wpos_temp);
4696 } else {
4697 /* MOV wpos_temp, input[wpos]
4698 */
4699 ureg_MOV( ureg, wpos_temp, wpos_input );
4700 }
4701
4702 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4703 * inversion/identity, or the other way around if we're drawing to an FBO.
4704 */
4705 if (invert) {
4706 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4707 */
4708 ureg_MAD( ureg,
4709 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4710 wpos_input,
4711 ureg_scalar(wpostrans, 0),
4712 ureg_scalar(wpostrans, 1));
4713 } else {
4714 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4715 */
4716 ureg_MAD( ureg,
4717 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4718 wpos_input,
4719 ureg_scalar(wpostrans, 2),
4720 ureg_scalar(wpostrans, 3));
4721 }
4722
4723 /* Use wpos_temp as position input from here on:
4724 */
4725 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
4726 }
4727
4728
4729 /**
4730 * Emit fragment position/ooordinate code.
4731 */
4732 static void
4733 emit_wpos(struct st_context *st,
4734 struct st_translate *t,
4735 const struct gl_program *program,
4736 struct ureg_program *ureg)
4737 {
4738 const struct gl_fragment_program *fp =
4739 (const struct gl_fragment_program *) program;
4740 struct pipe_screen *pscreen = st->pipe->screen;
4741 GLfloat adjX = 0.0f;
4742 GLfloat adjY[2] = { 0.0f, 0.0f };
4743 boolean invert = FALSE;
4744
4745 /* Query the pixel center conventions supported by the pipe driver and set
4746 * adjX, adjY to help out if it cannot handle the requested one internally.
4747 *
4748 * The bias of the y-coordinate depends on whether y-inversion takes place
4749 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4750 * drawing to an FBO (causes additional inversion), and whether the the pipe
4751 * driver origin and the requested origin differ (the latter condition is
4752 * stored in the 'invert' variable).
4753 *
4754 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4755 *
4756 * center shift only:
4757 * i -> h: +0.5
4758 * h -> i: -0.5
4759 *
4760 * inversion only:
4761 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4762 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4763 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4764 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4765 *
4766 * inversion and center shift:
4767 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4768 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4769 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4770 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4771 */
4772 if (fp->OriginUpperLeft) {
4773 /* Fragment shader wants origin in upper-left */
4774 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4775 /* the driver supports upper-left origin */
4776 }
4777 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4778 /* the driver supports lower-left origin, need to invert Y */
4779 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4780 invert = TRUE;
4781 }
4782 else
4783 assert(0);
4784 }
4785 else {
4786 /* Fragment shader wants origin in lower-left */
4787 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4788 /* the driver supports lower-left origin */
4789 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4790 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4791 /* the driver supports upper-left origin, need to invert Y */
4792 invert = TRUE;
4793 else
4794 assert(0);
4795 }
4796
4797 if (fp->PixelCenterInteger) {
4798 /* Fragment shader wants pixel center integer */
4799 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4800 /* the driver supports pixel center integer */
4801 adjY[1] = 1.0f;
4802 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4803 }
4804 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4805 /* the driver supports pixel center half integer, need to bias X,Y */
4806 adjX = -0.5f;
4807 adjY[0] = -0.5f;
4808 adjY[1] = 0.5f;
4809 }
4810 else
4811 assert(0);
4812 }
4813 else {
4814 /* Fragment shader wants pixel center half integer */
4815 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4816 /* the driver supports pixel center half integer */
4817 }
4818 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4819 /* the driver supports pixel center integer, need to bias X,Y */
4820 adjX = adjY[0] = adjY[1] = 0.5f;
4821 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4822 }
4823 else
4824 assert(0);
4825 }
4826
4827 /* we invert after adjustment so that we avoid the MOV to temporary,
4828 * and reuse the adjustment ADD instead */
4829 emit_wpos_adjustment(t, program, invert, adjX, adjY);
4830 }
4831
4832 /**
4833 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4834 * TGSI uses +1 for front, -1 for back.
4835 * This function converts the TGSI value to the GL value. Simply clamping/
4836 * saturating the value to [0,1] does the job.
4837 */
4838 static void
4839 emit_face_var(struct st_translate *t)
4840 {
4841 struct ureg_program *ureg = t->ureg;
4842 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4843 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
4844
4845 /* MOV_SAT face_temp, input[face] */
4846 face_temp = ureg_saturate(face_temp);
4847 ureg_MOV(ureg, face_temp, face_input);
4848
4849 /* Use face_temp as face input from here on: */
4850 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
4851 }
4852
4853 static void
4854 emit_edgeflags(struct st_translate *t)
4855 {
4856 struct ureg_program *ureg = t->ureg;
4857 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VARYING_SLOT_EDGE]];
4858 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4859
4860 ureg_MOV(ureg, edge_dst, edge_src);
4861 }
4862
4863 /**
4864 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4865 * \param program the program to translate
4866 * \param numInputs number of input registers used
4867 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4868 * input indexes
4869 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4870 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4871 * each input
4872 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4873 * \param numOutputs number of output registers used
4874 * \param outputMapping maps Mesa fragment program outputs to TGSI
4875 * generic outputs
4876 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4877 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4878 * each output
4879 *
4880 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4881 */
4882 extern "C" enum pipe_error
4883 st_translate_program(
4884 struct gl_context *ctx,
4885 uint procType,
4886 struct ureg_program *ureg,
4887 glsl_to_tgsi_visitor *program,
4888 const struct gl_program *proginfo,
4889 GLuint numInputs,
4890 const GLuint inputMapping[],
4891 const ubyte inputSemanticName[],
4892 const ubyte inputSemanticIndex[],
4893 const GLuint interpMode[],
4894 const GLboolean is_centroid[],
4895 GLuint numOutputs,
4896 const GLuint outputMapping[],
4897 const ubyte outputSemanticName[],
4898 const ubyte outputSemanticIndex[],
4899 boolean passthrough_edgeflags,
4900 boolean clamp_color)
4901 {
4902 struct st_translate *t;
4903 unsigned i;
4904 enum pipe_error ret = PIPE_OK;
4905
4906 assert(numInputs <= Elements(t->inputs));
4907 assert(numOutputs <= Elements(t->outputs));
4908
4909 t = CALLOC_STRUCT(st_translate);
4910 if (!t) {
4911 ret = PIPE_ERROR_OUT_OF_MEMORY;
4912 goto out;
4913 }
4914
4915 memset(t, 0, sizeof *t);
4916
4917 t->procType = procType;
4918 t->inputMapping = inputMapping;
4919 t->outputMapping = outputMapping;
4920 t->ureg = ureg;
4921
4922 if (program->shader_program) {
4923 for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4924 struct gl_uniform_storage *const storage =
4925 &program->shader_program->UniformStorage[i];
4926
4927 _mesa_uniform_detach_all_driver_storage(storage);
4928 }
4929 }
4930
4931 /*
4932 * Declare input attributes.
4933 */
4934 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4935 for (i = 0; i < numInputs; i++) {
4936 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
4937 inputSemanticName[i],
4938 inputSemanticIndex[i],
4939 interpMode[i], 0,
4940 is_centroid[i]);
4941 }
4942
4943 if (proginfo->InputsRead & VARYING_BIT_POS) {
4944 /* Must do this after setting up t->inputs, and before
4945 * emitting constant references, below:
4946 */
4947 emit_wpos(st_context(ctx), t, proginfo, ureg);
4948 }
4949
4950 if (proginfo->InputsRead & VARYING_BIT_FACE)
4951 emit_face_var(t);
4952
4953 /*
4954 * Declare output attributes.
4955 */
4956 for (i = 0; i < numOutputs; i++) {
4957 switch (outputSemanticName[i]) {
4958 case TGSI_SEMANTIC_POSITION:
4959 t->outputs[i] = ureg_DECL_output(ureg,
4960 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4961 outputSemanticIndex[i]);
4962 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4963 break;
4964 case TGSI_SEMANTIC_STENCIL:
4965 t->outputs[i] = ureg_DECL_output(ureg,
4966 TGSI_SEMANTIC_STENCIL, /* Stencil */
4967 outputSemanticIndex[i]);
4968 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4969 break;
4970 case TGSI_SEMANTIC_COLOR:
4971 t->outputs[i] = ureg_DECL_output(ureg,
4972 TGSI_SEMANTIC_COLOR,
4973 outputSemanticIndex[i]);
4974 break;
4975 case TGSI_SEMANTIC_SAMPLEMASK:
4976 t->outputs[i] = ureg_DECL_output(ureg,
4977 TGSI_SEMANTIC_SAMPLEMASK,
4978 outputSemanticIndex[i]);
4979 /* TODO: If we ever support more than 32 samples, this will have
4980 * to become an array.
4981 */
4982 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
4983 break;
4984 default:
4985 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4986 ret = PIPE_ERROR_BAD_INPUT;
4987 goto out;
4988 }
4989 }
4990 }
4991 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4992 for (i = 0; i < numInputs; i++) {
4993 t->inputs[i] = ureg_DECL_gs_input(ureg,
4994 i,
4995 inputSemanticName[i],
4996 inputSemanticIndex[i]);
4997 }
4998
4999 for (i = 0; i < numOutputs; i++) {
5000 t->outputs[i] = ureg_DECL_output(ureg,
5001 outputSemanticName[i],
5002 outputSemanticIndex[i]);
5003 }
5004 }
5005 else {
5006 assert(procType == TGSI_PROCESSOR_VERTEX);
5007
5008 for (i = 0; i < numInputs; i++) {
5009 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
5010 }
5011
5012 for (i = 0; i < numOutputs; i++) {
5013 t->outputs[i] = ureg_DECL_output(ureg,
5014 outputSemanticName[i],
5015 outputSemanticIndex[i]);
5016 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
5017 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
5018 ureg_MOV(ureg,
5019 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
5020 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
5021 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5022 }
5023 }
5024 if (passthrough_edgeflags)
5025 emit_edgeflags(t);
5026 }
5027
5028 /* Declare address register.
5029 */
5030 if (program->num_address_regs > 0) {
5031 assert(program->num_address_regs <= 2);
5032 t->address[0] = ureg_DECL_address(ureg);
5033 if (program->num_address_regs == 2)
5034 t->address[1] = ureg_DECL_address(ureg);
5035 }
5036
5037 /* Declare misc input registers
5038 */
5039 {
5040 GLbitfield sysInputs = proginfo->SystemValuesRead;
5041 unsigned numSys = 0;
5042 for (i = 0; sysInputs; i++) {
5043 if (sysInputs & (1 << i)) {
5044 unsigned semName = mesa_sysval_to_semantic[i];
5045 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
5046 if (semName == TGSI_SEMANTIC_INSTANCEID ||
5047 semName == TGSI_SEMANTIC_VERTEXID) {
5048 /* From Gallium perspective, these system values are always
5049 * integer, and require native integer support. However, if
5050 * native integer is supported on the vertex stage but not the
5051 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
5052 * assumes these system values are floats. To resolve the
5053 * inconsistency, we insert a U2F.
5054 */
5055 struct st_context *st = st_context(ctx);
5056 struct pipe_screen *pscreen = st->pipe->screen;
5057 assert(procType == TGSI_PROCESSOR_VERTEX);
5058 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
5059 if (!ctx->Const.NativeIntegers) {
5060 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
5061 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
5062 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
5063 }
5064 }
5065 numSys++;
5066 sysInputs &= ~(1 << i);
5067 }
5068 }
5069 }
5070
5071 /* Copy over array sizes
5072 */
5073 memcpy(t->array_sizes, program->array_sizes, sizeof(unsigned) * program->next_array);
5074
5075 /* Emit constants and uniforms. TGSI uses a single index space for these,
5076 * so we put all the translated regs in t->constants.
5077 */
5078 if (proginfo->Parameters) {
5079 t->constants = (struct ureg_src *)
5080 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
5081 if (t->constants == NULL) {
5082 ret = PIPE_ERROR_OUT_OF_MEMORY;
5083 goto out;
5084 }
5085
5086 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
5087 switch (proginfo->Parameters->Parameters[i].Type) {
5088 case PROGRAM_STATE_VAR:
5089 case PROGRAM_UNIFORM:
5090 t->constants[i] = ureg_DECL_constant(ureg, i);
5091 break;
5092
5093 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
5094 * addressing of the const buffer.
5095 * FIXME: Be smarter and recognize param arrays:
5096 * indirect addressing is only valid within the referenced
5097 * array.
5098 */
5099 case PROGRAM_CONSTANT:
5100 if (program->indirect_addr_consts)
5101 t->constants[i] = ureg_DECL_constant(ureg, i);
5102 else
5103 t->constants[i] = emit_immediate(t,
5104 proginfo->Parameters->ParameterValues[i],
5105 proginfo->Parameters->Parameters[i].DataType,
5106 4);
5107 break;
5108 default:
5109 break;
5110 }
5111 }
5112 }
5113
5114 if (program->shader) {
5115 unsigned num_ubos = program->shader->NumUniformBlocks;
5116
5117 for (i = 0; i < num_ubos; i++) {
5118 ureg_DECL_constant2D(t->ureg, 0, program->shader->UniformBlocks[i].UniformBufferSize / 4, i + 1);
5119 }
5120 }
5121
5122 /* Emit immediate values.
5123 */
5124 t->immediates = (struct ureg_src *)
5125 calloc(program->num_immediates, sizeof(struct ureg_src));
5126 if (t->immediates == NULL) {
5127 ret = PIPE_ERROR_OUT_OF_MEMORY;
5128 goto out;
5129 }
5130 i = 0;
5131 foreach_list(node, &program->immediates) {
5132 immediate_storage *imm = (immediate_storage *) node;
5133 assert(i < program->num_immediates);
5134 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
5135 }
5136 assert(i == program->num_immediates);
5137
5138 /* texture samplers */
5139 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
5140 if (program->samplers_used & (1 << i)) {
5141 t->samplers[i] = ureg_DECL_sampler(ureg, i);
5142 }
5143 }
5144
5145 /* Emit each instruction in turn:
5146 */
5147 foreach_list(n, &program->instructions) {
5148 set_insn_start(t, ureg_get_instruction_number(ureg));
5149 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *) n, clamp_color);
5150 }
5151
5152 /* Fix up all emitted labels:
5153 */
5154 for (i = 0; i < t->labels_count; i++) {
5155 ureg_fixup_label(ureg, t->labels[i].token,
5156 t->insn[t->labels[i].branch_target]);
5157 }
5158
5159 if (program->shader_program) {
5160 /* This has to be done last. Any operation the can cause
5161 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5162 * program constant) has to happen before creating this linkage.
5163 */
5164 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5165 if (program->shader_program->_LinkedShaders[i] == NULL)
5166 continue;
5167
5168 _mesa_associate_uniform_storage(ctx, program->shader_program,
5169 program->shader_program->_LinkedShaders[i]->Program->Parameters);
5170 }
5171 }
5172
5173 out:
5174 if (t) {
5175 free(t->insn);
5176 free(t->labels);
5177 free(t->constants);
5178 free(t->immediates);
5179
5180 if (t->error) {
5181 debug_printf("%s: translate error flag set\n", __FUNCTION__);
5182 }
5183
5184 free(t);
5185 }
5186
5187 return ret;
5188 }
5189 /* ----------------------------- End TGSI code ------------------------------ */
5190
5191
5192 static unsigned
5193 shader_stage_to_ptarget(gl_shader_stage stage)
5194 {
5195 switch (stage) {
5196 case MESA_SHADER_VERTEX:
5197 return PIPE_SHADER_VERTEX;
5198 case MESA_SHADER_FRAGMENT:
5199 return PIPE_SHADER_FRAGMENT;
5200 case MESA_SHADER_GEOMETRY:
5201 return PIPE_SHADER_GEOMETRY;
5202 case MESA_SHADER_COMPUTE:
5203 return PIPE_SHADER_COMPUTE;
5204 }
5205
5206 assert(!"should not be reached");
5207 return PIPE_SHADER_VERTEX;
5208 }
5209
5210
5211 /**
5212 * Convert a shader's GLSL IR into a Mesa gl_program, although without
5213 * generating Mesa IR.
5214 */
5215 static struct gl_program *
5216 get_mesa_program(struct gl_context *ctx,
5217 struct gl_shader_program *shader_program,
5218 struct gl_shader *shader)
5219 {
5220 glsl_to_tgsi_visitor* v;
5221 struct gl_program *prog;
5222 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
5223 bool progress;
5224 struct gl_shader_compiler_options *options =
5225 &ctx->ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(shader->Type)];
5226 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5227 unsigned ptarget = shader_stage_to_ptarget(shader->Stage);
5228
5229 validate_ir_tree(shader->ir);
5230
5231 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
5232 if (!prog)
5233 return NULL;
5234 prog->Parameters = _mesa_new_parameter_list();
5235 v = new glsl_to_tgsi_visitor();
5236 v->ctx = ctx;
5237 v->prog = prog;
5238 v->shader_program = shader_program;
5239 v->shader = shader;
5240 v->options = options;
5241 v->glsl_version = ctx->Const.GLSLVersion;
5242 v->native_integers = ctx->Const.NativeIntegers;
5243
5244 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
5245 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
5246
5247 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
5248 prog->Parameters);
5249
5250 /* Remove reads from output registers. */
5251 lower_output_reads(shader->ir);
5252
5253 /* Emit intermediate IR for main(). */
5254 visit_exec_list(shader->ir, v);
5255
5256 /* Now emit bodies for any functions that were used. */
5257 do {
5258 progress = GL_FALSE;
5259
5260 foreach_list(node, &v->function_signatures) {
5261 function_entry *entry = (function_entry *) node;
5262
5263 if (!entry->bgn_inst) {
5264 v->current_function = entry;
5265
5266 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
5267 entry->bgn_inst->function = entry;
5268
5269 visit_exec_list(&entry->sig->body, v);
5270
5271 glsl_to_tgsi_instruction *last;
5272 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
5273 if (last->op != TGSI_OPCODE_RET)
5274 v->emit(NULL, TGSI_OPCODE_RET);
5275
5276 glsl_to_tgsi_instruction *end;
5277 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
5278 end->function = entry;
5279
5280 progress = GL_TRUE;
5281 }
5282 }
5283 } while (progress);
5284
5285 #if 0
5286 /* Print out some information (for debugging purposes) used by the
5287 * optimization passes. */
5288 for (i=0; i < v->next_temp; i++) {
5289 int fr = v->get_first_temp_read(i);
5290 int fw = v->get_first_temp_write(i);
5291 int lr = v->get_last_temp_read(i);
5292 int lw = v->get_last_temp_write(i);
5293
5294 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
5295 assert(fw <= fr);
5296 }
5297 #endif
5298
5299 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5300 v->simplify_cmp();
5301 v->copy_propagate();
5302 while (v->eliminate_dead_code());
5303
5304 v->merge_registers();
5305 v->renumber_registers();
5306
5307 /* Write the END instruction. */
5308 v->emit(NULL, TGSI_OPCODE_END);
5309
5310 if (ctx->_Shader->Flags & GLSL_DUMP) {
5311 printf("\n");
5312 printf("GLSL IR for linked %s program %d:\n",
5313 _mesa_shader_stage_to_string(shader->Stage),
5314 shader_program->Name);
5315 _mesa_print_ir(stdout, shader->ir, NULL);
5316 printf("\n");
5317 printf("\n");
5318 fflush(stdout);
5319 }
5320
5321 prog->Instructions = NULL;
5322 prog->NumInstructions = 0;
5323
5324 do_set_program_inouts(shader->ir, prog, shader->Stage);
5325 count_resources(v, prog);
5326
5327 _mesa_reference_program(ctx, &shader->Program, prog);
5328
5329 /* This has to be done last. Any operation the can cause
5330 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5331 * program constant) has to happen before creating this linkage.
5332 */
5333 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5334 if (!shader_program->LinkStatus) {
5335 return NULL;
5336 }
5337
5338 struct st_vertex_program *stvp;
5339 struct st_fragment_program *stfp;
5340 struct st_geometry_program *stgp;
5341
5342 switch (shader->Type) {
5343 case GL_VERTEX_SHADER:
5344 stvp = (struct st_vertex_program *)prog;
5345 stvp->glsl_to_tgsi = v;
5346 break;
5347 case GL_FRAGMENT_SHADER:
5348 stfp = (struct st_fragment_program *)prog;
5349 stfp->glsl_to_tgsi = v;
5350 break;
5351 case GL_GEOMETRY_SHADER:
5352 stgp = (struct st_geometry_program *)prog;
5353 stgp->glsl_to_tgsi = v;
5354 stgp->Base.InputType = shader_program->Geom.InputType;
5355 stgp->Base.OutputType = shader_program->Geom.OutputType;
5356 stgp->Base.VerticesOut = shader_program->Geom.VerticesOut;
5357 stgp->Base.Invocations = shader_program->Geom.Invocations;
5358 break;
5359 default:
5360 assert(!"should not be reached");
5361 return NULL;
5362 }
5363
5364 return prog;
5365 }
5366
5367 extern "C" {
5368
5369 struct gl_shader *
5370 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
5371 {
5372 struct gl_shader *shader;
5373 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
5374 type == GL_GEOMETRY_SHADER_ARB);
5375 shader = rzalloc(NULL, struct gl_shader);
5376 if (shader) {
5377 shader->Type = type;
5378 shader->Stage = _mesa_shader_enum_to_shader_stage(type);
5379 shader->Name = name;
5380 _mesa_init_shader(ctx, shader);
5381 }
5382 return shader;
5383 }
5384
5385 struct gl_shader_program *
5386 st_new_shader_program(struct gl_context *ctx, GLuint name)
5387 {
5388 struct gl_shader_program *shProg;
5389 shProg = rzalloc(NULL, struct gl_shader_program);
5390 if (shProg) {
5391 shProg->Name = name;
5392 _mesa_init_shader_program(ctx, shProg);
5393 }
5394 return shProg;
5395 }
5396
5397 /**
5398 * Link a shader.
5399 * Called via ctx->Driver.LinkShader()
5400 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5401 * with code lowering and other optimizations.
5402 */
5403 GLboolean
5404 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5405 {
5406 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5407 assert(prog->LinkStatus);
5408
5409 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5410 if (prog->_LinkedShaders[i] == NULL)
5411 continue;
5412
5413 bool progress;
5414 exec_list *ir = prog->_LinkedShaders[i]->ir;
5415 const struct gl_shader_compiler_options *options =
5416 &ctx->ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(prog->_LinkedShaders[i]->Type)];
5417
5418 /* If there are forms of indirect addressing that the driver
5419 * cannot handle, perform the lowering pass.
5420 */
5421 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
5422 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
5423 lower_variable_index_to_cond_assign(ir,
5424 options->EmitNoIndirectInput,
5425 options->EmitNoIndirectOutput,
5426 options->EmitNoIndirectTemp,
5427 options->EmitNoIndirectUniform);
5428 }
5429
5430 if (ctx->Extensions.ARB_shading_language_packing) {
5431 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
5432 LOWER_UNPACK_SNORM_2x16 |
5433 LOWER_PACK_UNORM_2x16 |
5434 LOWER_UNPACK_UNORM_2x16 |
5435 LOWER_PACK_SNORM_4x8 |
5436 LOWER_UNPACK_SNORM_4x8 |
5437 LOWER_UNPACK_UNORM_4x8 |
5438 LOWER_PACK_UNORM_4x8 |
5439 LOWER_PACK_HALF_2x16 |
5440 LOWER_UNPACK_HALF_2x16;
5441
5442 lower_packing_builtins(ir, lower_inst);
5443 }
5444
5445 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
5446 lower_offset_arrays(ir);
5447 do_mat_op_to_vec(ir);
5448 lower_instructions(ir,
5449 MOD_TO_FRACT |
5450 DIV_TO_MUL_RCP |
5451 EXP_TO_EXP2 |
5452 LOG_TO_LOG2 |
5453 LDEXP_TO_ARITH |
5454 CARRY_TO_ARITH |
5455 BORROW_TO_ARITH |
5456 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
5457 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0));
5458
5459 lower_ubo_reference(prog->_LinkedShaders[i], ir);
5460 do_vec_index_to_cond_assign(ir);
5461 lower_vector_insert(ir, true);
5462 lower_quadop_vector(ir, false);
5463 lower_noise(ir);
5464 if (options->MaxIfDepth == 0) {
5465 lower_discard(ir);
5466 }
5467
5468 do {
5469 progress = false;
5470
5471 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5472
5473 progress = do_common_optimization(ir, true, true, options,
5474 ctx->Const.NativeIntegers)
5475 || progress;
5476
5477 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5478
5479 } while (progress);
5480
5481 validate_ir_tree(ir);
5482 }
5483
5484 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5485 struct gl_program *linked_prog;
5486
5487 if (prog->_LinkedShaders[i] == NULL)
5488 continue;
5489
5490 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5491
5492 if (linked_prog) {
5493 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5494 linked_prog);
5495 if (!ctx->Driver.ProgramStringNotify(ctx,
5496 _mesa_shader_stage_to_program(i),
5497 linked_prog)) {
5498 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5499 NULL);
5500 _mesa_reference_program(ctx, &linked_prog, NULL);
5501 return GL_FALSE;
5502 }
5503 }
5504
5505 _mesa_reference_program(ctx, &linked_prog, NULL);
5506 }
5507
5508 return GL_TRUE;
5509 }
5510
5511 void
5512 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5513 const GLuint outputMapping[],
5514 struct pipe_stream_output_info *so)
5515 {
5516 unsigned i;
5517 struct gl_transform_feedback_info *info =
5518 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5519
5520 for (i = 0; i < info->NumOutputs; i++) {
5521 so->output[i].register_index =
5522 outputMapping[info->Outputs[i].OutputRegister];
5523 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5524 so->output[i].num_components = info->Outputs[i].NumComponents;
5525 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5526 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5527 }
5528
5529 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5530 so->stride[i] = info->BufferStride[i];
5531 }
5532 so->num_outputs = info->NumOutputs;
5533 }
5534
5535 } /* extern "C" */