mesa/st: leave current query enabled during glBlitFramebuffer
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43
44 #include "main/mtypes.h"
45 #include "main/shaderobj.h"
46 #include "main/uniforms.h"
47 #include "program/hash_table.h"
48
49 extern "C" {
50 #include "main/shaderapi.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58 #include "pipe/p_compiler.h"
59 #include "pipe/p_context.h"
60 #include "pipe/p_screen.h"
61 #include "pipe/p_shader_tokens.h"
62 #include "pipe/p_state.h"
63 #include "util/u_math.h"
64 #include "tgsi/tgsi_ureg.h"
65 #include "tgsi/tgsi_info.h"
66 #include "st_context.h"
67 #include "st_program.h"
68 #include "st_glsl_to_tgsi.h"
69 #include "st_mesa_to_tgsi.h"
70 }
71
72 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
73 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
74 (1 << PROGRAM_CONSTANT) | \
75 (1 << PROGRAM_UNIFORM))
76
77 /**
78 * Maximum number of temporary registers.
79 *
80 * It is too big for stack allocated arrays -- it will cause stack overflow on
81 * Windows and likely Mac OS X.
82 */
83 #define MAX_TEMPS 4096
84
85 /**
86 * Maximum number of arrays
87 */
88 #define MAX_ARRAYS 256
89
90 #define MAX_GLSL_TEXTURE_OFFSET 4
91
92 class st_src_reg;
93 class st_dst_reg;
94
95 static int swizzle_for_size(int size);
96
97 /**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100 class st_src_reg {
101 public:
102 st_src_reg(gl_register_file file, int index, const glsl_type *type)
103 {
104 this->file = file;
105 this->index = index;
106 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107 this->swizzle = swizzle_for_size(type->vector_elements);
108 else
109 this->swizzle = SWIZZLE_XYZW;
110 this->negate = 0;
111 this->index2D = 0;
112 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
113 this->reladdr = NULL;
114 this->reladdr2 = NULL;
115 this->has_index2 = false;
116 }
117
118 st_src_reg(gl_register_file file, int index, int type)
119 {
120 this->type = type;
121 this->file = file;
122 this->index = index;
123 this->index2D = 0;
124 this->swizzle = SWIZZLE_XYZW;
125 this->negate = 0;
126 this->reladdr = NULL;
127 this->reladdr2 = NULL;
128 this->has_index2 = false;
129 }
130
131 st_src_reg(gl_register_file file, int index, int type, int index2D)
132 {
133 this->type = type;
134 this->file = file;
135 this->index = index;
136 this->index2D = index2D;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = NULL;
140 this->reladdr2 = NULL;
141 this->has_index2 = false;
142 }
143
144 st_src_reg()
145 {
146 this->type = GLSL_TYPE_ERROR;
147 this->file = PROGRAM_UNDEFINED;
148 this->index = 0;
149 this->index2D = 0;
150 this->swizzle = 0;
151 this->negate = 0;
152 this->reladdr = NULL;
153 this->reladdr2 = NULL;
154 this->has_index2 = false;
155 }
156
157 explicit st_src_reg(st_dst_reg reg);
158
159 gl_register_file file; /**< PROGRAM_* from Mesa */
160 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
161 int index2D;
162 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
163 int negate; /**< NEGATE_XYZW mask from mesa */
164 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
165 /** Register index should be offset by the integer in this reg. */
166 st_src_reg *reladdr;
167 st_src_reg *reladdr2;
168 bool has_index2;
169 };
170
171 class st_dst_reg {
172 public:
173 st_dst_reg(gl_register_file file, int writemask, int type, int index)
174 {
175 this->file = file;
176 this->index = index;
177 this->writemask = writemask;
178 this->cond_mask = COND_TR;
179 this->reladdr = NULL;
180 this->type = type;
181 }
182
183 st_dst_reg(gl_register_file file, int writemask, int type)
184 {
185 this->file = file;
186 this->index = 0;
187 this->writemask = writemask;
188 this->cond_mask = COND_TR;
189 this->reladdr = NULL;
190 this->type = type;
191 }
192
193 st_dst_reg()
194 {
195 this->type = GLSL_TYPE_ERROR;
196 this->file = PROGRAM_UNDEFINED;
197 this->index = 0;
198 this->writemask = 0;
199 this->cond_mask = COND_TR;
200 this->reladdr = NULL;
201 }
202
203 explicit st_dst_reg(st_src_reg reg);
204
205 gl_register_file file; /**< PROGRAM_* from Mesa */
206 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
207 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
208 GLuint cond_mask:4;
209 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
210 /** Register index should be offset by the integer in this reg. */
211 st_src_reg *reladdr;
212 };
213
214 st_src_reg::st_src_reg(st_dst_reg reg)
215 {
216 this->type = reg.type;
217 this->file = reg.file;
218 this->index = reg.index;
219 this->swizzle = SWIZZLE_XYZW;
220 this->negate = 0;
221 this->reladdr = reg.reladdr;
222 this->index2D = 0;
223 this->reladdr2 = NULL;
224 this->has_index2 = false;
225 }
226
227 st_dst_reg::st_dst_reg(st_src_reg reg)
228 {
229 this->type = reg.type;
230 this->file = reg.file;
231 this->index = reg.index;
232 this->writemask = WRITEMASK_XYZW;
233 this->cond_mask = COND_TR;
234 this->reladdr = reg.reladdr;
235 }
236
237 class glsl_to_tgsi_instruction : public exec_node {
238 public:
239 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
240
241 unsigned op;
242 st_dst_reg dst;
243 st_src_reg src[4];
244 /** Pointer to the ir source this tree came from for debugging */
245 ir_instruction *ir;
246 GLboolean cond_update;
247 bool saturate;
248 int sampler; /**< sampler index */
249 int tex_target; /**< One of TEXTURE_*_INDEX */
250 GLboolean tex_shadow;
251
252 st_src_reg tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
253 unsigned tex_offset_num_offset;
254 int dead_mask; /**< Used in dead code elimination */
255
256 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
257 };
258
259 class variable_storage : public exec_node {
260 public:
261 variable_storage(ir_variable *var, gl_register_file file, int index)
262 : file(file), index(index), var(var)
263 {
264 /* empty */
265 }
266
267 gl_register_file file;
268 int index;
269 ir_variable *var; /* variable that maps to this, if any */
270 };
271
272 class immediate_storage : public exec_node {
273 public:
274 immediate_storage(gl_constant_value *values, int size, int type)
275 {
276 memcpy(this->values, values, size * sizeof(gl_constant_value));
277 this->size = size;
278 this->type = type;
279 }
280
281 gl_constant_value values[4];
282 int size; /**< Number of components (1-4) */
283 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
284 };
285
286 class function_entry : public exec_node {
287 public:
288 ir_function_signature *sig;
289
290 /**
291 * identifier of this function signature used by the program.
292 *
293 * At the point that TGSI instructions for function calls are
294 * generated, we don't know the address of the first instruction of
295 * the function body. So we make the BranchTarget that is called a
296 * small integer and rewrite them during set_branchtargets().
297 */
298 int sig_id;
299
300 /**
301 * Pointer to first instruction of the function body.
302 *
303 * Set during function body emits after main() is processed.
304 */
305 glsl_to_tgsi_instruction *bgn_inst;
306
307 /**
308 * Index of the first instruction of the function body in actual TGSI.
309 *
310 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
311 */
312 int inst;
313
314 /** Storage for the return value. */
315 st_src_reg return_reg;
316 };
317
318 struct glsl_to_tgsi_visitor : public ir_visitor {
319 public:
320 glsl_to_tgsi_visitor();
321 ~glsl_to_tgsi_visitor();
322
323 function_entry *current_function;
324
325 struct gl_context *ctx;
326 struct gl_program *prog;
327 struct gl_shader_program *shader_program;
328 struct gl_shader_compiler_options *options;
329
330 int next_temp;
331
332 unsigned array_sizes[MAX_ARRAYS];
333 unsigned next_array;
334
335 int num_address_regs;
336 int samplers_used;
337 bool indirect_addr_consts;
338
339 int glsl_version;
340 bool native_integers;
341 bool have_sqrt;
342
343 variable_storage *find_variable_storage(ir_variable *var);
344
345 int add_constant(gl_register_file file, gl_constant_value values[4],
346 int size, int datatype, GLuint *swizzle_out);
347
348 function_entry *get_function_signature(ir_function_signature *sig);
349
350 st_src_reg get_temp(const glsl_type *type);
351 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
352
353 st_src_reg st_src_reg_for_float(float val);
354 st_src_reg st_src_reg_for_int(int val);
355 st_src_reg st_src_reg_for_type(int type, int val);
356
357 /**
358 * \name Visit methods
359 *
360 * As typical for the visitor pattern, there must be one \c visit method for
361 * each concrete subclass of \c ir_instruction. Virtual base classes within
362 * the hierarchy should not have \c visit methods.
363 */
364 /*@{*/
365 virtual void visit(ir_variable *);
366 virtual void visit(ir_loop *);
367 virtual void visit(ir_loop_jump *);
368 virtual void visit(ir_function_signature *);
369 virtual void visit(ir_function *);
370 virtual void visit(ir_expression *);
371 virtual void visit(ir_swizzle *);
372 virtual void visit(ir_dereference_variable *);
373 virtual void visit(ir_dereference_array *);
374 virtual void visit(ir_dereference_record *);
375 virtual void visit(ir_assignment *);
376 virtual void visit(ir_constant *);
377 virtual void visit(ir_call *);
378 virtual void visit(ir_return *);
379 virtual void visit(ir_discard *);
380 virtual void visit(ir_texture *);
381 virtual void visit(ir_if *);
382 virtual void visit(ir_emit_vertex *);
383 virtual void visit(ir_end_primitive *);
384 /*@}*/
385
386 st_src_reg result;
387
388 /** List of variable_storage */
389 exec_list variables;
390
391 /** List of immediate_storage */
392 exec_list immediates;
393 unsigned num_immediates;
394
395 /** List of function_entry */
396 exec_list function_signatures;
397 int next_signature_id;
398
399 /** List of glsl_to_tgsi_instruction */
400 exec_list instructions;
401
402 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
403
404 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
405 st_dst_reg dst, st_src_reg src0);
406
407 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
408 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
409
410 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
411 st_dst_reg dst,
412 st_src_reg src0, st_src_reg src1, st_src_reg src2);
413
414 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
415 st_dst_reg dst,
416 st_src_reg src0, st_src_reg src1,
417 st_src_reg src2, st_src_reg src3);
418
419 unsigned get_opcode(ir_instruction *ir, unsigned op,
420 st_dst_reg dst,
421 st_src_reg src0, st_src_reg src1);
422
423 /**
424 * Emit the correct dot-product instruction for the type of arguments
425 */
426 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
427 st_dst_reg dst,
428 st_src_reg src0,
429 st_src_reg src1,
430 unsigned elements);
431
432 void emit_scalar(ir_instruction *ir, unsigned op,
433 st_dst_reg dst, st_src_reg src0);
434
435 void emit_scalar(ir_instruction *ir, unsigned op,
436 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
437
438 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
439
440 void emit_scs(ir_instruction *ir, unsigned op,
441 st_dst_reg dst, const st_src_reg &src);
442
443 bool try_emit_mad(ir_expression *ir,
444 int mul_operand);
445 bool try_emit_mad_for_and_not(ir_expression *ir,
446 int mul_operand);
447 bool try_emit_sat(ir_expression *ir);
448
449 void emit_swz(ir_expression *ir);
450
451 bool process_move_condition(ir_rvalue *ir);
452
453 void simplify_cmp(void);
454
455 void rename_temp_register(int index, int new_index);
456 int get_first_temp_read(int index);
457 int get_first_temp_write(int index);
458 int get_last_temp_read(int index);
459 int get_last_temp_write(int index);
460
461 void copy_propagate(void);
462 void eliminate_dead_code(void);
463 int eliminate_dead_code_advanced(void);
464 void merge_registers(void);
465 void renumber_registers(void);
466
467 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
468 st_dst_reg *l, st_src_reg *r);
469
470 void *mem_ctx;
471 };
472
473 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
474
475 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
476
477 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
478 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
479
480 static void
481 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
482
483 static void
484 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
485 {
486 va_list args;
487 va_start(args, fmt);
488 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
489 va_end(args);
490
491 prog->LinkStatus = GL_FALSE;
492 }
493
494 static int
495 swizzle_for_size(int size)
496 {
497 int size_swizzles[4] = {
498 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
499 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
500 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
501 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
502 };
503
504 assert((size >= 1) && (size <= 4));
505 return size_swizzles[size - 1];
506 }
507
508 static bool
509 is_tex_instruction(unsigned opcode)
510 {
511 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
512 return info->is_tex;
513 }
514
515 static unsigned
516 num_inst_dst_regs(unsigned opcode)
517 {
518 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
519 return info->num_dst;
520 }
521
522 static unsigned
523 num_inst_src_regs(unsigned opcode)
524 {
525 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
526 return info->is_tex ? info->num_src - 1 : info->num_src;
527 }
528
529 glsl_to_tgsi_instruction *
530 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
531 st_dst_reg dst,
532 st_src_reg src0, st_src_reg src1,
533 st_src_reg src2, st_src_reg src3)
534 {
535 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
536 int num_reladdr = 0, i;
537
538 op = get_opcode(ir, op, dst, src0, src1);
539
540 /* If we have to do relative addressing, we want to load the ARL
541 * reg directly for one of the regs, and preload the other reladdr
542 * sources into temps.
543 */
544 num_reladdr += dst.reladdr != NULL;
545 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
546 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
547 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
548 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
549
550 reladdr_to_temp(ir, &src3, &num_reladdr);
551 reladdr_to_temp(ir, &src2, &num_reladdr);
552 reladdr_to_temp(ir, &src1, &num_reladdr);
553 reladdr_to_temp(ir, &src0, &num_reladdr);
554
555 if (dst.reladdr) {
556 emit_arl(ir, address_reg, *dst.reladdr);
557 num_reladdr--;
558 }
559 assert(num_reladdr == 0);
560
561 inst->op = op;
562 inst->dst = dst;
563 inst->src[0] = src0;
564 inst->src[1] = src1;
565 inst->src[2] = src2;
566 inst->src[3] = src3;
567 inst->ir = ir;
568 inst->dead_mask = 0;
569
570 inst->function = NULL;
571
572 /* Update indirect addressing status used by TGSI */
573 if (dst.reladdr) {
574 switch(dst.file) {
575 case PROGRAM_STATE_VAR:
576 case PROGRAM_CONSTANT:
577 case PROGRAM_UNIFORM:
578 this->indirect_addr_consts = true;
579 break;
580 case PROGRAM_IMMEDIATE:
581 assert(!"immediates should not have indirect addressing");
582 break;
583 default:
584 break;
585 }
586 }
587 else {
588 for (i=0; i<4; i++) {
589 if(inst->src[i].reladdr) {
590 switch(inst->src[i].file) {
591 case PROGRAM_STATE_VAR:
592 case PROGRAM_CONSTANT:
593 case PROGRAM_UNIFORM:
594 this->indirect_addr_consts = true;
595 break;
596 case PROGRAM_IMMEDIATE:
597 assert(!"immediates should not have indirect addressing");
598 break;
599 default:
600 break;
601 }
602 }
603 }
604 }
605
606 this->instructions.push_tail(inst);
607
608 return inst;
609 }
610
611 glsl_to_tgsi_instruction *
612 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
613 st_dst_reg dst, st_src_reg src0,
614 st_src_reg src1, st_src_reg src2)
615 {
616 return emit(ir, op, dst, src0, src1, src2, undef_src);
617 }
618
619 glsl_to_tgsi_instruction *
620 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
621 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
622 {
623 return emit(ir, op, dst, src0, src1, undef_src, undef_src);
624 }
625
626 glsl_to_tgsi_instruction *
627 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
628 st_dst_reg dst, st_src_reg src0)
629 {
630 assert(dst.writemask != 0);
631 return emit(ir, op, dst, src0, undef_src, undef_src, undef_src);
632 }
633
634 glsl_to_tgsi_instruction *
635 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
636 {
637 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src, undef_src);
638 }
639
640 /**
641 * Determines whether to use an integer, unsigned integer, or float opcode
642 * based on the operands and input opcode, then emits the result.
643 */
644 unsigned
645 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
646 st_dst_reg dst,
647 st_src_reg src0, st_src_reg src1)
648 {
649 int type = GLSL_TYPE_FLOAT;
650
651 if (op == TGSI_OPCODE_MOV)
652 return op;
653
654 assert(src0.type != GLSL_TYPE_ARRAY);
655 assert(src0.type != GLSL_TYPE_STRUCT);
656 assert(src1.type != GLSL_TYPE_ARRAY);
657 assert(src1.type != GLSL_TYPE_STRUCT);
658
659 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
660 type = GLSL_TYPE_FLOAT;
661 else if (native_integers)
662 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
663
664 #define case4(c, f, i, u) \
665 case TGSI_OPCODE_##c: \
666 if (type == GLSL_TYPE_INT) \
667 op = TGSI_OPCODE_##i; \
668 else if (type == GLSL_TYPE_UINT) \
669 op = TGSI_OPCODE_##u; \
670 else \
671 op = TGSI_OPCODE_##f; \
672 break;
673
674 #define case3(f, i, u) case4(f, f, i, u)
675 #define case2fi(f, i) case4(f, f, i, i)
676 #define case2iu(i, u) case4(i, LAST, i, u)
677
678 #define casecomp(c, f, i, u) \
679 case TGSI_OPCODE_##c: \
680 if (type == GLSL_TYPE_INT) \
681 op = TGSI_OPCODE_##i; \
682 else if (type == GLSL_TYPE_UINT) \
683 op = TGSI_OPCODE_##u; \
684 else if (native_integers) \
685 op = TGSI_OPCODE_##f; \
686 else \
687 op = TGSI_OPCODE_##c; \
688 break;
689
690 switch(op) {
691 case2fi(ADD, UADD);
692 case2fi(MUL, UMUL);
693 case2fi(MAD, UMAD);
694 case3(DIV, IDIV, UDIV);
695 case3(MAX, IMAX, UMAX);
696 case3(MIN, IMIN, UMIN);
697 case2iu(MOD, UMOD);
698
699 casecomp(SEQ, FSEQ, USEQ, USEQ);
700 casecomp(SNE, FSNE, USNE, USNE);
701 casecomp(SGE, FSGE, ISGE, USGE);
702 casecomp(SLT, FSLT, ISLT, USLT);
703
704 case2iu(ISHR, USHR);
705
706 case2fi(SSG, ISSG);
707 case3(ABS, IABS, IABS);
708
709 case2iu(IBFE, UBFE);
710 case2iu(IMSB, UMSB);
711 case2iu(IMUL_HI, UMUL_HI);
712 default: break;
713 }
714
715 assert(op != TGSI_OPCODE_LAST);
716 return op;
717 }
718
719 glsl_to_tgsi_instruction *
720 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
721 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
722 unsigned elements)
723 {
724 static const unsigned dot_opcodes[] = {
725 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
726 };
727
728 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
729 }
730
731 /**
732 * Emits TGSI scalar opcodes to produce unique answers across channels.
733 *
734 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
735 * channel determines the result across all channels. So to do a vec4
736 * of this operation, we want to emit a scalar per source channel used
737 * to produce dest channels.
738 */
739 void
740 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
741 st_dst_reg dst,
742 st_src_reg orig_src0, st_src_reg orig_src1)
743 {
744 int i, j;
745 int done_mask = ~dst.writemask;
746
747 /* TGSI RCP is a scalar operation splatting results to all channels,
748 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
749 * dst channels.
750 */
751 for (i = 0; i < 4; i++) {
752 GLuint this_mask = (1 << i);
753 glsl_to_tgsi_instruction *inst;
754 st_src_reg src0 = orig_src0;
755 st_src_reg src1 = orig_src1;
756
757 if (done_mask & this_mask)
758 continue;
759
760 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
761 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
762 for (j = i + 1; j < 4; j++) {
763 /* If there is another enabled component in the destination that is
764 * derived from the same inputs, generate its value on this pass as
765 * well.
766 */
767 if (!(done_mask & (1 << j)) &&
768 GET_SWZ(src0.swizzle, j) == src0_swiz &&
769 GET_SWZ(src1.swizzle, j) == src1_swiz) {
770 this_mask |= (1 << j);
771 }
772 }
773 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
774 src0_swiz, src0_swiz);
775 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
776 src1_swiz, src1_swiz);
777
778 inst = emit(ir, op, dst, src0, src1);
779 inst->dst.writemask = this_mask;
780 done_mask |= this_mask;
781 }
782 }
783
784 void
785 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
786 st_dst_reg dst, st_src_reg src0)
787 {
788 st_src_reg undef = undef_src;
789
790 undef.swizzle = SWIZZLE_XXXX;
791
792 emit_scalar(ir, op, dst, src0, undef);
793 }
794
795 void
796 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
797 st_dst_reg dst, st_src_reg src0)
798 {
799 int op = TGSI_OPCODE_ARL;
800
801 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
802 op = TGSI_OPCODE_UARL;
803
804 assert(dst.file == PROGRAM_ADDRESS);
805 if (dst.index >= this->num_address_regs)
806 this->num_address_regs = dst.index + 1;
807
808 emit(NULL, op, dst, src0);
809 }
810
811 /**
812 * Emit an TGSI_OPCODE_SCS instruction
813 *
814 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
815 * Instead of splatting its result across all four components of the
816 * destination, it writes one value to the \c x component and another value to
817 * the \c y component.
818 *
819 * \param ir IR instruction being processed
820 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
821 * on which value is desired.
822 * \param dst Destination register
823 * \param src Source register
824 */
825 void
826 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
827 st_dst_reg dst,
828 const st_src_reg &src)
829 {
830 /* Vertex programs cannot use the SCS opcode.
831 */
832 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
833 emit_scalar(ir, op, dst, src);
834 return;
835 }
836
837 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
838 const unsigned scs_mask = (1U << component);
839 int done_mask = ~dst.writemask;
840 st_src_reg tmp;
841
842 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
843
844 /* If there are compnents in the destination that differ from the component
845 * that will be written by the SCS instrution, we'll need a temporary.
846 */
847 if (scs_mask != unsigned(dst.writemask)) {
848 tmp = get_temp(glsl_type::vec4_type);
849 }
850
851 for (unsigned i = 0; i < 4; i++) {
852 unsigned this_mask = (1U << i);
853 st_src_reg src0 = src;
854
855 if ((done_mask & this_mask) != 0)
856 continue;
857
858 /* The source swizzle specified which component of the source generates
859 * sine / cosine for the current component in the destination. The SCS
860 * instruction requires that this value be swizzle to the X component.
861 * Replace the current swizzle with a swizzle that puts the source in
862 * the X component.
863 */
864 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
865
866 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
867 src0_swiz, src0_swiz);
868 for (unsigned j = i + 1; j < 4; j++) {
869 /* If there is another enabled component in the destination that is
870 * derived from the same inputs, generate its value on this pass as
871 * well.
872 */
873 if (!(done_mask & (1 << j)) &&
874 GET_SWZ(src0.swizzle, j) == src0_swiz) {
875 this_mask |= (1 << j);
876 }
877 }
878
879 if (this_mask != scs_mask) {
880 glsl_to_tgsi_instruction *inst;
881 st_dst_reg tmp_dst = st_dst_reg(tmp);
882
883 /* Emit the SCS instruction.
884 */
885 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
886 inst->dst.writemask = scs_mask;
887
888 /* Move the result of the SCS instruction to the desired location in
889 * the destination.
890 */
891 tmp.swizzle = MAKE_SWIZZLE4(component, component,
892 component, component);
893 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
894 inst->dst.writemask = this_mask;
895 } else {
896 /* Emit the SCS instruction to write directly to the destination.
897 */
898 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
899 inst->dst.writemask = scs_mask;
900 }
901
902 done_mask |= this_mask;
903 }
904 }
905
906 int
907 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
908 gl_constant_value values[4], int size, int datatype,
909 GLuint *swizzle_out)
910 {
911 if (file == PROGRAM_CONSTANT) {
912 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
913 size, datatype, swizzle_out);
914 } else {
915 int index = 0;
916 immediate_storage *entry;
917 assert(file == PROGRAM_IMMEDIATE);
918
919 /* Search immediate storage to see if we already have an identical
920 * immediate that we can use instead of adding a duplicate entry.
921 */
922 foreach_list(node, &this->immediates) {
923 entry = (immediate_storage *) node;
924
925 if (entry->size == size &&
926 entry->type == datatype &&
927 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
928 return index;
929 }
930 index++;
931 }
932
933 /* Add this immediate to the list. */
934 entry = new(mem_ctx) immediate_storage(values, size, datatype);
935 this->immediates.push_tail(entry);
936 this->num_immediates++;
937 return index;
938 }
939 }
940
941 st_src_reg
942 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
943 {
944 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
945 union gl_constant_value uval;
946
947 uval.f = val;
948 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
949
950 return src;
951 }
952
953 st_src_reg
954 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
955 {
956 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
957 union gl_constant_value uval;
958
959 assert(native_integers);
960
961 uval.i = val;
962 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
963
964 return src;
965 }
966
967 st_src_reg
968 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
969 {
970 if (native_integers)
971 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
972 st_src_reg_for_int(val);
973 else
974 return st_src_reg_for_float(val);
975 }
976
977 static int
978 type_size(const struct glsl_type *type)
979 {
980 unsigned int i;
981 int size;
982
983 switch (type->base_type) {
984 case GLSL_TYPE_UINT:
985 case GLSL_TYPE_INT:
986 case GLSL_TYPE_FLOAT:
987 case GLSL_TYPE_BOOL:
988 if (type->is_matrix()) {
989 return type->matrix_columns;
990 } else {
991 /* Regardless of size of vector, it gets a vec4. This is bad
992 * packing for things like floats, but otherwise arrays become a
993 * mess. Hopefully a later pass over the code can pack scalars
994 * down if appropriate.
995 */
996 return 1;
997 }
998 case GLSL_TYPE_ARRAY:
999 assert(type->length > 0);
1000 return type_size(type->fields.array) * type->length;
1001 case GLSL_TYPE_STRUCT:
1002 size = 0;
1003 for (i = 0; i < type->length; i++) {
1004 size += type_size(type->fields.structure[i].type);
1005 }
1006 return size;
1007 case GLSL_TYPE_SAMPLER:
1008 case GLSL_TYPE_IMAGE:
1009 /* Samplers take up one slot in UNIFORMS[], but they're baked in
1010 * at link time.
1011 */
1012 return 1;
1013 case GLSL_TYPE_ATOMIC_UINT:
1014 case GLSL_TYPE_INTERFACE:
1015 case GLSL_TYPE_VOID:
1016 case GLSL_TYPE_ERROR:
1017 assert(!"Invalid type in type_size");
1018 break;
1019 }
1020 return 0;
1021 }
1022
1023 /**
1024 * In the initial pass of codegen, we assign temporary numbers to
1025 * intermediate results. (not SSA -- variable assignments will reuse
1026 * storage).
1027 */
1028 st_src_reg
1029 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1030 {
1031 st_src_reg src;
1032
1033 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1034 src.reladdr = NULL;
1035 src.negate = 0;
1036
1037 if (!options->EmitNoIndirectTemp &&
1038 (type->is_array() || type->is_matrix())) {
1039
1040 src.file = PROGRAM_ARRAY;
1041 src.index = next_array << 16 | 0x8000;
1042 array_sizes[next_array] = type_size(type);
1043 ++next_array;
1044
1045 } else {
1046 src.file = PROGRAM_TEMPORARY;
1047 src.index = next_temp;
1048 next_temp += type_size(type);
1049 }
1050
1051 if (type->is_array() || type->is_record()) {
1052 src.swizzle = SWIZZLE_NOOP;
1053 } else {
1054 src.swizzle = swizzle_for_size(type->vector_elements);
1055 }
1056
1057 return src;
1058 }
1059
1060 variable_storage *
1061 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1062 {
1063
1064 variable_storage *entry;
1065
1066 foreach_list(node, &this->variables) {
1067 entry = (variable_storage *) node;
1068
1069 if (entry->var == var)
1070 return entry;
1071 }
1072
1073 return NULL;
1074 }
1075
1076 void
1077 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1078 {
1079 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1080 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1081
1082 fp->OriginUpperLeft = ir->data.origin_upper_left;
1083 fp->PixelCenterInteger = ir->data.pixel_center_integer;
1084 }
1085
1086 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1087 unsigned int i;
1088 const ir_state_slot *const slots = ir->state_slots;
1089 assert(ir->state_slots != NULL);
1090
1091 /* Check if this statevar's setup in the STATE file exactly
1092 * matches how we'll want to reference it as a
1093 * struct/array/whatever. If not, then we need to move it into
1094 * temporary storage and hope that it'll get copy-propagated
1095 * out.
1096 */
1097 for (i = 0; i < ir->num_state_slots; i++) {
1098 if (slots[i].swizzle != SWIZZLE_XYZW) {
1099 break;
1100 }
1101 }
1102
1103 variable_storage *storage;
1104 st_dst_reg dst;
1105 if (i == ir->num_state_slots) {
1106 /* We'll set the index later. */
1107 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1108 this->variables.push_tail(storage);
1109
1110 dst = undef_dst;
1111 } else {
1112 /* The variable_storage constructor allocates slots based on the size
1113 * of the type. However, this had better match the number of state
1114 * elements that we're going to copy into the new temporary.
1115 */
1116 assert((int) ir->num_state_slots == type_size(ir->type));
1117
1118 dst = st_dst_reg(get_temp(ir->type));
1119
1120 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1121
1122 this->variables.push_tail(storage);
1123 }
1124
1125
1126 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1127 int index = _mesa_add_state_reference(this->prog->Parameters,
1128 (gl_state_index *)slots[i].tokens);
1129
1130 if (storage->file == PROGRAM_STATE_VAR) {
1131 if (storage->index == -1) {
1132 storage->index = index;
1133 } else {
1134 assert(index == storage->index + (int)i);
1135 }
1136 } else {
1137 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1138 * the data being moved since MOV does not care about the type of
1139 * data it is moving, and we don't want to declare registers with
1140 * array or struct types.
1141 */
1142 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1143 src.swizzle = slots[i].swizzle;
1144 emit(ir, TGSI_OPCODE_MOV, dst, src);
1145 /* even a float takes up a whole vec4 reg in a struct/array. */
1146 dst.index++;
1147 }
1148 }
1149
1150 if (storage->file == PROGRAM_TEMPORARY &&
1151 dst.index != storage->index + (int) ir->num_state_slots) {
1152 fail_link(this->shader_program,
1153 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1154 ir->name, dst.index - storage->index,
1155 type_size(ir->type));
1156 }
1157 }
1158 }
1159
1160 void
1161 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1162 {
1163 emit(NULL, TGSI_OPCODE_BGNLOOP);
1164
1165 visit_exec_list(&ir->body_instructions, this);
1166
1167 emit(NULL, TGSI_OPCODE_ENDLOOP);
1168 }
1169
1170 void
1171 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1172 {
1173 switch (ir->mode) {
1174 case ir_loop_jump::jump_break:
1175 emit(NULL, TGSI_OPCODE_BRK);
1176 break;
1177 case ir_loop_jump::jump_continue:
1178 emit(NULL, TGSI_OPCODE_CONT);
1179 break;
1180 }
1181 }
1182
1183
1184 void
1185 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1186 {
1187 assert(0);
1188 (void)ir;
1189 }
1190
1191 void
1192 glsl_to_tgsi_visitor::visit(ir_function *ir)
1193 {
1194 /* Ignore function bodies other than main() -- we shouldn't see calls to
1195 * them since they should all be inlined before we get to glsl_to_tgsi.
1196 */
1197 if (strcmp(ir->name, "main") == 0) {
1198 const ir_function_signature *sig;
1199 exec_list empty;
1200
1201 sig = ir->matching_signature(NULL, &empty);
1202
1203 assert(sig);
1204
1205 foreach_list(node, &sig->body) {
1206 ir_instruction *ir = (ir_instruction *) node;
1207
1208 ir->accept(this);
1209 }
1210 }
1211 }
1212
1213 bool
1214 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1215 {
1216 int nonmul_operand = 1 - mul_operand;
1217 st_src_reg a, b, c;
1218 st_dst_reg result_dst;
1219
1220 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1221 if (!expr || expr->operation != ir_binop_mul)
1222 return false;
1223
1224 expr->operands[0]->accept(this);
1225 a = this->result;
1226 expr->operands[1]->accept(this);
1227 b = this->result;
1228 ir->operands[nonmul_operand]->accept(this);
1229 c = this->result;
1230
1231 this->result = get_temp(ir->type);
1232 result_dst = st_dst_reg(this->result);
1233 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1234 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1235
1236 return true;
1237 }
1238
1239 /**
1240 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1241 *
1242 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1243 * implemented using multiplication, and logical-or is implemented using
1244 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1245 * As result, the logical expression (a & !b) can be rewritten as:
1246 *
1247 * - a * !b
1248 * - a * (1 - b)
1249 * - (a * 1) - (a * b)
1250 * - a + -(a * b)
1251 * - a + (a * -b)
1252 *
1253 * This final expression can be implemented as a single MAD(a, -b, a)
1254 * instruction.
1255 */
1256 bool
1257 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1258 {
1259 const int other_operand = 1 - try_operand;
1260 st_src_reg a, b;
1261
1262 ir_expression *expr = ir->operands[try_operand]->as_expression();
1263 if (!expr || expr->operation != ir_unop_logic_not)
1264 return false;
1265
1266 ir->operands[other_operand]->accept(this);
1267 a = this->result;
1268 expr->operands[0]->accept(this);
1269 b = this->result;
1270
1271 b.negate = ~b.negate;
1272
1273 this->result = get_temp(ir->type);
1274 emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1275
1276 return true;
1277 }
1278
1279 bool
1280 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1281 {
1282 /* Emit saturates in the vertex shader only if SM 3.0 is supported.
1283 */
1284 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1285 !st_context(this->ctx)->has_shader_model3) {
1286 return false;
1287 }
1288
1289 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1290 if (!sat_src)
1291 return false;
1292
1293 sat_src->accept(this);
1294 st_src_reg src = this->result;
1295
1296 /* If we generated an expression instruction into a temporary in
1297 * processing the saturate's operand, apply the saturate to that
1298 * instruction. Otherwise, generate a MOV to do the saturate.
1299 *
1300 * Note that we have to be careful to only do this optimization if
1301 * the instruction in question was what generated src->result. For
1302 * example, ir_dereference_array might generate a MUL instruction
1303 * to create the reladdr, and return us a src reg using that
1304 * reladdr. That MUL result is not the value we're trying to
1305 * saturate.
1306 */
1307 ir_expression *sat_src_expr = sat_src->as_expression();
1308 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1309 sat_src_expr->operation == ir_binop_add ||
1310 sat_src_expr->operation == ir_binop_dot)) {
1311 glsl_to_tgsi_instruction *new_inst;
1312 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1313 new_inst->saturate = true;
1314 } else {
1315 this->result = get_temp(ir->type);
1316 st_dst_reg result_dst = st_dst_reg(this->result);
1317 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1318 glsl_to_tgsi_instruction *inst;
1319 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1320 inst->saturate = true;
1321 }
1322
1323 return true;
1324 }
1325
1326 void
1327 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1328 st_src_reg *reg, int *num_reladdr)
1329 {
1330 if (!reg->reladdr && !reg->reladdr2)
1331 return;
1332
1333 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1334 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1335
1336 if (*num_reladdr != 1) {
1337 st_src_reg temp = get_temp(glsl_type::vec4_type);
1338
1339 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1340 *reg = temp;
1341 }
1342
1343 (*num_reladdr)--;
1344 }
1345
1346 void
1347 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1348 {
1349 unsigned int operand;
1350 st_src_reg op[Elements(ir->operands)];
1351 st_src_reg result_src;
1352 st_dst_reg result_dst;
1353
1354 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1355 */
1356 if (ir->operation == ir_binop_add) {
1357 if (try_emit_mad(ir, 1))
1358 return;
1359 if (try_emit_mad(ir, 0))
1360 return;
1361 }
1362
1363 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1364 */
1365 if (ir->operation == ir_binop_logic_and) {
1366 if (try_emit_mad_for_and_not(ir, 1))
1367 return;
1368 if (try_emit_mad_for_and_not(ir, 0))
1369 return;
1370 }
1371
1372 if (try_emit_sat(ir))
1373 return;
1374
1375 if (ir->operation == ir_quadop_vector)
1376 assert(!"ir_quadop_vector should have been lowered");
1377
1378 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1379 this->result.file = PROGRAM_UNDEFINED;
1380 ir->operands[operand]->accept(this);
1381 if (this->result.file == PROGRAM_UNDEFINED) {
1382 printf("Failed to get tree for expression operand:\n");
1383 ir->operands[operand]->print();
1384 printf("\n");
1385 exit(1);
1386 }
1387 op[operand] = this->result;
1388
1389 /* Matrix expression operands should have been broken down to vector
1390 * operations already.
1391 */
1392 assert(!ir->operands[operand]->type->is_matrix());
1393 }
1394
1395 int vector_elements = ir->operands[0]->type->vector_elements;
1396 if (ir->operands[1]) {
1397 vector_elements = MAX2(vector_elements,
1398 ir->operands[1]->type->vector_elements);
1399 }
1400
1401 this->result.file = PROGRAM_UNDEFINED;
1402
1403 /* Storage for our result. Ideally for an assignment we'd be using
1404 * the actual storage for the result here, instead.
1405 */
1406 result_src = get_temp(ir->type);
1407 /* convenience for the emit functions below. */
1408 result_dst = st_dst_reg(result_src);
1409 /* Limit writes to the channels that will be used by result_src later.
1410 * This does limit this temp's use as a temporary for multi-instruction
1411 * sequences.
1412 */
1413 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1414
1415 switch (ir->operation) {
1416 case ir_unop_logic_not:
1417 if (result_dst.type != GLSL_TYPE_FLOAT)
1418 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1419 else {
1420 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1421 * older GPUs implement SEQ using multiple instructions (i915 uses two
1422 * SGE instructions and a MUL instruction). Since our logic values are
1423 * 0.0 and 1.0, 1-x also implements !x.
1424 */
1425 op[0].negate = ~op[0].negate;
1426 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1427 }
1428 break;
1429 case ir_unop_neg:
1430 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1431 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1432 else {
1433 op[0].negate = ~op[0].negate;
1434 result_src = op[0];
1435 }
1436 break;
1437 case ir_unop_abs:
1438 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1439 break;
1440 case ir_unop_sign:
1441 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1442 break;
1443 case ir_unop_rcp:
1444 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1445 break;
1446
1447 case ir_unop_exp2:
1448 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1449 break;
1450 case ir_unop_exp:
1451 case ir_unop_log:
1452 assert(!"not reached: should be handled by ir_explog_to_explog2");
1453 break;
1454 case ir_unop_log2:
1455 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1456 break;
1457 case ir_unop_sin:
1458 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1459 break;
1460 case ir_unop_cos:
1461 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1462 break;
1463 case ir_unop_sin_reduced:
1464 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1465 break;
1466 case ir_unop_cos_reduced:
1467 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1468 break;
1469
1470 case ir_unop_dFdx:
1471 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1472 break;
1473 case ir_unop_dFdy:
1474 {
1475 /* The X component contains 1 or -1 depending on whether the framebuffer
1476 * is a FBO or the window system buffer, respectively.
1477 * It is then multiplied with the source operand of DDY.
1478 */
1479 static const gl_state_index transform_y_state[STATE_LENGTH]
1480 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1481
1482 unsigned transform_y_index =
1483 _mesa_add_state_reference(this->prog->Parameters,
1484 transform_y_state);
1485
1486 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1487 transform_y_index,
1488 glsl_type::vec4_type);
1489 transform_y.swizzle = SWIZZLE_XXXX;
1490
1491 st_src_reg temp = get_temp(glsl_type::vec4_type);
1492
1493 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1494 emit(ir, TGSI_OPCODE_DDY, result_dst, temp);
1495 break;
1496 }
1497
1498 case ir_unop_noise: {
1499 /* At some point, a motivated person could add a better
1500 * implementation of noise. Currently not even the nvidia
1501 * binary drivers do anything more than this. In any case, the
1502 * place to do this is in the GL state tracker, not the poor
1503 * driver.
1504 */
1505 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1506 break;
1507 }
1508
1509 case ir_binop_add:
1510 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1511 break;
1512 case ir_binop_sub:
1513 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1514 break;
1515
1516 case ir_binop_mul:
1517 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1518 break;
1519 case ir_binop_div:
1520 if (result_dst.type == GLSL_TYPE_FLOAT)
1521 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1522 else
1523 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1524 break;
1525 case ir_binop_mod:
1526 if (result_dst.type == GLSL_TYPE_FLOAT)
1527 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1528 else
1529 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1530 break;
1531
1532 case ir_binop_less:
1533 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1534 break;
1535 case ir_binop_greater:
1536 emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1537 break;
1538 case ir_binop_lequal:
1539 emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1540 break;
1541 case ir_binop_gequal:
1542 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1543 break;
1544 case ir_binop_equal:
1545 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1546 break;
1547 case ir_binop_nequal:
1548 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1549 break;
1550 case ir_binop_all_equal:
1551 /* "==" operator producing a scalar boolean. */
1552 if (ir->operands[0]->type->is_vector() ||
1553 ir->operands[1]->type->is_vector()) {
1554 st_src_reg temp = get_temp(native_integers ?
1555 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1556 glsl_type::vec4_type);
1557
1558 if (native_integers) {
1559 st_dst_reg temp_dst = st_dst_reg(temp);
1560 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1561
1562 emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1563
1564 /* Emit 1-3 AND operations to combine the SEQ results. */
1565 switch (ir->operands[0]->type->vector_elements) {
1566 case 2:
1567 break;
1568 case 3:
1569 temp_dst.writemask = WRITEMASK_Y;
1570 temp1.swizzle = SWIZZLE_YYYY;
1571 temp2.swizzle = SWIZZLE_ZZZZ;
1572 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1573 break;
1574 case 4:
1575 temp_dst.writemask = WRITEMASK_X;
1576 temp1.swizzle = SWIZZLE_XXXX;
1577 temp2.swizzle = SWIZZLE_YYYY;
1578 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1579 temp_dst.writemask = WRITEMASK_Y;
1580 temp1.swizzle = SWIZZLE_ZZZZ;
1581 temp2.swizzle = SWIZZLE_WWWW;
1582 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1583 }
1584
1585 temp1.swizzle = SWIZZLE_XXXX;
1586 temp2.swizzle = SWIZZLE_YYYY;
1587 emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1588 } else {
1589 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1590
1591 /* After the dot-product, the value will be an integer on the
1592 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1593 */
1594 emit_dp(ir, result_dst, temp, temp, vector_elements);
1595
1596 /* Negating the result of the dot-product gives values on the range
1597 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1598 * This is achieved using SGE.
1599 */
1600 st_src_reg sge_src = result_src;
1601 sge_src.negate = ~sge_src.negate;
1602 emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1603 }
1604 } else {
1605 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1606 }
1607 break;
1608 case ir_binop_any_nequal:
1609 /* "!=" operator producing a scalar boolean. */
1610 if (ir->operands[0]->type->is_vector() ||
1611 ir->operands[1]->type->is_vector()) {
1612 st_src_reg temp = get_temp(native_integers ?
1613 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1614 glsl_type::vec4_type);
1615 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1616
1617 if (native_integers) {
1618 st_dst_reg temp_dst = st_dst_reg(temp);
1619 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1620
1621 /* Emit 1-3 OR operations to combine the SNE results. */
1622 switch (ir->operands[0]->type->vector_elements) {
1623 case 2:
1624 break;
1625 case 3:
1626 temp_dst.writemask = WRITEMASK_Y;
1627 temp1.swizzle = SWIZZLE_YYYY;
1628 temp2.swizzle = SWIZZLE_ZZZZ;
1629 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1630 break;
1631 case 4:
1632 temp_dst.writemask = WRITEMASK_X;
1633 temp1.swizzle = SWIZZLE_XXXX;
1634 temp2.swizzle = SWIZZLE_YYYY;
1635 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1636 temp_dst.writemask = WRITEMASK_Y;
1637 temp1.swizzle = SWIZZLE_ZZZZ;
1638 temp2.swizzle = SWIZZLE_WWWW;
1639 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1640 }
1641
1642 temp1.swizzle = SWIZZLE_XXXX;
1643 temp2.swizzle = SWIZZLE_YYYY;
1644 emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1645 } else {
1646 /* After the dot-product, the value will be an integer on the
1647 * range [0,4]. Zero stays zero, and positive values become 1.0.
1648 */
1649 glsl_to_tgsi_instruction *const dp =
1650 emit_dp(ir, result_dst, temp, temp, vector_elements);
1651 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1652 /* The clamping to [0,1] can be done for free in the fragment
1653 * shader with a saturate.
1654 */
1655 dp->saturate = true;
1656 } else {
1657 /* Negating the result of the dot-product gives values on the range
1658 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1659 * achieved using SLT.
1660 */
1661 st_src_reg slt_src = result_src;
1662 slt_src.negate = ~slt_src.negate;
1663 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1664 }
1665 }
1666 } else {
1667 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1668 }
1669 break;
1670
1671 case ir_unop_any: {
1672 assert(ir->operands[0]->type->is_vector());
1673
1674 /* After the dot-product, the value will be an integer on the
1675 * range [0,4]. Zero stays zero, and positive values become 1.0.
1676 */
1677 glsl_to_tgsi_instruction *const dp =
1678 emit_dp(ir, result_dst, op[0], op[0],
1679 ir->operands[0]->type->vector_elements);
1680 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1681 result_dst.type == GLSL_TYPE_FLOAT) {
1682 /* The clamping to [0,1] can be done for free in the fragment
1683 * shader with a saturate.
1684 */
1685 dp->saturate = true;
1686 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1687 /* Negating the result of the dot-product gives values on the range
1688 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1689 * is achieved using SLT.
1690 */
1691 st_src_reg slt_src = result_src;
1692 slt_src.negate = ~slt_src.negate;
1693 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1694 }
1695 else {
1696 /* Use SNE 0 if integers are being used as boolean values. */
1697 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1698 }
1699 break;
1700 }
1701
1702 case ir_binop_logic_xor:
1703 if (native_integers)
1704 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1705 else
1706 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1707 break;
1708
1709 case ir_binop_logic_or: {
1710 if (native_integers) {
1711 /* If integers are used as booleans, we can use an actual "or"
1712 * instruction.
1713 */
1714 assert(native_integers);
1715 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1716 } else {
1717 /* After the addition, the value will be an integer on the
1718 * range [0,2]. Zero stays zero, and positive values become 1.0.
1719 */
1720 glsl_to_tgsi_instruction *add =
1721 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1722 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1723 /* The clamping to [0,1] can be done for free in the fragment
1724 * shader with a saturate if floats are being used as boolean values.
1725 */
1726 add->saturate = true;
1727 } else {
1728 /* Negating the result of the addition gives values on the range
1729 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1730 * is achieved using SLT.
1731 */
1732 st_src_reg slt_src = result_src;
1733 slt_src.negate = ~slt_src.negate;
1734 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1735 }
1736 }
1737 break;
1738 }
1739
1740 case ir_binop_logic_and:
1741 /* If native integers are disabled, the bool args are stored as float 0.0
1742 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1743 * actual AND opcode.
1744 */
1745 if (native_integers)
1746 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1747 else
1748 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1749 break;
1750
1751 case ir_binop_dot:
1752 assert(ir->operands[0]->type->is_vector());
1753 assert(ir->operands[0]->type == ir->operands[1]->type);
1754 emit_dp(ir, result_dst, op[0], op[1],
1755 ir->operands[0]->type->vector_elements);
1756 break;
1757
1758 case ir_unop_sqrt:
1759 if (have_sqrt) {
1760 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1761 }
1762 else {
1763 /* sqrt(x) = x * rsq(x). */
1764 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1765 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1766 /* For incoming channels <= 0, set the result to 0. */
1767 op[0].negate = ~op[0].negate;
1768 emit(ir, TGSI_OPCODE_CMP, result_dst,
1769 op[0], result_src, st_src_reg_for_float(0.0));
1770 }
1771 break;
1772 case ir_unop_rsq:
1773 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1774 break;
1775 case ir_unop_i2f:
1776 if (native_integers) {
1777 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1778 break;
1779 }
1780 /* fallthrough to next case otherwise */
1781 case ir_unop_b2f:
1782 if (native_integers) {
1783 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1784 break;
1785 }
1786 /* fallthrough to next case otherwise */
1787 case ir_unop_i2u:
1788 case ir_unop_u2i:
1789 /* Converting between signed and unsigned integers is a no-op. */
1790 result_src = op[0];
1791 break;
1792 case ir_unop_b2i:
1793 if (native_integers) {
1794 /* Booleans are stored as integers using ~0 for true and 0 for false.
1795 * GLSL requires that int(bool) return 1 for true and 0 for false.
1796 * This conversion is done with AND, but it could be done with NEG.
1797 */
1798 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1799 } else {
1800 /* Booleans and integers are both stored as floats when native
1801 * integers are disabled.
1802 */
1803 result_src = op[0];
1804 }
1805 break;
1806 case ir_unop_f2i:
1807 if (native_integers)
1808 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1809 else
1810 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1811 break;
1812 case ir_unop_f2u:
1813 if (native_integers)
1814 emit(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1815 else
1816 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1817 break;
1818 case ir_unop_bitcast_f2i:
1819 result_src = op[0];
1820 result_src.type = GLSL_TYPE_INT;
1821 break;
1822 case ir_unop_bitcast_f2u:
1823 result_src = op[0];
1824 result_src.type = GLSL_TYPE_UINT;
1825 break;
1826 case ir_unop_bitcast_i2f:
1827 case ir_unop_bitcast_u2f:
1828 result_src = op[0];
1829 result_src.type = GLSL_TYPE_FLOAT;
1830 break;
1831 case ir_unop_f2b:
1832 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1833 break;
1834 case ir_unop_i2b:
1835 if (native_integers)
1836 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1837 else
1838 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1839 break;
1840 case ir_unop_trunc:
1841 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1842 break;
1843 case ir_unop_ceil:
1844 emit(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1845 break;
1846 case ir_unop_floor:
1847 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1848 break;
1849 case ir_unop_round_even:
1850 emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1851 break;
1852 case ir_unop_fract:
1853 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1854 break;
1855
1856 case ir_binop_min:
1857 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1858 break;
1859 case ir_binop_max:
1860 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1861 break;
1862 case ir_binop_pow:
1863 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1864 break;
1865
1866 case ir_unop_bit_not:
1867 if (native_integers) {
1868 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1869 break;
1870 }
1871 case ir_unop_u2f:
1872 if (native_integers) {
1873 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1874 break;
1875 }
1876 case ir_binop_lshift:
1877 if (native_integers) {
1878 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1879 break;
1880 }
1881 case ir_binop_rshift:
1882 if (native_integers) {
1883 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1884 break;
1885 }
1886 case ir_binop_bit_and:
1887 if (native_integers) {
1888 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1889 break;
1890 }
1891 case ir_binop_bit_xor:
1892 if (native_integers) {
1893 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1894 break;
1895 }
1896 case ir_binop_bit_or:
1897 if (native_integers) {
1898 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1899 break;
1900 }
1901
1902 assert(!"GLSL 1.30 features unsupported");
1903 break;
1904
1905 case ir_binop_ubo_load: {
1906 ir_constant *uniform_block = ir->operands[0]->as_constant();
1907 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1908 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1909 st_src_reg index_reg = get_temp(glsl_type::uint_type);
1910 st_src_reg cbuf;
1911
1912 cbuf.type = glsl_type::vec4_type->base_type;
1913 cbuf.file = PROGRAM_CONSTANT;
1914 cbuf.index = 0;
1915 cbuf.index2D = uniform_block->value.u[0] + 1;
1916 cbuf.reladdr = NULL;
1917 cbuf.negate = 0;
1918
1919 assert(ir->type->is_vector() || ir->type->is_scalar());
1920
1921 if (const_offset_ir) {
1922 index_reg = st_src_reg_for_int(const_offset / 16);
1923 } else {
1924 emit(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1], st_src_reg_for_int(4));
1925 }
1926
1927 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
1928 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
1929 const_offset % 16 / 4,
1930 const_offset % 16 / 4,
1931 const_offset % 16 / 4);
1932
1933 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1934 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
1935
1936 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1937 emit(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
1938 } else {
1939 emit(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
1940 }
1941 break;
1942 }
1943 case ir_triop_lrp:
1944 /* note: we have to reorder the three args here */
1945 emit(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1946 break;
1947 case ir_triop_csel:
1948 if (this->ctx->Const.NativeIntegers)
1949 emit(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
1950 else {
1951 op[0].negate = ~op[0].negate;
1952 emit(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1953 }
1954 break;
1955 case ir_triop_bitfield_extract:
1956 emit(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
1957 break;
1958 case ir_quadop_bitfield_insert:
1959 emit(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
1960 break;
1961 case ir_unop_bitfield_reverse:
1962 emit(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
1963 break;
1964 case ir_unop_bit_count:
1965 emit(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
1966 break;
1967 case ir_unop_find_msb:
1968 emit(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
1969 break;
1970 case ir_unop_find_lsb:
1971 emit(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
1972 break;
1973 case ir_binop_imul_high:
1974 emit(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
1975 break;
1976 case ir_triop_fma:
1977 /* NOTE: Perhaps there should be a special opcode that enforces fused
1978 * mul-add. Just use MAD for now.
1979 */
1980 emit(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
1981 break;
1982 case ir_unop_pack_snorm_2x16:
1983 case ir_unop_pack_unorm_2x16:
1984 case ir_unop_pack_half_2x16:
1985 case ir_unop_pack_snorm_4x8:
1986 case ir_unop_pack_unorm_4x8:
1987 case ir_unop_unpack_snorm_2x16:
1988 case ir_unop_unpack_unorm_2x16:
1989 case ir_unop_unpack_half_2x16:
1990 case ir_unop_unpack_half_2x16_split_x:
1991 case ir_unop_unpack_half_2x16_split_y:
1992 case ir_unop_unpack_snorm_4x8:
1993 case ir_unop_unpack_unorm_4x8:
1994 case ir_binop_pack_half_2x16_split:
1995 case ir_binop_bfm:
1996 case ir_triop_bfi:
1997 case ir_quadop_vector:
1998 case ir_binop_vector_extract:
1999 case ir_triop_vector_insert:
2000 case ir_binop_ldexp:
2001 case ir_binop_carry:
2002 case ir_binop_borrow:
2003 /* This operation is not supported, or should have already been handled.
2004 */
2005 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2006 break;
2007 }
2008
2009 this->result = result_src;
2010 }
2011
2012
2013 void
2014 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2015 {
2016 st_src_reg src;
2017 int i;
2018 int swizzle[4];
2019
2020 /* Note that this is only swizzles in expressions, not those on the left
2021 * hand side of an assignment, which do write masking. See ir_assignment
2022 * for that.
2023 */
2024
2025 ir->val->accept(this);
2026 src = this->result;
2027 assert(src.file != PROGRAM_UNDEFINED);
2028
2029 for (i = 0; i < 4; i++) {
2030 if (i < ir->type->vector_elements) {
2031 switch (i) {
2032 case 0:
2033 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2034 break;
2035 case 1:
2036 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2037 break;
2038 case 2:
2039 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2040 break;
2041 case 3:
2042 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2043 break;
2044 }
2045 } else {
2046 /* If the type is smaller than a vec4, replicate the last
2047 * channel out.
2048 */
2049 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2050 }
2051 }
2052
2053 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2054
2055 this->result = src;
2056 }
2057
2058 void
2059 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2060 {
2061 variable_storage *entry = find_variable_storage(ir->var);
2062 ir_variable *var = ir->var;
2063
2064 if (!entry) {
2065 switch (var->data.mode) {
2066 case ir_var_uniform:
2067 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2068 var->data.location);
2069 this->variables.push_tail(entry);
2070 break;
2071 case ir_var_shader_in:
2072 /* The linker assigns locations for varyings and attributes,
2073 * including deprecated builtins (like gl_Color), user-assign
2074 * generic attributes (glBindVertexLocation), and
2075 * user-defined varyings.
2076 */
2077 assert(var->data.location != -1);
2078 entry = new(mem_ctx) variable_storage(var,
2079 PROGRAM_INPUT,
2080 var->data.location);
2081 break;
2082 case ir_var_shader_out:
2083 assert(var->data.location != -1);
2084 entry = new(mem_ctx) variable_storage(var,
2085 PROGRAM_OUTPUT,
2086 var->data.location
2087 + var->data.index);
2088 break;
2089 case ir_var_system_value:
2090 entry = new(mem_ctx) variable_storage(var,
2091 PROGRAM_SYSTEM_VALUE,
2092 var->data.location);
2093 break;
2094 case ir_var_auto:
2095 case ir_var_temporary:
2096 st_src_reg src = get_temp(var->type);
2097
2098 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2099 this->variables.push_tail(entry);
2100
2101 break;
2102 }
2103
2104 if (!entry) {
2105 printf("Failed to make storage for %s\n", var->name);
2106 exit(1);
2107 }
2108 }
2109
2110 this->result = st_src_reg(entry->file, entry->index, var->type);
2111 if (!native_integers)
2112 this->result.type = GLSL_TYPE_FLOAT;
2113 }
2114
2115 void
2116 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2117 {
2118 ir_constant *index;
2119 st_src_reg src;
2120 int element_size = type_size(ir->type);
2121 bool is_2D_input;
2122
2123 index = ir->array_index->constant_expression_value();
2124
2125 ir->array->accept(this);
2126 src = this->result;
2127
2128 is_2D_input = this->prog->Target == GL_GEOMETRY_PROGRAM_NV &&
2129 src.file == PROGRAM_INPUT &&
2130 ir->array->ir_type != ir_type_dereference_array;
2131
2132 if (is_2D_input)
2133 element_size = 1;
2134
2135 if (index) {
2136 if (is_2D_input) {
2137 src.index2D = index->value.i[0];
2138 src.has_index2 = true;
2139 } else
2140 src.index += index->value.i[0] * element_size;
2141 } else {
2142 /* Variable index array dereference. It eats the "vec4" of the
2143 * base of the array and an index that offsets the TGSI register
2144 * index.
2145 */
2146 ir->array_index->accept(this);
2147
2148 st_src_reg index_reg;
2149
2150 if (element_size == 1) {
2151 index_reg = this->result;
2152 } else {
2153 index_reg = get_temp(native_integers ?
2154 glsl_type::int_type : glsl_type::float_type);
2155
2156 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2157 this->result, st_src_reg_for_type(index_reg.type, element_size));
2158 }
2159
2160 /* If there was already a relative address register involved, add the
2161 * new and the old together to get the new offset.
2162 */
2163 if (!is_2D_input && src.reladdr != NULL) {
2164 st_src_reg accum_reg = get_temp(native_integers ?
2165 glsl_type::int_type : glsl_type::float_type);
2166
2167 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2168 index_reg, *src.reladdr);
2169
2170 index_reg = accum_reg;
2171 }
2172
2173 if (is_2D_input) {
2174 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2175 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2176 src.index2D = 0;
2177 src.has_index2 = true;
2178 } else {
2179 src.reladdr = ralloc(mem_ctx, st_src_reg);
2180 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2181 }
2182 }
2183
2184 /* If the type is smaller than a vec4, replicate the last channel out. */
2185 if (ir->type->is_scalar() || ir->type->is_vector())
2186 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2187 else
2188 src.swizzle = SWIZZLE_NOOP;
2189
2190 /* Change the register type to the element type of the array. */
2191 src.type = ir->type->base_type;
2192
2193 this->result = src;
2194 }
2195
2196 void
2197 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2198 {
2199 unsigned int i;
2200 const glsl_type *struct_type = ir->record->type;
2201 int offset = 0;
2202
2203 ir->record->accept(this);
2204
2205 for (i = 0; i < struct_type->length; i++) {
2206 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2207 break;
2208 offset += type_size(struct_type->fields.structure[i].type);
2209 }
2210
2211 /* If the type is smaller than a vec4, replicate the last channel out. */
2212 if (ir->type->is_scalar() || ir->type->is_vector())
2213 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2214 else
2215 this->result.swizzle = SWIZZLE_NOOP;
2216
2217 this->result.index += offset;
2218 this->result.type = ir->type->base_type;
2219 }
2220
2221 /**
2222 * We want to be careful in assignment setup to hit the actual storage
2223 * instead of potentially using a temporary like we might with the
2224 * ir_dereference handler.
2225 */
2226 static st_dst_reg
2227 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2228 {
2229 /* The LHS must be a dereference. If the LHS is a variable indexed array
2230 * access of a vector, it must be separated into a series conditional moves
2231 * before reaching this point (see ir_vec_index_to_cond_assign).
2232 */
2233 assert(ir->as_dereference());
2234 ir_dereference_array *deref_array = ir->as_dereference_array();
2235 if (deref_array) {
2236 assert(!deref_array->array->type->is_vector());
2237 }
2238
2239 /* Use the rvalue deref handler for the most part. We'll ignore
2240 * swizzles in it and write swizzles using writemask, though.
2241 */
2242 ir->accept(v);
2243 return st_dst_reg(v->result);
2244 }
2245
2246 /**
2247 * Process the condition of a conditional assignment
2248 *
2249 * Examines the condition of a conditional assignment to generate the optimal
2250 * first operand of a \c CMP instruction. If the condition is a relational
2251 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2252 * used as the source for the \c CMP instruction. Otherwise the comparison
2253 * is processed to a boolean result, and the boolean result is used as the
2254 * operand to the CMP instruction.
2255 */
2256 bool
2257 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2258 {
2259 ir_rvalue *src_ir = ir;
2260 bool negate = true;
2261 bool switch_order = false;
2262
2263 ir_expression *const expr = ir->as_expression();
2264 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2265 bool zero_on_left = false;
2266
2267 if (expr->operands[0]->is_zero()) {
2268 src_ir = expr->operands[1];
2269 zero_on_left = true;
2270 } else if (expr->operands[1]->is_zero()) {
2271 src_ir = expr->operands[0];
2272 zero_on_left = false;
2273 }
2274
2275 /* a is - 0 + - 0 +
2276 * (a < 0) T F F ( a < 0) T F F
2277 * (0 < a) F F T (-a < 0) F F T
2278 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2279 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2280 * (a > 0) F F T (-a < 0) F F T
2281 * (0 > a) T F F ( a < 0) T F F
2282 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2283 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2284 *
2285 * Note that exchanging the order of 0 and 'a' in the comparison simply
2286 * means that the value of 'a' should be negated.
2287 */
2288 if (src_ir != ir) {
2289 switch (expr->operation) {
2290 case ir_binop_less:
2291 switch_order = false;
2292 negate = zero_on_left;
2293 break;
2294
2295 case ir_binop_greater:
2296 switch_order = false;
2297 negate = !zero_on_left;
2298 break;
2299
2300 case ir_binop_lequal:
2301 switch_order = true;
2302 negate = !zero_on_left;
2303 break;
2304
2305 case ir_binop_gequal:
2306 switch_order = true;
2307 negate = zero_on_left;
2308 break;
2309
2310 default:
2311 /* This isn't the right kind of comparison afterall, so make sure
2312 * the whole condition is visited.
2313 */
2314 src_ir = ir;
2315 break;
2316 }
2317 }
2318 }
2319
2320 src_ir->accept(this);
2321
2322 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2323 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2324 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2325 * computing the condition.
2326 */
2327 if (negate)
2328 this->result.negate = ~this->result.negate;
2329
2330 return switch_order;
2331 }
2332
2333 void
2334 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2335 st_dst_reg *l, st_src_reg *r)
2336 {
2337 if (type->base_type == GLSL_TYPE_STRUCT) {
2338 for (unsigned int i = 0; i < type->length; i++) {
2339 emit_block_mov(ir, type->fields.structure[i].type, l, r);
2340 }
2341 return;
2342 }
2343
2344 if (type->is_array()) {
2345 for (unsigned int i = 0; i < type->length; i++) {
2346 emit_block_mov(ir, type->fields.array, l, r);
2347 }
2348 return;
2349 }
2350
2351 if (type->is_matrix()) {
2352 const struct glsl_type *vec_type;
2353
2354 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
2355 type->vector_elements, 1);
2356
2357 for (int i = 0; i < type->matrix_columns; i++) {
2358 emit_block_mov(ir, vec_type, l, r);
2359 }
2360 return;
2361 }
2362
2363 assert(type->is_scalar() || type->is_vector());
2364
2365 r->type = type->base_type;
2366 emit(ir, TGSI_OPCODE_MOV, *l, *r);
2367 l->index++;
2368 r->index++;
2369 }
2370
2371 void
2372 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2373 {
2374 st_dst_reg l;
2375 st_src_reg r;
2376 int i;
2377
2378 ir->rhs->accept(this);
2379 r = this->result;
2380
2381 l = get_assignment_lhs(ir->lhs, this);
2382
2383 /* FINISHME: This should really set to the correct maximal writemask for each
2384 * FINISHME: component written (in the loops below). This case can only
2385 * FINISHME: occur for matrices, arrays, and structures.
2386 */
2387 if (ir->write_mask == 0) {
2388 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2389 l.writemask = WRITEMASK_XYZW;
2390 } else if (ir->lhs->type->is_scalar() &&
2391 ir->lhs->variable_referenced()->data.mode == ir_var_shader_out) {
2392 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2393 * FINISHME: W component of fragment shader output zero, work correctly.
2394 */
2395 l.writemask = WRITEMASK_XYZW;
2396 } else {
2397 int swizzles[4];
2398 int first_enabled_chan = 0;
2399 int rhs_chan = 0;
2400
2401 l.writemask = ir->write_mask;
2402
2403 for (int i = 0; i < 4; i++) {
2404 if (l.writemask & (1 << i)) {
2405 first_enabled_chan = GET_SWZ(r.swizzle, i);
2406 break;
2407 }
2408 }
2409
2410 /* Swizzle a small RHS vector into the channels being written.
2411 *
2412 * glsl ir treats write_mask as dictating how many channels are
2413 * present on the RHS while TGSI treats write_mask as just
2414 * showing which channels of the vec4 RHS get written.
2415 */
2416 for (int i = 0; i < 4; i++) {
2417 if (l.writemask & (1 << i))
2418 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2419 else
2420 swizzles[i] = first_enabled_chan;
2421 }
2422 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2423 swizzles[2], swizzles[3]);
2424 }
2425
2426 assert(l.file != PROGRAM_UNDEFINED);
2427 assert(r.file != PROGRAM_UNDEFINED);
2428
2429 if (ir->condition) {
2430 const bool switch_order = this->process_move_condition(ir->condition);
2431 st_src_reg condition = this->result;
2432
2433 for (i = 0; i < type_size(ir->lhs->type); i++) {
2434 st_src_reg l_src = st_src_reg(l);
2435 st_src_reg condition_temp = condition;
2436 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2437
2438 if (native_integers) {
2439 /* This is necessary because TGSI's CMP instruction expects the
2440 * condition to be a float, and we store booleans as integers.
2441 * TODO: really want to avoid i2f path and use UCMP. Requires
2442 * changes to process_move_condition though too.
2443 */
2444 condition_temp = get_temp(glsl_type::vec4_type);
2445 condition.negate = 0;
2446 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2447 condition_temp.swizzle = condition.swizzle;
2448 }
2449
2450 if (switch_order) {
2451 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2452 } else {
2453 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2454 }
2455
2456 l.index++;
2457 r.index++;
2458 }
2459 } else if (ir->rhs->as_expression() &&
2460 this->instructions.get_tail() &&
2461 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2462 type_size(ir->lhs->type) == 1 &&
2463 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2464 /* To avoid emitting an extra MOV when assigning an expression to a
2465 * variable, emit the last instruction of the expression again, but
2466 * replace the destination register with the target of the assignment.
2467 * Dead code elimination will remove the original instruction.
2468 */
2469 glsl_to_tgsi_instruction *inst, *new_inst;
2470 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2471 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2472 new_inst->saturate = inst->saturate;
2473 inst->dead_mask = inst->dst.writemask;
2474 } else {
2475 emit_block_mov(ir, ir->rhs->type, &l, &r);
2476 }
2477 }
2478
2479
2480 void
2481 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2482 {
2483 st_src_reg src;
2484 GLfloat stack_vals[4] = { 0 };
2485 gl_constant_value *values = (gl_constant_value *) stack_vals;
2486 GLenum gl_type = GL_NONE;
2487 unsigned int i;
2488 static int in_array = 0;
2489 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2490
2491 /* Unfortunately, 4 floats is all we can get into
2492 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2493 * aggregate constant and move each constant value into it. If we
2494 * get lucky, copy propagation will eliminate the extra moves.
2495 */
2496 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2497 st_src_reg temp_base = get_temp(ir->type);
2498 st_dst_reg temp = st_dst_reg(temp_base);
2499
2500 foreach_list(node, &ir->components) {
2501 ir_constant *field_value = (ir_constant *) node;
2502 int size = type_size(field_value->type);
2503
2504 assert(size > 0);
2505
2506 field_value->accept(this);
2507 src = this->result;
2508
2509 for (i = 0; i < (unsigned int)size; i++) {
2510 emit(ir, TGSI_OPCODE_MOV, temp, src);
2511
2512 src.index++;
2513 temp.index++;
2514 }
2515 }
2516 this->result = temp_base;
2517 return;
2518 }
2519
2520 if (ir->type->is_array()) {
2521 st_src_reg temp_base = get_temp(ir->type);
2522 st_dst_reg temp = st_dst_reg(temp_base);
2523 int size = type_size(ir->type->fields.array);
2524
2525 assert(size > 0);
2526 in_array++;
2527
2528 for (i = 0; i < ir->type->length; i++) {
2529 ir->array_elements[i]->accept(this);
2530 src = this->result;
2531 for (int j = 0; j < size; j++) {
2532 emit(ir, TGSI_OPCODE_MOV, temp, src);
2533
2534 src.index++;
2535 temp.index++;
2536 }
2537 }
2538 this->result = temp_base;
2539 in_array--;
2540 return;
2541 }
2542
2543 if (ir->type->is_matrix()) {
2544 st_src_reg mat = get_temp(ir->type);
2545 st_dst_reg mat_column = st_dst_reg(mat);
2546
2547 for (i = 0; i < ir->type->matrix_columns; i++) {
2548 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2549 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2550
2551 src = st_src_reg(file, -1, ir->type->base_type);
2552 src.index = add_constant(file,
2553 values,
2554 ir->type->vector_elements,
2555 GL_FLOAT,
2556 &src.swizzle);
2557 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2558
2559 mat_column.index++;
2560 }
2561
2562 this->result = mat;
2563 return;
2564 }
2565
2566 switch (ir->type->base_type) {
2567 case GLSL_TYPE_FLOAT:
2568 gl_type = GL_FLOAT;
2569 for (i = 0; i < ir->type->vector_elements; i++) {
2570 values[i].f = ir->value.f[i];
2571 }
2572 break;
2573 case GLSL_TYPE_UINT:
2574 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2575 for (i = 0; i < ir->type->vector_elements; i++) {
2576 if (native_integers)
2577 values[i].u = ir->value.u[i];
2578 else
2579 values[i].f = ir->value.u[i];
2580 }
2581 break;
2582 case GLSL_TYPE_INT:
2583 gl_type = native_integers ? GL_INT : GL_FLOAT;
2584 for (i = 0; i < ir->type->vector_elements; i++) {
2585 if (native_integers)
2586 values[i].i = ir->value.i[i];
2587 else
2588 values[i].f = ir->value.i[i];
2589 }
2590 break;
2591 case GLSL_TYPE_BOOL:
2592 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2593 for (i = 0; i < ir->type->vector_elements; i++) {
2594 if (native_integers)
2595 values[i].u = ir->value.b[i] ? ~0 : 0;
2596 else
2597 values[i].f = ir->value.b[i];
2598 }
2599 break;
2600 default:
2601 assert(!"Non-float/uint/int/bool constant");
2602 }
2603
2604 this->result = st_src_reg(file, -1, ir->type);
2605 this->result.index = add_constant(file,
2606 values,
2607 ir->type->vector_elements,
2608 gl_type,
2609 &this->result.swizzle);
2610 }
2611
2612 function_entry *
2613 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2614 {
2615 function_entry *entry;
2616
2617 foreach_list(node, &this->function_signatures) {
2618 entry = (function_entry *) node;
2619
2620 if (entry->sig == sig)
2621 return entry;
2622 }
2623
2624 entry = ralloc(mem_ctx, function_entry);
2625 entry->sig = sig;
2626 entry->sig_id = this->next_signature_id++;
2627 entry->bgn_inst = NULL;
2628
2629 /* Allocate storage for all the parameters. */
2630 foreach_list(node, &sig->parameters) {
2631 ir_variable *param = (ir_variable *) node;
2632 variable_storage *storage;
2633
2634 storage = find_variable_storage(param);
2635 assert(!storage);
2636
2637 st_src_reg src = get_temp(param->type);
2638
2639 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
2640 this->variables.push_tail(storage);
2641 }
2642
2643 if (!sig->return_type->is_void()) {
2644 entry->return_reg = get_temp(sig->return_type);
2645 } else {
2646 entry->return_reg = undef_src;
2647 }
2648
2649 this->function_signatures.push_tail(entry);
2650 return entry;
2651 }
2652
2653 void
2654 glsl_to_tgsi_visitor::visit(ir_call *ir)
2655 {
2656 glsl_to_tgsi_instruction *call_inst;
2657 ir_function_signature *sig = ir->callee;
2658 function_entry *entry = get_function_signature(sig);
2659 int i;
2660
2661 /* Process in parameters. */
2662 foreach_two_lists(formal_node, &sig->parameters,
2663 actual_node, &ir->actual_parameters) {
2664 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
2665 ir_variable *param = (ir_variable *) formal_node;
2666
2667 if (param->data.mode == ir_var_function_in ||
2668 param->data.mode == ir_var_function_inout) {
2669 variable_storage *storage = find_variable_storage(param);
2670 assert(storage);
2671
2672 param_rval->accept(this);
2673 st_src_reg r = this->result;
2674
2675 st_dst_reg l;
2676 l.file = storage->file;
2677 l.index = storage->index;
2678 l.reladdr = NULL;
2679 l.writemask = WRITEMASK_XYZW;
2680 l.cond_mask = COND_TR;
2681
2682 for (i = 0; i < type_size(param->type); i++) {
2683 emit(ir, TGSI_OPCODE_MOV, l, r);
2684 l.index++;
2685 r.index++;
2686 }
2687 }
2688 }
2689
2690 /* Emit call instruction */
2691 call_inst = emit(ir, TGSI_OPCODE_CAL);
2692 call_inst->function = entry;
2693
2694 /* Process out parameters. */
2695 foreach_two_lists(formal_node, &sig->parameters,
2696 actual_node, &ir->actual_parameters) {
2697 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
2698 ir_variable *param = (ir_variable *) formal_node;
2699
2700 if (param->data.mode == ir_var_function_out ||
2701 param->data.mode == ir_var_function_inout) {
2702 variable_storage *storage = find_variable_storage(param);
2703 assert(storage);
2704
2705 st_src_reg r;
2706 r.file = storage->file;
2707 r.index = storage->index;
2708 r.reladdr = NULL;
2709 r.swizzle = SWIZZLE_NOOP;
2710 r.negate = 0;
2711
2712 param_rval->accept(this);
2713 st_dst_reg l = st_dst_reg(this->result);
2714
2715 for (i = 0; i < type_size(param->type); i++) {
2716 emit(ir, TGSI_OPCODE_MOV, l, r);
2717 l.index++;
2718 r.index++;
2719 }
2720 }
2721 }
2722
2723 /* Process return value. */
2724 this->result = entry->return_reg;
2725 }
2726
2727 void
2728 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2729 {
2730 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy, offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
2731 st_dst_reg result_dst, coord_dst, cube_sc_dst;
2732 glsl_to_tgsi_instruction *inst = NULL;
2733 unsigned opcode = TGSI_OPCODE_NOP;
2734 const glsl_type *sampler_type = ir->sampler->type;
2735 bool is_cube_array = false;
2736 unsigned i;
2737
2738 /* if we are a cube array sampler */
2739 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2740 sampler_type->sampler_array)) {
2741 is_cube_array = true;
2742 }
2743
2744 if (ir->coordinate) {
2745 ir->coordinate->accept(this);
2746
2747 /* Put our coords in a temp. We'll need to modify them for shadow,
2748 * projection, or LOD, so the only case we'd use it as is is if
2749 * we're doing plain old texturing. The optimization passes on
2750 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2751 */
2752 coord = get_temp(glsl_type::vec4_type);
2753 coord_dst = st_dst_reg(coord);
2754 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
2755 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2756 }
2757
2758 if (ir->projector) {
2759 ir->projector->accept(this);
2760 projector = this->result;
2761 }
2762
2763 /* Storage for our result. Ideally for an assignment we'd be using
2764 * the actual storage for the result here, instead.
2765 */
2766 result_src = get_temp(ir->type);
2767 result_dst = st_dst_reg(result_src);
2768
2769 switch (ir->op) {
2770 case ir_tex:
2771 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
2772 if (ir->offset) {
2773 ir->offset->accept(this);
2774 offset[0] = this->result;
2775 }
2776 break;
2777 case ir_txb:
2778 opcode = is_cube_array ? TGSI_OPCODE_TXB2 : TGSI_OPCODE_TXB;
2779 ir->lod_info.bias->accept(this);
2780 lod_info = this->result;
2781 if (ir->offset) {
2782 ir->offset->accept(this);
2783 offset[0] = this->result;
2784 }
2785 break;
2786 case ir_txl:
2787 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
2788 ir->lod_info.lod->accept(this);
2789 lod_info = this->result;
2790 if (ir->offset) {
2791 ir->offset->accept(this);
2792 offset[0] = this->result;
2793 }
2794 break;
2795 case ir_txd:
2796 opcode = TGSI_OPCODE_TXD;
2797 ir->lod_info.grad.dPdx->accept(this);
2798 dx = this->result;
2799 ir->lod_info.grad.dPdy->accept(this);
2800 dy = this->result;
2801 if (ir->offset) {
2802 ir->offset->accept(this);
2803 offset[0] = this->result;
2804 }
2805 break;
2806 case ir_txs:
2807 opcode = TGSI_OPCODE_TXQ;
2808 ir->lod_info.lod->accept(this);
2809 lod_info = this->result;
2810 break;
2811 case ir_txf:
2812 opcode = TGSI_OPCODE_TXF;
2813 ir->lod_info.lod->accept(this);
2814 lod_info = this->result;
2815 if (ir->offset) {
2816 ir->offset->accept(this);
2817 offset[0] = this->result;
2818 }
2819 break;
2820 case ir_txf_ms:
2821 opcode = TGSI_OPCODE_TXF;
2822 ir->lod_info.sample_index->accept(this);
2823 sample_index = this->result;
2824 break;
2825 case ir_tg4:
2826 opcode = TGSI_OPCODE_TG4;
2827 ir->lod_info.component->accept(this);
2828 component = this->result;
2829 if (ir->offset) {
2830 ir->offset->accept(this);
2831 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
2832 const glsl_type *elt_type = ir->offset->type->fields.array;
2833 for (i = 0; i < ir->offset->type->length; i++) {
2834 offset[i] = this->result;
2835 offset[i].index += i * type_size(elt_type);
2836 offset[i].type = elt_type->base_type;
2837 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
2838 }
2839 } else {
2840 offset[0] = this->result;
2841 }
2842 }
2843 break;
2844 case ir_lod:
2845 opcode = TGSI_OPCODE_LODQ;
2846 break;
2847 case ir_query_levels:
2848 assert(!"Unexpected ir_query_levels opcode");
2849 break;
2850 }
2851
2852 if (ir->projector) {
2853 if (opcode == TGSI_OPCODE_TEX) {
2854 /* Slot the projector in as the last component of the coord. */
2855 coord_dst.writemask = WRITEMASK_W;
2856 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2857 coord_dst.writemask = WRITEMASK_XYZW;
2858 opcode = TGSI_OPCODE_TXP;
2859 } else {
2860 st_src_reg coord_w = coord;
2861 coord_w.swizzle = SWIZZLE_WWWW;
2862
2863 /* For the other TEX opcodes there's no projective version
2864 * since the last slot is taken up by LOD info. Do the
2865 * projective divide now.
2866 */
2867 coord_dst.writemask = WRITEMASK_W;
2868 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2869
2870 /* In the case where we have to project the coordinates "by hand,"
2871 * the shadow comparator value must also be projected.
2872 */
2873 st_src_reg tmp_src = coord;
2874 if (ir->shadow_comparitor) {
2875 /* Slot the shadow value in as the second to last component of the
2876 * coord.
2877 */
2878 ir->shadow_comparitor->accept(this);
2879
2880 tmp_src = get_temp(glsl_type::vec4_type);
2881 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2882
2883 /* Projective division not allowed for array samplers. */
2884 assert(!sampler_type->sampler_array);
2885
2886 tmp_dst.writemask = WRITEMASK_Z;
2887 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2888
2889 tmp_dst.writemask = WRITEMASK_XY;
2890 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2891 }
2892
2893 coord_dst.writemask = WRITEMASK_XYZ;
2894 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2895
2896 coord_dst.writemask = WRITEMASK_XYZW;
2897 coord.swizzle = SWIZZLE_XYZW;
2898 }
2899 }
2900
2901 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2902 * comparator was put in the correct place (and projected) by the code,
2903 * above, that handles by-hand projection.
2904 */
2905 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2906 /* Slot the shadow value in as the second to last component of the
2907 * coord.
2908 */
2909 ir->shadow_comparitor->accept(this);
2910
2911 if (is_cube_array) {
2912 cube_sc = get_temp(glsl_type::float_type);
2913 cube_sc_dst = st_dst_reg(cube_sc);
2914 cube_sc_dst.writemask = WRITEMASK_X;
2915 emit(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
2916 cube_sc_dst.writemask = WRITEMASK_X;
2917 }
2918 else {
2919 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2920 sampler_type->sampler_array) ||
2921 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
2922 coord_dst.writemask = WRITEMASK_W;
2923 } else {
2924 coord_dst.writemask = WRITEMASK_Z;
2925 }
2926
2927 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2928 coord_dst.writemask = WRITEMASK_XYZW;
2929 }
2930 }
2931
2932 if (ir->op == ir_txf_ms) {
2933 coord_dst.writemask = WRITEMASK_W;
2934 emit(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
2935 coord_dst.writemask = WRITEMASK_XYZW;
2936 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2937 opcode == TGSI_OPCODE_TXF) {
2938 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2939 coord_dst.writemask = WRITEMASK_W;
2940 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2941 coord_dst.writemask = WRITEMASK_XYZW;
2942 }
2943
2944 if (opcode == TGSI_OPCODE_TXD)
2945 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2946 else if (opcode == TGSI_OPCODE_TXQ)
2947 inst = emit(ir, opcode, result_dst, lod_info);
2948 else if (opcode == TGSI_OPCODE_TXF) {
2949 inst = emit(ir, opcode, result_dst, coord);
2950 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
2951 inst = emit(ir, opcode, result_dst, coord, lod_info);
2952 } else if (opcode == TGSI_OPCODE_TEX2) {
2953 inst = emit(ir, opcode, result_dst, coord, cube_sc);
2954 } else if (opcode == TGSI_OPCODE_TG4) {
2955 if (is_cube_array && ir->shadow_comparitor) {
2956 inst = emit(ir, opcode, result_dst, coord, cube_sc);
2957 } else {
2958 inst = emit(ir, opcode, result_dst, coord, component);
2959 }
2960 } else
2961 inst = emit(ir, opcode, result_dst, coord);
2962
2963 if (ir->shadow_comparitor)
2964 inst->tex_shadow = GL_TRUE;
2965
2966 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2967 this->shader_program,
2968 this->prog);
2969
2970 if (ir->offset) {
2971 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
2972 inst->tex_offsets[i] = offset[i];
2973 inst->tex_offset_num_offset = i;
2974 }
2975
2976 switch (sampler_type->sampler_dimensionality) {
2977 case GLSL_SAMPLER_DIM_1D:
2978 inst->tex_target = (sampler_type->sampler_array)
2979 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2980 break;
2981 case GLSL_SAMPLER_DIM_2D:
2982 inst->tex_target = (sampler_type->sampler_array)
2983 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2984 break;
2985 case GLSL_SAMPLER_DIM_3D:
2986 inst->tex_target = TEXTURE_3D_INDEX;
2987 break;
2988 case GLSL_SAMPLER_DIM_CUBE:
2989 inst->tex_target = (sampler_type->sampler_array)
2990 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
2991 break;
2992 case GLSL_SAMPLER_DIM_RECT:
2993 inst->tex_target = TEXTURE_RECT_INDEX;
2994 break;
2995 case GLSL_SAMPLER_DIM_BUF:
2996 inst->tex_target = TEXTURE_BUFFER_INDEX;
2997 break;
2998 case GLSL_SAMPLER_DIM_EXTERNAL:
2999 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3000 break;
3001 case GLSL_SAMPLER_DIM_MS:
3002 inst->tex_target = (sampler_type->sampler_array)
3003 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3004 break;
3005 default:
3006 assert(!"Should not get here.");
3007 }
3008
3009 this->result = result_src;
3010 }
3011
3012 void
3013 glsl_to_tgsi_visitor::visit(ir_return *ir)
3014 {
3015 if (ir->get_value()) {
3016 st_dst_reg l;
3017 int i;
3018
3019 assert(current_function);
3020
3021 ir->get_value()->accept(this);
3022 st_src_reg r = this->result;
3023
3024 l = st_dst_reg(current_function->return_reg);
3025
3026 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
3027 emit(ir, TGSI_OPCODE_MOV, l, r);
3028 l.index++;
3029 r.index++;
3030 }
3031 }
3032
3033 emit(ir, TGSI_OPCODE_RET);
3034 }
3035
3036 void
3037 glsl_to_tgsi_visitor::visit(ir_discard *ir)
3038 {
3039 if (ir->condition) {
3040 ir->condition->accept(this);
3041 this->result.negate = ~this->result.negate;
3042 emit(ir, TGSI_OPCODE_KILL_IF, undef_dst, this->result);
3043 } else {
3044 /* unconditional kil */
3045 emit(ir, TGSI_OPCODE_KILL);
3046 }
3047 }
3048
3049 void
3050 glsl_to_tgsi_visitor::visit(ir_if *ir)
3051 {
3052 unsigned if_opcode;
3053 glsl_to_tgsi_instruction *if_inst;
3054
3055 ir->condition->accept(this);
3056 assert(this->result.file != PROGRAM_UNDEFINED);
3057
3058 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
3059
3060 if_inst = emit(ir->condition, if_opcode, undef_dst, this->result);
3061
3062 this->instructions.push_tail(if_inst);
3063
3064 visit_exec_list(&ir->then_instructions, this);
3065
3066 if (!ir->else_instructions.is_empty()) {
3067 emit(ir->condition, TGSI_OPCODE_ELSE);
3068 visit_exec_list(&ir->else_instructions, this);
3069 }
3070
3071 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
3072 }
3073
3074
3075 void
3076 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
3077 {
3078 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3079 emit(ir, TGSI_OPCODE_EMIT);
3080 }
3081
3082 void
3083 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
3084 {
3085 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3086 emit(ir, TGSI_OPCODE_ENDPRIM);
3087 }
3088
3089 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
3090 {
3091 result.file = PROGRAM_UNDEFINED;
3092 next_temp = 1;
3093 next_array = 0;
3094 next_signature_id = 1;
3095 num_immediates = 0;
3096 current_function = NULL;
3097 num_address_regs = 0;
3098 samplers_used = 0;
3099 indirect_addr_consts = false;
3100 glsl_version = 0;
3101 native_integers = false;
3102 mem_ctx = ralloc_context(NULL);
3103 ctx = NULL;
3104 prog = NULL;
3105 shader_program = NULL;
3106 options = NULL;
3107 }
3108
3109 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
3110 {
3111 ralloc_free(mem_ctx);
3112 }
3113
3114 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
3115 {
3116 delete v;
3117 }
3118
3119
3120 /**
3121 * Count resources used by the given gpu program (number of texture
3122 * samplers, etc).
3123 */
3124 static void
3125 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
3126 {
3127 v->samplers_used = 0;
3128
3129 foreach_list(node, &v->instructions) {
3130 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3131
3132 if (is_tex_instruction(inst->op)) {
3133 v->samplers_used |= 1 << inst->sampler;
3134
3135 if (inst->tex_shadow) {
3136 prog->ShadowSamplers |= 1 << inst->sampler;
3137 }
3138 }
3139 }
3140
3141 prog->SamplersUsed = v->samplers_used;
3142
3143 if (v->shader_program != NULL)
3144 _mesa_update_shader_textures_used(v->shader_program, prog);
3145 }
3146
3147 static void
3148 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
3149 struct gl_shader_program *shader_program,
3150 const char *name, const glsl_type *type,
3151 ir_constant *val)
3152 {
3153 if (type->is_record()) {
3154 ir_constant *field_constant;
3155
3156 field_constant = (ir_constant *)val->components.get_head();
3157
3158 for (unsigned int i = 0; i < type->length; i++) {
3159 const glsl_type *field_type = type->fields.structure[i].type;
3160 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
3161 type->fields.structure[i].name);
3162 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
3163 field_type, field_constant);
3164 field_constant = (ir_constant *)field_constant->next;
3165 }
3166 return;
3167 }
3168
3169 unsigned offset;
3170 unsigned index = _mesa_get_uniform_location(ctx, shader_program, name,
3171 &offset);
3172 if (offset == GL_INVALID_INDEX) {
3173 fail_link(shader_program,
3174 "Couldn't find uniform for initializer %s\n", name);
3175 return;
3176 }
3177 int loc = _mesa_uniform_merge_location_offset(shader_program, index, offset);
3178
3179 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
3180 ir_constant *element;
3181 const glsl_type *element_type;
3182 if (type->is_array()) {
3183 element = val->array_elements[i];
3184 element_type = type->fields.array;
3185 } else {
3186 element = val;
3187 element_type = type;
3188 }
3189
3190 void *values;
3191
3192 if (element_type->base_type == GLSL_TYPE_BOOL) {
3193 int *conv = ralloc_array(mem_ctx, int, element_type->components());
3194 for (unsigned int j = 0; j < element_type->components(); j++) {
3195 conv[j] = element->value.b[j];
3196 }
3197 values = (void *)conv;
3198 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
3199 element_type->vector_elements,
3200 1);
3201 } else {
3202 values = &element->value;
3203 }
3204
3205 if (element_type->is_matrix()) {
3206 _mesa_uniform_matrix(ctx, shader_program,
3207 element_type->matrix_columns,
3208 element_type->vector_elements,
3209 loc, 1, GL_FALSE, (GLfloat *)values);
3210 } else {
3211 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
3212 values, element_type->gl_type);
3213 }
3214
3215 loc++;
3216 }
3217 }
3218
3219 /**
3220 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3221 * are read from the given src in this instruction
3222 */
3223 static int
3224 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3225 {
3226 int read_mask = 0, comp;
3227
3228 /* Now, given the src swizzle and the written channels, find which
3229 * components are actually read
3230 */
3231 for (comp = 0; comp < 4; ++comp) {
3232 const unsigned coord = GET_SWZ(src.swizzle, comp);
3233 ASSERT(coord < 4);
3234 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3235 read_mask |= 1 << coord;
3236 }
3237
3238 return read_mask;
3239 }
3240
3241 /**
3242 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3243 * instruction is the first instruction to write to register T0. There are
3244 * several lowering passes done in GLSL IR (e.g. branches and
3245 * relative addressing) that create a large number of conditional assignments
3246 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3247 *
3248 * Here is why this conversion is safe:
3249 * CMP T0, T1 T2 T0 can be expanded to:
3250 * if (T1 < 0.0)
3251 * MOV T0, T2;
3252 * else
3253 * MOV T0, T0;
3254 *
3255 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3256 * as the original program. If (T1 < 0.0) evaluates to false, executing
3257 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3258 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3259 * because any instruction that was going to read from T0 after this was going
3260 * to read a garbage value anyway.
3261 */
3262 void
3263 glsl_to_tgsi_visitor::simplify_cmp(void)
3264 {
3265 unsigned *tempWrites;
3266 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3267
3268 tempWrites = new unsigned[MAX_TEMPS];
3269 if (!tempWrites) {
3270 return;
3271 }
3272 memset(tempWrites, 0, sizeof(unsigned) * MAX_TEMPS);
3273 memset(outputWrites, 0, sizeof(outputWrites));
3274
3275 foreach_list(node, &this->instructions) {
3276 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3277 unsigned prevWriteMask = 0;
3278
3279 /* Give up if we encounter relative addressing or flow control. */
3280 if (inst->dst.reladdr ||
3281 tgsi_get_opcode_info(inst->op)->is_branch ||
3282 inst->op == TGSI_OPCODE_BGNSUB ||
3283 inst->op == TGSI_OPCODE_CONT ||
3284 inst->op == TGSI_OPCODE_END ||
3285 inst->op == TGSI_OPCODE_ENDSUB ||
3286 inst->op == TGSI_OPCODE_RET) {
3287 break;
3288 }
3289
3290 if (inst->dst.file == PROGRAM_OUTPUT) {
3291 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3292 prevWriteMask = outputWrites[inst->dst.index];
3293 outputWrites[inst->dst.index] |= inst->dst.writemask;
3294 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3295 assert(inst->dst.index < MAX_TEMPS);
3296 prevWriteMask = tempWrites[inst->dst.index];
3297 tempWrites[inst->dst.index] |= inst->dst.writemask;
3298 } else
3299 continue;
3300
3301 /* For a CMP to be considered a conditional write, the destination
3302 * register and source register two must be the same. */
3303 if (inst->op == TGSI_OPCODE_CMP
3304 && !(inst->dst.writemask & prevWriteMask)
3305 && inst->src[2].file == inst->dst.file
3306 && inst->src[2].index == inst->dst.index
3307 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3308
3309 inst->op = TGSI_OPCODE_MOV;
3310 inst->src[0] = inst->src[1];
3311 }
3312 }
3313
3314 delete [] tempWrites;
3315 }
3316
3317 /* Replaces all references to a temporary register index with another index. */
3318 void
3319 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3320 {
3321 foreach_list(node, &this->instructions) {
3322 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3323 unsigned j;
3324
3325 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3326 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3327 inst->src[j].index == index) {
3328 inst->src[j].index = new_index;
3329 }
3330 }
3331
3332 for (j=0; j < inst->tex_offset_num_offset; j++) {
3333 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3334 inst->tex_offsets[j].index == index) {
3335 inst->tex_offsets[j].index = new_index;
3336 }
3337 }
3338
3339 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3340 inst->dst.index = new_index;
3341 }
3342 }
3343 }
3344
3345 int
3346 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3347 {
3348 int depth = 0; /* loop depth */
3349 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3350 unsigned i = 0, j;
3351
3352 foreach_list(node, &this->instructions) {
3353 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3354
3355 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3356 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3357 inst->src[j].index == index) {
3358 return (depth == 0) ? i : loop_start;
3359 }
3360 }
3361 for (j=0; j < inst->tex_offset_num_offset; j++) {
3362 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3363 inst->tex_offsets[j].index == index) {
3364 return (depth == 0) ? i : loop_start;
3365 }
3366 }
3367
3368 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3369 if(depth++ == 0)
3370 loop_start = i;
3371 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3372 if (--depth == 0)
3373 loop_start = -1;
3374 }
3375 assert(depth >= 0);
3376
3377 i++;
3378 }
3379
3380 return -1;
3381 }
3382
3383 int
3384 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3385 {
3386 int depth = 0; /* loop depth */
3387 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3388 int i = 0;
3389
3390 foreach_list(node, &this->instructions) {
3391 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3392
3393 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3394 return (depth == 0) ? i : loop_start;
3395 }
3396
3397 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3398 if(depth++ == 0)
3399 loop_start = i;
3400 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3401 if (--depth == 0)
3402 loop_start = -1;
3403 }
3404 assert(depth >= 0);
3405
3406 i++;
3407 }
3408
3409 return -1;
3410 }
3411
3412 int
3413 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3414 {
3415 int depth = 0; /* loop depth */
3416 int last = -1; /* index of last instruction that reads the temporary */
3417 unsigned i = 0, j;
3418
3419 foreach_list(node, &this->instructions) {
3420 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3421
3422 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3423 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3424 inst->src[j].index == index) {
3425 last = (depth == 0) ? i : -2;
3426 }
3427 }
3428 for (j=0; j < inst->tex_offset_num_offset; j++) {
3429 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3430 inst->tex_offsets[j].index == index)
3431 last = (depth == 0) ? i : -2;
3432 }
3433
3434 if (inst->op == TGSI_OPCODE_BGNLOOP)
3435 depth++;
3436 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3437 if (--depth == 0 && last == -2)
3438 last = i;
3439 assert(depth >= 0);
3440
3441 i++;
3442 }
3443
3444 assert(last >= -1);
3445 return last;
3446 }
3447
3448 int
3449 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3450 {
3451 int depth = 0; /* loop depth */
3452 int last = -1; /* index of last instruction that writes to the temporary */
3453 int i = 0;
3454
3455 foreach_list(node, &this->instructions) {
3456 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3457
3458 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3459 last = (depth == 0) ? i : -2;
3460
3461 if (inst->op == TGSI_OPCODE_BGNLOOP)
3462 depth++;
3463 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3464 if (--depth == 0 && last == -2)
3465 last = i;
3466 assert(depth >= 0);
3467
3468 i++;
3469 }
3470
3471 assert(last >= -1);
3472 return last;
3473 }
3474
3475 /*
3476 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3477 * channels for copy propagation and updates following instructions to
3478 * use the original versions.
3479 *
3480 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3481 * will occur. As an example, a TXP production before this pass:
3482 *
3483 * 0: MOV TEMP[1], INPUT[4].xyyy;
3484 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3485 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3486 *
3487 * and after:
3488 *
3489 * 0: MOV TEMP[1], INPUT[4].xyyy;
3490 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3491 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3492 *
3493 * which allows for dead code elimination on TEMP[1]'s writes.
3494 */
3495 void
3496 glsl_to_tgsi_visitor::copy_propagate(void)
3497 {
3498 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3499 glsl_to_tgsi_instruction *,
3500 this->next_temp * 4);
3501 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3502 int level = 0;
3503
3504 foreach_list(node, &this->instructions) {
3505 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3506
3507 assert(inst->dst.file != PROGRAM_TEMPORARY
3508 || inst->dst.index < this->next_temp);
3509
3510 /* First, do any copy propagation possible into the src regs. */
3511 for (int r = 0; r < 3; r++) {
3512 glsl_to_tgsi_instruction *first = NULL;
3513 bool good = true;
3514 int acp_base = inst->src[r].index * 4;
3515
3516 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3517 inst->src[r].reladdr ||
3518 inst->src[r].reladdr2)
3519 continue;
3520
3521 /* See if we can find entries in the ACP consisting of MOVs
3522 * from the same src register for all the swizzled channels
3523 * of this src register reference.
3524 */
3525 for (int i = 0; i < 4; i++) {
3526 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3527 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3528
3529 if (!copy_chan) {
3530 good = false;
3531 break;
3532 }
3533
3534 assert(acp_level[acp_base + src_chan] <= level);
3535
3536 if (!first) {
3537 first = copy_chan;
3538 } else {
3539 if (first->src[0].file != copy_chan->src[0].file ||
3540 first->src[0].index != copy_chan->src[0].index) {
3541 good = false;
3542 break;
3543 }
3544 }
3545 }
3546
3547 if (good) {
3548 /* We've now validated that we can copy-propagate to
3549 * replace this src register reference. Do it.
3550 */
3551 inst->src[r].file = first->src[0].file;
3552 inst->src[r].index = first->src[0].index;
3553 inst->src[r].index2D = first->src[0].index2D;
3554 inst->src[r].has_index2 = first->src[0].has_index2;
3555
3556 int swizzle = 0;
3557 for (int i = 0; i < 4; i++) {
3558 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3559 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3560 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3561 (3 * i));
3562 }
3563 inst->src[r].swizzle = swizzle;
3564 }
3565 }
3566
3567 switch (inst->op) {
3568 case TGSI_OPCODE_BGNLOOP:
3569 case TGSI_OPCODE_ENDLOOP:
3570 /* End of a basic block, clear the ACP entirely. */
3571 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3572 break;
3573
3574 case TGSI_OPCODE_IF:
3575 case TGSI_OPCODE_UIF:
3576 ++level;
3577 break;
3578
3579 case TGSI_OPCODE_ENDIF:
3580 case TGSI_OPCODE_ELSE:
3581 /* Clear all channels written inside the block from the ACP, but
3582 * leaving those that were not touched.
3583 */
3584 for (int r = 0; r < this->next_temp; r++) {
3585 for (int c = 0; c < 4; c++) {
3586 if (!acp[4 * r + c])
3587 continue;
3588
3589 if (acp_level[4 * r + c] >= level)
3590 acp[4 * r + c] = NULL;
3591 }
3592 }
3593 if (inst->op == TGSI_OPCODE_ENDIF)
3594 --level;
3595 break;
3596
3597 default:
3598 /* Continuing the block, clear any written channels from
3599 * the ACP.
3600 */
3601 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3602 /* Any temporary might be written, so no copy propagation
3603 * across this instruction.
3604 */
3605 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3606 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3607 inst->dst.reladdr) {
3608 /* Any output might be written, so no copy propagation
3609 * from outputs across this instruction.
3610 */
3611 for (int r = 0; r < this->next_temp; r++) {
3612 for (int c = 0; c < 4; c++) {
3613 if (!acp[4 * r + c])
3614 continue;
3615
3616 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3617 acp[4 * r + c] = NULL;
3618 }
3619 }
3620 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3621 inst->dst.file == PROGRAM_OUTPUT) {
3622 /* Clear where it's used as dst. */
3623 if (inst->dst.file == PROGRAM_TEMPORARY) {
3624 for (int c = 0; c < 4; c++) {
3625 if (inst->dst.writemask & (1 << c)) {
3626 acp[4 * inst->dst.index + c] = NULL;
3627 }
3628 }
3629 }
3630
3631 /* Clear where it's used as src. */
3632 for (int r = 0; r < this->next_temp; r++) {
3633 for (int c = 0; c < 4; c++) {
3634 if (!acp[4 * r + c])
3635 continue;
3636
3637 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3638
3639 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3640 acp[4 * r + c]->src[0].index == inst->dst.index &&
3641 inst->dst.writemask & (1 << src_chan))
3642 {
3643 acp[4 * r + c] = NULL;
3644 }
3645 }
3646 }
3647 }
3648 break;
3649 }
3650
3651 /* If this is a copy, add it to the ACP. */
3652 if (inst->op == TGSI_OPCODE_MOV &&
3653 inst->dst.file == PROGRAM_TEMPORARY &&
3654 !(inst->dst.file == inst->src[0].file &&
3655 inst->dst.index == inst->src[0].index) &&
3656 !inst->dst.reladdr &&
3657 !inst->saturate &&
3658 !inst->src[0].reladdr &&
3659 !inst->src[0].reladdr2 &&
3660 !inst->src[0].negate) {
3661 for (int i = 0; i < 4; i++) {
3662 if (inst->dst.writemask & (1 << i)) {
3663 acp[4 * inst->dst.index + i] = inst;
3664 acp_level[4 * inst->dst.index + i] = level;
3665 }
3666 }
3667 }
3668 }
3669
3670 ralloc_free(acp_level);
3671 ralloc_free(acp);
3672 }
3673
3674 /*
3675 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3676 *
3677 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3678 * will occur. As an example, a TXP production after copy propagation but
3679 * before this pass:
3680 *
3681 * 0: MOV TEMP[1], INPUT[4].xyyy;
3682 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3683 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3684 *
3685 * and after this pass:
3686 *
3687 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3688 *
3689 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3690 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3691 */
3692 void
3693 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3694 {
3695 int i;
3696
3697 for (i=0; i < this->next_temp; i++) {
3698 int last_read = get_last_temp_read(i);
3699 int j = 0;
3700
3701 foreach_list_safe(node, &this->instructions) {
3702 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3703
3704 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3705 j > last_read)
3706 {
3707 inst->remove();
3708 delete inst;
3709 }
3710
3711 j++;
3712 }
3713 }
3714 }
3715
3716 /*
3717 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3718 * code elimination. This is less primitive than eliminate_dead_code(), as it
3719 * is per-channel and can detect consecutive writes without a read between them
3720 * as dead code. However, there is some dead code that can be eliminated by
3721 * eliminate_dead_code() but not this function - for example, this function
3722 * cannot eliminate an instruction writing to a register that is never read and
3723 * is the only instruction writing to that register.
3724 *
3725 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3726 * will occur.
3727 */
3728 int
3729 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3730 {
3731 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3732 glsl_to_tgsi_instruction *,
3733 this->next_temp * 4);
3734 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3735 int level = 0;
3736 int removed = 0;
3737
3738 foreach_list(node, &this->instructions) {
3739 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3740
3741 assert(inst->dst.file != PROGRAM_TEMPORARY
3742 || inst->dst.index < this->next_temp);
3743
3744 switch (inst->op) {
3745 case TGSI_OPCODE_BGNLOOP:
3746 case TGSI_OPCODE_ENDLOOP:
3747 case TGSI_OPCODE_CONT:
3748 case TGSI_OPCODE_BRK:
3749 /* End of a basic block, clear the write array entirely.
3750 *
3751 * This keeps us from killing dead code when the writes are
3752 * on either side of a loop, even when the register isn't touched
3753 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
3754 * dead code of this type, so it shouldn't make a difference as long as
3755 * the dead code elimination pass in the GLSL compiler does its job.
3756 */
3757 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3758 break;
3759
3760 case TGSI_OPCODE_ENDIF:
3761 case TGSI_OPCODE_ELSE:
3762 /* Promote the recorded level of all channels written inside the
3763 * preceding if or else block to the level above the if/else block.
3764 */
3765 for (int r = 0; r < this->next_temp; r++) {
3766 for (int c = 0; c < 4; c++) {
3767 if (!writes[4 * r + c])
3768 continue;
3769
3770 if (write_level[4 * r + c] == level)
3771 write_level[4 * r + c] = level-1;
3772 }
3773 }
3774
3775 if(inst->op == TGSI_OPCODE_ENDIF)
3776 --level;
3777
3778 break;
3779
3780 case TGSI_OPCODE_IF:
3781 case TGSI_OPCODE_UIF:
3782 ++level;
3783 /* fallthrough to default case to mark the condition as read */
3784
3785 default:
3786 /* Continuing the block, clear any channels from the write array that
3787 * are read by this instruction.
3788 */
3789 for (unsigned i = 0; i < Elements(inst->src); i++) {
3790 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3791 /* Any temporary might be read, so no dead code elimination
3792 * across this instruction.
3793 */
3794 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3795 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3796 /* Clear where it's used as src. */
3797 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3798 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3799 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3800 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3801
3802 for (int c = 0; c < 4; c++) {
3803 if (src_chans & (1 << c)) {
3804 writes[4 * inst->src[i].index + c] = NULL;
3805 }
3806 }
3807 }
3808 }
3809 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
3810 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
3811 /* Any temporary might be read, so no dead code elimination
3812 * across this instruction.
3813 */
3814 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3815 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
3816 /* Clear where it's used as src. */
3817 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
3818 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
3819 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
3820 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
3821
3822 for (int c = 0; c < 4; c++) {
3823 if (src_chans & (1 << c)) {
3824 writes[4 * inst->tex_offsets[i].index + c] = NULL;
3825 }
3826 }
3827 }
3828 }
3829 break;
3830 }
3831
3832 /* If this instruction writes to a temporary, add it to the write array.
3833 * If there is already an instruction in the write array for one or more
3834 * of the channels, flag that channel write as dead.
3835 */
3836 if (inst->dst.file == PROGRAM_TEMPORARY &&
3837 !inst->dst.reladdr &&
3838 !inst->saturate) {
3839 for (int c = 0; c < 4; c++) {
3840 if (inst->dst.writemask & (1 << c)) {
3841 if (writes[4 * inst->dst.index + c]) {
3842 if (write_level[4 * inst->dst.index + c] < level)
3843 continue;
3844 else
3845 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3846 }
3847 writes[4 * inst->dst.index + c] = inst;
3848 write_level[4 * inst->dst.index + c] = level;
3849 }
3850 }
3851 }
3852 }
3853
3854 /* Anything still in the write array at this point is dead code. */
3855 for (int r = 0; r < this->next_temp; r++) {
3856 for (int c = 0; c < 4; c++) {
3857 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3858 if (inst)
3859 inst->dead_mask |= (1 << c);
3860 }
3861 }
3862
3863 /* Now actually remove the instructions that are completely dead and update
3864 * the writemask of other instructions with dead channels.
3865 */
3866 foreach_list_safe(node, &this->instructions) {
3867 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3868
3869 if (!inst->dead_mask || !inst->dst.writemask)
3870 continue;
3871 else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3872 inst->remove();
3873 delete inst;
3874 removed++;
3875 } else
3876 inst->dst.writemask &= ~(inst->dead_mask);
3877 }
3878
3879 ralloc_free(write_level);
3880 ralloc_free(writes);
3881
3882 return removed;
3883 }
3884
3885 /* Merges temporary registers together where possible to reduce the number of
3886 * registers needed to run a program.
3887 *
3888 * Produces optimal code only after copy propagation and dead code elimination
3889 * have been run. */
3890 void
3891 glsl_to_tgsi_visitor::merge_registers(void)
3892 {
3893 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3894 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3895 int i, j;
3896
3897 /* Read the indices of the last read and first write to each temp register
3898 * into an array so that we don't have to traverse the instruction list as
3899 * much. */
3900 for (i=0; i < this->next_temp; i++) {
3901 last_reads[i] = get_last_temp_read(i);
3902 first_writes[i] = get_first_temp_write(i);
3903 }
3904
3905 /* Start looking for registers with non-overlapping usages that can be
3906 * merged together. */
3907 for (i=0; i < this->next_temp; i++) {
3908 /* Don't touch unused registers. */
3909 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3910
3911 for (j=0; j < this->next_temp; j++) {
3912 /* Don't touch unused registers. */
3913 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3914
3915 /* We can merge the two registers if the first write to j is after or
3916 * in the same instruction as the last read from i. Note that the
3917 * register at index i will always be used earlier or at the same time
3918 * as the register at index j. */
3919 if (first_writes[i] <= first_writes[j] &&
3920 last_reads[i] <= first_writes[j])
3921 {
3922 rename_temp_register(j, i); /* Replace all references to j with i.*/
3923
3924 /* Update the first_writes and last_reads arrays with the new
3925 * values for the merged register index, and mark the newly unused
3926 * register index as such. */
3927 last_reads[i] = last_reads[j];
3928 first_writes[j] = -1;
3929 last_reads[j] = -1;
3930 }
3931 }
3932 }
3933
3934 ralloc_free(last_reads);
3935 ralloc_free(first_writes);
3936 }
3937
3938 /* Reassign indices to temporary registers by reusing unused indices created
3939 * by optimization passes. */
3940 void
3941 glsl_to_tgsi_visitor::renumber_registers(void)
3942 {
3943 int i = 0;
3944 int new_index = 0;
3945
3946 for (i=0; i < this->next_temp; i++) {
3947 if (get_first_temp_read(i) < 0) continue;
3948 if (i != new_index)
3949 rename_temp_register(i, new_index);
3950 new_index++;
3951 }
3952
3953 this->next_temp = new_index;
3954 }
3955
3956 /**
3957 * Returns a fragment program which implements the current pixel transfer ops.
3958 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3959 */
3960 extern "C" void
3961 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3962 glsl_to_tgsi_visitor *original,
3963 int scale_and_bias, int pixel_maps)
3964 {
3965 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3966 struct st_context *st = st_context(original->ctx);
3967 struct gl_program *prog = &fp->Base.Base;
3968 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3969 st_src_reg coord, src0;
3970 st_dst_reg dst0;
3971 glsl_to_tgsi_instruction *inst;
3972
3973 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3974 v->ctx = original->ctx;
3975 v->prog = prog;
3976 v->shader_program = NULL;
3977 v->glsl_version = original->glsl_version;
3978 v->native_integers = original->native_integers;
3979 v->options = original->options;
3980 v->next_temp = original->next_temp;
3981 v->num_address_regs = original->num_address_regs;
3982 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3983 v->indirect_addr_consts = original->indirect_addr_consts;
3984 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3985 v->num_immediates = original->num_immediates;
3986
3987 /*
3988 * Get initial pixel color from the texture.
3989 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3990 */
3991 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
3992 src0 = v->get_temp(glsl_type::vec4_type);
3993 dst0 = st_dst_reg(src0);
3994 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3995 inst->sampler = 0;
3996 inst->tex_target = TEXTURE_2D_INDEX;
3997
3998 prog->InputsRead |= VARYING_BIT_TEX0;
3999 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
4000 v->samplers_used |= (1 << 0);
4001
4002 if (scale_and_bias) {
4003 static const gl_state_index scale_state[STATE_LENGTH] =
4004 { STATE_INTERNAL, STATE_PT_SCALE,
4005 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
4006 static const gl_state_index bias_state[STATE_LENGTH] =
4007 { STATE_INTERNAL, STATE_PT_BIAS,
4008 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
4009 GLint scale_p, bias_p;
4010 st_src_reg scale, bias;
4011
4012 scale_p = _mesa_add_state_reference(params, scale_state);
4013 bias_p = _mesa_add_state_reference(params, bias_state);
4014
4015 /* MAD colorTemp, colorTemp, scale, bias; */
4016 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
4017 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
4018 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
4019 }
4020
4021 if (pixel_maps) {
4022 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
4023 st_dst_reg temp_dst = st_dst_reg(temp);
4024
4025 assert(st->pixel_xfer.pixelmap_texture);
4026
4027 /* With a little effort, we can do four pixel map look-ups with
4028 * two TEX instructions:
4029 */
4030
4031 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
4032 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
4033 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
4034 inst->sampler = 1;
4035 inst->tex_target = TEXTURE_2D_INDEX;
4036
4037 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
4038 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
4039 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
4040 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
4041 inst->sampler = 1;
4042 inst->tex_target = TEXTURE_2D_INDEX;
4043
4044 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
4045 v->samplers_used |= (1 << 1);
4046
4047 /* MOV colorTemp, temp; */
4048 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
4049 }
4050
4051 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4052 * new visitor. */
4053 foreach_list(node, &original->instructions) {
4054 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
4055 glsl_to_tgsi_instruction *newinst;
4056 st_src_reg src_regs[3];
4057
4058 if (inst->dst.file == PROGRAM_OUTPUT)
4059 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4060
4061 for (int i=0; i<3; i++) {
4062 src_regs[i] = inst->src[i];
4063 if (src_regs[i].file == PROGRAM_INPUT &&
4064 src_regs[i].index == VARYING_SLOT_COL0)
4065 {
4066 src_regs[i].file = PROGRAM_TEMPORARY;
4067 src_regs[i].index = src0.index;
4068 }
4069 else if (src_regs[i].file == PROGRAM_INPUT)
4070 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
4071 }
4072
4073 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4074 newinst->tex_target = inst->tex_target;
4075 }
4076
4077 /* Make modifications to fragment program info. */
4078 prog->Parameters = _mesa_combine_parameter_lists(params,
4079 original->prog->Parameters);
4080 _mesa_free_parameter_list(params);
4081 count_resources(v, prog);
4082 fp->glsl_to_tgsi = v;
4083 }
4084
4085 /**
4086 * Make fragment program for glBitmap:
4087 * Sample the texture and kill the fragment if the bit is 0.
4088 * This program will be combined with the user's fragment program.
4089 *
4090 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
4091 */
4092 extern "C" void
4093 get_bitmap_visitor(struct st_fragment_program *fp,
4094 glsl_to_tgsi_visitor *original, int samplerIndex)
4095 {
4096 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
4097 struct st_context *st = st_context(original->ctx);
4098 struct gl_program *prog = &fp->Base.Base;
4099 st_src_reg coord, src0;
4100 st_dst_reg dst0;
4101 glsl_to_tgsi_instruction *inst;
4102
4103 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
4104 v->ctx = original->ctx;
4105 v->prog = prog;
4106 v->shader_program = NULL;
4107 v->glsl_version = original->glsl_version;
4108 v->native_integers = original->native_integers;
4109 v->options = original->options;
4110 v->next_temp = original->next_temp;
4111 v->num_address_regs = original->num_address_regs;
4112 v->samplers_used = prog->SamplersUsed = original->samplers_used;
4113 v->indirect_addr_consts = original->indirect_addr_consts;
4114 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
4115 v->num_immediates = original->num_immediates;
4116
4117 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
4118 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
4119 src0 = v->get_temp(glsl_type::vec4_type);
4120 dst0 = st_dst_reg(src0);
4121 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
4122 inst->sampler = samplerIndex;
4123 inst->tex_target = TEXTURE_2D_INDEX;
4124
4125 prog->InputsRead |= VARYING_BIT_TEX0;
4126 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
4127 v->samplers_used |= (1 << samplerIndex);
4128
4129 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
4130 src0.negate = NEGATE_XYZW;
4131 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
4132 src0.swizzle = SWIZZLE_XXXX;
4133 inst = v->emit(NULL, TGSI_OPCODE_KILL_IF, undef_dst, src0);
4134
4135 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4136 * new visitor. */
4137 foreach_list(node, &original->instructions) {
4138 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
4139 glsl_to_tgsi_instruction *newinst;
4140 st_src_reg src_regs[3];
4141
4142 if (inst->dst.file == PROGRAM_OUTPUT)
4143 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4144
4145 for (int i=0; i<3; i++) {
4146 src_regs[i] = inst->src[i];
4147 if (src_regs[i].file == PROGRAM_INPUT)
4148 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
4149 }
4150
4151 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4152 newinst->tex_target = inst->tex_target;
4153 }
4154
4155 /* Make modifications to fragment program info. */
4156 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
4157 count_resources(v, prog);
4158 fp->glsl_to_tgsi = v;
4159 }
4160
4161 /* ------------------------- TGSI conversion stuff -------------------------- */
4162 struct label {
4163 unsigned branch_target;
4164 unsigned token;
4165 };
4166
4167 /**
4168 * Intermediate state used during shader translation.
4169 */
4170 struct st_translate {
4171 struct ureg_program *ureg;
4172
4173 struct ureg_dst temps[MAX_TEMPS];
4174 struct ureg_dst arrays[MAX_ARRAYS];
4175 struct ureg_src *constants;
4176 struct ureg_src *immediates;
4177 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4178 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4179 struct ureg_dst address[2];
4180 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4181 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4182 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
4183 unsigned array_sizes[MAX_ARRAYS];
4184
4185 const GLuint *inputMapping;
4186 const GLuint *outputMapping;
4187
4188 /* For every instruction that contains a label (eg CALL), keep
4189 * details so that we can go back afterwards and emit the correct
4190 * tgsi instruction number for each label.
4191 */
4192 struct label *labels;
4193 unsigned labels_size;
4194 unsigned labels_count;
4195
4196 /* Keep a record of the tgsi instruction number that each mesa
4197 * instruction starts at, will be used to fix up labels after
4198 * translation.
4199 */
4200 unsigned *insn;
4201 unsigned insn_size;
4202 unsigned insn_count;
4203
4204 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4205
4206 boolean error;
4207 };
4208
4209 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4210 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4211 TGSI_SEMANTIC_FACE,
4212 TGSI_SEMANTIC_VERTEXID,
4213 TGSI_SEMANTIC_INSTANCEID,
4214 TGSI_SEMANTIC_SAMPLEID,
4215 TGSI_SEMANTIC_SAMPLEPOS,
4216 TGSI_SEMANTIC_SAMPLEMASK,
4217 TGSI_SEMANTIC_INVOCATIONID,
4218 };
4219
4220 /**
4221 * Make note of a branch to a label in the TGSI code.
4222 * After we've emitted all instructions, we'll go over the list
4223 * of labels built here and patch the TGSI code with the actual
4224 * location of each label.
4225 */
4226 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4227 {
4228 unsigned i;
4229
4230 if (t->labels_count + 1 >= t->labels_size) {
4231 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4232 t->labels = (struct label *)realloc(t->labels,
4233 t->labels_size * sizeof(struct label));
4234 if (t->labels == NULL) {
4235 static unsigned dummy;
4236 t->error = TRUE;
4237 return &dummy;
4238 }
4239 }
4240
4241 i = t->labels_count++;
4242 t->labels[i].branch_target = branch_target;
4243 return &t->labels[i].token;
4244 }
4245
4246 /**
4247 * Called prior to emitting the TGSI code for each instruction.
4248 * Allocate additional space for instructions if needed.
4249 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4250 * the next TGSI instruction.
4251 */
4252 static void set_insn_start(struct st_translate *t, unsigned start)
4253 {
4254 if (t->insn_count + 1 >= t->insn_size) {
4255 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4256 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4257 if (t->insn == NULL) {
4258 t->error = TRUE;
4259 return;
4260 }
4261 }
4262
4263 t->insn[t->insn_count++] = start;
4264 }
4265
4266 /**
4267 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4268 */
4269 static struct ureg_src
4270 emit_immediate(struct st_translate *t,
4271 gl_constant_value values[4],
4272 int type, int size)
4273 {
4274 struct ureg_program *ureg = t->ureg;
4275
4276 switch(type)
4277 {
4278 case GL_FLOAT:
4279 return ureg_DECL_immediate(ureg, &values[0].f, size);
4280 case GL_INT:
4281 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4282 case GL_UNSIGNED_INT:
4283 case GL_BOOL:
4284 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4285 default:
4286 assert(!"should not get here - type must be float, int, uint, or bool");
4287 return ureg_src_undef();
4288 }
4289 }
4290
4291 /**
4292 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4293 */
4294 static struct ureg_dst
4295 dst_register(struct st_translate *t,
4296 gl_register_file file,
4297 GLuint index)
4298 {
4299 unsigned array;
4300
4301 switch(file) {
4302 case PROGRAM_UNDEFINED:
4303 return ureg_dst_undef();
4304
4305 case PROGRAM_TEMPORARY:
4306 assert(index >= 0);
4307 assert(index < (int) Elements(t->temps));
4308
4309 if (ureg_dst_is_undef(t->temps[index]))
4310 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4311
4312 return t->temps[index];
4313
4314 case PROGRAM_ARRAY:
4315 array = index >> 16;
4316
4317 assert(array >= 0);
4318 assert(array < (int) Elements(t->arrays));
4319
4320 if (ureg_dst_is_undef(t->arrays[array]))
4321 t->arrays[array] = ureg_DECL_array_temporary(
4322 t->ureg, t->array_sizes[array], TRUE);
4323
4324 return ureg_dst_array_offset(t->arrays[array],
4325 (int)(index & 0xFFFF) - 0x8000);
4326
4327 case PROGRAM_OUTPUT:
4328 if (t->procType == TGSI_PROCESSOR_VERTEX)
4329 assert(index < VARYING_SLOT_MAX);
4330 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4331 assert(index < FRAG_RESULT_MAX);
4332 else
4333 assert(index < VARYING_SLOT_MAX);
4334
4335 assert(t->outputMapping[index] < Elements(t->outputs));
4336
4337 return t->outputs[t->outputMapping[index]];
4338
4339 case PROGRAM_ADDRESS:
4340 return t->address[index];
4341
4342 default:
4343 assert(!"unknown dst register file");
4344 return ureg_dst_undef();
4345 }
4346 }
4347
4348 /**
4349 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4350 */
4351 static struct ureg_src
4352 src_register(struct st_translate *t,
4353 gl_register_file file,
4354 GLint index, GLint index2D)
4355 {
4356 switch(file) {
4357 case PROGRAM_UNDEFINED:
4358 return ureg_src_undef();
4359
4360 case PROGRAM_TEMPORARY:
4361 case PROGRAM_ARRAY:
4362 return ureg_src(dst_register(t, file, index));
4363
4364 case PROGRAM_UNIFORM:
4365 assert(index >= 0);
4366 return t->constants[index];
4367 case PROGRAM_STATE_VAR:
4368 case PROGRAM_CONSTANT: /* ie, immediate */
4369 if (index2D) {
4370 struct ureg_src src;
4371 src = ureg_src_register(TGSI_FILE_CONSTANT, 0);
4372 src.Dimension = 1;
4373 src.DimensionIndex = index2D;
4374 return src;
4375 } else if (index < 0)
4376 return ureg_DECL_constant(t->ureg, 0);
4377 else
4378 return t->constants[index];
4379
4380 case PROGRAM_IMMEDIATE:
4381 return t->immediates[index];
4382
4383 case PROGRAM_INPUT:
4384 assert(t->inputMapping[index] < Elements(t->inputs));
4385 return t->inputs[t->inputMapping[index]];
4386
4387 case PROGRAM_OUTPUT:
4388 assert(t->outputMapping[index] < Elements(t->outputs));
4389 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4390
4391 case PROGRAM_ADDRESS:
4392 return ureg_src(t->address[index]);
4393
4394 case PROGRAM_SYSTEM_VALUE:
4395 assert(index < (int) Elements(t->systemValues));
4396 return t->systemValues[index];
4397
4398 default:
4399 assert(!"unknown src register file");
4400 return ureg_src_undef();
4401 }
4402 }
4403
4404 /**
4405 * Create a TGSI ureg_dst register from an st_dst_reg.
4406 */
4407 static struct ureg_dst
4408 translate_dst(struct st_translate *t,
4409 const st_dst_reg *dst_reg,
4410 bool saturate, bool clamp_color)
4411 {
4412 struct ureg_dst dst = dst_register(t,
4413 dst_reg->file,
4414 dst_reg->index);
4415
4416 dst = ureg_writemask(dst, dst_reg->writemask);
4417
4418 if (saturate)
4419 dst = ureg_saturate(dst);
4420 else if (clamp_color && dst_reg->file == PROGRAM_OUTPUT) {
4421 /* Clamp colors for ARB_color_buffer_float. */
4422 switch (t->procType) {
4423 case TGSI_PROCESSOR_VERTEX:
4424 /* XXX if the geometry shader is present, this must be done there
4425 * instead of here. */
4426 if (dst_reg->index == VARYING_SLOT_COL0 ||
4427 dst_reg->index == VARYING_SLOT_COL1 ||
4428 dst_reg->index == VARYING_SLOT_BFC0 ||
4429 dst_reg->index == VARYING_SLOT_BFC1) {
4430 dst = ureg_saturate(dst);
4431 }
4432 break;
4433
4434 case TGSI_PROCESSOR_FRAGMENT:
4435 if (dst_reg->index == FRAG_RESULT_COLOR ||
4436 dst_reg->index >= FRAG_RESULT_DATA0) {
4437 dst = ureg_saturate(dst);
4438 }
4439 break;
4440 }
4441 }
4442
4443 if (dst_reg->reladdr != NULL) {
4444 assert(dst_reg->file != PROGRAM_TEMPORARY);
4445 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4446 }
4447
4448 return dst;
4449 }
4450
4451 /**
4452 * Create a TGSI ureg_src register from an st_src_reg.
4453 */
4454 static struct ureg_src
4455 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4456 {
4457 struct ureg_src src = src_register(t, src_reg->file, src_reg->index, src_reg->index2D);
4458
4459 if (t->procType == TGSI_PROCESSOR_GEOMETRY && src_reg->has_index2) {
4460 src = src_register(t, src_reg->file, src_reg->index, src_reg->index2D);
4461 if (src_reg->reladdr2)
4462 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
4463 src_reg->index2D);
4464 else
4465 src = ureg_src_dimension(src, src_reg->index2D);
4466 }
4467
4468 src = ureg_swizzle(src,
4469 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4470 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4471 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4472 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4473
4474 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4475 src = ureg_negate(src);
4476
4477 if (src_reg->reladdr != NULL) {
4478 assert(src_reg->file != PROGRAM_TEMPORARY);
4479 src = ureg_src_indirect(src, ureg_src(t->address[0]));
4480 }
4481
4482 return src;
4483 }
4484
4485 static struct tgsi_texture_offset
4486 translate_tex_offset(struct st_translate *t,
4487 const st_src_reg *in_offset, int idx)
4488 {
4489 struct tgsi_texture_offset offset;
4490 struct ureg_src imm_src;
4491 struct ureg_dst dst;
4492 int array;
4493
4494 switch (in_offset->file) {
4495 case PROGRAM_IMMEDIATE:
4496 imm_src = t->immediates[in_offset->index];
4497
4498 offset.File = imm_src.File;
4499 offset.Index = imm_src.Index;
4500 offset.SwizzleX = imm_src.SwizzleX;
4501 offset.SwizzleY = imm_src.SwizzleY;
4502 offset.SwizzleZ = imm_src.SwizzleZ;
4503 offset.Padding = 0;
4504 break;
4505 case PROGRAM_TEMPORARY:
4506 imm_src = ureg_src(t->temps[in_offset->index]);
4507 offset.File = imm_src.File;
4508 offset.Index = imm_src.Index;
4509 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4510 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4511 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4512 offset.Padding = 0;
4513 break;
4514 case PROGRAM_ARRAY:
4515 array = in_offset->index >> 16;
4516
4517 assert(array >= 0);
4518 assert(array < (int) Elements(t->arrays));
4519
4520 dst = t->arrays[array];
4521 offset.File = dst.File;
4522 offset.Index = dst.Index + (in_offset->index & 0xFFFF) - 0x8000;
4523 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4524 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4525 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4526 offset.Padding = 0;
4527 break;
4528 default:
4529 break;
4530 }
4531 return offset;
4532 }
4533
4534 static void
4535 compile_tgsi_instruction(struct st_translate *t,
4536 const glsl_to_tgsi_instruction *inst,
4537 bool clamp_dst_color_output)
4538 {
4539 struct ureg_program *ureg = t->ureg;
4540 GLuint i;
4541 struct ureg_dst dst[1];
4542 struct ureg_src src[4];
4543 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4544
4545 unsigned num_dst;
4546 unsigned num_src;
4547 unsigned tex_target;
4548
4549 num_dst = num_inst_dst_regs(inst->op);
4550 num_src = num_inst_src_regs(inst->op);
4551
4552 if (num_dst)
4553 dst[0] = translate_dst(t,
4554 &inst->dst,
4555 inst->saturate,
4556 clamp_dst_color_output);
4557
4558 for (i = 0; i < num_src; i++)
4559 src[i] = translate_src(t, &inst->src[i]);
4560
4561 switch(inst->op) {
4562 case TGSI_OPCODE_BGNLOOP:
4563 case TGSI_OPCODE_CAL:
4564 case TGSI_OPCODE_ELSE:
4565 case TGSI_OPCODE_ENDLOOP:
4566 case TGSI_OPCODE_IF:
4567 case TGSI_OPCODE_UIF:
4568 assert(num_dst == 0);
4569 ureg_label_insn(ureg,
4570 inst->op,
4571 src, num_src,
4572 get_label(t,
4573 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4574 return;
4575
4576 case TGSI_OPCODE_TEX:
4577 case TGSI_OPCODE_TXB:
4578 case TGSI_OPCODE_TXD:
4579 case TGSI_OPCODE_TXL:
4580 case TGSI_OPCODE_TXP:
4581 case TGSI_OPCODE_TXQ:
4582 case TGSI_OPCODE_TXF:
4583 case TGSI_OPCODE_TEX2:
4584 case TGSI_OPCODE_TXB2:
4585 case TGSI_OPCODE_TXL2:
4586 case TGSI_OPCODE_TG4:
4587 case TGSI_OPCODE_LODQ:
4588 src[num_src++] = t->samplers[inst->sampler];
4589 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4590 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i], i);
4591 }
4592 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4593
4594 ureg_tex_insn(ureg,
4595 inst->op,
4596 dst, num_dst,
4597 tex_target,
4598 texoffsets, inst->tex_offset_num_offset,
4599 src, num_src);
4600 return;
4601
4602 case TGSI_OPCODE_SCS:
4603 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4604 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4605 break;
4606
4607 default:
4608 ureg_insn(ureg,
4609 inst->op,
4610 dst, num_dst,
4611 src, num_src);
4612 break;
4613 }
4614 }
4615
4616 /**
4617 * Emit the TGSI instructions for inverting and adjusting WPOS.
4618 * This code is unavoidable because it also depends on whether
4619 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4620 */
4621 static void
4622 emit_wpos_adjustment( struct st_translate *t,
4623 const struct gl_program *program,
4624 boolean invert,
4625 GLfloat adjX, GLfloat adjY[2])
4626 {
4627 struct ureg_program *ureg = t->ureg;
4628
4629 /* Fragment program uses fragment position input.
4630 * Need to replace instances of INPUT[WPOS] with temp T
4631 * where T = INPUT[WPOS] by y is inverted.
4632 */
4633 static const gl_state_index wposTransformState[STATE_LENGTH]
4634 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4635 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4636
4637 /* XXX: note we are modifying the incoming shader here! Need to
4638 * do this before emitting the constant decls below, or this
4639 * will be missed:
4640 */
4641 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4642 wposTransformState);
4643
4644 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4645 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4646 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
4647
4648 /* First, apply the coordinate shift: */
4649 if (adjX || adjY[0] || adjY[1]) {
4650 if (adjY[0] != adjY[1]) {
4651 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4652 * depending on whether inversion is actually going to be applied
4653 * or not, which is determined by testing against the inversion
4654 * state variable used below, which will be either +1 or -1.
4655 */
4656 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4657
4658 ureg_CMP(ureg, adj_temp,
4659 ureg_scalar(wpostrans, invert ? 2 : 0),
4660 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4661 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4662 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4663 } else {
4664 ureg_ADD(ureg, wpos_temp, wpos_input,
4665 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4666 }
4667 wpos_input = ureg_src(wpos_temp);
4668 } else {
4669 /* MOV wpos_temp, input[wpos]
4670 */
4671 ureg_MOV( ureg, wpos_temp, wpos_input );
4672 }
4673
4674 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4675 * inversion/identity, or the other way around if we're drawing to an FBO.
4676 */
4677 if (invert) {
4678 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4679 */
4680 ureg_MAD( ureg,
4681 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4682 wpos_input,
4683 ureg_scalar(wpostrans, 0),
4684 ureg_scalar(wpostrans, 1));
4685 } else {
4686 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4687 */
4688 ureg_MAD( ureg,
4689 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4690 wpos_input,
4691 ureg_scalar(wpostrans, 2),
4692 ureg_scalar(wpostrans, 3));
4693 }
4694
4695 /* Use wpos_temp as position input from here on:
4696 */
4697 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
4698 }
4699
4700
4701 /**
4702 * Emit fragment position/ooordinate code.
4703 */
4704 static void
4705 emit_wpos(struct st_context *st,
4706 struct st_translate *t,
4707 const struct gl_program *program,
4708 struct ureg_program *ureg)
4709 {
4710 const struct gl_fragment_program *fp =
4711 (const struct gl_fragment_program *) program;
4712 struct pipe_screen *pscreen = st->pipe->screen;
4713 GLfloat adjX = 0.0f;
4714 GLfloat adjY[2] = { 0.0f, 0.0f };
4715 boolean invert = FALSE;
4716
4717 /* Query the pixel center conventions supported by the pipe driver and set
4718 * adjX, adjY to help out if it cannot handle the requested one internally.
4719 *
4720 * The bias of the y-coordinate depends on whether y-inversion takes place
4721 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4722 * drawing to an FBO (causes additional inversion), and whether the the pipe
4723 * driver origin and the requested origin differ (the latter condition is
4724 * stored in the 'invert' variable).
4725 *
4726 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4727 *
4728 * center shift only:
4729 * i -> h: +0.5
4730 * h -> i: -0.5
4731 *
4732 * inversion only:
4733 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4734 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4735 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4736 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4737 *
4738 * inversion and center shift:
4739 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4740 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4741 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4742 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4743 */
4744 if (fp->OriginUpperLeft) {
4745 /* Fragment shader wants origin in upper-left */
4746 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4747 /* the driver supports upper-left origin */
4748 }
4749 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4750 /* the driver supports lower-left origin, need to invert Y */
4751 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4752 invert = TRUE;
4753 }
4754 else
4755 assert(0);
4756 }
4757 else {
4758 /* Fragment shader wants origin in lower-left */
4759 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4760 /* the driver supports lower-left origin */
4761 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4762 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4763 /* the driver supports upper-left origin, need to invert Y */
4764 invert = TRUE;
4765 else
4766 assert(0);
4767 }
4768
4769 if (fp->PixelCenterInteger) {
4770 /* Fragment shader wants pixel center integer */
4771 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4772 /* the driver supports pixel center integer */
4773 adjY[1] = 1.0f;
4774 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4775 }
4776 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4777 /* the driver supports pixel center half integer, need to bias X,Y */
4778 adjX = -0.5f;
4779 adjY[0] = -0.5f;
4780 adjY[1] = 0.5f;
4781 }
4782 else
4783 assert(0);
4784 }
4785 else {
4786 /* Fragment shader wants pixel center half integer */
4787 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4788 /* the driver supports pixel center half integer */
4789 }
4790 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4791 /* the driver supports pixel center integer, need to bias X,Y */
4792 adjX = adjY[0] = adjY[1] = 0.5f;
4793 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4794 }
4795 else
4796 assert(0);
4797 }
4798
4799 /* we invert after adjustment so that we avoid the MOV to temporary,
4800 * and reuse the adjustment ADD instead */
4801 emit_wpos_adjustment(t, program, invert, adjX, adjY);
4802 }
4803
4804 /**
4805 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4806 * TGSI uses +1 for front, -1 for back.
4807 * This function converts the TGSI value to the GL value. Simply clamping/
4808 * saturating the value to [0,1] does the job.
4809 */
4810 static void
4811 emit_face_var(struct st_translate *t)
4812 {
4813 struct ureg_program *ureg = t->ureg;
4814 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4815 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
4816
4817 /* MOV_SAT face_temp, input[face] */
4818 face_temp = ureg_saturate(face_temp);
4819 ureg_MOV(ureg, face_temp, face_input);
4820
4821 /* Use face_temp as face input from here on: */
4822 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
4823 }
4824
4825 static void
4826 emit_edgeflags(struct st_translate *t)
4827 {
4828 struct ureg_program *ureg = t->ureg;
4829 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VARYING_SLOT_EDGE]];
4830 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4831
4832 ureg_MOV(ureg, edge_dst, edge_src);
4833 }
4834
4835 /**
4836 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4837 * \param program the program to translate
4838 * \param numInputs number of input registers used
4839 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4840 * input indexes
4841 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4842 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4843 * each input
4844 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4845 * \param numOutputs number of output registers used
4846 * \param outputMapping maps Mesa fragment program outputs to TGSI
4847 * generic outputs
4848 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4849 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4850 * each output
4851 *
4852 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4853 */
4854 extern "C" enum pipe_error
4855 st_translate_program(
4856 struct gl_context *ctx,
4857 uint procType,
4858 struct ureg_program *ureg,
4859 glsl_to_tgsi_visitor *program,
4860 const struct gl_program *proginfo,
4861 GLuint numInputs,
4862 const GLuint inputMapping[],
4863 const ubyte inputSemanticName[],
4864 const ubyte inputSemanticIndex[],
4865 const GLuint interpMode[],
4866 const GLboolean is_centroid[],
4867 GLuint numOutputs,
4868 const GLuint outputMapping[],
4869 const ubyte outputSemanticName[],
4870 const ubyte outputSemanticIndex[],
4871 boolean passthrough_edgeflags,
4872 boolean clamp_color)
4873 {
4874 struct st_translate *t;
4875 unsigned i;
4876 enum pipe_error ret = PIPE_OK;
4877
4878 assert(numInputs <= Elements(t->inputs));
4879 assert(numOutputs <= Elements(t->outputs));
4880
4881 t = CALLOC_STRUCT(st_translate);
4882 if (!t) {
4883 ret = PIPE_ERROR_OUT_OF_MEMORY;
4884 goto out;
4885 }
4886
4887 memset(t, 0, sizeof *t);
4888
4889 t->procType = procType;
4890 t->inputMapping = inputMapping;
4891 t->outputMapping = outputMapping;
4892 t->ureg = ureg;
4893
4894 if (program->shader_program) {
4895 for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4896 struct gl_uniform_storage *const storage =
4897 &program->shader_program->UniformStorage[i];
4898
4899 _mesa_uniform_detach_all_driver_storage(storage);
4900 }
4901 }
4902
4903 /*
4904 * Declare input attributes.
4905 */
4906 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4907 for (i = 0; i < numInputs; i++) {
4908 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
4909 inputSemanticName[i],
4910 inputSemanticIndex[i],
4911 interpMode[i], 0,
4912 is_centroid[i]);
4913 }
4914
4915 if (proginfo->InputsRead & VARYING_BIT_POS) {
4916 /* Must do this after setting up t->inputs, and before
4917 * emitting constant references, below:
4918 */
4919 emit_wpos(st_context(ctx), t, proginfo, ureg);
4920 }
4921
4922 if (proginfo->InputsRead & VARYING_BIT_FACE)
4923 emit_face_var(t);
4924
4925 /*
4926 * Declare output attributes.
4927 */
4928 for (i = 0; i < numOutputs; i++) {
4929 switch (outputSemanticName[i]) {
4930 case TGSI_SEMANTIC_POSITION:
4931 t->outputs[i] = ureg_DECL_output(ureg,
4932 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4933 outputSemanticIndex[i]);
4934 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4935 break;
4936 case TGSI_SEMANTIC_STENCIL:
4937 t->outputs[i] = ureg_DECL_output(ureg,
4938 TGSI_SEMANTIC_STENCIL, /* Stencil */
4939 outputSemanticIndex[i]);
4940 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4941 break;
4942 case TGSI_SEMANTIC_COLOR:
4943 t->outputs[i] = ureg_DECL_output(ureg,
4944 TGSI_SEMANTIC_COLOR,
4945 outputSemanticIndex[i]);
4946 break;
4947 case TGSI_SEMANTIC_SAMPLEMASK:
4948 t->outputs[i] = ureg_DECL_output(ureg,
4949 TGSI_SEMANTIC_SAMPLEMASK,
4950 outputSemanticIndex[i]);
4951 /* TODO: If we ever support more than 32 samples, this will have
4952 * to become an array.
4953 */
4954 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
4955 break;
4956 default:
4957 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4958 ret = PIPE_ERROR_BAD_INPUT;
4959 goto out;
4960 }
4961 }
4962 }
4963 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4964 for (i = 0; i < numInputs; i++) {
4965 t->inputs[i] = ureg_DECL_gs_input(ureg,
4966 i,
4967 inputSemanticName[i],
4968 inputSemanticIndex[i]);
4969 }
4970
4971 for (i = 0; i < numOutputs; i++) {
4972 t->outputs[i] = ureg_DECL_output(ureg,
4973 outputSemanticName[i],
4974 outputSemanticIndex[i]);
4975 }
4976 }
4977 else {
4978 assert(procType == TGSI_PROCESSOR_VERTEX);
4979
4980 for (i = 0; i < numInputs; i++) {
4981 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4982 }
4983
4984 for (i = 0; i < numOutputs; i++) {
4985 t->outputs[i] = ureg_DECL_output(ureg,
4986 outputSemanticName[i],
4987 outputSemanticIndex[i]);
4988 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
4989 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
4990 ureg_MOV(ureg,
4991 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
4992 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
4993 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
4994 }
4995 }
4996 if (passthrough_edgeflags)
4997 emit_edgeflags(t);
4998 }
4999
5000 /* Declare address register.
5001 */
5002 if (program->num_address_regs > 0) {
5003 assert(program->num_address_regs <= 2);
5004 t->address[0] = ureg_DECL_address(ureg);
5005 if (program->num_address_regs == 2)
5006 t->address[1] = ureg_DECL_address(ureg);
5007 }
5008
5009 /* Declare misc input registers
5010 */
5011 {
5012 GLbitfield sysInputs = proginfo->SystemValuesRead;
5013 unsigned numSys = 0;
5014 for (i = 0; sysInputs; i++) {
5015 if (sysInputs & (1 << i)) {
5016 unsigned semName = mesa_sysval_to_semantic[i];
5017 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
5018 if (semName == TGSI_SEMANTIC_INSTANCEID ||
5019 semName == TGSI_SEMANTIC_VERTEXID) {
5020 /* From Gallium perspective, these system values are always
5021 * integer, and require native integer support. However, if
5022 * native integer is supported on the vertex stage but not the
5023 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
5024 * assumes these system values are floats. To resolve the
5025 * inconsistency, we insert a U2F.
5026 */
5027 struct st_context *st = st_context(ctx);
5028 struct pipe_screen *pscreen = st->pipe->screen;
5029 assert(procType == TGSI_PROCESSOR_VERTEX);
5030 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
5031 if (!ctx->Const.NativeIntegers) {
5032 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
5033 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
5034 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
5035 }
5036 }
5037 numSys++;
5038 sysInputs &= ~(1 << i);
5039 }
5040 }
5041 }
5042
5043 /* Copy over array sizes
5044 */
5045 memcpy(t->array_sizes, program->array_sizes, sizeof(unsigned) * program->next_array);
5046
5047 /* Emit constants and uniforms. TGSI uses a single index space for these,
5048 * so we put all the translated regs in t->constants.
5049 */
5050 if (proginfo->Parameters) {
5051 t->constants = (struct ureg_src *)
5052 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
5053 if (t->constants == NULL) {
5054 ret = PIPE_ERROR_OUT_OF_MEMORY;
5055 goto out;
5056 }
5057
5058 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
5059 switch (proginfo->Parameters->Parameters[i].Type) {
5060 case PROGRAM_STATE_VAR:
5061 case PROGRAM_UNIFORM:
5062 t->constants[i] = ureg_DECL_constant(ureg, i);
5063 break;
5064
5065 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
5066 * addressing of the const buffer.
5067 * FIXME: Be smarter and recognize param arrays:
5068 * indirect addressing is only valid within the referenced
5069 * array.
5070 */
5071 case PROGRAM_CONSTANT:
5072 if (program->indirect_addr_consts)
5073 t->constants[i] = ureg_DECL_constant(ureg, i);
5074 else
5075 t->constants[i] = emit_immediate(t,
5076 proginfo->Parameters->ParameterValues[i],
5077 proginfo->Parameters->Parameters[i].DataType,
5078 4);
5079 break;
5080 default:
5081 break;
5082 }
5083 }
5084 }
5085
5086 if (program->shader_program) {
5087 unsigned num_ubos = program->shader_program->NumUniformBlocks;
5088
5089 for (i = 0; i < num_ubos; i++) {
5090 ureg_DECL_constant2D(t->ureg, 0, program->shader_program->UniformBlocks[i].UniformBufferSize / 4, i + 1);
5091 }
5092 }
5093
5094 /* Emit immediate values.
5095 */
5096 t->immediates = (struct ureg_src *)
5097 calloc(program->num_immediates, sizeof(struct ureg_src));
5098 if (t->immediates == NULL) {
5099 ret = PIPE_ERROR_OUT_OF_MEMORY;
5100 goto out;
5101 }
5102 i = 0;
5103 foreach_list(node, &program->immediates) {
5104 immediate_storage *imm = (immediate_storage *) node;
5105 assert(i < program->num_immediates);
5106 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
5107 }
5108 assert(i == program->num_immediates);
5109
5110 /* texture samplers */
5111 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
5112 if (program->samplers_used & (1 << i)) {
5113 t->samplers[i] = ureg_DECL_sampler(ureg, i);
5114 }
5115 }
5116
5117 /* Emit each instruction in turn:
5118 */
5119 foreach_list(n, &program->instructions) {
5120 set_insn_start(t, ureg_get_instruction_number(ureg));
5121 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *) n, clamp_color);
5122 }
5123
5124 /* Fix up all emitted labels:
5125 */
5126 for (i = 0; i < t->labels_count; i++) {
5127 ureg_fixup_label(ureg, t->labels[i].token,
5128 t->insn[t->labels[i].branch_target]);
5129 }
5130
5131 if (program->shader_program) {
5132 /* This has to be done last. Any operation the can cause
5133 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5134 * program constant) has to happen before creating this linkage.
5135 */
5136 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5137 if (program->shader_program->_LinkedShaders[i] == NULL)
5138 continue;
5139
5140 _mesa_associate_uniform_storage(ctx, program->shader_program,
5141 program->shader_program->_LinkedShaders[i]->Program->Parameters);
5142 }
5143 }
5144
5145 out:
5146 if (t) {
5147 free(t->insn);
5148 free(t->labels);
5149 free(t->constants);
5150 free(t->immediates);
5151
5152 if (t->error) {
5153 debug_printf("%s: translate error flag set\n", __FUNCTION__);
5154 }
5155
5156 free(t);
5157 }
5158
5159 return ret;
5160 }
5161 /* ----------------------------- End TGSI code ------------------------------ */
5162
5163
5164 static unsigned
5165 shader_stage_to_ptarget(gl_shader_stage stage)
5166 {
5167 switch (stage) {
5168 case MESA_SHADER_VERTEX:
5169 return PIPE_SHADER_VERTEX;
5170 case MESA_SHADER_FRAGMENT:
5171 return PIPE_SHADER_FRAGMENT;
5172 case MESA_SHADER_GEOMETRY:
5173 return PIPE_SHADER_GEOMETRY;
5174 case MESA_SHADER_COMPUTE:
5175 return PIPE_SHADER_COMPUTE;
5176 }
5177
5178 assert(!"should not be reached");
5179 return PIPE_SHADER_VERTEX;
5180 }
5181
5182
5183 /**
5184 * Convert a shader's GLSL IR into a Mesa gl_program, although without
5185 * generating Mesa IR.
5186 */
5187 static struct gl_program *
5188 get_mesa_program(struct gl_context *ctx,
5189 struct gl_shader_program *shader_program,
5190 struct gl_shader *shader)
5191 {
5192 glsl_to_tgsi_visitor* v;
5193 struct gl_program *prog;
5194 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
5195 bool progress;
5196 struct gl_shader_compiler_options *options =
5197 &ctx->ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(shader->Type)];
5198 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5199 unsigned ptarget = shader_stage_to_ptarget(shader->Stage);
5200
5201 validate_ir_tree(shader->ir);
5202
5203 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
5204 if (!prog)
5205 return NULL;
5206 prog->Parameters = _mesa_new_parameter_list();
5207 v = new glsl_to_tgsi_visitor();
5208 v->ctx = ctx;
5209 v->prog = prog;
5210 v->shader_program = shader_program;
5211 v->options = options;
5212 v->glsl_version = ctx->Const.GLSLVersion;
5213 v->native_integers = ctx->Const.NativeIntegers;
5214
5215 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
5216 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
5217
5218 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
5219 prog->Parameters);
5220
5221 /* Remove reads from output registers. */
5222 lower_output_reads(shader->ir);
5223
5224 /* Emit intermediate IR for main(). */
5225 visit_exec_list(shader->ir, v);
5226
5227 /* Now emit bodies for any functions that were used. */
5228 do {
5229 progress = GL_FALSE;
5230
5231 foreach_list(node, &v->function_signatures) {
5232 function_entry *entry = (function_entry *) node;
5233
5234 if (!entry->bgn_inst) {
5235 v->current_function = entry;
5236
5237 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
5238 entry->bgn_inst->function = entry;
5239
5240 visit_exec_list(&entry->sig->body, v);
5241
5242 glsl_to_tgsi_instruction *last;
5243 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
5244 if (last->op != TGSI_OPCODE_RET)
5245 v->emit(NULL, TGSI_OPCODE_RET);
5246
5247 glsl_to_tgsi_instruction *end;
5248 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
5249 end->function = entry;
5250
5251 progress = GL_TRUE;
5252 }
5253 }
5254 } while (progress);
5255
5256 #if 0
5257 /* Print out some information (for debugging purposes) used by the
5258 * optimization passes. */
5259 for (i=0; i < v->next_temp; i++) {
5260 int fr = v->get_first_temp_read(i);
5261 int fw = v->get_first_temp_write(i);
5262 int lr = v->get_last_temp_read(i);
5263 int lw = v->get_last_temp_write(i);
5264
5265 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
5266 assert(fw <= fr);
5267 }
5268 #endif
5269
5270 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5271 v->simplify_cmp();
5272 v->copy_propagate();
5273 while (v->eliminate_dead_code_advanced());
5274
5275 v->eliminate_dead_code();
5276 v->merge_registers();
5277 v->renumber_registers();
5278
5279 /* Write the END instruction. */
5280 v->emit(NULL, TGSI_OPCODE_END);
5281
5282 if (ctx->_Shader->Flags & GLSL_DUMP) {
5283 printf("\n");
5284 printf("GLSL IR for linked %s program %d:\n",
5285 _mesa_shader_stage_to_string(shader->Stage),
5286 shader_program->Name);
5287 _mesa_print_ir(stdout, shader->ir, NULL);
5288 printf("\n");
5289 printf("\n");
5290 fflush(stdout);
5291 }
5292
5293 prog->Instructions = NULL;
5294 prog->NumInstructions = 0;
5295
5296 do_set_program_inouts(shader->ir, prog, shader->Stage);
5297 count_resources(v, prog);
5298
5299 _mesa_reference_program(ctx, &shader->Program, prog);
5300
5301 /* This has to be done last. Any operation the can cause
5302 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5303 * program constant) has to happen before creating this linkage.
5304 */
5305 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5306 if (!shader_program->LinkStatus) {
5307 return NULL;
5308 }
5309
5310 struct st_vertex_program *stvp;
5311 struct st_fragment_program *stfp;
5312 struct st_geometry_program *stgp;
5313
5314 switch (shader->Type) {
5315 case GL_VERTEX_SHADER:
5316 stvp = (struct st_vertex_program *)prog;
5317 stvp->glsl_to_tgsi = v;
5318 break;
5319 case GL_FRAGMENT_SHADER:
5320 stfp = (struct st_fragment_program *)prog;
5321 stfp->glsl_to_tgsi = v;
5322 break;
5323 case GL_GEOMETRY_SHADER:
5324 stgp = (struct st_geometry_program *)prog;
5325 stgp->glsl_to_tgsi = v;
5326 stgp->Base.InputType = shader_program->Geom.InputType;
5327 stgp->Base.OutputType = shader_program->Geom.OutputType;
5328 stgp->Base.VerticesOut = shader_program->Geom.VerticesOut;
5329 stgp->Base.Invocations = shader_program->Geom.Invocations;
5330 break;
5331 default:
5332 assert(!"should not be reached");
5333 return NULL;
5334 }
5335
5336 return prog;
5337 }
5338
5339 extern "C" {
5340
5341 struct gl_shader *
5342 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
5343 {
5344 struct gl_shader *shader;
5345 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
5346 type == GL_GEOMETRY_SHADER_ARB);
5347 shader = rzalloc(NULL, struct gl_shader);
5348 if (shader) {
5349 shader->Type = type;
5350 shader->Stage = _mesa_shader_enum_to_shader_stage(type);
5351 shader->Name = name;
5352 _mesa_init_shader(ctx, shader);
5353 }
5354 return shader;
5355 }
5356
5357 struct gl_shader_program *
5358 st_new_shader_program(struct gl_context *ctx, GLuint name)
5359 {
5360 struct gl_shader_program *shProg;
5361 shProg = rzalloc(NULL, struct gl_shader_program);
5362 if (shProg) {
5363 shProg->Name = name;
5364 _mesa_init_shader_program(ctx, shProg);
5365 }
5366 return shProg;
5367 }
5368
5369 /**
5370 * Link a shader.
5371 * Called via ctx->Driver.LinkShader()
5372 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5373 * with code lowering and other optimizations.
5374 */
5375 GLboolean
5376 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5377 {
5378 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5379 assert(prog->LinkStatus);
5380
5381 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5382 if (prog->_LinkedShaders[i] == NULL)
5383 continue;
5384
5385 bool progress;
5386 exec_list *ir = prog->_LinkedShaders[i]->ir;
5387 const struct gl_shader_compiler_options *options =
5388 &ctx->ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(prog->_LinkedShaders[i]->Type)];
5389
5390 /* If there are forms of indirect addressing that the driver
5391 * cannot handle, perform the lowering pass.
5392 */
5393 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
5394 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
5395 lower_variable_index_to_cond_assign(ir,
5396 options->EmitNoIndirectInput,
5397 options->EmitNoIndirectOutput,
5398 options->EmitNoIndirectTemp,
5399 options->EmitNoIndirectUniform);
5400 }
5401
5402 if (ctx->Extensions.ARB_shading_language_packing) {
5403 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
5404 LOWER_UNPACK_SNORM_2x16 |
5405 LOWER_PACK_UNORM_2x16 |
5406 LOWER_UNPACK_UNORM_2x16 |
5407 LOWER_PACK_SNORM_4x8 |
5408 LOWER_UNPACK_SNORM_4x8 |
5409 LOWER_UNPACK_UNORM_4x8 |
5410 LOWER_PACK_UNORM_4x8 |
5411 LOWER_PACK_HALF_2x16 |
5412 LOWER_UNPACK_HALF_2x16;
5413
5414 lower_packing_builtins(ir, lower_inst);
5415 }
5416
5417 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
5418 lower_offset_arrays(ir);
5419 do_mat_op_to_vec(ir);
5420 lower_instructions(ir,
5421 MOD_TO_FRACT |
5422 DIV_TO_MUL_RCP |
5423 EXP_TO_EXP2 |
5424 LOG_TO_LOG2 |
5425 LDEXP_TO_ARITH |
5426 CARRY_TO_ARITH |
5427 BORROW_TO_ARITH |
5428 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
5429 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0));
5430
5431 lower_ubo_reference(prog->_LinkedShaders[i], ir);
5432 do_vec_index_to_cond_assign(ir);
5433 lower_vector_insert(ir, true);
5434 lower_quadop_vector(ir, false);
5435 lower_noise(ir);
5436 if (options->MaxIfDepth == 0) {
5437 lower_discard(ir);
5438 }
5439
5440 do {
5441 progress = false;
5442
5443 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5444
5445 progress = do_common_optimization(ir, true, true, options,
5446 ctx->Const.NativeIntegers)
5447 || progress;
5448
5449 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5450
5451 } while (progress);
5452
5453 validate_ir_tree(ir);
5454 }
5455
5456 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5457 struct gl_program *linked_prog;
5458
5459 if (prog->_LinkedShaders[i] == NULL)
5460 continue;
5461
5462 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5463
5464 if (linked_prog) {
5465 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5466 linked_prog);
5467 if (!ctx->Driver.ProgramStringNotify(ctx,
5468 _mesa_shader_stage_to_program(i),
5469 linked_prog)) {
5470 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5471 NULL);
5472 _mesa_reference_program(ctx, &linked_prog, NULL);
5473 return GL_FALSE;
5474 }
5475 }
5476
5477 _mesa_reference_program(ctx, &linked_prog, NULL);
5478 }
5479
5480 return GL_TRUE;
5481 }
5482
5483 void
5484 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5485 const GLuint outputMapping[],
5486 struct pipe_stream_output_info *so)
5487 {
5488 unsigned i;
5489 struct gl_transform_feedback_info *info =
5490 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5491
5492 for (i = 0; i < info->NumOutputs; i++) {
5493 so->output[i].register_index =
5494 outputMapping[info->Outputs[i].OutputRegister];
5495 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5496 so->output[i].num_components = info->Outputs[i].NumComponents;
5497 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5498 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5499 }
5500
5501 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5502 so->stride[i] = info->BufferStride[i];
5503 }
5504 so->num_outputs = info->NumOutputs;
5505 }
5506
5507 } /* extern "C" */