glsl_to_tgsi: implement ir_unop_any using DP4 w/saturate or DP4 w/SLT
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_print_visitor.h"
38 #include "ir_expression_flattening.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44
45 extern "C" {
46 #include "main/mtypes.h"
47 #include "main/shaderapi.h"
48 #include "main/shaderobj.h"
49 #include "main/uniforms.h"
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_uniform.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58
59 #include "pipe/p_compiler.h"
60 #include "pipe/p_context.h"
61 #include "pipe/p_screen.h"
62 #include "pipe/p_shader_tokens.h"
63 #include "pipe/p_state.h"
64 #include "util/u_math.h"
65 #include "tgsi/tgsi_ureg.h"
66 #include "tgsi/tgsi_info.h"
67 #include "st_context.h"
68 #include "st_program.h"
69 #include "st_glsl_to_tgsi.h"
70 #include "st_mesa_to_tgsi.h"
71 }
72
73 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
75 (1 << PROGRAM_ENV_PARAM) | \
76 (1 << PROGRAM_STATE_VAR) | \
77 (1 << PROGRAM_NAMED_PARAM) | \
78 (1 << PROGRAM_CONSTANT) | \
79 (1 << PROGRAM_UNIFORM))
80
81 #define MAX_TEMPS 4096
82
83 class st_src_reg;
84 class st_dst_reg;
85
86 static int swizzle_for_size(int size);
87
88 /**
89 * This struct is a corresponding struct to TGSI ureg_src.
90 */
91 class st_src_reg {
92 public:
93 st_src_reg(gl_register_file file, int index, const glsl_type *type)
94 {
95 this->file = file;
96 this->index = index;
97 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
98 this->swizzle = swizzle_for_size(type->vector_elements);
99 else
100 this->swizzle = SWIZZLE_XYZW;
101 this->negate = 0;
102 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
103 this->reladdr = NULL;
104 }
105
106 st_src_reg(gl_register_file file, int index, int type)
107 {
108 this->type = type;
109 this->file = file;
110 this->index = index;
111 this->swizzle = SWIZZLE_XYZW;
112 this->negate = 0;
113 this->reladdr = NULL;
114 }
115
116 st_src_reg()
117 {
118 this->type = GLSL_TYPE_ERROR;
119 this->file = PROGRAM_UNDEFINED;
120 this->index = 0;
121 this->swizzle = 0;
122 this->negate = 0;
123 this->reladdr = NULL;
124 }
125
126 explicit st_src_reg(st_dst_reg reg);
127
128 gl_register_file file; /**< PROGRAM_* from Mesa */
129 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
130 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
131 int negate; /**< NEGATE_XYZW mask from mesa */
132 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
133 /** Register index should be offset by the integer in this reg. */
134 st_src_reg *reladdr;
135 };
136
137 class st_dst_reg {
138 public:
139 st_dst_reg(gl_register_file file, int writemask, int type)
140 {
141 this->file = file;
142 this->index = 0;
143 this->writemask = writemask;
144 this->cond_mask = COND_TR;
145 this->reladdr = NULL;
146 this->type = type;
147 }
148
149 st_dst_reg()
150 {
151 this->type = GLSL_TYPE_ERROR;
152 this->file = PROGRAM_UNDEFINED;
153 this->index = 0;
154 this->writemask = 0;
155 this->cond_mask = COND_TR;
156 this->reladdr = NULL;
157 }
158
159 explicit st_dst_reg(st_src_reg reg);
160
161 gl_register_file file; /**< PROGRAM_* from Mesa */
162 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
163 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
164 GLuint cond_mask:4;
165 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
166 /** Register index should be offset by the integer in this reg. */
167 st_src_reg *reladdr;
168 };
169
170 st_src_reg::st_src_reg(st_dst_reg reg)
171 {
172 this->type = reg.type;
173 this->file = reg.file;
174 this->index = reg.index;
175 this->swizzle = SWIZZLE_XYZW;
176 this->negate = 0;
177 this->reladdr = reg.reladdr;
178 }
179
180 st_dst_reg::st_dst_reg(st_src_reg reg)
181 {
182 this->type = reg.type;
183 this->file = reg.file;
184 this->index = reg.index;
185 this->writemask = WRITEMASK_XYZW;
186 this->cond_mask = COND_TR;
187 this->reladdr = reg.reladdr;
188 }
189
190 class glsl_to_tgsi_instruction : public exec_node {
191 public:
192 /* Callers of this ralloc-based new need not call delete. It's
193 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
194 static void* operator new(size_t size, void *ctx)
195 {
196 void *node;
197
198 node = rzalloc_size(ctx, size);
199 assert(node != NULL);
200
201 return node;
202 }
203
204 unsigned op;
205 st_dst_reg dst;
206 st_src_reg src[3];
207 /** Pointer to the ir source this tree came from for debugging */
208 ir_instruction *ir;
209 GLboolean cond_update;
210 bool saturate;
211 int sampler; /**< sampler index */
212 int tex_target; /**< One of TEXTURE_*_INDEX */
213 GLboolean tex_shadow;
214 int dead_mask; /**< Used in dead code elimination */
215
216 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
217 };
218
219 class variable_storage : public exec_node {
220 public:
221 variable_storage(ir_variable *var, gl_register_file file, int index)
222 : file(file), index(index), var(var)
223 {
224 /* empty */
225 }
226
227 gl_register_file file;
228 int index;
229 ir_variable *var; /* variable that maps to this, if any */
230 };
231
232 class immediate_storage : public exec_node {
233 public:
234 immediate_storage(gl_constant_value *values, int size, int type)
235 {
236 memcpy(this->values, values, size * sizeof(gl_constant_value));
237 this->size = size;
238 this->type = type;
239 }
240
241 gl_constant_value values[4];
242 int size; /**< Number of components (1-4) */
243 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
244 };
245
246 class function_entry : public exec_node {
247 public:
248 ir_function_signature *sig;
249
250 /**
251 * identifier of this function signature used by the program.
252 *
253 * At the point that TGSI instructions for function calls are
254 * generated, we don't know the address of the first instruction of
255 * the function body. So we make the BranchTarget that is called a
256 * small integer and rewrite them during set_branchtargets().
257 */
258 int sig_id;
259
260 /**
261 * Pointer to first instruction of the function body.
262 *
263 * Set during function body emits after main() is processed.
264 */
265 glsl_to_tgsi_instruction *bgn_inst;
266
267 /**
268 * Index of the first instruction of the function body in actual TGSI.
269 *
270 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
271 */
272 int inst;
273
274 /** Storage for the return value. */
275 st_src_reg return_reg;
276 };
277
278 class glsl_to_tgsi_visitor : public ir_visitor {
279 public:
280 glsl_to_tgsi_visitor();
281 ~glsl_to_tgsi_visitor();
282
283 function_entry *current_function;
284
285 struct gl_context *ctx;
286 struct gl_program *prog;
287 struct gl_shader_program *shader_program;
288 struct gl_shader_compiler_options *options;
289
290 int next_temp;
291
292 int num_address_regs;
293 int samplers_used;
294 bool indirect_addr_temps;
295 bool indirect_addr_consts;
296
297 int glsl_version;
298 bool native_integers;
299
300 variable_storage *find_variable_storage(ir_variable *var);
301
302 int add_constant(gl_register_file file, gl_constant_value values[4],
303 int size, int datatype, GLuint *swizzle_out);
304
305 function_entry *get_function_signature(ir_function_signature *sig);
306
307 st_src_reg get_temp(const glsl_type *type);
308 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
309
310 st_src_reg st_src_reg_for_float(float val);
311 st_src_reg st_src_reg_for_int(int val);
312 st_src_reg st_src_reg_for_type(int type, int val);
313
314 /**
315 * \name Visit methods
316 *
317 * As typical for the visitor pattern, there must be one \c visit method for
318 * each concrete subclass of \c ir_instruction. Virtual base classes within
319 * the hierarchy should not have \c visit methods.
320 */
321 /*@{*/
322 virtual void visit(ir_variable *);
323 virtual void visit(ir_loop *);
324 virtual void visit(ir_loop_jump *);
325 virtual void visit(ir_function_signature *);
326 virtual void visit(ir_function *);
327 virtual void visit(ir_expression *);
328 virtual void visit(ir_swizzle *);
329 virtual void visit(ir_dereference_variable *);
330 virtual void visit(ir_dereference_array *);
331 virtual void visit(ir_dereference_record *);
332 virtual void visit(ir_assignment *);
333 virtual void visit(ir_constant *);
334 virtual void visit(ir_call *);
335 virtual void visit(ir_return *);
336 virtual void visit(ir_discard *);
337 virtual void visit(ir_texture *);
338 virtual void visit(ir_if *);
339 /*@}*/
340
341 st_src_reg result;
342
343 /** List of variable_storage */
344 exec_list variables;
345
346 /** List of immediate_storage */
347 exec_list immediates;
348 int num_immediates;
349
350 /** List of function_entry */
351 exec_list function_signatures;
352 int next_signature_id;
353
354 /** List of glsl_to_tgsi_instruction */
355 exec_list instructions;
356
357 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
358
359 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
360 st_dst_reg dst, st_src_reg src0);
361
362 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
363 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
364
365 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
366 st_dst_reg dst,
367 st_src_reg src0, st_src_reg src1, st_src_reg src2);
368
369 unsigned get_opcode(ir_instruction *ir, unsigned op,
370 st_dst_reg dst,
371 st_src_reg src0, st_src_reg src1);
372
373 /**
374 * Emit the correct dot-product instruction for the type of arguments
375 */
376 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
377 st_dst_reg dst,
378 st_src_reg src0,
379 st_src_reg src1,
380 unsigned elements);
381
382 void emit_scalar(ir_instruction *ir, unsigned op,
383 st_dst_reg dst, st_src_reg src0);
384
385 void emit_scalar(ir_instruction *ir, unsigned op,
386 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
387
388 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
389
390 void emit_scs(ir_instruction *ir, unsigned op,
391 st_dst_reg dst, const st_src_reg &src);
392
393 GLboolean try_emit_mad(ir_expression *ir,
394 int mul_operand);
395 GLboolean try_emit_sat(ir_expression *ir);
396
397 void emit_swz(ir_expression *ir);
398
399 bool process_move_condition(ir_rvalue *ir);
400
401 void remove_output_reads(gl_register_file type);
402 void simplify_cmp(void);
403
404 void rename_temp_register(int index, int new_index);
405 int get_first_temp_read(int index);
406 int get_first_temp_write(int index);
407 int get_last_temp_read(int index);
408 int get_last_temp_write(int index);
409
410 void copy_propagate(void);
411 void eliminate_dead_code(void);
412 int eliminate_dead_code_advanced(void);
413 void merge_registers(void);
414 void renumber_registers(void);
415
416 void *mem_ctx;
417 };
418
419 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
420
421 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
422
423 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
424
425 static void
426 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
427
428 static void
429 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
430 {
431 va_list args;
432 va_start(args, fmt);
433 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
434 va_end(args);
435
436 prog->LinkStatus = GL_FALSE;
437 }
438
439 static int
440 swizzle_for_size(int size)
441 {
442 int size_swizzles[4] = {
443 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
444 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
445 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
446 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
447 };
448
449 assert((size >= 1) && (size <= 4));
450 return size_swizzles[size - 1];
451 }
452
453 static bool
454 is_tex_instruction(unsigned opcode)
455 {
456 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
457 return info->is_tex;
458 }
459
460 static unsigned
461 num_inst_dst_regs(unsigned opcode)
462 {
463 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
464 return info->num_dst;
465 }
466
467 static unsigned
468 num_inst_src_regs(unsigned opcode)
469 {
470 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
471 return info->is_tex ? info->num_src - 1 : info->num_src;
472 }
473
474 glsl_to_tgsi_instruction *
475 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
476 st_dst_reg dst,
477 st_src_reg src0, st_src_reg src1, st_src_reg src2)
478 {
479 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
480 int num_reladdr = 0, i;
481
482 op = get_opcode(ir, op, dst, src0, src1);
483
484 /* If we have to do relative addressing, we want to load the ARL
485 * reg directly for one of the regs, and preload the other reladdr
486 * sources into temps.
487 */
488 num_reladdr += dst.reladdr != NULL;
489 num_reladdr += src0.reladdr != NULL;
490 num_reladdr += src1.reladdr != NULL;
491 num_reladdr += src2.reladdr != NULL;
492
493 reladdr_to_temp(ir, &src2, &num_reladdr);
494 reladdr_to_temp(ir, &src1, &num_reladdr);
495 reladdr_to_temp(ir, &src0, &num_reladdr);
496
497 if (dst.reladdr) {
498 emit_arl(ir, address_reg, *dst.reladdr);
499 num_reladdr--;
500 }
501 assert(num_reladdr == 0);
502
503 inst->op = op;
504 inst->dst = dst;
505 inst->src[0] = src0;
506 inst->src[1] = src1;
507 inst->src[2] = src2;
508 inst->ir = ir;
509 inst->dead_mask = 0;
510
511 inst->function = NULL;
512
513 if (op == TGSI_OPCODE_ARL)
514 this->num_address_regs = 1;
515
516 /* Update indirect addressing status used by TGSI */
517 if (dst.reladdr) {
518 switch(dst.file) {
519 case PROGRAM_TEMPORARY:
520 this->indirect_addr_temps = true;
521 break;
522 case PROGRAM_LOCAL_PARAM:
523 case PROGRAM_ENV_PARAM:
524 case PROGRAM_STATE_VAR:
525 case PROGRAM_NAMED_PARAM:
526 case PROGRAM_CONSTANT:
527 case PROGRAM_UNIFORM:
528 this->indirect_addr_consts = true;
529 break;
530 case PROGRAM_IMMEDIATE:
531 assert(!"immediates should not have indirect addressing");
532 break;
533 default:
534 break;
535 }
536 }
537 else {
538 for (i=0; i<3; i++) {
539 if(inst->src[i].reladdr) {
540 switch(inst->src[i].file) {
541 case PROGRAM_TEMPORARY:
542 this->indirect_addr_temps = true;
543 break;
544 case PROGRAM_LOCAL_PARAM:
545 case PROGRAM_ENV_PARAM:
546 case PROGRAM_STATE_VAR:
547 case PROGRAM_NAMED_PARAM:
548 case PROGRAM_CONSTANT:
549 case PROGRAM_UNIFORM:
550 this->indirect_addr_consts = true;
551 break;
552 case PROGRAM_IMMEDIATE:
553 assert(!"immediates should not have indirect addressing");
554 break;
555 default:
556 break;
557 }
558 }
559 }
560 }
561
562 this->instructions.push_tail(inst);
563
564 return inst;
565 }
566
567
568 glsl_to_tgsi_instruction *
569 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
570 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
571 {
572 return emit(ir, op, dst, src0, src1, undef_src);
573 }
574
575 glsl_to_tgsi_instruction *
576 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
577 st_dst_reg dst, st_src_reg src0)
578 {
579 assert(dst.writemask != 0);
580 return emit(ir, op, dst, src0, undef_src, undef_src);
581 }
582
583 glsl_to_tgsi_instruction *
584 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
585 {
586 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
587 }
588
589 /**
590 * Determines whether to use an integer, unsigned integer, or float opcode
591 * based on the operands and input opcode, then emits the result.
592 *
593 * TODO: type checking for remaining TGSI opcodes
594 */
595 unsigned
596 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
597 st_dst_reg dst,
598 st_src_reg src0, st_src_reg src1)
599 {
600 int type = GLSL_TYPE_FLOAT;
601
602 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
603 type = GLSL_TYPE_FLOAT;
604 else if (native_integers)
605 type = src0.type;
606
607 #define case4(c, f, i, u) \
608 case TGSI_OPCODE_##c: \
609 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
610 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
611 else op = TGSI_OPCODE_##f; \
612 break;
613 #define case3(f, i, u) case4(f, f, i, u)
614 #define case2fi(f, i) case4(f, f, i, i)
615 #define case2iu(i, u) case4(i, LAST, i, u)
616
617 switch(op) {
618 case2fi(ADD, UADD);
619 case2fi(MUL, UMUL);
620 case2fi(MAD, UMAD);
621 case3(DIV, IDIV, UDIV);
622 case3(MAX, IMAX, UMAX);
623 case3(MIN, IMIN, UMIN);
624 case2iu(MOD, UMOD);
625
626 case2fi(SEQ, USEQ);
627 case2fi(SNE, USNE);
628 case3(SGE, ISGE, USGE);
629 case3(SLT, ISLT, USLT);
630
631 case2iu(SHL, SHL);
632 case2iu(ISHR, USHR);
633 case2iu(NOT, NOT);
634 case2iu(AND, AND);
635 case2iu(OR, OR);
636 case2iu(XOR, XOR);
637
638 default: break;
639 }
640
641 assert(op != TGSI_OPCODE_LAST);
642 return op;
643 }
644
645 glsl_to_tgsi_instruction *
646 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
647 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
648 unsigned elements)
649 {
650 static const unsigned dot_opcodes[] = {
651 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
652 };
653
654 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
655 }
656
657 /**
658 * Emits TGSI scalar opcodes to produce unique answers across channels.
659 *
660 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
661 * channel determines the result across all channels. So to do a vec4
662 * of this operation, we want to emit a scalar per source channel used
663 * to produce dest channels.
664 */
665 void
666 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
667 st_dst_reg dst,
668 st_src_reg orig_src0, st_src_reg orig_src1)
669 {
670 int i, j;
671 int done_mask = ~dst.writemask;
672
673 /* TGSI RCP is a scalar operation splatting results to all channels,
674 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
675 * dst channels.
676 */
677 for (i = 0; i < 4; i++) {
678 GLuint this_mask = (1 << i);
679 glsl_to_tgsi_instruction *inst;
680 st_src_reg src0 = orig_src0;
681 st_src_reg src1 = orig_src1;
682
683 if (done_mask & this_mask)
684 continue;
685
686 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
687 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
688 for (j = i + 1; j < 4; j++) {
689 /* If there is another enabled component in the destination that is
690 * derived from the same inputs, generate its value on this pass as
691 * well.
692 */
693 if (!(done_mask & (1 << j)) &&
694 GET_SWZ(src0.swizzle, j) == src0_swiz &&
695 GET_SWZ(src1.swizzle, j) == src1_swiz) {
696 this_mask |= (1 << j);
697 }
698 }
699 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
700 src0_swiz, src0_swiz);
701 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
702 src1_swiz, src1_swiz);
703
704 inst = emit(ir, op, dst, src0, src1);
705 inst->dst.writemask = this_mask;
706 done_mask |= this_mask;
707 }
708 }
709
710 void
711 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
712 st_dst_reg dst, st_src_reg src0)
713 {
714 st_src_reg undef = undef_src;
715
716 undef.swizzle = SWIZZLE_XXXX;
717
718 emit_scalar(ir, op, dst, src0, undef);
719 }
720
721 void
722 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
723 st_dst_reg dst, st_src_reg src0)
724 {
725 st_src_reg tmp = get_temp(glsl_type::float_type);
726
727 if (src0.type == GLSL_TYPE_INT)
728 emit(NULL, TGSI_OPCODE_I2F, st_dst_reg(tmp), src0);
729 else if (src0.type == GLSL_TYPE_UINT)
730 emit(NULL, TGSI_OPCODE_U2F, st_dst_reg(tmp), src0);
731 else
732 tmp = src0;
733
734 emit(NULL, TGSI_OPCODE_ARL, dst, tmp);
735 }
736
737 /**
738 * Emit an TGSI_OPCODE_SCS instruction
739 *
740 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
741 * Instead of splatting its result across all four components of the
742 * destination, it writes one value to the \c x component and another value to
743 * the \c y component.
744 *
745 * \param ir IR instruction being processed
746 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
747 * on which value is desired.
748 * \param dst Destination register
749 * \param src Source register
750 */
751 void
752 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
753 st_dst_reg dst,
754 const st_src_reg &src)
755 {
756 /* Vertex programs cannot use the SCS opcode.
757 */
758 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
759 emit_scalar(ir, op, dst, src);
760 return;
761 }
762
763 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
764 const unsigned scs_mask = (1U << component);
765 int done_mask = ~dst.writemask;
766 st_src_reg tmp;
767
768 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
769
770 /* If there are compnents in the destination that differ from the component
771 * that will be written by the SCS instrution, we'll need a temporary.
772 */
773 if (scs_mask != unsigned(dst.writemask)) {
774 tmp = get_temp(glsl_type::vec4_type);
775 }
776
777 for (unsigned i = 0; i < 4; i++) {
778 unsigned this_mask = (1U << i);
779 st_src_reg src0 = src;
780
781 if ((done_mask & this_mask) != 0)
782 continue;
783
784 /* The source swizzle specified which component of the source generates
785 * sine / cosine for the current component in the destination. The SCS
786 * instruction requires that this value be swizzle to the X component.
787 * Replace the current swizzle with a swizzle that puts the source in
788 * the X component.
789 */
790 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
791
792 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
793 src0_swiz, src0_swiz);
794 for (unsigned j = i + 1; j < 4; j++) {
795 /* If there is another enabled component in the destination that is
796 * derived from the same inputs, generate its value on this pass as
797 * well.
798 */
799 if (!(done_mask & (1 << j)) &&
800 GET_SWZ(src0.swizzle, j) == src0_swiz) {
801 this_mask |= (1 << j);
802 }
803 }
804
805 if (this_mask != scs_mask) {
806 glsl_to_tgsi_instruction *inst;
807 st_dst_reg tmp_dst = st_dst_reg(tmp);
808
809 /* Emit the SCS instruction.
810 */
811 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
812 inst->dst.writemask = scs_mask;
813
814 /* Move the result of the SCS instruction to the desired location in
815 * the destination.
816 */
817 tmp.swizzle = MAKE_SWIZZLE4(component, component,
818 component, component);
819 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
820 inst->dst.writemask = this_mask;
821 } else {
822 /* Emit the SCS instruction to write directly to the destination.
823 */
824 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
825 inst->dst.writemask = scs_mask;
826 }
827
828 done_mask |= this_mask;
829 }
830 }
831
832 int
833 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
834 gl_constant_value values[4], int size, int datatype,
835 GLuint *swizzle_out)
836 {
837 if (file == PROGRAM_CONSTANT) {
838 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
839 size, datatype, swizzle_out);
840 } else {
841 int index = 0;
842 immediate_storage *entry;
843 assert(file == PROGRAM_IMMEDIATE);
844
845 /* Search immediate storage to see if we already have an identical
846 * immediate that we can use instead of adding a duplicate entry.
847 */
848 foreach_iter(exec_list_iterator, iter, this->immediates) {
849 entry = (immediate_storage *)iter.get();
850
851 if (entry->size == size &&
852 entry->type == datatype &&
853 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
854 return index;
855 }
856 index++;
857 }
858
859 /* Add this immediate to the list. */
860 entry = new(mem_ctx) immediate_storage(values, size, datatype);
861 this->immediates.push_tail(entry);
862 this->num_immediates++;
863 return index;
864 }
865 }
866
867 struct st_src_reg
868 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
869 {
870 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
871 union gl_constant_value uval;
872
873 uval.f = val;
874 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
875
876 return src;
877 }
878
879 struct st_src_reg
880 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
881 {
882 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
883 union gl_constant_value uval;
884
885 assert(native_integers);
886
887 uval.i = val;
888 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
889
890 return src;
891 }
892
893 struct st_src_reg
894 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
895 {
896 if (native_integers)
897 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
898 st_src_reg_for_int(val);
899 else
900 return st_src_reg_for_float(val);
901 }
902
903 static int
904 type_size(const struct glsl_type *type)
905 {
906 unsigned int i;
907 int size;
908
909 switch (type->base_type) {
910 case GLSL_TYPE_UINT:
911 case GLSL_TYPE_INT:
912 case GLSL_TYPE_FLOAT:
913 case GLSL_TYPE_BOOL:
914 if (type->is_matrix()) {
915 return type->matrix_columns;
916 } else {
917 /* Regardless of size of vector, it gets a vec4. This is bad
918 * packing for things like floats, but otherwise arrays become a
919 * mess. Hopefully a later pass over the code can pack scalars
920 * down if appropriate.
921 */
922 return 1;
923 }
924 case GLSL_TYPE_ARRAY:
925 assert(type->length > 0);
926 return type_size(type->fields.array) * type->length;
927 case GLSL_TYPE_STRUCT:
928 size = 0;
929 for (i = 0; i < type->length; i++) {
930 size += type_size(type->fields.structure[i].type);
931 }
932 return size;
933 case GLSL_TYPE_SAMPLER:
934 /* Samplers take up one slot in UNIFORMS[], but they're baked in
935 * at link time.
936 */
937 return 1;
938 default:
939 assert(0);
940 return 0;
941 }
942 }
943
944 /**
945 * In the initial pass of codegen, we assign temporary numbers to
946 * intermediate results. (not SSA -- variable assignments will reuse
947 * storage).
948 */
949 st_src_reg
950 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
951 {
952 st_src_reg src;
953
954 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
955 src.file = PROGRAM_TEMPORARY;
956 src.index = next_temp;
957 src.reladdr = NULL;
958 next_temp += type_size(type);
959
960 if (type->is_array() || type->is_record()) {
961 src.swizzle = SWIZZLE_NOOP;
962 } else {
963 src.swizzle = swizzle_for_size(type->vector_elements);
964 }
965 src.negate = 0;
966
967 return src;
968 }
969
970 variable_storage *
971 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
972 {
973
974 variable_storage *entry;
975
976 foreach_iter(exec_list_iterator, iter, this->variables) {
977 entry = (variable_storage *)iter.get();
978
979 if (entry->var == var)
980 return entry;
981 }
982
983 return NULL;
984 }
985
986 void
987 glsl_to_tgsi_visitor::visit(ir_variable *ir)
988 {
989 if (strcmp(ir->name, "gl_FragCoord") == 0) {
990 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
991
992 fp->OriginUpperLeft = ir->origin_upper_left;
993 fp->PixelCenterInteger = ir->pixel_center_integer;
994
995 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
996 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
997 switch (ir->depth_layout) {
998 case ir_depth_layout_none:
999 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1000 break;
1001 case ir_depth_layout_any:
1002 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1003 break;
1004 case ir_depth_layout_greater:
1005 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1006 break;
1007 case ir_depth_layout_less:
1008 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1009 break;
1010 case ir_depth_layout_unchanged:
1011 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1012 break;
1013 default:
1014 assert(0);
1015 break;
1016 }
1017 }
1018
1019 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1020 unsigned int i;
1021 const ir_state_slot *const slots = ir->state_slots;
1022 assert(ir->state_slots != NULL);
1023
1024 /* Check if this statevar's setup in the STATE file exactly
1025 * matches how we'll want to reference it as a
1026 * struct/array/whatever. If not, then we need to move it into
1027 * temporary storage and hope that it'll get copy-propagated
1028 * out.
1029 */
1030 for (i = 0; i < ir->num_state_slots; i++) {
1031 if (slots[i].swizzle != SWIZZLE_XYZW) {
1032 break;
1033 }
1034 }
1035
1036 struct variable_storage *storage;
1037 st_dst_reg dst;
1038 if (i == ir->num_state_slots) {
1039 /* We'll set the index later. */
1040 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1041 this->variables.push_tail(storage);
1042
1043 dst = undef_dst;
1044 } else {
1045 /* The variable_storage constructor allocates slots based on the size
1046 * of the type. However, this had better match the number of state
1047 * elements that we're going to copy into the new temporary.
1048 */
1049 assert((int) ir->num_state_slots == type_size(ir->type));
1050
1051 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1052 this->next_temp);
1053 this->variables.push_tail(storage);
1054 this->next_temp += type_size(ir->type);
1055
1056 dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1057 native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1058 }
1059
1060
1061 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1062 int index = _mesa_add_state_reference(this->prog->Parameters,
1063 (gl_state_index *)slots[i].tokens);
1064
1065 if (storage->file == PROGRAM_STATE_VAR) {
1066 if (storage->index == -1) {
1067 storage->index = index;
1068 } else {
1069 assert(index == storage->index + (int)i);
1070 }
1071 } else {
1072 st_src_reg src(PROGRAM_STATE_VAR, index,
1073 native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
1074 src.swizzle = slots[i].swizzle;
1075 emit(ir, TGSI_OPCODE_MOV, dst, src);
1076 /* even a float takes up a whole vec4 reg in a struct/array. */
1077 dst.index++;
1078 }
1079 }
1080
1081 if (storage->file == PROGRAM_TEMPORARY &&
1082 dst.index != storage->index + (int) ir->num_state_slots) {
1083 fail_link(this->shader_program,
1084 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1085 ir->name, dst.index - storage->index,
1086 type_size(ir->type));
1087 }
1088 }
1089 }
1090
1091 void
1092 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1093 {
1094 ir_dereference_variable *counter = NULL;
1095
1096 if (ir->counter != NULL)
1097 counter = new(ir) ir_dereference_variable(ir->counter);
1098
1099 if (ir->from != NULL) {
1100 assert(ir->counter != NULL);
1101
1102 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1103
1104 a->accept(this);
1105 delete a;
1106 }
1107
1108 emit(NULL, TGSI_OPCODE_BGNLOOP);
1109
1110 if (ir->to) {
1111 ir_expression *e =
1112 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1113 counter, ir->to);
1114 ir_if *if_stmt = new(ir) ir_if(e);
1115
1116 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1117
1118 if_stmt->then_instructions.push_tail(brk);
1119
1120 if_stmt->accept(this);
1121
1122 delete if_stmt;
1123 delete e;
1124 delete brk;
1125 }
1126
1127 visit_exec_list(&ir->body_instructions, this);
1128
1129 if (ir->increment) {
1130 ir_expression *e =
1131 new(ir) ir_expression(ir_binop_add, counter->type,
1132 counter, ir->increment);
1133
1134 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1135
1136 a->accept(this);
1137 delete a;
1138 delete e;
1139 }
1140
1141 emit(NULL, TGSI_OPCODE_ENDLOOP);
1142 }
1143
1144 void
1145 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1146 {
1147 switch (ir->mode) {
1148 case ir_loop_jump::jump_break:
1149 emit(NULL, TGSI_OPCODE_BRK);
1150 break;
1151 case ir_loop_jump::jump_continue:
1152 emit(NULL, TGSI_OPCODE_CONT);
1153 break;
1154 }
1155 }
1156
1157
1158 void
1159 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1160 {
1161 assert(0);
1162 (void)ir;
1163 }
1164
1165 void
1166 glsl_to_tgsi_visitor::visit(ir_function *ir)
1167 {
1168 /* Ignore function bodies other than main() -- we shouldn't see calls to
1169 * them since they should all be inlined before we get to glsl_to_tgsi.
1170 */
1171 if (strcmp(ir->name, "main") == 0) {
1172 const ir_function_signature *sig;
1173 exec_list empty;
1174
1175 sig = ir->matching_signature(&empty);
1176
1177 assert(sig);
1178
1179 foreach_iter(exec_list_iterator, iter, sig->body) {
1180 ir_instruction *ir = (ir_instruction *)iter.get();
1181
1182 ir->accept(this);
1183 }
1184 }
1185 }
1186
1187 GLboolean
1188 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1189 {
1190 int nonmul_operand = 1 - mul_operand;
1191 st_src_reg a, b, c;
1192 st_dst_reg result_dst;
1193
1194 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1195 if (!expr || expr->operation != ir_binop_mul)
1196 return false;
1197
1198 expr->operands[0]->accept(this);
1199 a = this->result;
1200 expr->operands[1]->accept(this);
1201 b = this->result;
1202 ir->operands[nonmul_operand]->accept(this);
1203 c = this->result;
1204
1205 this->result = get_temp(ir->type);
1206 result_dst = st_dst_reg(this->result);
1207 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1208 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1209
1210 return true;
1211 }
1212
1213 GLboolean
1214 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1215 {
1216 /* Saturates were only introduced to vertex programs in
1217 * NV_vertex_program3, so don't give them to drivers in the VP.
1218 */
1219 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1220 return false;
1221
1222 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1223 if (!sat_src)
1224 return false;
1225
1226 sat_src->accept(this);
1227 st_src_reg src = this->result;
1228
1229 /* If we generated an expression instruction into a temporary in
1230 * processing the saturate's operand, apply the saturate to that
1231 * instruction. Otherwise, generate a MOV to do the saturate.
1232 *
1233 * Note that we have to be careful to only do this optimization if
1234 * the instruction in question was what generated src->result. For
1235 * example, ir_dereference_array might generate a MUL instruction
1236 * to create the reladdr, and return us a src reg using that
1237 * reladdr. That MUL result is not the value we're trying to
1238 * saturate.
1239 */
1240 ir_expression *sat_src_expr = sat_src->as_expression();
1241 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1242 sat_src_expr->operation == ir_binop_add ||
1243 sat_src_expr->operation == ir_binop_dot)) {
1244 glsl_to_tgsi_instruction *new_inst;
1245 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1246 new_inst->saturate = true;
1247 } else {
1248 this->result = get_temp(ir->type);
1249 st_dst_reg result_dst = st_dst_reg(this->result);
1250 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1251 glsl_to_tgsi_instruction *inst;
1252 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1253 inst->saturate = true;
1254 }
1255
1256 return true;
1257 }
1258
1259 void
1260 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1261 st_src_reg *reg, int *num_reladdr)
1262 {
1263 if (!reg->reladdr)
1264 return;
1265
1266 emit_arl(ir, address_reg, *reg->reladdr);
1267
1268 if (*num_reladdr != 1) {
1269 st_src_reg temp = get_temp(glsl_type::vec4_type);
1270
1271 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1272 *reg = temp;
1273 }
1274
1275 (*num_reladdr)--;
1276 }
1277
1278 void
1279 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1280 {
1281 unsigned int operand;
1282 st_src_reg op[Elements(ir->operands)];
1283 st_src_reg result_src;
1284 st_dst_reg result_dst;
1285
1286 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1287 */
1288 if (ir->operation == ir_binop_add) {
1289 if (try_emit_mad(ir, 1))
1290 return;
1291 if (try_emit_mad(ir, 0))
1292 return;
1293 }
1294 if (try_emit_sat(ir))
1295 return;
1296
1297 if (ir->operation == ir_quadop_vector)
1298 assert(!"ir_quadop_vector should have been lowered");
1299
1300 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1301 this->result.file = PROGRAM_UNDEFINED;
1302 ir->operands[operand]->accept(this);
1303 if (this->result.file == PROGRAM_UNDEFINED) {
1304 ir_print_visitor v;
1305 printf("Failed to get tree for expression operand:\n");
1306 ir->operands[operand]->accept(&v);
1307 exit(1);
1308 }
1309 op[operand] = this->result;
1310
1311 /* Matrix expression operands should have been broken down to vector
1312 * operations already.
1313 */
1314 assert(!ir->operands[operand]->type->is_matrix());
1315 }
1316
1317 int vector_elements = ir->operands[0]->type->vector_elements;
1318 if (ir->operands[1]) {
1319 vector_elements = MAX2(vector_elements,
1320 ir->operands[1]->type->vector_elements);
1321 }
1322
1323 this->result.file = PROGRAM_UNDEFINED;
1324
1325 /* Storage for our result. Ideally for an assignment we'd be using
1326 * the actual storage for the result here, instead.
1327 */
1328 result_src = get_temp(ir->type);
1329 /* convenience for the emit functions below. */
1330 result_dst = st_dst_reg(result_src);
1331 /* Limit writes to the channels that will be used by result_src later.
1332 * This does limit this temp's use as a temporary for multi-instruction
1333 * sequences.
1334 */
1335 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1336
1337 switch (ir->operation) {
1338 case ir_unop_logic_not:
1339 if (result_dst.type != GLSL_TYPE_FLOAT)
1340 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], st_src_reg_for_type(result_dst.type, 0));
1341 else {
1342 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1343 * older GPUs implement SEQ using multiple instructions (i915 uses two
1344 * SGE instructions and a MUL instruction). Since our logic values are
1345 * 0.0 and 1.0, 1-x also implements !x.
1346 */
1347 op[0].negate = ~op[0].negate;
1348 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1349 }
1350 break;
1351 case ir_unop_neg:
1352 assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1353 if (result_dst.type == GLSL_TYPE_INT)
1354 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1355 else {
1356 op[0].negate = ~op[0].negate;
1357 result_src = op[0];
1358 }
1359 break;
1360 case ir_unop_abs:
1361 assert(result_dst.type == GLSL_TYPE_FLOAT);
1362 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1363 break;
1364 case ir_unop_sign:
1365 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1366 break;
1367 case ir_unop_rcp:
1368 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1369 break;
1370
1371 case ir_unop_exp2:
1372 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1373 break;
1374 case ir_unop_exp:
1375 case ir_unop_log:
1376 assert(!"not reached: should be handled by ir_explog_to_explog2");
1377 break;
1378 case ir_unop_log2:
1379 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1380 break;
1381 case ir_unop_sin:
1382 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1383 break;
1384 case ir_unop_cos:
1385 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1386 break;
1387 case ir_unop_sin_reduced:
1388 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1389 break;
1390 case ir_unop_cos_reduced:
1391 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1392 break;
1393
1394 case ir_unop_dFdx:
1395 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1396 break;
1397 case ir_unop_dFdy:
1398 op[0].negate = ~op[0].negate;
1399 emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1400 break;
1401
1402 case ir_unop_noise: {
1403 /* At some point, a motivated person could add a better
1404 * implementation of noise. Currently not even the nvidia
1405 * binary drivers do anything more than this. In any case, the
1406 * place to do this is in the GL state tracker, not the poor
1407 * driver.
1408 */
1409 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1410 break;
1411 }
1412
1413 case ir_binop_add:
1414 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1415 break;
1416 case ir_binop_sub:
1417 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1418 break;
1419
1420 case ir_binop_mul:
1421 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1422 break;
1423 case ir_binop_div:
1424 if (result_dst.type == GLSL_TYPE_FLOAT)
1425 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1426 else
1427 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1428 break;
1429 case ir_binop_mod:
1430 if (result_dst.type == GLSL_TYPE_FLOAT)
1431 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1432 else
1433 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1434 break;
1435
1436 case ir_binop_less:
1437 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1438 break;
1439 case ir_binop_greater:
1440 emit(ir, TGSI_OPCODE_SGT, result_dst, op[0], op[1]);
1441 break;
1442 case ir_binop_lequal:
1443 emit(ir, TGSI_OPCODE_SLE, result_dst, op[0], op[1]);
1444 break;
1445 case ir_binop_gequal:
1446 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1447 break;
1448 case ir_binop_equal:
1449 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1450 break;
1451 case ir_binop_nequal:
1452 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1453 break;
1454 case ir_binop_all_equal:
1455 /* "==" operator producing a scalar boolean. */
1456 if (ir->operands[0]->type->is_vector() ||
1457 ir->operands[1]->type->is_vector()) {
1458 st_src_reg temp = get_temp(native_integers ?
1459 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1460 glsl_type::vec4_type);
1461 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1462 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1463 emit_dp(ir, result_dst, temp, temp, vector_elements);
1464 emit(ir, TGSI_OPCODE_SEQ, result_dst, result_src, st_src_reg_for_float(0.0));
1465 } else {
1466 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1467 }
1468 break;
1469 case ir_binop_any_nequal:
1470 /* "!=" operator producing a scalar boolean. */
1471 if (ir->operands[0]->type->is_vector() ||
1472 ir->operands[1]->type->is_vector()) {
1473 st_src_reg temp = get_temp(native_integers ?
1474 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1475 glsl_type::vec4_type);
1476 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1477 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1478 emit_dp(ir, result_dst, temp, temp, vector_elements);
1479 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1480 } else {
1481 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1482 }
1483 break;
1484
1485 case ir_unop_any: {
1486 assert(ir->operands[0]->type->is_vector());
1487
1488 /* After the dot-product, the value will be an integer on the
1489 * range [0,4]. Zero stays zero, and positive values become 1.0.
1490 */
1491 glsl_to_tgsi_instruction *const dp =
1492 emit_dp(ir, result_dst, op[0], op[0],
1493 ir->operands[0]->type->vector_elements);
1494 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1495 result_dst.type == GLSL_TYPE_FLOAT) {
1496 /* The clamping to [0,1] can be done for free in the fragment
1497 * shader with a saturate.
1498 */
1499 dp->saturate = true;
1500 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1501 /* Negating the result of the dot-product gives values on the range
1502 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1503 * is achieved using SLT.
1504 */
1505 st_src_reg slt_src = result_src;
1506 slt_src.negate = ~slt_src.negate;
1507 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1508 }
1509 else {
1510 /* Use SNE 0 if integers are being used as boolean values. */
1511 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1512 }
1513 break;
1514 }
1515
1516 case ir_binop_logic_xor:
1517 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1518 break;
1519
1520 case ir_binop_logic_or: {
1521 /* After the addition, the value will be an integer on the
1522 * range [0,2]. Zero stays zero, and positive values become 1.0.
1523 */
1524 glsl_to_tgsi_instruction *add =
1525 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1526 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1527 result_dst.type == GLSL_TYPE_FLOAT) {
1528 /* The clamping to [0,1] can be done for free in the fragment
1529 * shader with a saturate if floats are being used as boolean values.
1530 */
1531 add->saturate = true;
1532 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1533 /* Negating the result of the addition gives values on the range
1534 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1535 * is achieved using SLT.
1536 */
1537 st_src_reg slt_src = result_src;
1538 slt_src.negate = ~slt_src.negate;
1539 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1540 } else {
1541 /* Use an SNE on the result of the addition. Zero stays zero,
1542 * 1 stays 1, and 2 becomes 1.
1543 */
1544 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1545 }
1546 break;
1547 }
1548
1549 case ir_binop_logic_and:
1550 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1551 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1552 break;
1553
1554 case ir_binop_dot:
1555 assert(ir->operands[0]->type->is_vector());
1556 assert(ir->operands[0]->type == ir->operands[1]->type);
1557 emit_dp(ir, result_dst, op[0], op[1],
1558 ir->operands[0]->type->vector_elements);
1559 break;
1560
1561 case ir_unop_sqrt:
1562 /* sqrt(x) = x * rsq(x). */
1563 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1564 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1565 /* For incoming channels <= 0, set the result to 0. */
1566 op[0].negate = ~op[0].negate;
1567 emit(ir, TGSI_OPCODE_CMP, result_dst,
1568 op[0], result_src, st_src_reg_for_float(0.0));
1569 break;
1570 case ir_unop_rsq:
1571 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1572 break;
1573 case ir_unop_i2f:
1574 case ir_unop_b2f:
1575 if (native_integers) {
1576 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1577 break;
1578 }
1579 case ir_unop_i2u:
1580 case ir_unop_u2i:
1581 /* Converting between signed and unsigned integers is a no-op. */
1582 case ir_unop_b2i:
1583 /* Booleans are stored as integers (or floats in GLSL 1.20 and lower). */
1584 result_src = op[0];
1585 break;
1586 case ir_unop_f2i:
1587 if (native_integers)
1588 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1589 else
1590 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1591 break;
1592 case ir_unop_f2b:
1593 case ir_unop_i2b:
1594 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0],
1595 st_src_reg_for_type(result_dst.type, 0));
1596 break;
1597 case ir_unop_trunc:
1598 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1599 break;
1600 case ir_unop_ceil:
1601 op[0].negate = ~op[0].negate;
1602 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1603 result_src.negate = ~result_src.negate;
1604 break;
1605 case ir_unop_floor:
1606 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1607 break;
1608 case ir_unop_fract:
1609 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1610 break;
1611
1612 case ir_binop_min:
1613 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1614 break;
1615 case ir_binop_max:
1616 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1617 break;
1618 case ir_binop_pow:
1619 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1620 break;
1621
1622 case ir_unop_bit_not:
1623 if (glsl_version >= 130) {
1624 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1625 break;
1626 }
1627 case ir_unop_u2f:
1628 if (native_integers) {
1629 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1630 break;
1631 }
1632 case ir_binop_lshift:
1633 if (glsl_version >= 130) {
1634 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0]);
1635 break;
1636 }
1637 case ir_binop_rshift:
1638 if (glsl_version >= 130) {
1639 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0]);
1640 break;
1641 }
1642 case ir_binop_bit_and:
1643 if (glsl_version >= 130) {
1644 emit(ir, TGSI_OPCODE_AND, result_dst, op[0]);
1645 break;
1646 }
1647 case ir_binop_bit_xor:
1648 if (glsl_version >= 130) {
1649 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0]);
1650 break;
1651 }
1652 case ir_binop_bit_or:
1653 if (glsl_version >= 130) {
1654 emit(ir, TGSI_OPCODE_OR, result_dst, op[0]);
1655 break;
1656 }
1657 case ir_unop_round_even:
1658 assert(!"GLSL 1.30 features unsupported");
1659 break;
1660
1661 case ir_quadop_vector:
1662 /* This operation should have already been handled.
1663 */
1664 assert(!"Should not get here.");
1665 break;
1666 }
1667
1668 this->result = result_src;
1669 }
1670
1671
1672 void
1673 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1674 {
1675 st_src_reg src;
1676 int i;
1677 int swizzle[4];
1678
1679 /* Note that this is only swizzles in expressions, not those on the left
1680 * hand side of an assignment, which do write masking. See ir_assignment
1681 * for that.
1682 */
1683
1684 ir->val->accept(this);
1685 src = this->result;
1686 assert(src.file != PROGRAM_UNDEFINED);
1687
1688 for (i = 0; i < 4; i++) {
1689 if (i < ir->type->vector_elements) {
1690 switch (i) {
1691 case 0:
1692 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1693 break;
1694 case 1:
1695 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1696 break;
1697 case 2:
1698 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1699 break;
1700 case 3:
1701 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1702 break;
1703 }
1704 } else {
1705 /* If the type is smaller than a vec4, replicate the last
1706 * channel out.
1707 */
1708 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1709 }
1710 }
1711
1712 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1713
1714 this->result = src;
1715 }
1716
1717 void
1718 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1719 {
1720 variable_storage *entry = find_variable_storage(ir->var);
1721 ir_variable *var = ir->var;
1722
1723 if (!entry) {
1724 switch (var->mode) {
1725 case ir_var_uniform:
1726 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1727 var->location);
1728 this->variables.push_tail(entry);
1729 break;
1730 case ir_var_in:
1731 case ir_var_inout:
1732 /* The linker assigns locations for varyings and attributes,
1733 * including deprecated builtins (like gl_Color), user-assign
1734 * generic attributes (glBindVertexLocation), and
1735 * user-defined varyings.
1736 *
1737 * FINISHME: We would hit this path for function arguments. Fix!
1738 */
1739 assert(var->location != -1);
1740 entry = new(mem_ctx) variable_storage(var,
1741 PROGRAM_INPUT,
1742 var->location);
1743 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1744 var->location >= VERT_ATTRIB_GENERIC0) {
1745 _mesa_add_attribute(this->prog->Attributes,
1746 var->name,
1747 _mesa_sizeof_glsl_type(var->type->gl_type),
1748 var->type->gl_type,
1749 var->location - VERT_ATTRIB_GENERIC0);
1750 }
1751 break;
1752 case ir_var_out:
1753 assert(var->location != -1);
1754 entry = new(mem_ctx) variable_storage(var,
1755 PROGRAM_OUTPUT,
1756 var->location);
1757 break;
1758 case ir_var_system_value:
1759 entry = new(mem_ctx) variable_storage(var,
1760 PROGRAM_SYSTEM_VALUE,
1761 var->location);
1762 break;
1763 case ir_var_auto:
1764 case ir_var_temporary:
1765 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1766 this->next_temp);
1767 this->variables.push_tail(entry);
1768
1769 next_temp += type_size(var->type);
1770 break;
1771 }
1772
1773 if (!entry) {
1774 printf("Failed to make storage for %s\n", var->name);
1775 exit(1);
1776 }
1777 }
1778
1779 this->result = st_src_reg(entry->file, entry->index, var->type);
1780 if (!native_integers)
1781 this->result.type = GLSL_TYPE_FLOAT;
1782 }
1783
1784 void
1785 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1786 {
1787 ir_constant *index;
1788 st_src_reg src;
1789 int element_size = type_size(ir->type);
1790
1791 index = ir->array_index->constant_expression_value();
1792
1793 ir->array->accept(this);
1794 src = this->result;
1795
1796 if (index) {
1797 src.index += index->value.i[0] * element_size;
1798 } else {
1799 /* Variable index array dereference. It eats the "vec4" of the
1800 * base of the array and an index that offsets the TGSI register
1801 * index.
1802 */
1803 ir->array_index->accept(this);
1804
1805 st_src_reg index_reg;
1806
1807 if (element_size == 1) {
1808 index_reg = this->result;
1809 } else {
1810 index_reg = get_temp(glsl_type::float_type);
1811
1812 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1813 this->result, st_src_reg_for_float(element_size));
1814 }
1815
1816 /* If there was already a relative address register involved, add the
1817 * new and the old together to get the new offset.
1818 */
1819 if (src.reladdr != NULL) {
1820 st_src_reg accum_reg = get_temp(glsl_type::float_type);
1821
1822 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1823 index_reg, *src.reladdr);
1824
1825 index_reg = accum_reg;
1826 }
1827
1828 src.reladdr = ralloc(mem_ctx, st_src_reg);
1829 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1830 }
1831
1832 /* If the type is smaller than a vec4, replicate the last channel out. */
1833 if (ir->type->is_scalar() || ir->type->is_vector())
1834 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1835 else
1836 src.swizzle = SWIZZLE_NOOP;
1837
1838 this->result = src;
1839 }
1840
1841 void
1842 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
1843 {
1844 unsigned int i;
1845 const glsl_type *struct_type = ir->record->type;
1846 int offset = 0;
1847
1848 ir->record->accept(this);
1849
1850 for (i = 0; i < struct_type->length; i++) {
1851 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1852 break;
1853 offset += type_size(struct_type->fields.structure[i].type);
1854 }
1855
1856 /* If the type is smaller than a vec4, replicate the last channel out. */
1857 if (ir->type->is_scalar() || ir->type->is_vector())
1858 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1859 else
1860 this->result.swizzle = SWIZZLE_NOOP;
1861
1862 this->result.index += offset;
1863 }
1864
1865 /**
1866 * We want to be careful in assignment setup to hit the actual storage
1867 * instead of potentially using a temporary like we might with the
1868 * ir_dereference handler.
1869 */
1870 static st_dst_reg
1871 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
1872 {
1873 /* The LHS must be a dereference. If the LHS is a variable indexed array
1874 * access of a vector, it must be separated into a series conditional moves
1875 * before reaching this point (see ir_vec_index_to_cond_assign).
1876 */
1877 assert(ir->as_dereference());
1878 ir_dereference_array *deref_array = ir->as_dereference_array();
1879 if (deref_array) {
1880 assert(!deref_array->array->type->is_vector());
1881 }
1882
1883 /* Use the rvalue deref handler for the most part. We'll ignore
1884 * swizzles in it and write swizzles using writemask, though.
1885 */
1886 ir->accept(v);
1887 return st_dst_reg(v->result);
1888 }
1889
1890 /**
1891 * Process the condition of a conditional assignment
1892 *
1893 * Examines the condition of a conditional assignment to generate the optimal
1894 * first operand of a \c CMP instruction. If the condition is a relational
1895 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1896 * used as the source for the \c CMP instruction. Otherwise the comparison
1897 * is processed to a boolean result, and the boolean result is used as the
1898 * operand to the CMP instruction.
1899 */
1900 bool
1901 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
1902 {
1903 ir_rvalue *src_ir = ir;
1904 bool negate = true;
1905 bool switch_order = false;
1906
1907 ir_expression *const expr = ir->as_expression();
1908 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1909 bool zero_on_left = false;
1910
1911 if (expr->operands[0]->is_zero()) {
1912 src_ir = expr->operands[1];
1913 zero_on_left = true;
1914 } else if (expr->operands[1]->is_zero()) {
1915 src_ir = expr->operands[0];
1916 zero_on_left = false;
1917 }
1918
1919 /* a is - 0 + - 0 +
1920 * (a < 0) T F F ( a < 0) T F F
1921 * (0 < a) F F T (-a < 0) F F T
1922 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1923 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1924 * (a > 0) F F T (-a < 0) F F T
1925 * (0 > a) T F F ( a < 0) T F F
1926 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1927 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1928 *
1929 * Note that exchanging the order of 0 and 'a' in the comparison simply
1930 * means that the value of 'a' should be negated.
1931 */
1932 if (src_ir != ir) {
1933 switch (expr->operation) {
1934 case ir_binop_less:
1935 switch_order = false;
1936 negate = zero_on_left;
1937 break;
1938
1939 case ir_binop_greater:
1940 switch_order = false;
1941 negate = !zero_on_left;
1942 break;
1943
1944 case ir_binop_lequal:
1945 switch_order = true;
1946 negate = !zero_on_left;
1947 break;
1948
1949 case ir_binop_gequal:
1950 switch_order = true;
1951 negate = zero_on_left;
1952 break;
1953
1954 default:
1955 /* This isn't the right kind of comparison afterall, so make sure
1956 * the whole condition is visited.
1957 */
1958 src_ir = ir;
1959 break;
1960 }
1961 }
1962 }
1963
1964 src_ir->accept(this);
1965
1966 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1967 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1968 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
1969 * computing the condition.
1970 */
1971 if (negate)
1972 this->result.negate = ~this->result.negate;
1973
1974 return switch_order;
1975 }
1976
1977 void
1978 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
1979 {
1980 st_dst_reg l;
1981 st_src_reg r;
1982 int i;
1983
1984 ir->rhs->accept(this);
1985 r = this->result;
1986
1987 l = get_assignment_lhs(ir->lhs, this);
1988
1989 /* FINISHME: This should really set to the correct maximal writemask for each
1990 * FINISHME: component written (in the loops below). This case can only
1991 * FINISHME: occur for matrices, arrays, and structures.
1992 */
1993 if (ir->write_mask == 0) {
1994 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1995 l.writemask = WRITEMASK_XYZW;
1996 } else if (ir->lhs->type->is_scalar() &&
1997 ir->lhs->variable_referenced()->mode == ir_var_out) {
1998 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1999 * FINISHME: W component of fragment shader output zero, work correctly.
2000 */
2001 l.writemask = WRITEMASK_XYZW;
2002 } else {
2003 int swizzles[4];
2004 int first_enabled_chan = 0;
2005 int rhs_chan = 0;
2006
2007 l.writemask = ir->write_mask;
2008
2009 for (int i = 0; i < 4; i++) {
2010 if (l.writemask & (1 << i)) {
2011 first_enabled_chan = GET_SWZ(r.swizzle, i);
2012 break;
2013 }
2014 }
2015
2016 /* Swizzle a small RHS vector into the channels being written.
2017 *
2018 * glsl ir treats write_mask as dictating how many channels are
2019 * present on the RHS while TGSI treats write_mask as just
2020 * showing which channels of the vec4 RHS get written.
2021 */
2022 for (int i = 0; i < 4; i++) {
2023 if (l.writemask & (1 << i))
2024 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2025 else
2026 swizzles[i] = first_enabled_chan;
2027 }
2028 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2029 swizzles[2], swizzles[3]);
2030 }
2031
2032 assert(l.file != PROGRAM_UNDEFINED);
2033 assert(r.file != PROGRAM_UNDEFINED);
2034
2035 if (ir->condition) {
2036 const bool switch_order = this->process_move_condition(ir->condition);
2037 st_src_reg condition = this->result;
2038
2039 for (i = 0; i < type_size(ir->lhs->type); i++) {
2040 st_src_reg l_src = st_src_reg(l);
2041 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2042
2043 if (switch_order) {
2044 emit(ir, TGSI_OPCODE_CMP, l, condition, l_src, r);
2045 } else {
2046 emit(ir, TGSI_OPCODE_CMP, l, condition, r, l_src);
2047 }
2048
2049 l.index++;
2050 r.index++;
2051 }
2052 } else if (ir->rhs->as_expression() &&
2053 this->instructions.get_tail() &&
2054 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2055 type_size(ir->lhs->type) == 1 &&
2056 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2057 /* To avoid emitting an extra MOV when assigning an expression to a
2058 * variable, emit the last instruction of the expression again, but
2059 * replace the destination register with the target of the assignment.
2060 * Dead code elimination will remove the original instruction.
2061 */
2062 glsl_to_tgsi_instruction *inst, *new_inst;
2063 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2064 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2065 new_inst->saturate = inst->saturate;
2066 } else {
2067 for (i = 0; i < type_size(ir->lhs->type); i++) {
2068 emit(ir, TGSI_OPCODE_MOV, l, r);
2069 l.index++;
2070 r.index++;
2071 }
2072 }
2073 }
2074
2075
2076 void
2077 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2078 {
2079 st_src_reg src;
2080 GLfloat stack_vals[4] = { 0 };
2081 gl_constant_value *values = (gl_constant_value *) stack_vals;
2082 GLenum gl_type = GL_NONE;
2083 unsigned int i;
2084 static int in_array = 0;
2085 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2086
2087 /* Unfortunately, 4 floats is all we can get into
2088 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2089 * aggregate constant and move each constant value into it. If we
2090 * get lucky, copy propagation will eliminate the extra moves.
2091 */
2092 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2093 st_src_reg temp_base = get_temp(ir->type);
2094 st_dst_reg temp = st_dst_reg(temp_base);
2095
2096 foreach_iter(exec_list_iterator, iter, ir->components) {
2097 ir_constant *field_value = (ir_constant *)iter.get();
2098 int size = type_size(field_value->type);
2099
2100 assert(size > 0);
2101
2102 field_value->accept(this);
2103 src = this->result;
2104
2105 for (i = 0; i < (unsigned int)size; i++) {
2106 emit(ir, TGSI_OPCODE_MOV, temp, src);
2107
2108 src.index++;
2109 temp.index++;
2110 }
2111 }
2112 this->result = temp_base;
2113 return;
2114 }
2115
2116 if (ir->type->is_array()) {
2117 st_src_reg temp_base = get_temp(ir->type);
2118 st_dst_reg temp = st_dst_reg(temp_base);
2119 int size = type_size(ir->type->fields.array);
2120
2121 assert(size > 0);
2122 in_array++;
2123
2124 for (i = 0; i < ir->type->length; i++) {
2125 ir->array_elements[i]->accept(this);
2126 src = this->result;
2127 for (int j = 0; j < size; j++) {
2128 emit(ir, TGSI_OPCODE_MOV, temp, src);
2129
2130 src.index++;
2131 temp.index++;
2132 }
2133 }
2134 this->result = temp_base;
2135 in_array--;
2136 return;
2137 }
2138
2139 if (ir->type->is_matrix()) {
2140 st_src_reg mat = get_temp(ir->type);
2141 st_dst_reg mat_column = st_dst_reg(mat);
2142
2143 for (i = 0; i < ir->type->matrix_columns; i++) {
2144 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2145 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2146
2147 src = st_src_reg(file, -1, ir->type->base_type);
2148 src.index = add_constant(file,
2149 values,
2150 ir->type->vector_elements,
2151 GL_FLOAT,
2152 &src.swizzle);
2153 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2154
2155 mat_column.index++;
2156 }
2157
2158 this->result = mat;
2159 return;
2160 }
2161
2162 switch (ir->type->base_type) {
2163 case GLSL_TYPE_FLOAT:
2164 gl_type = GL_FLOAT;
2165 for (i = 0; i < ir->type->vector_elements; i++) {
2166 values[i].f = ir->value.f[i];
2167 }
2168 break;
2169 case GLSL_TYPE_UINT:
2170 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2171 for (i = 0; i < ir->type->vector_elements; i++) {
2172 if (native_integers)
2173 values[i].u = ir->value.u[i];
2174 else
2175 values[i].f = ir->value.u[i];
2176 }
2177 break;
2178 case GLSL_TYPE_INT:
2179 gl_type = native_integers ? GL_INT : GL_FLOAT;
2180 for (i = 0; i < ir->type->vector_elements; i++) {
2181 if (native_integers)
2182 values[i].i = ir->value.i[i];
2183 else
2184 values[i].f = ir->value.i[i];
2185 }
2186 break;
2187 case GLSL_TYPE_BOOL:
2188 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2189 for (i = 0; i < ir->type->vector_elements; i++) {
2190 if (native_integers)
2191 values[i].b = ir->value.b[i];
2192 else
2193 values[i].f = ir->value.b[i];
2194 }
2195 break;
2196 default:
2197 assert(!"Non-float/uint/int/bool constant");
2198 }
2199
2200 this->result = st_src_reg(file, -1, ir->type);
2201 this->result.index = add_constant(file,
2202 values,
2203 ir->type->vector_elements,
2204 gl_type,
2205 &this->result.swizzle);
2206 }
2207
2208 function_entry *
2209 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2210 {
2211 function_entry *entry;
2212
2213 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2214 entry = (function_entry *)iter.get();
2215
2216 if (entry->sig == sig)
2217 return entry;
2218 }
2219
2220 entry = ralloc(mem_ctx, function_entry);
2221 entry->sig = sig;
2222 entry->sig_id = this->next_signature_id++;
2223 entry->bgn_inst = NULL;
2224
2225 /* Allocate storage for all the parameters. */
2226 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2227 ir_variable *param = (ir_variable *)iter.get();
2228 variable_storage *storage;
2229
2230 storage = find_variable_storage(param);
2231 assert(!storage);
2232
2233 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2234 this->next_temp);
2235 this->variables.push_tail(storage);
2236
2237 this->next_temp += type_size(param->type);
2238 }
2239
2240 if (!sig->return_type->is_void()) {
2241 entry->return_reg = get_temp(sig->return_type);
2242 } else {
2243 entry->return_reg = undef_src;
2244 }
2245
2246 this->function_signatures.push_tail(entry);
2247 return entry;
2248 }
2249
2250 void
2251 glsl_to_tgsi_visitor::visit(ir_call *ir)
2252 {
2253 glsl_to_tgsi_instruction *call_inst;
2254 ir_function_signature *sig = ir->get_callee();
2255 function_entry *entry = get_function_signature(sig);
2256 int i;
2257
2258 /* Process in parameters. */
2259 exec_list_iterator sig_iter = sig->parameters.iterator();
2260 foreach_iter(exec_list_iterator, iter, *ir) {
2261 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2262 ir_variable *param = (ir_variable *)sig_iter.get();
2263
2264 if (param->mode == ir_var_in ||
2265 param->mode == ir_var_inout) {
2266 variable_storage *storage = find_variable_storage(param);
2267 assert(storage);
2268
2269 param_rval->accept(this);
2270 st_src_reg r = this->result;
2271
2272 st_dst_reg l;
2273 l.file = storage->file;
2274 l.index = storage->index;
2275 l.reladdr = NULL;
2276 l.writemask = WRITEMASK_XYZW;
2277 l.cond_mask = COND_TR;
2278
2279 for (i = 0; i < type_size(param->type); i++) {
2280 emit(ir, TGSI_OPCODE_MOV, l, r);
2281 l.index++;
2282 r.index++;
2283 }
2284 }
2285
2286 sig_iter.next();
2287 }
2288 assert(!sig_iter.has_next());
2289
2290 /* Emit call instruction */
2291 call_inst = emit(ir, TGSI_OPCODE_CAL);
2292 call_inst->function = entry;
2293
2294 /* Process out parameters. */
2295 sig_iter = sig->parameters.iterator();
2296 foreach_iter(exec_list_iterator, iter, *ir) {
2297 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2298 ir_variable *param = (ir_variable *)sig_iter.get();
2299
2300 if (param->mode == ir_var_out ||
2301 param->mode == ir_var_inout) {
2302 variable_storage *storage = find_variable_storage(param);
2303 assert(storage);
2304
2305 st_src_reg r;
2306 r.file = storage->file;
2307 r.index = storage->index;
2308 r.reladdr = NULL;
2309 r.swizzle = SWIZZLE_NOOP;
2310 r.negate = 0;
2311
2312 param_rval->accept(this);
2313 st_dst_reg l = st_dst_reg(this->result);
2314
2315 for (i = 0; i < type_size(param->type); i++) {
2316 emit(ir, TGSI_OPCODE_MOV, l, r);
2317 l.index++;
2318 r.index++;
2319 }
2320 }
2321
2322 sig_iter.next();
2323 }
2324 assert(!sig_iter.has_next());
2325
2326 /* Process return value. */
2327 this->result = entry->return_reg;
2328 }
2329
2330 void
2331 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2332 {
2333 st_src_reg result_src, coord, lod_info, projector, dx, dy;
2334 st_dst_reg result_dst, coord_dst;
2335 glsl_to_tgsi_instruction *inst = NULL;
2336 unsigned opcode = TGSI_OPCODE_NOP;
2337
2338 ir->coordinate->accept(this);
2339
2340 /* Put our coords in a temp. We'll need to modify them for shadow,
2341 * projection, or LOD, so the only case we'd use it as is is if
2342 * we're doing plain old texturing. The optimization passes on
2343 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2344 */
2345 coord = get_temp(glsl_type::vec4_type);
2346 coord_dst = st_dst_reg(coord);
2347 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2348
2349 if (ir->projector) {
2350 ir->projector->accept(this);
2351 projector = this->result;
2352 }
2353
2354 /* Storage for our result. Ideally for an assignment we'd be using
2355 * the actual storage for the result here, instead.
2356 */
2357 result_src = get_temp(glsl_type::vec4_type);
2358 result_dst = st_dst_reg(result_src);
2359
2360 switch (ir->op) {
2361 case ir_tex:
2362 opcode = TGSI_OPCODE_TEX;
2363 break;
2364 case ir_txb:
2365 opcode = TGSI_OPCODE_TXB;
2366 ir->lod_info.bias->accept(this);
2367 lod_info = this->result;
2368 break;
2369 case ir_txl:
2370 opcode = TGSI_OPCODE_TXL;
2371 ir->lod_info.lod->accept(this);
2372 lod_info = this->result;
2373 break;
2374 case ir_txd:
2375 opcode = TGSI_OPCODE_TXD;
2376 ir->lod_info.grad.dPdx->accept(this);
2377 dx = this->result;
2378 ir->lod_info.grad.dPdy->accept(this);
2379 dy = this->result;
2380 break;
2381 case ir_txf: /* TODO: use TGSI_OPCODE_TXF here */
2382 assert(!"GLSL 1.30 features unsupported");
2383 break;
2384 }
2385
2386 if (ir->projector) {
2387 if (opcode == TGSI_OPCODE_TEX) {
2388 /* Slot the projector in as the last component of the coord. */
2389 coord_dst.writemask = WRITEMASK_W;
2390 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2391 coord_dst.writemask = WRITEMASK_XYZW;
2392 opcode = TGSI_OPCODE_TXP;
2393 } else {
2394 st_src_reg coord_w = coord;
2395 coord_w.swizzle = SWIZZLE_WWWW;
2396
2397 /* For the other TEX opcodes there's no projective version
2398 * since the last slot is taken up by LOD info. Do the
2399 * projective divide now.
2400 */
2401 coord_dst.writemask = WRITEMASK_W;
2402 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2403
2404 /* In the case where we have to project the coordinates "by hand,"
2405 * the shadow comparator value must also be projected.
2406 */
2407 st_src_reg tmp_src = coord;
2408 if (ir->shadow_comparitor) {
2409 /* Slot the shadow value in as the second to last component of the
2410 * coord.
2411 */
2412 ir->shadow_comparitor->accept(this);
2413
2414 tmp_src = get_temp(glsl_type::vec4_type);
2415 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2416
2417 tmp_dst.writemask = WRITEMASK_Z;
2418 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2419
2420 tmp_dst.writemask = WRITEMASK_XY;
2421 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2422 }
2423
2424 coord_dst.writemask = WRITEMASK_XYZ;
2425 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2426
2427 coord_dst.writemask = WRITEMASK_XYZW;
2428 coord.swizzle = SWIZZLE_XYZW;
2429 }
2430 }
2431
2432 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2433 * comparator was put in the correct place (and projected) by the code,
2434 * above, that handles by-hand projection.
2435 */
2436 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2437 /* Slot the shadow value in as the second to last component of the
2438 * coord.
2439 */
2440 ir->shadow_comparitor->accept(this);
2441 coord_dst.writemask = WRITEMASK_Z;
2442 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2443 coord_dst.writemask = WRITEMASK_XYZW;
2444 }
2445
2446 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB) {
2447 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2448 coord_dst.writemask = WRITEMASK_W;
2449 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2450 coord_dst.writemask = WRITEMASK_XYZW;
2451 }
2452
2453 if (opcode == TGSI_OPCODE_TXD)
2454 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2455 else
2456 inst = emit(ir, opcode, result_dst, coord);
2457
2458 if (ir->shadow_comparitor)
2459 inst->tex_shadow = GL_TRUE;
2460
2461 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2462 this->shader_program,
2463 this->prog);
2464
2465 const glsl_type *sampler_type = ir->sampler->type;
2466
2467 switch (sampler_type->sampler_dimensionality) {
2468 case GLSL_SAMPLER_DIM_1D:
2469 inst->tex_target = (sampler_type->sampler_array)
2470 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2471 break;
2472 case GLSL_SAMPLER_DIM_2D:
2473 inst->tex_target = (sampler_type->sampler_array)
2474 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2475 break;
2476 case GLSL_SAMPLER_DIM_3D:
2477 inst->tex_target = TEXTURE_3D_INDEX;
2478 break;
2479 case GLSL_SAMPLER_DIM_CUBE:
2480 inst->tex_target = TEXTURE_CUBE_INDEX;
2481 break;
2482 case GLSL_SAMPLER_DIM_RECT:
2483 inst->tex_target = TEXTURE_RECT_INDEX;
2484 break;
2485 case GLSL_SAMPLER_DIM_BUF:
2486 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2487 break;
2488 default:
2489 assert(!"Should not get here.");
2490 }
2491
2492 this->result = result_src;
2493 }
2494
2495 void
2496 glsl_to_tgsi_visitor::visit(ir_return *ir)
2497 {
2498 if (ir->get_value()) {
2499 st_dst_reg l;
2500 int i;
2501
2502 assert(current_function);
2503
2504 ir->get_value()->accept(this);
2505 st_src_reg r = this->result;
2506
2507 l = st_dst_reg(current_function->return_reg);
2508
2509 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2510 emit(ir, TGSI_OPCODE_MOV, l, r);
2511 l.index++;
2512 r.index++;
2513 }
2514 }
2515
2516 emit(ir, TGSI_OPCODE_RET);
2517 }
2518
2519 void
2520 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2521 {
2522 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2523
2524 if (ir->condition) {
2525 ir->condition->accept(this);
2526 this->result.negate = ~this->result.negate;
2527 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2528 } else {
2529 emit(ir, TGSI_OPCODE_KILP);
2530 }
2531
2532 fp->UsesKill = GL_TRUE;
2533 }
2534
2535 void
2536 glsl_to_tgsi_visitor::visit(ir_if *ir)
2537 {
2538 glsl_to_tgsi_instruction *cond_inst, *if_inst;
2539 glsl_to_tgsi_instruction *prev_inst;
2540
2541 prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2542
2543 ir->condition->accept(this);
2544 assert(this->result.file != PROGRAM_UNDEFINED);
2545
2546 if (this->options->EmitCondCodes) {
2547 cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2548
2549 /* See if we actually generated any instruction for generating
2550 * the condition. If not, then cook up a move to a temp so we
2551 * have something to set cond_update on.
2552 */
2553 if (cond_inst == prev_inst) {
2554 st_src_reg temp = get_temp(glsl_type::bool_type);
2555 cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2556 }
2557 cond_inst->cond_update = GL_TRUE;
2558
2559 if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2560 if_inst->dst.cond_mask = COND_NE;
2561 } else {
2562 if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2563 }
2564
2565 this->instructions.push_tail(if_inst);
2566
2567 visit_exec_list(&ir->then_instructions, this);
2568
2569 if (!ir->else_instructions.is_empty()) {
2570 emit(ir->condition, TGSI_OPCODE_ELSE);
2571 visit_exec_list(&ir->else_instructions, this);
2572 }
2573
2574 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2575 }
2576
2577 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2578 {
2579 result.file = PROGRAM_UNDEFINED;
2580 next_temp = 1;
2581 next_signature_id = 1;
2582 num_immediates = 0;
2583 current_function = NULL;
2584 num_address_regs = 0;
2585 indirect_addr_temps = false;
2586 indirect_addr_consts = false;
2587 mem_ctx = ralloc_context(NULL);
2588 }
2589
2590 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2591 {
2592 ralloc_free(mem_ctx);
2593 }
2594
2595 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2596 {
2597 delete v;
2598 }
2599
2600
2601 /**
2602 * Count resources used by the given gpu program (number of texture
2603 * samplers, etc).
2604 */
2605 static void
2606 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2607 {
2608 v->samplers_used = 0;
2609
2610 foreach_iter(exec_list_iterator, iter, v->instructions) {
2611 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2612
2613 if (is_tex_instruction(inst->op)) {
2614 v->samplers_used |= 1 << inst->sampler;
2615
2616 prog->SamplerTargets[inst->sampler] =
2617 (gl_texture_index)inst->tex_target;
2618 if (inst->tex_shadow) {
2619 prog->ShadowSamplers |= 1 << inst->sampler;
2620 }
2621 }
2622 }
2623
2624 prog->SamplersUsed = v->samplers_used;
2625 _mesa_update_shader_textures_used(prog);
2626 }
2627
2628
2629 /**
2630 * Check if the given vertex/fragment/shader program is within the
2631 * resource limits of the context (number of texture units, etc).
2632 * If any of those checks fail, record a linker error.
2633 *
2634 * XXX more checks are needed...
2635 */
2636 static void
2637 check_resources(const struct gl_context *ctx,
2638 struct gl_shader_program *shader_program,
2639 glsl_to_tgsi_visitor *prog,
2640 struct gl_program *proginfo)
2641 {
2642 switch (proginfo->Target) {
2643 case GL_VERTEX_PROGRAM_ARB:
2644 if (_mesa_bitcount(prog->samplers_used) >
2645 ctx->Const.MaxVertexTextureImageUnits) {
2646 fail_link(shader_program, "Too many vertex shader texture samplers");
2647 }
2648 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2649 fail_link(shader_program, "Too many vertex shader constants");
2650 }
2651 break;
2652 case MESA_GEOMETRY_PROGRAM:
2653 if (_mesa_bitcount(prog->samplers_used) >
2654 ctx->Const.MaxGeometryTextureImageUnits) {
2655 fail_link(shader_program, "Too many geometry shader texture samplers");
2656 }
2657 if (proginfo->Parameters->NumParameters >
2658 MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2659 fail_link(shader_program, "Too many geometry shader constants");
2660 }
2661 break;
2662 case GL_FRAGMENT_PROGRAM_ARB:
2663 if (_mesa_bitcount(prog->samplers_used) >
2664 ctx->Const.MaxTextureImageUnits) {
2665 fail_link(shader_program, "Too many fragment shader texture samplers");
2666 }
2667 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2668 fail_link(shader_program, "Too many fragment shader constants");
2669 }
2670 break;
2671 default:
2672 _mesa_problem(ctx, "unexpected program type in check_resources()");
2673 }
2674 }
2675
2676
2677
2678 struct uniform_sort {
2679 struct gl_uniform *u;
2680 int pos;
2681 };
2682
2683 /* The shader_program->Uniforms list is almost sorted in increasing
2684 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2685 * uniforms shared between targets. We need to add parameters in
2686 * increasing order for the targets.
2687 */
2688 static int
2689 sort_uniforms(const void *a, const void *b)
2690 {
2691 struct uniform_sort *u1 = (struct uniform_sort *)a;
2692 struct uniform_sort *u2 = (struct uniform_sort *)b;
2693
2694 return u1->pos - u2->pos;
2695 }
2696
2697 /* Add the uniforms to the parameters. The linker chose locations
2698 * in our parameters lists (which weren't created yet), which the
2699 * uniforms code will use to poke values into our parameters list
2700 * when uniforms are updated.
2701 */
2702 static void
2703 add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2704 struct gl_shader *shader,
2705 struct gl_program *prog)
2706 {
2707 unsigned int i;
2708 unsigned int next_sampler = 0, num_uniforms = 0;
2709 struct uniform_sort *sorted_uniforms;
2710
2711 sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2712 shader_program->Uniforms->NumUniforms);
2713
2714 for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2715 struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2716 int parameter_index = -1;
2717
2718 switch (shader->Type) {
2719 case GL_VERTEX_SHADER:
2720 parameter_index = uniform->VertPos;
2721 break;
2722 case GL_FRAGMENT_SHADER:
2723 parameter_index = uniform->FragPos;
2724 break;
2725 case GL_GEOMETRY_SHADER:
2726 parameter_index = uniform->GeomPos;
2727 break;
2728 }
2729
2730 /* Only add uniforms used in our target. */
2731 if (parameter_index != -1) {
2732 sorted_uniforms[num_uniforms].pos = parameter_index;
2733 sorted_uniforms[num_uniforms].u = uniform;
2734 num_uniforms++;
2735 }
2736 }
2737
2738 qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2739 sort_uniforms);
2740
2741 for (i = 0; i < num_uniforms; i++) {
2742 struct gl_uniform *uniform = sorted_uniforms[i].u;
2743 int parameter_index = sorted_uniforms[i].pos;
2744 const glsl_type *type = uniform->Type;
2745 unsigned int size;
2746
2747 if (type->is_vector() ||
2748 type->is_scalar()) {
2749 size = type->vector_elements;
2750 } else {
2751 size = type_size(type) * 4;
2752 }
2753
2754 gl_register_file file;
2755 if (type->is_sampler() ||
2756 (type->is_array() && type->fields.array->is_sampler())) {
2757 file = PROGRAM_SAMPLER;
2758 } else {
2759 file = PROGRAM_UNIFORM;
2760 }
2761
2762 GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
2763 uniform->Name);
2764
2765 if (index < 0) {
2766 index = _mesa_add_parameter(prog->Parameters, file,
2767 uniform->Name, size, type->gl_type,
2768 NULL, NULL, 0x0);
2769
2770 /* Sampler uniform values are stored in prog->SamplerUnits,
2771 * and the entry in that array is selected by this index we
2772 * store in ParameterValues[].
2773 */
2774 if (file == PROGRAM_SAMPLER) {
2775 for (unsigned int j = 0; j < size / 4; j++)
2776 prog->Parameters->ParameterValues[index + j][0].f = next_sampler++;
2777 }
2778
2779 /* The location chosen in the Parameters list here (returned
2780 * from _mesa_add_uniform) has to match what the linker chose.
2781 */
2782 if (index != parameter_index) {
2783 fail_link(shader_program, "Allocation of uniform `%s' to target "
2784 "failed (%d vs %d)\n",
2785 uniform->Name, index, parameter_index);
2786 }
2787 }
2788 }
2789
2790 ralloc_free(sorted_uniforms);
2791 }
2792
2793 static void
2794 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2795 struct gl_shader_program *shader_program,
2796 const char *name, const glsl_type *type,
2797 ir_constant *val)
2798 {
2799 if (type->is_record()) {
2800 ir_constant *field_constant;
2801
2802 field_constant = (ir_constant *)val->components.get_head();
2803
2804 for (unsigned int i = 0; i < type->length; i++) {
2805 const glsl_type *field_type = type->fields.structure[i].type;
2806 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2807 type->fields.structure[i].name);
2808 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2809 field_type, field_constant);
2810 field_constant = (ir_constant *)field_constant->next;
2811 }
2812 return;
2813 }
2814
2815 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2816
2817 if (loc == -1) {
2818 fail_link(shader_program,
2819 "Couldn't find uniform for initializer %s\n", name);
2820 return;
2821 }
2822
2823 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2824 ir_constant *element;
2825 const glsl_type *element_type;
2826 if (type->is_array()) {
2827 element = val->array_elements[i];
2828 element_type = type->fields.array;
2829 } else {
2830 element = val;
2831 element_type = type;
2832 }
2833
2834 void *values;
2835
2836 if (element_type->base_type == GLSL_TYPE_BOOL) {
2837 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2838 for (unsigned int j = 0; j < element_type->components(); j++) {
2839 conv[j] = element->value.b[j];
2840 }
2841 values = (void *)conv;
2842 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2843 element_type->vector_elements,
2844 1);
2845 } else {
2846 values = &element->value;
2847 }
2848
2849 if (element_type->is_matrix()) {
2850 _mesa_uniform_matrix(ctx, shader_program,
2851 element_type->matrix_columns,
2852 element_type->vector_elements,
2853 loc, 1, GL_FALSE, (GLfloat *)values);
2854 loc += element_type->matrix_columns;
2855 } else {
2856 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2857 values, element_type->gl_type);
2858 loc += type_size(element_type);
2859 }
2860 }
2861 }
2862
2863 static void
2864 set_uniform_initializers(struct gl_context *ctx,
2865 struct gl_shader_program *shader_program)
2866 {
2867 void *mem_ctx = NULL;
2868
2869 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2870 struct gl_shader *shader = shader_program->_LinkedShaders[i];
2871
2872 if (shader == NULL)
2873 continue;
2874
2875 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2876 ir_instruction *ir = (ir_instruction *)iter.get();
2877 ir_variable *var = ir->as_variable();
2878
2879 if (!var || var->mode != ir_var_uniform || !var->constant_value)
2880 continue;
2881
2882 if (!mem_ctx)
2883 mem_ctx = ralloc_context(NULL);
2884
2885 set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2886 var->type, var->constant_value);
2887 }
2888 }
2889
2890 ralloc_free(mem_ctx);
2891 }
2892
2893 /*
2894 * Scan/rewrite program to remove reads of custom (output) registers.
2895 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
2896 * (for vertex shaders).
2897 * In GLSL shaders, varying vars can be read and written.
2898 * On some hardware, trying to read an output register causes trouble.
2899 * So, rewrite the program to use a temporary register in this case.
2900 *
2901 * Based on _mesa_remove_output_reads from programopt.c.
2902 */
2903 void
2904 glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
2905 {
2906 GLuint i;
2907 GLint outputMap[VERT_RESULT_MAX];
2908 GLint outputTypes[VERT_RESULT_MAX];
2909 GLuint numVaryingReads = 0;
2910 GLboolean usedTemps[MAX_TEMPS];
2911 GLuint firstTemp = 0;
2912
2913 _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
2914 usedTemps, MAX_TEMPS);
2915
2916 assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
2917 assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
2918
2919 for (i = 0; i < VERT_RESULT_MAX; i++)
2920 outputMap[i] = -1;
2921
2922 /* look for instructions which read from varying vars */
2923 foreach_iter(exec_list_iterator, iter, this->instructions) {
2924 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2925 const GLuint numSrc = num_inst_src_regs(inst->op);
2926 GLuint j;
2927 for (j = 0; j < numSrc; j++) {
2928 if (inst->src[j].file == type) {
2929 /* replace the read with a temp reg */
2930 const GLuint var = inst->src[j].index;
2931 if (outputMap[var] == -1) {
2932 numVaryingReads++;
2933 outputMap[var] = _mesa_find_free_register(usedTemps,
2934 MAX_TEMPS,
2935 firstTemp);
2936 outputTypes[var] = inst->src[j].type;
2937 firstTemp = outputMap[var] + 1;
2938 }
2939 inst->src[j].file = PROGRAM_TEMPORARY;
2940 inst->src[j].index = outputMap[var];
2941 }
2942 }
2943 }
2944
2945 if (numVaryingReads == 0)
2946 return; /* nothing to be done */
2947
2948 /* look for instructions which write to the varying vars identified above */
2949 foreach_iter(exec_list_iterator, iter, this->instructions) {
2950 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2951 if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
2952 /* change inst to write to the temp reg, instead of the varying */
2953 inst->dst.file = PROGRAM_TEMPORARY;
2954 inst->dst.index = outputMap[inst->dst.index];
2955 }
2956 }
2957
2958 /* insert new MOV instructions at the end */
2959 for (i = 0; i < VERT_RESULT_MAX; i++) {
2960 if (outputMap[i] >= 0) {
2961 /* MOV VAR[i], TEMP[tmp]; */
2962 st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
2963 st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
2964 dst.index = i;
2965 this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
2966 }
2967 }
2968 }
2969
2970 /**
2971 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
2972 * are read from the given src in this instruction
2973 */
2974 static int
2975 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
2976 {
2977 int read_mask = 0, comp;
2978
2979 /* Now, given the src swizzle and the written channels, find which
2980 * components are actually read
2981 */
2982 for (comp = 0; comp < 4; ++comp) {
2983 const unsigned coord = GET_SWZ(src.swizzle, comp);
2984 ASSERT(coord < 4);
2985 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
2986 read_mask |= 1 << coord;
2987 }
2988
2989 return read_mask;
2990 }
2991
2992 /**
2993 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
2994 * instruction is the first instruction to write to register T0. There are
2995 * several lowering passes done in GLSL IR (e.g. branches and
2996 * relative addressing) that create a large number of conditional assignments
2997 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
2998 *
2999 * Here is why this conversion is safe:
3000 * CMP T0, T1 T2 T0 can be expanded to:
3001 * if (T1 < 0.0)
3002 * MOV T0, T2;
3003 * else
3004 * MOV T0, T0;
3005 *
3006 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3007 * as the original program. If (T1 < 0.0) evaluates to false, executing
3008 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3009 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3010 * because any instruction that was going to read from T0 after this was going
3011 * to read a garbage value anyway.
3012 */
3013 void
3014 glsl_to_tgsi_visitor::simplify_cmp(void)
3015 {
3016 unsigned tempWrites[MAX_TEMPS];
3017 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3018
3019 memset(tempWrites, 0, sizeof(tempWrites));
3020 memset(outputWrites, 0, sizeof(outputWrites));
3021
3022 foreach_iter(exec_list_iterator, iter, this->instructions) {
3023 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3024 unsigned prevWriteMask = 0;
3025
3026 /* Give up if we encounter relative addressing or flow control. */
3027 if (inst->dst.reladdr ||
3028 tgsi_get_opcode_info(inst->op)->is_branch ||
3029 inst->op == TGSI_OPCODE_BGNSUB ||
3030 inst->op == TGSI_OPCODE_CONT ||
3031 inst->op == TGSI_OPCODE_END ||
3032 inst->op == TGSI_OPCODE_ENDSUB ||
3033 inst->op == TGSI_OPCODE_RET) {
3034 return;
3035 }
3036
3037 if (inst->dst.file == PROGRAM_OUTPUT) {
3038 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3039 prevWriteMask = outputWrites[inst->dst.index];
3040 outputWrites[inst->dst.index] |= inst->dst.writemask;
3041 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3042 assert(inst->dst.index < MAX_TEMPS);
3043 prevWriteMask = tempWrites[inst->dst.index];
3044 tempWrites[inst->dst.index] |= inst->dst.writemask;
3045 }
3046
3047 /* For a CMP to be considered a conditional write, the destination
3048 * register and source register two must be the same. */
3049 if (inst->op == TGSI_OPCODE_CMP
3050 && !(inst->dst.writemask & prevWriteMask)
3051 && inst->src[2].file == inst->dst.file
3052 && inst->src[2].index == inst->dst.index
3053 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3054
3055 inst->op = TGSI_OPCODE_MOV;
3056 inst->src[0] = inst->src[1];
3057 }
3058 }
3059 }
3060
3061 /* Replaces all references to a temporary register index with another index. */
3062 void
3063 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3064 {
3065 foreach_iter(exec_list_iterator, iter, this->instructions) {
3066 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3067 unsigned j;
3068
3069 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3070 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3071 inst->src[j].index == index) {
3072 inst->src[j].index = new_index;
3073 }
3074 }
3075
3076 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3077 inst->dst.index = new_index;
3078 }
3079 }
3080 }
3081
3082 int
3083 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3084 {
3085 int depth = 0; /* loop depth */
3086 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3087 unsigned i = 0, j;
3088
3089 foreach_iter(exec_list_iterator, iter, this->instructions) {
3090 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3091
3092 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3093 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3094 inst->src[j].index == index) {
3095 return (depth == 0) ? i : loop_start;
3096 }
3097 }
3098
3099 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3100 if(depth++ == 0)
3101 loop_start = i;
3102 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3103 if (--depth == 0)
3104 loop_start = -1;
3105 }
3106 assert(depth >= 0);
3107
3108 i++;
3109 }
3110
3111 return -1;
3112 }
3113
3114 int
3115 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3116 {
3117 int depth = 0; /* loop depth */
3118 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3119 int i = 0;
3120
3121 foreach_iter(exec_list_iterator, iter, this->instructions) {
3122 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3123
3124 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3125 return (depth == 0) ? i : loop_start;
3126 }
3127
3128 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3129 if(depth++ == 0)
3130 loop_start = i;
3131 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3132 if (--depth == 0)
3133 loop_start = -1;
3134 }
3135 assert(depth >= 0);
3136
3137 i++;
3138 }
3139
3140 return -1;
3141 }
3142
3143 int
3144 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3145 {
3146 int depth = 0; /* loop depth */
3147 int last = -1; /* index of last instruction that reads the temporary */
3148 unsigned i = 0, j;
3149
3150 foreach_iter(exec_list_iterator, iter, this->instructions) {
3151 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3152
3153 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3154 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3155 inst->src[j].index == index) {
3156 last = (depth == 0) ? i : -2;
3157 }
3158 }
3159
3160 if (inst->op == TGSI_OPCODE_BGNLOOP)
3161 depth++;
3162 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3163 if (--depth == 0 && last == -2)
3164 last = i;
3165 assert(depth >= 0);
3166
3167 i++;
3168 }
3169
3170 assert(last >= -1);
3171 return last;
3172 }
3173
3174 int
3175 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3176 {
3177 int depth = 0; /* loop depth */
3178 int last = -1; /* index of last instruction that writes to the temporary */
3179 int i = 0;
3180
3181 foreach_iter(exec_list_iterator, iter, this->instructions) {
3182 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3183
3184 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3185 last = (depth == 0) ? i : -2;
3186
3187 if (inst->op == TGSI_OPCODE_BGNLOOP)
3188 depth++;
3189 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3190 if (--depth == 0 && last == -2)
3191 last = i;
3192 assert(depth >= 0);
3193
3194 i++;
3195 }
3196
3197 assert(last >= -1);
3198 return last;
3199 }
3200
3201 /*
3202 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3203 * channels for copy propagation and updates following instructions to
3204 * use the original versions.
3205 *
3206 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3207 * will occur. As an example, a TXP production before this pass:
3208 *
3209 * 0: MOV TEMP[1], INPUT[4].xyyy;
3210 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3211 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3212 *
3213 * and after:
3214 *
3215 * 0: MOV TEMP[1], INPUT[4].xyyy;
3216 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3217 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3218 *
3219 * which allows for dead code elimination on TEMP[1]'s writes.
3220 */
3221 void
3222 glsl_to_tgsi_visitor::copy_propagate(void)
3223 {
3224 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3225 glsl_to_tgsi_instruction *,
3226 this->next_temp * 4);
3227 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3228 int level = 0;
3229
3230 foreach_iter(exec_list_iterator, iter, this->instructions) {
3231 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3232
3233 assert(inst->dst.file != PROGRAM_TEMPORARY
3234 || inst->dst.index < this->next_temp);
3235
3236 /* First, do any copy propagation possible into the src regs. */
3237 for (int r = 0; r < 3; r++) {
3238 glsl_to_tgsi_instruction *first = NULL;
3239 bool good = true;
3240 int acp_base = inst->src[r].index * 4;
3241
3242 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3243 inst->src[r].reladdr)
3244 continue;
3245
3246 /* See if we can find entries in the ACP consisting of MOVs
3247 * from the same src register for all the swizzled channels
3248 * of this src register reference.
3249 */
3250 for (int i = 0; i < 4; i++) {
3251 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3252 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3253
3254 if (!copy_chan) {
3255 good = false;
3256 break;
3257 }
3258
3259 assert(acp_level[acp_base + src_chan] <= level);
3260
3261 if (!first) {
3262 first = copy_chan;
3263 } else {
3264 if (first->src[0].file != copy_chan->src[0].file ||
3265 first->src[0].index != copy_chan->src[0].index) {
3266 good = false;
3267 break;
3268 }
3269 }
3270 }
3271
3272 if (good) {
3273 /* We've now validated that we can copy-propagate to
3274 * replace this src register reference. Do it.
3275 */
3276 inst->src[r].file = first->src[0].file;
3277 inst->src[r].index = first->src[0].index;
3278
3279 int swizzle = 0;
3280 for (int i = 0; i < 4; i++) {
3281 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3282 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3283 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3284 (3 * i));
3285 }
3286 inst->src[r].swizzle = swizzle;
3287 }
3288 }
3289
3290 switch (inst->op) {
3291 case TGSI_OPCODE_BGNLOOP:
3292 case TGSI_OPCODE_ENDLOOP:
3293 /* End of a basic block, clear the ACP entirely. */
3294 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3295 break;
3296
3297 case TGSI_OPCODE_IF:
3298 ++level;
3299 break;
3300
3301 case TGSI_OPCODE_ENDIF:
3302 case TGSI_OPCODE_ELSE:
3303 /* Clear all channels written inside the block from the ACP, but
3304 * leaving those that were not touched.
3305 */
3306 for (int r = 0; r < this->next_temp; r++) {
3307 for (int c = 0; c < 4; c++) {
3308 if (!acp[4 * r + c])
3309 continue;
3310
3311 if (acp_level[4 * r + c] >= level)
3312 acp[4 * r + c] = NULL;
3313 }
3314 }
3315 if (inst->op == TGSI_OPCODE_ENDIF)
3316 --level;
3317 break;
3318
3319 default:
3320 /* Continuing the block, clear any written channels from
3321 * the ACP.
3322 */
3323 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3324 /* Any temporary might be written, so no copy propagation
3325 * across this instruction.
3326 */
3327 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3328 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3329 inst->dst.reladdr) {
3330 /* Any output might be written, so no copy propagation
3331 * from outputs across this instruction.
3332 */
3333 for (int r = 0; r < this->next_temp; r++) {
3334 for (int c = 0; c < 4; c++) {
3335 if (!acp[4 * r + c])
3336 continue;
3337
3338 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3339 acp[4 * r + c] = NULL;
3340 }
3341 }
3342 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3343 inst->dst.file == PROGRAM_OUTPUT) {
3344 /* Clear where it's used as dst. */
3345 if (inst->dst.file == PROGRAM_TEMPORARY) {
3346 for (int c = 0; c < 4; c++) {
3347 if (inst->dst.writemask & (1 << c)) {
3348 acp[4 * inst->dst.index + c] = NULL;
3349 }
3350 }
3351 }
3352
3353 /* Clear where it's used as src. */
3354 for (int r = 0; r < this->next_temp; r++) {
3355 for (int c = 0; c < 4; c++) {
3356 if (!acp[4 * r + c])
3357 continue;
3358
3359 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3360
3361 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3362 acp[4 * r + c]->src[0].index == inst->dst.index &&
3363 inst->dst.writemask & (1 << src_chan))
3364 {
3365 acp[4 * r + c] = NULL;
3366 }
3367 }
3368 }
3369 }
3370 break;
3371 }
3372
3373 /* If this is a copy, add it to the ACP. */
3374 if (inst->op == TGSI_OPCODE_MOV &&
3375 inst->dst.file == PROGRAM_TEMPORARY &&
3376 !inst->dst.reladdr &&
3377 !inst->saturate &&
3378 !inst->src[0].reladdr &&
3379 !inst->src[0].negate) {
3380 for (int i = 0; i < 4; i++) {
3381 if (inst->dst.writemask & (1 << i)) {
3382 acp[4 * inst->dst.index + i] = inst;
3383 acp_level[4 * inst->dst.index + i] = level;
3384 }
3385 }
3386 }
3387 }
3388
3389 ralloc_free(acp_level);
3390 ralloc_free(acp);
3391 }
3392
3393 /*
3394 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3395 *
3396 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3397 * will occur. As an example, a TXP production after copy propagation but
3398 * before this pass:
3399 *
3400 * 0: MOV TEMP[1], INPUT[4].xyyy;
3401 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3402 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3403 *
3404 * and after this pass:
3405 *
3406 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3407 *
3408 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3409 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3410 */
3411 void
3412 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3413 {
3414 int i;
3415
3416 for (i=0; i < this->next_temp; i++) {
3417 int last_read = get_last_temp_read(i);
3418 int j = 0;
3419
3420 foreach_iter(exec_list_iterator, iter, this->instructions) {
3421 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3422
3423 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3424 j > last_read)
3425 {
3426 iter.remove();
3427 delete inst;
3428 }
3429
3430 j++;
3431 }
3432 }
3433 }
3434
3435 /*
3436 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3437 * code elimination. This is less primitive than eliminate_dead_code(), as it
3438 * is per-channel and can detect consecutive writes without a read between them
3439 * as dead code. However, there is some dead code that can be eliminated by
3440 * eliminate_dead_code() but not this function - for example, this function
3441 * cannot eliminate an instruction writing to a register that is never read and
3442 * is the only instruction writing to that register.
3443 *
3444 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3445 * will occur.
3446 */
3447 int
3448 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3449 {
3450 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3451 glsl_to_tgsi_instruction *,
3452 this->next_temp * 4);
3453 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3454 int level = 0;
3455 int removed = 0;
3456
3457 foreach_iter(exec_list_iterator, iter, this->instructions) {
3458 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3459
3460 assert(inst->dst.file != PROGRAM_TEMPORARY
3461 || inst->dst.index < this->next_temp);
3462
3463 switch (inst->op) {
3464 case TGSI_OPCODE_BGNLOOP:
3465 case TGSI_OPCODE_ENDLOOP:
3466 /* End of a basic block, clear the write array entirely.
3467 * FIXME: This keeps us from killing dead code when the writes are
3468 * on either side of a loop, even when the register isn't touched
3469 * inside the loop.
3470 */
3471 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3472 break;
3473
3474 case TGSI_OPCODE_ENDIF:
3475 --level;
3476 break;
3477
3478 case TGSI_OPCODE_ELSE:
3479 /* Clear all channels written inside the preceding if block from the
3480 * write array, but leave those that were not touched.
3481 *
3482 * FIXME: This destroys opportunities to remove dead code inside of
3483 * IF blocks that are followed by an ELSE block.
3484 */
3485 for (int r = 0; r < this->next_temp; r++) {
3486 for (int c = 0; c < 4; c++) {
3487 if (!writes[4 * r + c])
3488 continue;
3489
3490 if (write_level[4 * r + c] >= level)
3491 writes[4 * r + c] = NULL;
3492 }
3493 }
3494 break;
3495
3496 case TGSI_OPCODE_IF:
3497 ++level;
3498 /* fallthrough to default case to mark the condition as read */
3499
3500 default:
3501 /* Continuing the block, clear any channels from the write array that
3502 * are read by this instruction.
3503 */
3504 for (unsigned i = 0; i < Elements(inst->src); i++) {
3505 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3506 /* Any temporary might be read, so no dead code elimination
3507 * across this instruction.
3508 */
3509 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3510 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3511 /* Clear where it's used as src. */
3512 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3513 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3514 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3515 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3516
3517 for (int c = 0; c < 4; c++) {
3518 if (src_chans & (1 << c)) {
3519 writes[4 * inst->src[i].index + c] = NULL;
3520 }
3521 }
3522 }
3523 }
3524 break;
3525 }
3526
3527 /* If this instruction writes to a temporary, add it to the write array.
3528 * If there is already an instruction in the write array for one or more
3529 * of the channels, flag that channel write as dead.
3530 */
3531 if (inst->dst.file == PROGRAM_TEMPORARY &&
3532 !inst->dst.reladdr &&
3533 !inst->saturate) {
3534 for (int c = 0; c < 4; c++) {
3535 if (inst->dst.writemask & (1 << c)) {
3536 if (writes[4 * inst->dst.index + c]) {
3537 if (write_level[4 * inst->dst.index + c] < level)
3538 continue;
3539 else
3540 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3541 }
3542 writes[4 * inst->dst.index + c] = inst;
3543 write_level[4 * inst->dst.index + c] = level;
3544 }
3545 }
3546 }
3547 }
3548
3549 /* Anything still in the write array at this point is dead code. */
3550 for (int r = 0; r < this->next_temp; r++) {
3551 for (int c = 0; c < 4; c++) {
3552 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3553 if (inst)
3554 inst->dead_mask |= (1 << c);
3555 }
3556 }
3557
3558 /* Now actually remove the instructions that are completely dead and update
3559 * the writemask of other instructions with dead channels.
3560 */
3561 foreach_iter(exec_list_iterator, iter, this->instructions) {
3562 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3563
3564 if (!inst->dead_mask || !inst->dst.writemask)
3565 continue;
3566 else if (inst->dead_mask == inst->dst.writemask) {
3567 iter.remove();
3568 delete inst;
3569 removed++;
3570 } else
3571 inst->dst.writemask &= ~(inst->dead_mask);
3572 }
3573
3574 ralloc_free(write_level);
3575 ralloc_free(writes);
3576
3577 return removed;
3578 }
3579
3580 /* Merges temporary registers together where possible to reduce the number of
3581 * registers needed to run a program.
3582 *
3583 * Produces optimal code only after copy propagation and dead code elimination
3584 * have been run. */
3585 void
3586 glsl_to_tgsi_visitor::merge_registers(void)
3587 {
3588 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3589 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3590 int i, j;
3591
3592 /* Read the indices of the last read and first write to each temp register
3593 * into an array so that we don't have to traverse the instruction list as
3594 * much. */
3595 for (i=0; i < this->next_temp; i++) {
3596 last_reads[i] = get_last_temp_read(i);
3597 first_writes[i] = get_first_temp_write(i);
3598 }
3599
3600 /* Start looking for registers with non-overlapping usages that can be
3601 * merged together. */
3602 for (i=0; i < this->next_temp; i++) {
3603 /* Don't touch unused registers. */
3604 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3605
3606 for (j=0; j < this->next_temp; j++) {
3607 /* Don't touch unused registers. */
3608 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3609
3610 /* We can merge the two registers if the first write to j is after or
3611 * in the same instruction as the last read from i. Note that the
3612 * register at index i will always be used earlier or at the same time
3613 * as the register at index j. */
3614 if (first_writes[i] <= first_writes[j] &&
3615 last_reads[i] <= first_writes[j])
3616 {
3617 rename_temp_register(j, i); /* Replace all references to j with i.*/
3618
3619 /* Update the first_writes and last_reads arrays with the new
3620 * values for the merged register index, and mark the newly unused
3621 * register index as such. */
3622 last_reads[i] = last_reads[j];
3623 first_writes[j] = -1;
3624 last_reads[j] = -1;
3625 }
3626 }
3627 }
3628
3629 ralloc_free(last_reads);
3630 ralloc_free(first_writes);
3631 }
3632
3633 /* Reassign indices to temporary registers by reusing unused indices created
3634 * by optimization passes. */
3635 void
3636 glsl_to_tgsi_visitor::renumber_registers(void)
3637 {
3638 int i = 0;
3639 int new_index = 0;
3640
3641 for (i=0; i < this->next_temp; i++) {
3642 if (get_first_temp_read(i) < 0) continue;
3643 if (i != new_index)
3644 rename_temp_register(i, new_index);
3645 new_index++;
3646 }
3647
3648 this->next_temp = new_index;
3649 }
3650
3651 /**
3652 * Returns a fragment program which implements the current pixel transfer ops.
3653 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3654 */
3655 extern "C" void
3656 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3657 glsl_to_tgsi_visitor *original,
3658 int scale_and_bias, int pixel_maps)
3659 {
3660 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3661 struct st_context *st = st_context(original->ctx);
3662 struct gl_program *prog = &fp->Base.Base;
3663 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3664 st_src_reg coord, src0;
3665 st_dst_reg dst0;
3666 glsl_to_tgsi_instruction *inst;
3667
3668 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3669 v->ctx = original->ctx;
3670 v->prog = prog;
3671 v->glsl_version = original->glsl_version;
3672 v->native_integers = original->native_integers;
3673 v->options = original->options;
3674 v->next_temp = original->next_temp;
3675 v->num_address_regs = original->num_address_regs;
3676 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3677 v->indirect_addr_temps = original->indirect_addr_temps;
3678 v->indirect_addr_consts = original->indirect_addr_consts;
3679 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3680
3681 /*
3682 * Get initial pixel color from the texture.
3683 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3684 */
3685 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3686 src0 = v->get_temp(glsl_type::vec4_type);
3687 dst0 = st_dst_reg(src0);
3688 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3689 inst->sampler = 0;
3690 inst->tex_target = TEXTURE_2D_INDEX;
3691
3692 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3693 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3694 v->samplers_used |= (1 << 0);
3695
3696 if (scale_and_bias) {
3697 static const gl_state_index scale_state[STATE_LENGTH] =
3698 { STATE_INTERNAL, STATE_PT_SCALE,
3699 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3700 static const gl_state_index bias_state[STATE_LENGTH] =
3701 { STATE_INTERNAL, STATE_PT_BIAS,
3702 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3703 GLint scale_p, bias_p;
3704 st_src_reg scale, bias;
3705
3706 scale_p = _mesa_add_state_reference(params, scale_state);
3707 bias_p = _mesa_add_state_reference(params, bias_state);
3708
3709 /* MAD colorTemp, colorTemp, scale, bias; */
3710 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3711 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3712 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3713 }
3714
3715 if (pixel_maps) {
3716 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3717 st_dst_reg temp_dst = st_dst_reg(temp);
3718
3719 assert(st->pixel_xfer.pixelmap_texture);
3720
3721 /* With a little effort, we can do four pixel map look-ups with
3722 * two TEX instructions:
3723 */
3724
3725 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3726 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3727 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3728 inst->sampler = 1;
3729 inst->tex_target = TEXTURE_2D_INDEX;
3730
3731 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3732 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3733 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3734 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3735 inst->sampler = 1;
3736 inst->tex_target = TEXTURE_2D_INDEX;
3737
3738 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3739 v->samplers_used |= (1 << 1);
3740
3741 /* MOV colorTemp, temp; */
3742 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3743 }
3744
3745 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3746 * new visitor. */
3747 foreach_iter(exec_list_iterator, iter, original->instructions) {
3748 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3749 st_src_reg src_regs[3];
3750
3751 if (inst->dst.file == PROGRAM_OUTPUT)
3752 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3753
3754 for (int i=0; i<3; i++) {
3755 src_regs[i] = inst->src[i];
3756 if (src_regs[i].file == PROGRAM_INPUT &&
3757 src_regs[i].index == FRAG_ATTRIB_COL0)
3758 {
3759 src_regs[i].file = PROGRAM_TEMPORARY;
3760 src_regs[i].index = src0.index;
3761 }
3762 else if (src_regs[i].file == PROGRAM_INPUT)
3763 prog->InputsRead |= (1 << src_regs[i].index);
3764 }
3765
3766 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3767 }
3768
3769 /* Make modifications to fragment program info. */
3770 prog->Parameters = _mesa_combine_parameter_lists(params,
3771 original->prog->Parameters);
3772 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
3773 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
3774 _mesa_free_parameter_list(params);
3775 count_resources(v, prog);
3776 fp->glsl_to_tgsi = v;
3777 }
3778
3779 /**
3780 * Make fragment program for glBitmap:
3781 * Sample the texture and kill the fragment if the bit is 0.
3782 * This program will be combined with the user's fragment program.
3783 *
3784 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3785 */
3786 extern "C" void
3787 get_bitmap_visitor(struct st_fragment_program *fp,
3788 glsl_to_tgsi_visitor *original, int samplerIndex)
3789 {
3790 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3791 struct st_context *st = st_context(original->ctx);
3792 struct gl_program *prog = &fp->Base.Base;
3793 st_src_reg coord, src0;
3794 st_dst_reg dst0;
3795 glsl_to_tgsi_instruction *inst;
3796
3797 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3798 v->ctx = original->ctx;
3799 v->prog = prog;
3800 v->glsl_version = original->glsl_version;
3801 v->native_integers = original->native_integers;
3802 v->options = original->options;
3803 v->next_temp = original->next_temp;
3804 v->num_address_regs = original->num_address_regs;
3805 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3806 v->indirect_addr_temps = original->indirect_addr_temps;
3807 v->indirect_addr_consts = original->indirect_addr_consts;
3808 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3809
3810 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3811 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3812 src0 = v->get_temp(glsl_type::vec4_type);
3813 dst0 = st_dst_reg(src0);
3814 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3815 inst->sampler = samplerIndex;
3816 inst->tex_target = TEXTURE_2D_INDEX;
3817
3818 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3819 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3820 v->samplers_used |= (1 << samplerIndex);
3821
3822 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3823 src0.negate = NEGATE_XYZW;
3824 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3825 src0.swizzle = SWIZZLE_XXXX;
3826 inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3827
3828 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3829 * new visitor. */
3830 foreach_iter(exec_list_iterator, iter, original->instructions) {
3831 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3832 st_src_reg src_regs[3];
3833
3834 if (inst->dst.file == PROGRAM_OUTPUT)
3835 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3836
3837 for (int i=0; i<3; i++) {
3838 src_regs[i] = inst->src[i];
3839 if (src_regs[i].file == PROGRAM_INPUT)
3840 prog->InputsRead |= (1 << src_regs[i].index);
3841 }
3842
3843 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3844 }
3845
3846 /* Make modifications to fragment program info. */
3847 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3848 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
3849 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
3850 count_resources(v, prog);
3851 fp->glsl_to_tgsi = v;
3852 }
3853
3854 /* ------------------------- TGSI conversion stuff -------------------------- */
3855 struct label {
3856 unsigned branch_target;
3857 unsigned token;
3858 };
3859
3860 /**
3861 * Intermediate state used during shader translation.
3862 */
3863 struct st_translate {
3864 struct ureg_program *ureg;
3865
3866 struct ureg_dst temps[MAX_TEMPS];
3867 struct ureg_src *constants;
3868 struct ureg_src *immediates;
3869 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3870 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3871 struct ureg_dst address[1];
3872 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3873 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3874
3875 /* Extra info for handling point size clamping in vertex shader */
3876 struct ureg_dst pointSizeResult; /**< Actual point size output register */
3877 struct ureg_src pointSizeConst; /**< Point size range constant register */
3878 GLint pointSizeOutIndex; /**< Temp point size output register */
3879 GLboolean prevInstWrotePointSize;
3880
3881 const GLuint *inputMapping;
3882 const GLuint *outputMapping;
3883
3884 /* For every instruction that contains a label (eg CALL), keep
3885 * details so that we can go back afterwards and emit the correct
3886 * tgsi instruction number for each label.
3887 */
3888 struct label *labels;
3889 unsigned labels_size;
3890 unsigned labels_count;
3891
3892 /* Keep a record of the tgsi instruction number that each mesa
3893 * instruction starts at, will be used to fix up labels after
3894 * translation.
3895 */
3896 unsigned *insn;
3897 unsigned insn_size;
3898 unsigned insn_count;
3899
3900 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3901
3902 boolean error;
3903 };
3904
3905 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3906 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3907 TGSI_SEMANTIC_FACE,
3908 TGSI_SEMANTIC_INSTANCEID
3909 };
3910
3911 /**
3912 * Make note of a branch to a label in the TGSI code.
3913 * After we've emitted all instructions, we'll go over the list
3914 * of labels built here and patch the TGSI code with the actual
3915 * location of each label.
3916 */
3917 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3918 {
3919 unsigned i;
3920
3921 if (t->labels_count + 1 >= t->labels_size) {
3922 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3923 t->labels = (struct label *)realloc(t->labels,
3924 t->labels_size * sizeof(struct label));
3925 if (t->labels == NULL) {
3926 static unsigned dummy;
3927 t->error = TRUE;
3928 return &dummy;
3929 }
3930 }
3931
3932 i = t->labels_count++;
3933 t->labels[i].branch_target = branch_target;
3934 return &t->labels[i].token;
3935 }
3936
3937 /**
3938 * Called prior to emitting the TGSI code for each instruction.
3939 * Allocate additional space for instructions if needed.
3940 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3941 * the next TGSI instruction.
3942 */
3943 static void set_insn_start(struct st_translate *t, unsigned start)
3944 {
3945 if (t->insn_count + 1 >= t->insn_size) {
3946 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3947 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
3948 if (t->insn == NULL) {
3949 t->error = TRUE;
3950 return;
3951 }
3952 }
3953
3954 t->insn[t->insn_count++] = start;
3955 }
3956
3957 /**
3958 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
3959 */
3960 static struct ureg_src
3961 emit_immediate(struct st_translate *t,
3962 gl_constant_value values[4],
3963 int type, int size)
3964 {
3965 struct ureg_program *ureg = t->ureg;
3966
3967 switch(type)
3968 {
3969 case GL_FLOAT:
3970 return ureg_DECL_immediate(ureg, &values[0].f, size);
3971 case GL_INT:
3972 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
3973 case GL_UNSIGNED_INT:
3974 case GL_BOOL:
3975 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
3976 default:
3977 assert(!"should not get here - type must be float, int, uint, or bool");
3978 return ureg_src_undef();
3979 }
3980 }
3981
3982 /**
3983 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
3984 */
3985 static struct ureg_dst
3986 dst_register(struct st_translate *t,
3987 gl_register_file file,
3988 GLuint index)
3989 {
3990 switch(file) {
3991 case PROGRAM_UNDEFINED:
3992 return ureg_dst_undef();
3993
3994 case PROGRAM_TEMPORARY:
3995 if (ureg_dst_is_undef(t->temps[index]))
3996 t->temps[index] = ureg_DECL_temporary(t->ureg);
3997
3998 return t->temps[index];
3999
4000 case PROGRAM_OUTPUT:
4001 if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
4002 t->prevInstWrotePointSize = GL_TRUE;
4003
4004 if (t->procType == TGSI_PROCESSOR_VERTEX)
4005 assert(index < VERT_RESULT_MAX);
4006 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4007 assert(index < FRAG_RESULT_MAX);
4008 else
4009 assert(index < GEOM_RESULT_MAX);
4010
4011 assert(t->outputMapping[index] < Elements(t->outputs));
4012
4013 return t->outputs[t->outputMapping[index]];
4014
4015 case PROGRAM_ADDRESS:
4016 return t->address[index];
4017
4018 default:
4019 assert(!"unknown dst register file");
4020 return ureg_dst_undef();
4021 }
4022 }
4023
4024 /**
4025 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4026 */
4027 static struct ureg_src
4028 src_register(struct st_translate *t,
4029 gl_register_file file,
4030 GLuint index)
4031 {
4032 switch(file) {
4033 case PROGRAM_UNDEFINED:
4034 return ureg_src_undef();
4035
4036 case PROGRAM_TEMPORARY:
4037 assert(index >= 0);
4038 assert(index < Elements(t->temps));
4039 if (ureg_dst_is_undef(t->temps[index]))
4040 t->temps[index] = ureg_DECL_temporary(t->ureg);
4041 return ureg_src(t->temps[index]);
4042
4043 case PROGRAM_NAMED_PARAM:
4044 case PROGRAM_ENV_PARAM:
4045 case PROGRAM_LOCAL_PARAM:
4046 case PROGRAM_UNIFORM:
4047 assert(index >= 0);
4048 return t->constants[index];
4049 case PROGRAM_STATE_VAR:
4050 case PROGRAM_CONSTANT: /* ie, immediate */
4051 if (index < 0)
4052 return ureg_DECL_constant(t->ureg, 0);
4053 else
4054 return t->constants[index];
4055
4056 case PROGRAM_IMMEDIATE:
4057 return t->immediates[index];
4058
4059 case PROGRAM_INPUT:
4060 assert(t->inputMapping[index] < Elements(t->inputs));
4061 return t->inputs[t->inputMapping[index]];
4062
4063 case PROGRAM_OUTPUT:
4064 assert(t->outputMapping[index] < Elements(t->outputs));
4065 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4066
4067 case PROGRAM_ADDRESS:
4068 return ureg_src(t->address[index]);
4069
4070 case PROGRAM_SYSTEM_VALUE:
4071 assert(index < Elements(t->systemValues));
4072 return t->systemValues[index];
4073
4074 default:
4075 assert(!"unknown src register file");
4076 return ureg_src_undef();
4077 }
4078 }
4079
4080 /**
4081 * Create a TGSI ureg_dst register from an st_dst_reg.
4082 */
4083 static struct ureg_dst
4084 translate_dst(struct st_translate *t,
4085 const st_dst_reg *dst_reg,
4086 bool saturate)
4087 {
4088 struct ureg_dst dst = dst_register(t,
4089 dst_reg->file,
4090 dst_reg->index);
4091
4092 dst = ureg_writemask(dst, dst_reg->writemask);
4093
4094 if (saturate)
4095 dst = ureg_saturate(dst);
4096
4097 if (dst_reg->reladdr != NULL)
4098 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4099
4100 return dst;
4101 }
4102
4103 /**
4104 * Create a TGSI ureg_src register from an st_src_reg.
4105 */
4106 static struct ureg_src
4107 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4108 {
4109 struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4110
4111 src = ureg_swizzle(src,
4112 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4113 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4114 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4115 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4116
4117 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4118 src = ureg_negate(src);
4119
4120 if (src_reg->reladdr != NULL) {
4121 /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4122 * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4123 * set the bit for src.Negate. So we have to do the operation manually
4124 * here to work around the compiler's problems. */
4125 /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4126 struct ureg_src addr = ureg_src(t->address[0]);
4127 src.Indirect = 1;
4128 src.IndirectFile = addr.File;
4129 src.IndirectIndex = addr.Index;
4130 src.IndirectSwizzle = addr.SwizzleX;
4131
4132 if (src_reg->file != PROGRAM_INPUT &&
4133 src_reg->file != PROGRAM_OUTPUT) {
4134 /* If src_reg->index was negative, it was set to zero in
4135 * src_register(). Reassign it now. But don't do this
4136 * for input/output regs since they get remapped while
4137 * const buffers don't.
4138 */
4139 src.Index = src_reg->index;
4140 }
4141 }
4142
4143 return src;
4144 }
4145
4146 static void
4147 compile_tgsi_instruction(struct st_translate *t,
4148 const struct glsl_to_tgsi_instruction *inst)
4149 {
4150 struct ureg_program *ureg = t->ureg;
4151 GLuint i;
4152 struct ureg_dst dst[1];
4153 struct ureg_src src[4];
4154 unsigned num_dst;
4155 unsigned num_src;
4156
4157 num_dst = num_inst_dst_regs(inst->op);
4158 num_src = num_inst_src_regs(inst->op);
4159
4160 if (num_dst)
4161 dst[0] = translate_dst(t,
4162 &inst->dst,
4163 inst->saturate);
4164
4165 for (i = 0; i < num_src; i++)
4166 src[i] = translate_src(t, &inst->src[i]);
4167
4168 switch(inst->op) {
4169 case TGSI_OPCODE_BGNLOOP:
4170 case TGSI_OPCODE_CAL:
4171 case TGSI_OPCODE_ELSE:
4172 case TGSI_OPCODE_ENDLOOP:
4173 case TGSI_OPCODE_IF:
4174 assert(num_dst == 0);
4175 ureg_label_insn(ureg,
4176 inst->op,
4177 src, num_src,
4178 get_label(t,
4179 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4180 return;
4181
4182 case TGSI_OPCODE_TEX:
4183 case TGSI_OPCODE_TXB:
4184 case TGSI_OPCODE_TXD:
4185 case TGSI_OPCODE_TXL:
4186 case TGSI_OPCODE_TXP:
4187 src[num_src++] = t->samplers[inst->sampler];
4188 ureg_tex_insn(ureg,
4189 inst->op,
4190 dst, num_dst,
4191 translate_texture_target(inst->tex_target, inst->tex_shadow),
4192 src, num_src);
4193 return;
4194
4195 case TGSI_OPCODE_SCS:
4196 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4197 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4198 break;
4199
4200 default:
4201 ureg_insn(ureg,
4202 inst->op,
4203 dst, num_dst,
4204 src, num_src);
4205 break;
4206 }
4207 }
4208
4209 /**
4210 * Emit the TGSI instructions to adjust the WPOS pixel center convention
4211 * Basically, add (adjX, adjY) to the fragment position.
4212 */
4213 static void
4214 emit_adjusted_wpos(struct st_translate *t,
4215 const struct gl_program *program,
4216 float adjX, float adjY)
4217 {
4218 struct ureg_program *ureg = t->ureg;
4219 struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
4220 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4221
4222 /* Note that we bias X and Y and pass Z and W through unchanged.
4223 * The shader might also use gl_FragCoord.w and .z.
4224 */
4225 ureg_ADD(ureg, wpos_temp, wpos_input,
4226 ureg_imm4f(ureg, adjX, adjY, 0.0f, 0.0f));
4227
4228 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4229 }
4230
4231
4232 /**
4233 * Emit the TGSI instructions for inverting the WPOS y coordinate.
4234 * This code is unavoidable because it also depends on whether
4235 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4236 */
4237 static void
4238 emit_wpos_inversion(struct st_translate *t,
4239 const struct gl_program *program,
4240 bool invert)
4241 {
4242 struct ureg_program *ureg = t->ureg;
4243
4244 /* Fragment program uses fragment position input.
4245 * Need to replace instances of INPUT[WPOS] with temp T
4246 * where T = INPUT[WPOS] by y is inverted.
4247 */
4248 static const gl_state_index wposTransformState[STATE_LENGTH]
4249 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4250 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4251
4252 /* XXX: note we are modifying the incoming shader here! Need to
4253 * do this before emitting the constant decls below, or this
4254 * will be missed:
4255 */
4256 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4257 wposTransformState);
4258
4259 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wposTransConst);
4260 struct ureg_dst wpos_temp;
4261 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4262
4263 /* MOV wpos_temp, input[wpos]
4264 */
4265 if (wpos_input.File == TGSI_FILE_TEMPORARY)
4266 wpos_temp = ureg_dst(wpos_input);
4267 else {
4268 wpos_temp = ureg_DECL_temporary(ureg);
4269 ureg_MOV(ureg, wpos_temp, wpos_input);
4270 }
4271
4272 if (invert) {
4273 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4274 */
4275 ureg_MAD(ureg,
4276 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4277 wpos_input,
4278 ureg_scalar(wpostrans, 0),
4279 ureg_scalar(wpostrans, 1));
4280 } else {
4281 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4282 */
4283 ureg_MAD(ureg,
4284 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4285 wpos_input,
4286 ureg_scalar(wpostrans, 2),
4287 ureg_scalar(wpostrans, 3));
4288 }
4289
4290 /* Use wpos_temp as position input from here on:
4291 */
4292 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4293 }
4294
4295
4296 /**
4297 * Emit fragment position/ooordinate code.
4298 */
4299 static void
4300 emit_wpos(struct st_context *st,
4301 struct st_translate *t,
4302 const struct gl_program *program,
4303 struct ureg_program *ureg)
4304 {
4305 const struct gl_fragment_program *fp =
4306 (const struct gl_fragment_program *) program;
4307 struct pipe_screen *pscreen = st->pipe->screen;
4308 boolean invert = FALSE;
4309
4310 if (fp->OriginUpperLeft) {
4311 /* Fragment shader wants origin in upper-left */
4312 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4313 /* the driver supports upper-left origin */
4314 }
4315 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4316 /* the driver supports lower-left origin, need to invert Y */
4317 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4318 invert = TRUE;
4319 }
4320 else
4321 assert(0);
4322 }
4323 else {
4324 /* Fragment shader wants origin in lower-left */
4325 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4326 /* the driver supports lower-left origin */
4327 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4328 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4329 /* the driver supports upper-left origin, need to invert Y */
4330 invert = TRUE;
4331 else
4332 assert(0);
4333 }
4334
4335 if (fp->PixelCenterInteger) {
4336 /* Fragment shader wants pixel center integer */
4337 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER))
4338 /* the driver supports pixel center integer */
4339 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4340 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER))
4341 /* the driver supports pixel center half integer, need to bias X,Y */
4342 emit_adjusted_wpos(t, program, 0.5f, invert ? 0.5f : -0.5f);
4343 else
4344 assert(0);
4345 }
4346 else {
4347 /* Fragment shader wants pixel center half integer */
4348 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4349 /* the driver supports pixel center half integer */
4350 }
4351 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4352 /* the driver supports pixel center integer, need to bias X,Y */
4353 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4354 emit_adjusted_wpos(t, program, 0.5f, invert ? -0.5f : 0.5f);
4355 }
4356 else
4357 assert(0);
4358 }
4359
4360 /* we invert after adjustment so that we avoid the MOV to temporary,
4361 * and reuse the adjustment ADD instead */
4362 emit_wpos_inversion(t, program, invert);
4363 }
4364
4365 /**
4366 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4367 * TGSI uses +1 for front, -1 for back.
4368 * This function converts the TGSI value to the GL value. Simply clamping/
4369 * saturating the value to [0,1] does the job.
4370 */
4371 static void
4372 emit_face_var(struct st_translate *t)
4373 {
4374 struct ureg_program *ureg = t->ureg;
4375 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4376 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4377
4378 /* MOV_SAT face_temp, input[face] */
4379 face_temp = ureg_saturate(face_temp);
4380 ureg_MOV(ureg, face_temp, face_input);
4381
4382 /* Use face_temp as face input from here on: */
4383 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4384 }
4385
4386 static void
4387 emit_edgeflags(struct st_translate *t)
4388 {
4389 struct ureg_program *ureg = t->ureg;
4390 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4391 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4392
4393 ureg_MOV(ureg, edge_dst, edge_src);
4394 }
4395
4396 /**
4397 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4398 * \param program the program to translate
4399 * \param numInputs number of input registers used
4400 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4401 * input indexes
4402 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4403 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4404 * each input
4405 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4406 * \param numOutputs number of output registers used
4407 * \param outputMapping maps Mesa fragment program outputs to TGSI
4408 * generic outputs
4409 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4410 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4411 * each output
4412 *
4413 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4414 */
4415 extern "C" enum pipe_error
4416 st_translate_program(
4417 struct gl_context *ctx,
4418 uint procType,
4419 struct ureg_program *ureg,
4420 glsl_to_tgsi_visitor *program,
4421 const struct gl_program *proginfo,
4422 GLuint numInputs,
4423 const GLuint inputMapping[],
4424 const ubyte inputSemanticName[],
4425 const ubyte inputSemanticIndex[],
4426 const GLuint interpMode[],
4427 GLuint numOutputs,
4428 const GLuint outputMapping[],
4429 const ubyte outputSemanticName[],
4430 const ubyte outputSemanticIndex[],
4431 boolean passthrough_edgeflags)
4432 {
4433 struct st_translate translate, *t;
4434 unsigned i;
4435 enum pipe_error ret = PIPE_OK;
4436
4437 assert(numInputs <= Elements(t->inputs));
4438 assert(numOutputs <= Elements(t->outputs));
4439
4440 t = &translate;
4441 memset(t, 0, sizeof *t);
4442
4443 t->procType = procType;
4444 t->inputMapping = inputMapping;
4445 t->outputMapping = outputMapping;
4446 t->ureg = ureg;
4447 t->pointSizeOutIndex = -1;
4448 t->prevInstWrotePointSize = GL_FALSE;
4449
4450 /*
4451 * Declare input attributes.
4452 */
4453 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4454 for (i = 0; i < numInputs; i++) {
4455 t->inputs[i] = ureg_DECL_fs_input(ureg,
4456 inputSemanticName[i],
4457 inputSemanticIndex[i],
4458 interpMode[i]);
4459 }
4460
4461 if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4462 /* Must do this after setting up t->inputs, and before
4463 * emitting constant references, below:
4464 */
4465 emit_wpos(st_context(ctx), t, proginfo, ureg);
4466 }
4467
4468 if (proginfo->InputsRead & FRAG_BIT_FACE)
4469 emit_face_var(t);
4470
4471 /*
4472 * Declare output attributes.
4473 */
4474 for (i = 0; i < numOutputs; i++) {
4475 switch (outputSemanticName[i]) {
4476 case TGSI_SEMANTIC_POSITION:
4477 t->outputs[i] = ureg_DECL_output(ureg,
4478 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4479 outputSemanticIndex[i]);
4480 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4481 break;
4482 case TGSI_SEMANTIC_STENCIL:
4483 t->outputs[i] = ureg_DECL_output(ureg,
4484 TGSI_SEMANTIC_STENCIL, /* Stencil */
4485 outputSemanticIndex[i]);
4486 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4487 break;
4488 case TGSI_SEMANTIC_COLOR:
4489 t->outputs[i] = ureg_DECL_output(ureg,
4490 TGSI_SEMANTIC_COLOR,
4491 outputSemanticIndex[i]);
4492 break;
4493 default:
4494 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4495 return PIPE_ERROR_BAD_INPUT;
4496 }
4497 }
4498 }
4499 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4500 for (i = 0; i < numInputs; i++) {
4501 t->inputs[i] = ureg_DECL_gs_input(ureg,
4502 i,
4503 inputSemanticName[i],
4504 inputSemanticIndex[i]);
4505 }
4506
4507 for (i = 0; i < numOutputs; i++) {
4508 t->outputs[i] = ureg_DECL_output(ureg,
4509 outputSemanticName[i],
4510 outputSemanticIndex[i]);
4511 }
4512 }
4513 else {
4514 assert(procType == TGSI_PROCESSOR_VERTEX);
4515
4516 for (i = 0; i < numInputs; i++) {
4517 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4518 }
4519
4520 for (i = 0; i < numOutputs; i++) {
4521 t->outputs[i] = ureg_DECL_output(ureg,
4522 outputSemanticName[i],
4523 outputSemanticIndex[i]);
4524 if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4525 /* Writing to the point size result register requires special
4526 * handling to implement clamping.
4527 */
4528 static const gl_state_index pointSizeClampState[STATE_LENGTH]
4529 = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4530 /* XXX: note we are modifying the incoming shader here! Need to
4531 * do this before emitting the constant decls below, or this
4532 * will be missed.
4533 */
4534 unsigned pointSizeClampConst =
4535 _mesa_add_state_reference(proginfo->Parameters,
4536 pointSizeClampState);
4537 struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4538 t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4539 t->pointSizeResult = t->outputs[i];
4540 t->pointSizeOutIndex = i;
4541 t->outputs[i] = psizregtemp;
4542 }
4543 }
4544 if (passthrough_edgeflags)
4545 emit_edgeflags(t);
4546 }
4547
4548 /* Declare address register.
4549 */
4550 if (program->num_address_regs > 0) {
4551 assert(program->num_address_regs == 1);
4552 t->address[0] = ureg_DECL_address(ureg);
4553 }
4554
4555 /* Declare misc input registers
4556 */
4557 {
4558 GLbitfield sysInputs = proginfo->SystemValuesRead;
4559 unsigned numSys = 0;
4560 for (i = 0; sysInputs; i++) {
4561 if (sysInputs & (1 << i)) {
4562 unsigned semName = mesa_sysval_to_semantic[i];
4563 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4564 numSys++;
4565 sysInputs &= ~(1 << i);
4566 }
4567 }
4568 }
4569
4570 if (program->indirect_addr_temps) {
4571 /* If temps are accessed with indirect addressing, declare temporaries
4572 * in sequential order. Else, we declare them on demand elsewhere.
4573 * (Note: the number of temporaries is equal to program->next_temp)
4574 */
4575 for (i = 0; i < (unsigned)program->next_temp; i++) {
4576 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4577 t->temps[i] = ureg_DECL_temporary(t->ureg);
4578 }
4579 }
4580
4581 /* Emit constants and uniforms. TGSI uses a single index space for these,
4582 * so we put all the translated regs in t->constants.
4583 */
4584 if (proginfo->Parameters) {
4585 t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4586 if (t->constants == NULL) {
4587 ret = PIPE_ERROR_OUT_OF_MEMORY;
4588 goto out;
4589 }
4590
4591 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4592 switch (proginfo->Parameters->Parameters[i].Type) {
4593 case PROGRAM_ENV_PARAM:
4594 case PROGRAM_LOCAL_PARAM:
4595 case PROGRAM_STATE_VAR:
4596 case PROGRAM_NAMED_PARAM:
4597 case PROGRAM_UNIFORM:
4598 t->constants[i] = ureg_DECL_constant(ureg, i);
4599 break;
4600
4601 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4602 * addressing of the const buffer.
4603 * FIXME: Be smarter and recognize param arrays:
4604 * indirect addressing is only valid within the referenced
4605 * array.
4606 */
4607 case PROGRAM_CONSTANT:
4608 if (program->indirect_addr_consts)
4609 t->constants[i] = ureg_DECL_constant(ureg, i);
4610 else
4611 t->constants[i] = emit_immediate(t,
4612 proginfo->Parameters->ParameterValues[i],
4613 proginfo->Parameters->Parameters[i].DataType,
4614 4);
4615 break;
4616 default:
4617 break;
4618 }
4619 }
4620 }
4621
4622 /* Emit immediate values.
4623 */
4624 t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4625 if (t->immediates == NULL) {
4626 ret = PIPE_ERROR_OUT_OF_MEMORY;
4627 goto out;
4628 }
4629 i = 0;
4630 foreach_iter(exec_list_iterator, iter, program->immediates) {
4631 immediate_storage *imm = (immediate_storage *)iter.get();
4632 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4633 }
4634
4635 /* texture samplers */
4636 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4637 if (program->samplers_used & (1 << i)) {
4638 t->samplers[i] = ureg_DECL_sampler(ureg, i);
4639 }
4640 }
4641
4642 /* Emit each instruction in turn:
4643 */
4644 foreach_iter(exec_list_iterator, iter, program->instructions) {
4645 set_insn_start(t, ureg_get_instruction_number(ureg));
4646 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4647
4648 if (t->prevInstWrotePointSize && proginfo->Id) {
4649 /* The previous instruction wrote to the (fake) vertex point size
4650 * result register. Now we need to clamp that value to the min/max
4651 * point size range, putting the result into the real point size
4652 * register.
4653 * Note that we can't do this easily at the end of program due to
4654 * possible early return.
4655 */
4656 set_insn_start(t, ureg_get_instruction_number(ureg));
4657 ureg_MAX(t->ureg,
4658 ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4659 ureg_src(t->outputs[t->pointSizeOutIndex]),
4660 ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4661 ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4662 ureg_src(t->outputs[t->pointSizeOutIndex]),
4663 ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4664 }
4665 t->prevInstWrotePointSize = GL_FALSE;
4666 }
4667
4668 /* Fix up all emitted labels:
4669 */
4670 for (i = 0; i < t->labels_count; i++) {
4671 ureg_fixup_label(ureg, t->labels[i].token,
4672 t->insn[t->labels[i].branch_target]);
4673 }
4674
4675 out:
4676 FREE(t->insn);
4677 FREE(t->labels);
4678 FREE(t->constants);
4679 FREE(t->immediates);
4680
4681 if (t->error) {
4682 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4683 }
4684
4685 return ret;
4686 }
4687 /* ----------------------------- End TGSI code ------------------------------ */
4688
4689 /**
4690 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4691 * generating Mesa IR.
4692 */
4693 static struct gl_program *
4694 get_mesa_program(struct gl_context *ctx,
4695 struct gl_shader_program *shader_program,
4696 struct gl_shader *shader)
4697 {
4698 glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4699 struct gl_program *prog;
4700 GLenum target;
4701 const char *target_string;
4702 bool progress;
4703 struct gl_shader_compiler_options *options =
4704 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4705
4706 switch (shader->Type) {
4707 case GL_VERTEX_SHADER:
4708 target = GL_VERTEX_PROGRAM_ARB;
4709 target_string = "vertex";
4710 break;
4711 case GL_FRAGMENT_SHADER:
4712 target = GL_FRAGMENT_PROGRAM_ARB;
4713 target_string = "fragment";
4714 break;
4715 case GL_GEOMETRY_SHADER:
4716 target = GL_GEOMETRY_PROGRAM_NV;
4717 target_string = "geometry";
4718 break;
4719 default:
4720 assert(!"should not be reached");
4721 return NULL;
4722 }
4723
4724 validate_ir_tree(shader->ir);
4725
4726 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4727 if (!prog)
4728 return NULL;
4729 prog->Parameters = _mesa_new_parameter_list();
4730 prog->Varying = _mesa_new_parameter_list();
4731 prog->Attributes = _mesa_new_parameter_list();
4732 v->ctx = ctx;
4733 v->prog = prog;
4734 v->shader_program = shader_program;
4735 v->options = options;
4736 v->glsl_version = ctx->Const.GLSLVersion;
4737 v->native_integers = ctx->Const.NativeIntegers;
4738
4739 add_uniforms_to_parameters_list(shader_program, shader, prog);
4740
4741 /* Emit intermediate IR for main(). */
4742 visit_exec_list(shader->ir, v);
4743
4744 /* Now emit bodies for any functions that were used. */
4745 do {
4746 progress = GL_FALSE;
4747
4748 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4749 function_entry *entry = (function_entry *)iter.get();
4750
4751 if (!entry->bgn_inst) {
4752 v->current_function = entry;
4753
4754 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4755 entry->bgn_inst->function = entry;
4756
4757 visit_exec_list(&entry->sig->body, v);
4758
4759 glsl_to_tgsi_instruction *last;
4760 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4761 if (last->op != TGSI_OPCODE_RET)
4762 v->emit(NULL, TGSI_OPCODE_RET);
4763
4764 glsl_to_tgsi_instruction *end;
4765 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4766 end->function = entry;
4767
4768 progress = GL_TRUE;
4769 }
4770 }
4771 } while (progress);
4772
4773 #if 0
4774 /* Print out some information (for debugging purposes) used by the
4775 * optimization passes. */
4776 for (i=0; i < v->next_temp; i++) {
4777 int fr = v->get_first_temp_read(i);
4778 int fw = v->get_first_temp_write(i);
4779 int lr = v->get_last_temp_read(i);
4780 int lw = v->get_last_temp_write(i);
4781
4782 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4783 assert(fw <= fr);
4784 }
4785 #endif
4786
4787 /* Remove reads to output registers, and to varyings in vertex shaders. */
4788 v->remove_output_reads(PROGRAM_OUTPUT);
4789 if (target == GL_VERTEX_PROGRAM_ARB)
4790 v->remove_output_reads(PROGRAM_VARYING);
4791
4792 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4793 v->simplify_cmp();
4794 v->copy_propagate();
4795 while (v->eliminate_dead_code_advanced());
4796
4797 /* FIXME: These passes to optimize temporary registers don't work when there
4798 * is indirect addressing of the temporary register space. We need proper
4799 * array support so that we don't have to give up these passes in every
4800 * shader that uses arrays.
4801 */
4802 if (!v->indirect_addr_temps) {
4803 v->eliminate_dead_code();
4804 v->merge_registers();
4805 v->renumber_registers();
4806 }
4807
4808 /* Write the END instruction. */
4809 v->emit(NULL, TGSI_OPCODE_END);
4810
4811 if (ctx->Shader.Flags & GLSL_DUMP) {
4812 printf("\n");
4813 printf("GLSL IR for linked %s program %d:\n", target_string,
4814 shader_program->Name);
4815 _mesa_print_ir(shader->ir, NULL);
4816 printf("\n");
4817 printf("\n");
4818 }
4819
4820 prog->Instructions = NULL;
4821 prog->NumInstructions = 0;
4822
4823 do_set_program_inouts(shader->ir, prog);
4824 count_resources(v, prog);
4825
4826 check_resources(ctx, shader_program, v, prog);
4827
4828 _mesa_reference_program(ctx, &shader->Program, prog);
4829
4830 struct st_vertex_program *stvp;
4831 struct st_fragment_program *stfp;
4832 struct st_geometry_program *stgp;
4833
4834 switch (shader->Type) {
4835 case GL_VERTEX_SHADER:
4836 stvp = (struct st_vertex_program *)prog;
4837 stvp->glsl_to_tgsi = v;
4838 break;
4839 case GL_FRAGMENT_SHADER:
4840 stfp = (struct st_fragment_program *)prog;
4841 stfp->glsl_to_tgsi = v;
4842 break;
4843 case GL_GEOMETRY_SHADER:
4844 stgp = (struct st_geometry_program *)prog;
4845 stgp->glsl_to_tgsi = v;
4846 break;
4847 default:
4848 assert(!"should not be reached");
4849 return NULL;
4850 }
4851
4852 return prog;
4853 }
4854
4855 extern "C" {
4856
4857 struct gl_shader *
4858 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4859 {
4860 struct gl_shader *shader;
4861 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4862 type == GL_GEOMETRY_SHADER_ARB);
4863 shader = rzalloc(NULL, struct gl_shader);
4864 if (shader) {
4865 shader->Type = type;
4866 shader->Name = name;
4867 _mesa_init_shader(ctx, shader);
4868 }
4869 return shader;
4870 }
4871
4872 struct gl_shader_program *
4873 st_new_shader_program(struct gl_context *ctx, GLuint name)
4874 {
4875 struct gl_shader_program *shProg;
4876 shProg = rzalloc(NULL, struct gl_shader_program);
4877 if (shProg) {
4878 shProg->Name = name;
4879 _mesa_init_shader_program(ctx, shProg);
4880 }
4881 return shProg;
4882 }
4883
4884 /**
4885 * Link a shader.
4886 * Called via ctx->Driver.LinkShader()
4887 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
4888 * with code lowering and other optimizations.
4889 */
4890 GLboolean
4891 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4892 {
4893 assert(prog->LinkStatus);
4894
4895 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4896 if (prog->_LinkedShaders[i] == NULL)
4897 continue;
4898
4899 bool progress;
4900 exec_list *ir = prog->_LinkedShaders[i]->ir;
4901 const struct gl_shader_compiler_options *options =
4902 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
4903
4904 do {
4905 progress = false;
4906
4907 /* Lowering */
4908 do_mat_op_to_vec(ir);
4909 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
4910 | LOG_TO_LOG2
4911 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
4912
4913 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
4914
4915 progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
4916
4917 progress = lower_quadop_vector(ir, false) || progress;
4918
4919 if (options->EmitNoIfs) {
4920 progress = lower_discard(ir) || progress;
4921 progress = lower_if_to_cond_assign(ir) || progress;
4922 }
4923
4924 if (options->EmitNoNoise)
4925 progress = lower_noise(ir) || progress;
4926
4927 /* If there are forms of indirect addressing that the driver
4928 * cannot handle, perform the lowering pass.
4929 */
4930 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
4931 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
4932 progress =
4933 lower_variable_index_to_cond_assign(ir,
4934 options->EmitNoIndirectInput,
4935 options->EmitNoIndirectOutput,
4936 options->EmitNoIndirectTemp,
4937 options->EmitNoIndirectUniform)
4938 || progress;
4939
4940 progress = do_vec_index_to_cond_assign(ir) || progress;
4941 } while (progress);
4942
4943 validate_ir_tree(ir);
4944 }
4945
4946 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4947 struct gl_program *linked_prog;
4948
4949 if (prog->_LinkedShaders[i] == NULL)
4950 continue;
4951
4952 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
4953
4954 if (linked_prog) {
4955 bool ok = true;
4956
4957 switch (prog->_LinkedShaders[i]->Type) {
4958 case GL_VERTEX_SHADER:
4959 _mesa_reference_vertprog(ctx, &prog->VertexProgram,
4960 (struct gl_vertex_program *)linked_prog);
4961 ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
4962 linked_prog);
4963 break;
4964 case GL_FRAGMENT_SHADER:
4965 _mesa_reference_fragprog(ctx, &prog->FragmentProgram,
4966 (struct gl_fragment_program *)linked_prog);
4967 ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
4968 linked_prog);
4969 break;
4970 case GL_GEOMETRY_SHADER:
4971 _mesa_reference_geomprog(ctx, &prog->GeometryProgram,
4972 (struct gl_geometry_program *)linked_prog);
4973 ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV,
4974 linked_prog);
4975 break;
4976 }
4977 if (!ok) {
4978 return GL_FALSE;
4979 }
4980 }
4981
4982 _mesa_reference_program(ctx, &linked_prog, NULL);
4983 }
4984
4985 return GL_TRUE;
4986 }
4987
4988
4989 /**
4990 * Link a GLSL shader program. Called via glLinkProgram().
4991 */
4992 void
4993 st_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4994 {
4995 unsigned int i;
4996
4997 _mesa_clear_shader_program_data(ctx, prog);
4998
4999 prog->LinkStatus = GL_TRUE;
5000
5001 for (i = 0; i < prog->NumShaders; i++) {
5002 if (!prog->Shaders[i]->CompileStatus) {
5003 fail_link(prog, "linking with uncompiled shader");
5004 prog->LinkStatus = GL_FALSE;
5005 }
5006 }
5007
5008 prog->Varying = _mesa_new_parameter_list();
5009 _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL);
5010 _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL);
5011 _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL);
5012
5013 if (prog->LinkStatus) {
5014 link_shaders(ctx, prog);
5015 }
5016
5017 if (prog->LinkStatus) {
5018 if (!ctx->Driver.LinkShader(ctx, prog)) {
5019 prog->LinkStatus = GL_FALSE;
5020 }
5021 }
5022
5023 set_uniform_initializers(ctx, prog);
5024
5025 if (ctx->Shader.Flags & GLSL_DUMP) {
5026 if (!prog->LinkStatus) {
5027 printf("GLSL shader program %d failed to link\n", prog->Name);
5028 }
5029
5030 if (prog->InfoLog && prog->InfoLog[0] != 0) {
5031 printf("GLSL shader program %d info log:\n", prog->Name);
5032 printf("%s\n", prog->InfoLog);
5033 }
5034 }
5035 }
5036
5037 } /* extern "C" */