mesa/st: provide native integers implementation of ir_unop_any
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43
44 #include "main/mtypes.h"
45 #include "main/shaderobj.h"
46 #include "main/uniforms.h"
47 #include "program/hash_table.h"
48
49 extern "C" {
50 #include "main/shaderapi.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58 #include "pipe/p_compiler.h"
59 #include "pipe/p_context.h"
60 #include "pipe/p_screen.h"
61 #include "pipe/p_shader_tokens.h"
62 #include "pipe/p_state.h"
63 #include "util/u_math.h"
64 #include "tgsi/tgsi_ureg.h"
65 #include "tgsi/tgsi_info.h"
66 #include "st_context.h"
67 #include "st_program.h"
68 #include "st_glsl_to_tgsi.h"
69 #include "st_mesa_to_tgsi.h"
70 }
71
72 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
73 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
74 (1 << PROGRAM_CONSTANT) | \
75 (1 << PROGRAM_UNIFORM))
76
77 /**
78 * Maximum number of temporary registers.
79 *
80 * It is too big for stack allocated arrays -- it will cause stack overflow on
81 * Windows and likely Mac OS X.
82 */
83 #define MAX_TEMPS 4096
84
85 /**
86 * Maximum number of arrays
87 */
88 #define MAX_ARRAYS 256
89
90 #define MAX_GLSL_TEXTURE_OFFSET 4
91
92 class st_src_reg;
93 class st_dst_reg;
94
95 static int swizzle_for_size(int size);
96
97 /**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100 class st_src_reg {
101 public:
102 st_src_reg(gl_register_file file, int index, const glsl_type *type)
103 {
104 this->file = file;
105 this->index = index;
106 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107 this->swizzle = swizzle_for_size(type->vector_elements);
108 else
109 this->swizzle = SWIZZLE_XYZW;
110 this->negate = 0;
111 this->index2D = 0;
112 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
113 this->reladdr = NULL;
114 this->reladdr2 = NULL;
115 this->has_index2 = false;
116 }
117
118 st_src_reg(gl_register_file file, int index, int type)
119 {
120 this->type = type;
121 this->file = file;
122 this->index = index;
123 this->index2D = 0;
124 this->swizzle = SWIZZLE_XYZW;
125 this->negate = 0;
126 this->reladdr = NULL;
127 this->reladdr2 = NULL;
128 this->has_index2 = false;
129 }
130
131 st_src_reg(gl_register_file file, int index, int type, int index2D)
132 {
133 this->type = type;
134 this->file = file;
135 this->index = index;
136 this->index2D = index2D;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = NULL;
140 this->reladdr2 = NULL;
141 this->has_index2 = false;
142 }
143
144 st_src_reg()
145 {
146 this->type = GLSL_TYPE_ERROR;
147 this->file = PROGRAM_UNDEFINED;
148 this->index = 0;
149 this->index2D = 0;
150 this->swizzle = 0;
151 this->negate = 0;
152 this->reladdr = NULL;
153 this->reladdr2 = NULL;
154 this->has_index2 = false;
155 }
156
157 explicit st_src_reg(st_dst_reg reg);
158
159 gl_register_file file; /**< PROGRAM_* from Mesa */
160 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
161 int index2D;
162 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
163 int negate; /**< NEGATE_XYZW mask from mesa */
164 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
165 /** Register index should be offset by the integer in this reg. */
166 st_src_reg *reladdr;
167 st_src_reg *reladdr2;
168 bool has_index2;
169 };
170
171 class st_dst_reg {
172 public:
173 st_dst_reg(gl_register_file file, int writemask, int type, int index)
174 {
175 this->file = file;
176 this->index = index;
177 this->writemask = writemask;
178 this->cond_mask = COND_TR;
179 this->reladdr = NULL;
180 this->type = type;
181 }
182
183 st_dst_reg(gl_register_file file, int writemask, int type)
184 {
185 this->file = file;
186 this->index = 0;
187 this->writemask = writemask;
188 this->cond_mask = COND_TR;
189 this->reladdr = NULL;
190 this->type = type;
191 }
192
193 st_dst_reg()
194 {
195 this->type = GLSL_TYPE_ERROR;
196 this->file = PROGRAM_UNDEFINED;
197 this->index = 0;
198 this->writemask = 0;
199 this->cond_mask = COND_TR;
200 this->reladdr = NULL;
201 }
202
203 explicit st_dst_reg(st_src_reg reg);
204
205 gl_register_file file; /**< PROGRAM_* from Mesa */
206 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
207 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
208 GLuint cond_mask:4;
209 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
210 /** Register index should be offset by the integer in this reg. */
211 st_src_reg *reladdr;
212 };
213
214 st_src_reg::st_src_reg(st_dst_reg reg)
215 {
216 this->type = reg.type;
217 this->file = reg.file;
218 this->index = reg.index;
219 this->swizzle = SWIZZLE_XYZW;
220 this->negate = 0;
221 this->reladdr = reg.reladdr;
222 this->index2D = 0;
223 this->reladdr2 = NULL;
224 this->has_index2 = false;
225 }
226
227 st_dst_reg::st_dst_reg(st_src_reg reg)
228 {
229 this->type = reg.type;
230 this->file = reg.file;
231 this->index = reg.index;
232 this->writemask = WRITEMASK_XYZW;
233 this->cond_mask = COND_TR;
234 this->reladdr = reg.reladdr;
235 }
236
237 class glsl_to_tgsi_instruction : public exec_node {
238 public:
239 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
240
241 unsigned op;
242 st_dst_reg dst;
243 st_src_reg src[4];
244 /** Pointer to the ir source this tree came from for debugging */
245 ir_instruction *ir;
246 GLboolean cond_update;
247 bool saturate;
248 int sampler; /**< sampler index */
249 int tex_target; /**< One of TEXTURE_*_INDEX */
250 GLboolean tex_shadow;
251
252 st_src_reg tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
253 unsigned tex_offset_num_offset;
254 int dead_mask; /**< Used in dead code elimination */
255
256 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
257 };
258
259 class variable_storage : public exec_node {
260 public:
261 variable_storage(ir_variable *var, gl_register_file file, int index)
262 : file(file), index(index), var(var)
263 {
264 /* empty */
265 }
266
267 gl_register_file file;
268 int index;
269 ir_variable *var; /* variable that maps to this, if any */
270 };
271
272 class immediate_storage : public exec_node {
273 public:
274 immediate_storage(gl_constant_value *values, int size, int type)
275 {
276 memcpy(this->values, values, size * sizeof(gl_constant_value));
277 this->size = size;
278 this->type = type;
279 }
280
281 gl_constant_value values[4];
282 int size; /**< Number of components (1-4) */
283 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
284 };
285
286 class function_entry : public exec_node {
287 public:
288 ir_function_signature *sig;
289
290 /**
291 * identifier of this function signature used by the program.
292 *
293 * At the point that TGSI instructions for function calls are
294 * generated, we don't know the address of the first instruction of
295 * the function body. So we make the BranchTarget that is called a
296 * small integer and rewrite them during set_branchtargets().
297 */
298 int sig_id;
299
300 /**
301 * Pointer to first instruction of the function body.
302 *
303 * Set during function body emits after main() is processed.
304 */
305 glsl_to_tgsi_instruction *bgn_inst;
306
307 /**
308 * Index of the first instruction of the function body in actual TGSI.
309 *
310 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
311 */
312 int inst;
313
314 /** Storage for the return value. */
315 st_src_reg return_reg;
316 };
317
318 struct glsl_to_tgsi_visitor : public ir_visitor {
319 public:
320 glsl_to_tgsi_visitor();
321 ~glsl_to_tgsi_visitor();
322
323 function_entry *current_function;
324
325 struct gl_context *ctx;
326 struct gl_program *prog;
327 struct gl_shader_program *shader_program;
328 struct gl_shader_compiler_options *options;
329
330 int next_temp;
331
332 unsigned array_sizes[MAX_ARRAYS];
333 unsigned next_array;
334
335 int num_address_regs;
336 int samplers_used;
337 bool indirect_addr_consts;
338
339 int glsl_version;
340 bool native_integers;
341 bool have_sqrt;
342
343 variable_storage *find_variable_storage(ir_variable *var);
344
345 int add_constant(gl_register_file file, gl_constant_value values[4],
346 int size, int datatype, GLuint *swizzle_out);
347
348 function_entry *get_function_signature(ir_function_signature *sig);
349
350 st_src_reg get_temp(const glsl_type *type);
351 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
352
353 st_src_reg st_src_reg_for_float(float val);
354 st_src_reg st_src_reg_for_int(int val);
355 st_src_reg st_src_reg_for_type(int type, int val);
356
357 /**
358 * \name Visit methods
359 *
360 * As typical for the visitor pattern, there must be one \c visit method for
361 * each concrete subclass of \c ir_instruction. Virtual base classes within
362 * the hierarchy should not have \c visit methods.
363 */
364 /*@{*/
365 virtual void visit(ir_variable *);
366 virtual void visit(ir_loop *);
367 virtual void visit(ir_loop_jump *);
368 virtual void visit(ir_function_signature *);
369 virtual void visit(ir_function *);
370 virtual void visit(ir_expression *);
371 virtual void visit(ir_swizzle *);
372 virtual void visit(ir_dereference_variable *);
373 virtual void visit(ir_dereference_array *);
374 virtual void visit(ir_dereference_record *);
375 virtual void visit(ir_assignment *);
376 virtual void visit(ir_constant *);
377 virtual void visit(ir_call *);
378 virtual void visit(ir_return *);
379 virtual void visit(ir_discard *);
380 virtual void visit(ir_texture *);
381 virtual void visit(ir_if *);
382 virtual void visit(ir_emit_vertex *);
383 virtual void visit(ir_end_primitive *);
384 /*@}*/
385
386 st_src_reg result;
387
388 /** List of variable_storage */
389 exec_list variables;
390
391 /** List of immediate_storage */
392 exec_list immediates;
393 unsigned num_immediates;
394
395 /** List of function_entry */
396 exec_list function_signatures;
397 int next_signature_id;
398
399 /** List of glsl_to_tgsi_instruction */
400 exec_list instructions;
401
402 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
403
404 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
405 st_dst_reg dst, st_src_reg src0);
406
407 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
408 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
409
410 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
411 st_dst_reg dst,
412 st_src_reg src0, st_src_reg src1, st_src_reg src2);
413
414 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
415 st_dst_reg dst,
416 st_src_reg src0, st_src_reg src1,
417 st_src_reg src2, st_src_reg src3);
418
419 unsigned get_opcode(ir_instruction *ir, unsigned op,
420 st_dst_reg dst,
421 st_src_reg src0, st_src_reg src1);
422
423 /**
424 * Emit the correct dot-product instruction for the type of arguments
425 */
426 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
427 st_dst_reg dst,
428 st_src_reg src0,
429 st_src_reg src1,
430 unsigned elements);
431
432 void emit_scalar(ir_instruction *ir, unsigned op,
433 st_dst_reg dst, st_src_reg src0);
434
435 void emit_scalar(ir_instruction *ir, unsigned op,
436 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
437
438 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
439
440 void emit_scs(ir_instruction *ir, unsigned op,
441 st_dst_reg dst, const st_src_reg &src);
442
443 bool try_emit_mad(ir_expression *ir,
444 int mul_operand);
445 bool try_emit_mad_for_and_not(ir_expression *ir,
446 int mul_operand);
447 bool try_emit_sat(ir_expression *ir);
448
449 void emit_swz(ir_expression *ir);
450
451 bool process_move_condition(ir_rvalue *ir);
452
453 void simplify_cmp(void);
454
455 void rename_temp_register(int index, int new_index);
456 int get_first_temp_read(int index);
457 int get_first_temp_write(int index);
458 int get_last_temp_read(int index);
459 int get_last_temp_write(int index);
460
461 void copy_propagate(void);
462 int eliminate_dead_code(void);
463 void merge_registers(void);
464 void renumber_registers(void);
465
466 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
467 st_dst_reg *l, st_src_reg *r);
468
469 void *mem_ctx;
470 };
471
472 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
473
474 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
475
476 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
477 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
478
479 static void
480 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
481
482 static void
483 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
484 {
485 va_list args;
486 va_start(args, fmt);
487 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
488 va_end(args);
489
490 prog->LinkStatus = GL_FALSE;
491 }
492
493 static int
494 swizzle_for_size(int size)
495 {
496 int size_swizzles[4] = {
497 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
498 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
499 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
500 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
501 };
502
503 assert((size >= 1) && (size <= 4));
504 return size_swizzles[size - 1];
505 }
506
507 static bool
508 is_tex_instruction(unsigned opcode)
509 {
510 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
511 return info->is_tex;
512 }
513
514 static unsigned
515 num_inst_dst_regs(unsigned opcode)
516 {
517 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
518 return info->num_dst;
519 }
520
521 static unsigned
522 num_inst_src_regs(unsigned opcode)
523 {
524 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
525 return info->is_tex ? info->num_src - 1 : info->num_src;
526 }
527
528 glsl_to_tgsi_instruction *
529 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
530 st_dst_reg dst,
531 st_src_reg src0, st_src_reg src1,
532 st_src_reg src2, st_src_reg src3)
533 {
534 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
535 int num_reladdr = 0, i;
536
537 op = get_opcode(ir, op, dst, src0, src1);
538
539 /* If we have to do relative addressing, we want to load the ARL
540 * reg directly for one of the regs, and preload the other reladdr
541 * sources into temps.
542 */
543 num_reladdr += dst.reladdr != NULL;
544 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
545 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
546 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
547 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
548
549 reladdr_to_temp(ir, &src3, &num_reladdr);
550 reladdr_to_temp(ir, &src2, &num_reladdr);
551 reladdr_to_temp(ir, &src1, &num_reladdr);
552 reladdr_to_temp(ir, &src0, &num_reladdr);
553
554 if (dst.reladdr) {
555 emit_arl(ir, address_reg, *dst.reladdr);
556 num_reladdr--;
557 }
558 assert(num_reladdr == 0);
559
560 inst->op = op;
561 inst->dst = dst;
562 inst->src[0] = src0;
563 inst->src[1] = src1;
564 inst->src[2] = src2;
565 inst->src[3] = src3;
566 inst->ir = ir;
567 inst->dead_mask = 0;
568
569 inst->function = NULL;
570
571 /* Update indirect addressing status used by TGSI */
572 if (dst.reladdr) {
573 switch(dst.file) {
574 case PROGRAM_STATE_VAR:
575 case PROGRAM_CONSTANT:
576 case PROGRAM_UNIFORM:
577 this->indirect_addr_consts = true;
578 break;
579 case PROGRAM_IMMEDIATE:
580 assert(!"immediates should not have indirect addressing");
581 break;
582 default:
583 break;
584 }
585 }
586 else {
587 for (i=0; i<4; i++) {
588 if(inst->src[i].reladdr) {
589 switch(inst->src[i].file) {
590 case PROGRAM_STATE_VAR:
591 case PROGRAM_CONSTANT:
592 case PROGRAM_UNIFORM:
593 this->indirect_addr_consts = true;
594 break;
595 case PROGRAM_IMMEDIATE:
596 assert(!"immediates should not have indirect addressing");
597 break;
598 default:
599 break;
600 }
601 }
602 }
603 }
604
605 this->instructions.push_tail(inst);
606
607 return inst;
608 }
609
610 glsl_to_tgsi_instruction *
611 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
612 st_dst_reg dst, st_src_reg src0,
613 st_src_reg src1, st_src_reg src2)
614 {
615 return emit(ir, op, dst, src0, src1, src2, undef_src);
616 }
617
618 glsl_to_tgsi_instruction *
619 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
620 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
621 {
622 return emit(ir, op, dst, src0, src1, undef_src, undef_src);
623 }
624
625 glsl_to_tgsi_instruction *
626 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
627 st_dst_reg dst, st_src_reg src0)
628 {
629 assert(dst.writemask != 0);
630 return emit(ir, op, dst, src0, undef_src, undef_src, undef_src);
631 }
632
633 glsl_to_tgsi_instruction *
634 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
635 {
636 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src, undef_src);
637 }
638
639 /**
640 * Determines whether to use an integer, unsigned integer, or float opcode
641 * based on the operands and input opcode, then emits the result.
642 */
643 unsigned
644 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
645 st_dst_reg dst,
646 st_src_reg src0, st_src_reg src1)
647 {
648 int type = GLSL_TYPE_FLOAT;
649
650 if (op == TGSI_OPCODE_MOV)
651 return op;
652
653 assert(src0.type != GLSL_TYPE_ARRAY);
654 assert(src0.type != GLSL_TYPE_STRUCT);
655 assert(src1.type != GLSL_TYPE_ARRAY);
656 assert(src1.type != GLSL_TYPE_STRUCT);
657
658 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
659 type = GLSL_TYPE_FLOAT;
660 else if (native_integers)
661 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
662
663 #define case4(c, f, i, u) \
664 case TGSI_OPCODE_##c: \
665 if (type == GLSL_TYPE_INT) \
666 op = TGSI_OPCODE_##i; \
667 else if (type == GLSL_TYPE_UINT) \
668 op = TGSI_OPCODE_##u; \
669 else \
670 op = TGSI_OPCODE_##f; \
671 break;
672
673 #define case3(f, i, u) case4(f, f, i, u)
674 #define case2fi(f, i) case4(f, f, i, i)
675 #define case2iu(i, u) case4(i, LAST, i, u)
676
677 #define casecomp(c, f, i, u) \
678 case TGSI_OPCODE_##c: \
679 if (type == GLSL_TYPE_INT) \
680 op = TGSI_OPCODE_##i; \
681 else if (type == GLSL_TYPE_UINT) \
682 op = TGSI_OPCODE_##u; \
683 else if (native_integers) \
684 op = TGSI_OPCODE_##f; \
685 else \
686 op = TGSI_OPCODE_##c; \
687 break;
688
689 switch(op) {
690 case2fi(ADD, UADD);
691 case2fi(MUL, UMUL);
692 case2fi(MAD, UMAD);
693 case3(DIV, IDIV, UDIV);
694 case3(MAX, IMAX, UMAX);
695 case3(MIN, IMIN, UMIN);
696 case2iu(MOD, UMOD);
697
698 casecomp(SEQ, FSEQ, USEQ, USEQ);
699 casecomp(SNE, FSNE, USNE, USNE);
700 casecomp(SGE, FSGE, ISGE, USGE);
701 casecomp(SLT, FSLT, ISLT, USLT);
702
703 case2iu(ISHR, USHR);
704
705 case2fi(SSG, ISSG);
706 case3(ABS, IABS, IABS);
707
708 case2iu(IBFE, UBFE);
709 case2iu(IMSB, UMSB);
710 case2iu(IMUL_HI, UMUL_HI);
711 default: break;
712 }
713
714 assert(op != TGSI_OPCODE_LAST);
715 return op;
716 }
717
718 glsl_to_tgsi_instruction *
719 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
720 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
721 unsigned elements)
722 {
723 static const unsigned dot_opcodes[] = {
724 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
725 };
726
727 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
728 }
729
730 /**
731 * Emits TGSI scalar opcodes to produce unique answers across channels.
732 *
733 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
734 * channel determines the result across all channels. So to do a vec4
735 * of this operation, we want to emit a scalar per source channel used
736 * to produce dest channels.
737 */
738 void
739 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
740 st_dst_reg dst,
741 st_src_reg orig_src0, st_src_reg orig_src1)
742 {
743 int i, j;
744 int done_mask = ~dst.writemask;
745
746 /* TGSI RCP is a scalar operation splatting results to all channels,
747 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
748 * dst channels.
749 */
750 for (i = 0; i < 4; i++) {
751 GLuint this_mask = (1 << i);
752 glsl_to_tgsi_instruction *inst;
753 st_src_reg src0 = orig_src0;
754 st_src_reg src1 = orig_src1;
755
756 if (done_mask & this_mask)
757 continue;
758
759 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
760 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
761 for (j = i + 1; j < 4; j++) {
762 /* If there is another enabled component in the destination that is
763 * derived from the same inputs, generate its value on this pass as
764 * well.
765 */
766 if (!(done_mask & (1 << j)) &&
767 GET_SWZ(src0.swizzle, j) == src0_swiz &&
768 GET_SWZ(src1.swizzle, j) == src1_swiz) {
769 this_mask |= (1 << j);
770 }
771 }
772 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
773 src0_swiz, src0_swiz);
774 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
775 src1_swiz, src1_swiz);
776
777 inst = emit(ir, op, dst, src0, src1);
778 inst->dst.writemask = this_mask;
779 done_mask |= this_mask;
780 }
781 }
782
783 void
784 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
785 st_dst_reg dst, st_src_reg src0)
786 {
787 st_src_reg undef = undef_src;
788
789 undef.swizzle = SWIZZLE_XXXX;
790
791 emit_scalar(ir, op, dst, src0, undef);
792 }
793
794 void
795 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
796 st_dst_reg dst, st_src_reg src0)
797 {
798 int op = TGSI_OPCODE_ARL;
799
800 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
801 op = TGSI_OPCODE_UARL;
802
803 assert(dst.file == PROGRAM_ADDRESS);
804 if (dst.index >= this->num_address_regs)
805 this->num_address_regs = dst.index + 1;
806
807 emit(NULL, op, dst, src0);
808 }
809
810 /**
811 * Emit an TGSI_OPCODE_SCS instruction
812 *
813 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
814 * Instead of splatting its result across all four components of the
815 * destination, it writes one value to the \c x component and another value to
816 * the \c y component.
817 *
818 * \param ir IR instruction being processed
819 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
820 * on which value is desired.
821 * \param dst Destination register
822 * \param src Source register
823 */
824 void
825 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
826 st_dst_reg dst,
827 const st_src_reg &src)
828 {
829 /* Vertex programs cannot use the SCS opcode.
830 */
831 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
832 emit_scalar(ir, op, dst, src);
833 return;
834 }
835
836 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
837 const unsigned scs_mask = (1U << component);
838 int done_mask = ~dst.writemask;
839 st_src_reg tmp;
840
841 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
842
843 /* If there are compnents in the destination that differ from the component
844 * that will be written by the SCS instrution, we'll need a temporary.
845 */
846 if (scs_mask != unsigned(dst.writemask)) {
847 tmp = get_temp(glsl_type::vec4_type);
848 }
849
850 for (unsigned i = 0; i < 4; i++) {
851 unsigned this_mask = (1U << i);
852 st_src_reg src0 = src;
853
854 if ((done_mask & this_mask) != 0)
855 continue;
856
857 /* The source swizzle specified which component of the source generates
858 * sine / cosine for the current component in the destination. The SCS
859 * instruction requires that this value be swizzle to the X component.
860 * Replace the current swizzle with a swizzle that puts the source in
861 * the X component.
862 */
863 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
864
865 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
866 src0_swiz, src0_swiz);
867 for (unsigned j = i + 1; j < 4; j++) {
868 /* If there is another enabled component in the destination that is
869 * derived from the same inputs, generate its value on this pass as
870 * well.
871 */
872 if (!(done_mask & (1 << j)) &&
873 GET_SWZ(src0.swizzle, j) == src0_swiz) {
874 this_mask |= (1 << j);
875 }
876 }
877
878 if (this_mask != scs_mask) {
879 glsl_to_tgsi_instruction *inst;
880 st_dst_reg tmp_dst = st_dst_reg(tmp);
881
882 /* Emit the SCS instruction.
883 */
884 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
885 inst->dst.writemask = scs_mask;
886
887 /* Move the result of the SCS instruction to the desired location in
888 * the destination.
889 */
890 tmp.swizzle = MAKE_SWIZZLE4(component, component,
891 component, component);
892 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
893 inst->dst.writemask = this_mask;
894 } else {
895 /* Emit the SCS instruction to write directly to the destination.
896 */
897 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
898 inst->dst.writemask = scs_mask;
899 }
900
901 done_mask |= this_mask;
902 }
903 }
904
905 int
906 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
907 gl_constant_value values[4], int size, int datatype,
908 GLuint *swizzle_out)
909 {
910 if (file == PROGRAM_CONSTANT) {
911 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
912 size, datatype, swizzle_out);
913 } else {
914 int index = 0;
915 immediate_storage *entry;
916 assert(file == PROGRAM_IMMEDIATE);
917
918 /* Search immediate storage to see if we already have an identical
919 * immediate that we can use instead of adding a duplicate entry.
920 */
921 foreach_list(node, &this->immediates) {
922 entry = (immediate_storage *) node;
923
924 if (entry->size == size &&
925 entry->type == datatype &&
926 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
927 return index;
928 }
929 index++;
930 }
931
932 /* Add this immediate to the list. */
933 entry = new(mem_ctx) immediate_storage(values, size, datatype);
934 this->immediates.push_tail(entry);
935 this->num_immediates++;
936 return index;
937 }
938 }
939
940 st_src_reg
941 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
942 {
943 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
944 union gl_constant_value uval;
945
946 uval.f = val;
947 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
948
949 return src;
950 }
951
952 st_src_reg
953 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
954 {
955 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
956 union gl_constant_value uval;
957
958 assert(native_integers);
959
960 uval.i = val;
961 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
962
963 return src;
964 }
965
966 st_src_reg
967 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
968 {
969 if (native_integers)
970 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
971 st_src_reg_for_int(val);
972 else
973 return st_src_reg_for_float(val);
974 }
975
976 static int
977 type_size(const struct glsl_type *type)
978 {
979 unsigned int i;
980 int size;
981
982 switch (type->base_type) {
983 case GLSL_TYPE_UINT:
984 case GLSL_TYPE_INT:
985 case GLSL_TYPE_FLOAT:
986 case GLSL_TYPE_BOOL:
987 if (type->is_matrix()) {
988 return type->matrix_columns;
989 } else {
990 /* Regardless of size of vector, it gets a vec4. This is bad
991 * packing for things like floats, but otherwise arrays become a
992 * mess. Hopefully a later pass over the code can pack scalars
993 * down if appropriate.
994 */
995 return 1;
996 }
997 case GLSL_TYPE_ARRAY:
998 assert(type->length > 0);
999 return type_size(type->fields.array) * type->length;
1000 case GLSL_TYPE_STRUCT:
1001 size = 0;
1002 for (i = 0; i < type->length; i++) {
1003 size += type_size(type->fields.structure[i].type);
1004 }
1005 return size;
1006 case GLSL_TYPE_SAMPLER:
1007 case GLSL_TYPE_IMAGE:
1008 /* Samplers take up one slot in UNIFORMS[], but they're baked in
1009 * at link time.
1010 */
1011 return 1;
1012 case GLSL_TYPE_ATOMIC_UINT:
1013 case GLSL_TYPE_INTERFACE:
1014 case GLSL_TYPE_VOID:
1015 case GLSL_TYPE_ERROR:
1016 assert(!"Invalid type in type_size");
1017 break;
1018 }
1019 return 0;
1020 }
1021
1022 /**
1023 * In the initial pass of codegen, we assign temporary numbers to
1024 * intermediate results. (not SSA -- variable assignments will reuse
1025 * storage).
1026 */
1027 st_src_reg
1028 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1029 {
1030 st_src_reg src;
1031
1032 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1033 src.reladdr = NULL;
1034 src.negate = 0;
1035
1036 if (!options->EmitNoIndirectTemp &&
1037 (type->is_array() || type->is_matrix())) {
1038
1039 src.file = PROGRAM_ARRAY;
1040 src.index = next_array << 16 | 0x8000;
1041 array_sizes[next_array] = type_size(type);
1042 ++next_array;
1043
1044 } else {
1045 src.file = PROGRAM_TEMPORARY;
1046 src.index = next_temp;
1047 next_temp += type_size(type);
1048 }
1049
1050 if (type->is_array() || type->is_record()) {
1051 src.swizzle = SWIZZLE_NOOP;
1052 } else {
1053 src.swizzle = swizzle_for_size(type->vector_elements);
1054 }
1055
1056 return src;
1057 }
1058
1059 variable_storage *
1060 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1061 {
1062
1063 variable_storage *entry;
1064
1065 foreach_list(node, &this->variables) {
1066 entry = (variable_storage *) node;
1067
1068 if (entry->var == var)
1069 return entry;
1070 }
1071
1072 return NULL;
1073 }
1074
1075 void
1076 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1077 {
1078 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1079 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1080
1081 fp->OriginUpperLeft = ir->data.origin_upper_left;
1082 fp->PixelCenterInteger = ir->data.pixel_center_integer;
1083 }
1084
1085 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1086 unsigned int i;
1087 const ir_state_slot *const slots = ir->state_slots;
1088 assert(ir->state_slots != NULL);
1089
1090 /* Check if this statevar's setup in the STATE file exactly
1091 * matches how we'll want to reference it as a
1092 * struct/array/whatever. If not, then we need to move it into
1093 * temporary storage and hope that it'll get copy-propagated
1094 * out.
1095 */
1096 for (i = 0; i < ir->num_state_slots; i++) {
1097 if (slots[i].swizzle != SWIZZLE_XYZW) {
1098 break;
1099 }
1100 }
1101
1102 variable_storage *storage;
1103 st_dst_reg dst;
1104 if (i == ir->num_state_slots) {
1105 /* We'll set the index later. */
1106 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1107 this->variables.push_tail(storage);
1108
1109 dst = undef_dst;
1110 } else {
1111 /* The variable_storage constructor allocates slots based on the size
1112 * of the type. However, this had better match the number of state
1113 * elements that we're going to copy into the new temporary.
1114 */
1115 assert((int) ir->num_state_slots == type_size(ir->type));
1116
1117 dst = st_dst_reg(get_temp(ir->type));
1118
1119 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1120
1121 this->variables.push_tail(storage);
1122 }
1123
1124
1125 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1126 int index = _mesa_add_state_reference(this->prog->Parameters,
1127 (gl_state_index *)slots[i].tokens);
1128
1129 if (storage->file == PROGRAM_STATE_VAR) {
1130 if (storage->index == -1) {
1131 storage->index = index;
1132 } else {
1133 assert(index == storage->index + (int)i);
1134 }
1135 } else {
1136 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1137 * the data being moved since MOV does not care about the type of
1138 * data it is moving, and we don't want to declare registers with
1139 * array or struct types.
1140 */
1141 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1142 src.swizzle = slots[i].swizzle;
1143 emit(ir, TGSI_OPCODE_MOV, dst, src);
1144 /* even a float takes up a whole vec4 reg in a struct/array. */
1145 dst.index++;
1146 }
1147 }
1148
1149 if (storage->file == PROGRAM_TEMPORARY &&
1150 dst.index != storage->index + (int) ir->num_state_slots) {
1151 fail_link(this->shader_program,
1152 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1153 ir->name, dst.index - storage->index,
1154 type_size(ir->type));
1155 }
1156 }
1157 }
1158
1159 void
1160 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1161 {
1162 emit(NULL, TGSI_OPCODE_BGNLOOP);
1163
1164 visit_exec_list(&ir->body_instructions, this);
1165
1166 emit(NULL, TGSI_OPCODE_ENDLOOP);
1167 }
1168
1169 void
1170 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1171 {
1172 switch (ir->mode) {
1173 case ir_loop_jump::jump_break:
1174 emit(NULL, TGSI_OPCODE_BRK);
1175 break;
1176 case ir_loop_jump::jump_continue:
1177 emit(NULL, TGSI_OPCODE_CONT);
1178 break;
1179 }
1180 }
1181
1182
1183 void
1184 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1185 {
1186 assert(0);
1187 (void)ir;
1188 }
1189
1190 void
1191 glsl_to_tgsi_visitor::visit(ir_function *ir)
1192 {
1193 /* Ignore function bodies other than main() -- we shouldn't see calls to
1194 * them since they should all be inlined before we get to glsl_to_tgsi.
1195 */
1196 if (strcmp(ir->name, "main") == 0) {
1197 const ir_function_signature *sig;
1198 exec_list empty;
1199
1200 sig = ir->matching_signature(NULL, &empty);
1201
1202 assert(sig);
1203
1204 foreach_list(node, &sig->body) {
1205 ir_instruction *ir = (ir_instruction *) node;
1206
1207 ir->accept(this);
1208 }
1209 }
1210 }
1211
1212 bool
1213 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1214 {
1215 int nonmul_operand = 1 - mul_operand;
1216 st_src_reg a, b, c;
1217 st_dst_reg result_dst;
1218
1219 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1220 if (!expr || expr->operation != ir_binop_mul)
1221 return false;
1222
1223 expr->operands[0]->accept(this);
1224 a = this->result;
1225 expr->operands[1]->accept(this);
1226 b = this->result;
1227 ir->operands[nonmul_operand]->accept(this);
1228 c = this->result;
1229
1230 this->result = get_temp(ir->type);
1231 result_dst = st_dst_reg(this->result);
1232 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1233 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1234
1235 return true;
1236 }
1237
1238 /**
1239 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1240 *
1241 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1242 * implemented using multiplication, and logical-or is implemented using
1243 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1244 * As result, the logical expression (a & !b) can be rewritten as:
1245 *
1246 * - a * !b
1247 * - a * (1 - b)
1248 * - (a * 1) - (a * b)
1249 * - a + -(a * b)
1250 * - a + (a * -b)
1251 *
1252 * This final expression can be implemented as a single MAD(a, -b, a)
1253 * instruction.
1254 */
1255 bool
1256 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1257 {
1258 const int other_operand = 1 - try_operand;
1259 st_src_reg a, b;
1260
1261 ir_expression *expr = ir->operands[try_operand]->as_expression();
1262 if (!expr || expr->operation != ir_unop_logic_not)
1263 return false;
1264
1265 ir->operands[other_operand]->accept(this);
1266 a = this->result;
1267 expr->operands[0]->accept(this);
1268 b = this->result;
1269
1270 b.negate = ~b.negate;
1271
1272 this->result = get_temp(ir->type);
1273 emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1274
1275 return true;
1276 }
1277
1278 bool
1279 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1280 {
1281 /* Emit saturates in the vertex shader only if SM 3.0 is supported.
1282 */
1283 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1284 !st_context(this->ctx)->has_shader_model3) {
1285 return false;
1286 }
1287
1288 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1289 if (!sat_src)
1290 return false;
1291
1292 sat_src->accept(this);
1293 st_src_reg src = this->result;
1294
1295 /* If we generated an expression instruction into a temporary in
1296 * processing the saturate's operand, apply the saturate to that
1297 * instruction. Otherwise, generate a MOV to do the saturate.
1298 *
1299 * Note that we have to be careful to only do this optimization if
1300 * the instruction in question was what generated src->result. For
1301 * example, ir_dereference_array might generate a MUL instruction
1302 * to create the reladdr, and return us a src reg using that
1303 * reladdr. That MUL result is not the value we're trying to
1304 * saturate.
1305 */
1306 ir_expression *sat_src_expr = sat_src->as_expression();
1307 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1308 sat_src_expr->operation == ir_binop_add ||
1309 sat_src_expr->operation == ir_binop_dot)) {
1310 glsl_to_tgsi_instruction *new_inst;
1311 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1312 new_inst->saturate = true;
1313 } else {
1314 this->result = get_temp(ir->type);
1315 st_dst_reg result_dst = st_dst_reg(this->result);
1316 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1317 glsl_to_tgsi_instruction *inst;
1318 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1319 inst->saturate = true;
1320 }
1321
1322 return true;
1323 }
1324
1325 void
1326 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1327 st_src_reg *reg, int *num_reladdr)
1328 {
1329 if (!reg->reladdr && !reg->reladdr2)
1330 return;
1331
1332 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1333 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1334
1335 if (*num_reladdr != 1) {
1336 st_src_reg temp = get_temp(glsl_type::vec4_type);
1337
1338 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1339 *reg = temp;
1340 }
1341
1342 (*num_reladdr)--;
1343 }
1344
1345 void
1346 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1347 {
1348 unsigned int operand;
1349 st_src_reg op[Elements(ir->operands)];
1350 st_src_reg result_src;
1351 st_dst_reg result_dst;
1352
1353 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1354 */
1355 if (ir->operation == ir_binop_add) {
1356 if (try_emit_mad(ir, 1))
1357 return;
1358 if (try_emit_mad(ir, 0))
1359 return;
1360 }
1361
1362 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1363 */
1364 if (ir->operation == ir_binop_logic_and) {
1365 if (try_emit_mad_for_and_not(ir, 1))
1366 return;
1367 if (try_emit_mad_for_and_not(ir, 0))
1368 return;
1369 }
1370
1371 if (try_emit_sat(ir))
1372 return;
1373
1374 if (ir->operation == ir_quadop_vector)
1375 assert(!"ir_quadop_vector should have been lowered");
1376
1377 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1378 this->result.file = PROGRAM_UNDEFINED;
1379 ir->operands[operand]->accept(this);
1380 if (this->result.file == PROGRAM_UNDEFINED) {
1381 printf("Failed to get tree for expression operand:\n");
1382 ir->operands[operand]->print();
1383 printf("\n");
1384 exit(1);
1385 }
1386 op[operand] = this->result;
1387
1388 /* Matrix expression operands should have been broken down to vector
1389 * operations already.
1390 */
1391 assert(!ir->operands[operand]->type->is_matrix());
1392 }
1393
1394 int vector_elements = ir->operands[0]->type->vector_elements;
1395 if (ir->operands[1]) {
1396 vector_elements = MAX2(vector_elements,
1397 ir->operands[1]->type->vector_elements);
1398 }
1399
1400 this->result.file = PROGRAM_UNDEFINED;
1401
1402 /* Storage for our result. Ideally for an assignment we'd be using
1403 * the actual storage for the result here, instead.
1404 */
1405 result_src = get_temp(ir->type);
1406 /* convenience for the emit functions below. */
1407 result_dst = st_dst_reg(result_src);
1408 /* Limit writes to the channels that will be used by result_src later.
1409 * This does limit this temp's use as a temporary for multi-instruction
1410 * sequences.
1411 */
1412 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1413
1414 switch (ir->operation) {
1415 case ir_unop_logic_not:
1416 if (result_dst.type != GLSL_TYPE_FLOAT)
1417 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1418 else {
1419 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1420 * older GPUs implement SEQ using multiple instructions (i915 uses two
1421 * SGE instructions and a MUL instruction). Since our logic values are
1422 * 0.0 and 1.0, 1-x also implements !x.
1423 */
1424 op[0].negate = ~op[0].negate;
1425 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1426 }
1427 break;
1428 case ir_unop_neg:
1429 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1430 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1431 else {
1432 op[0].negate = ~op[0].negate;
1433 result_src = op[0];
1434 }
1435 break;
1436 case ir_unop_abs:
1437 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1438 break;
1439 case ir_unop_sign:
1440 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1441 break;
1442 case ir_unop_rcp:
1443 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1444 break;
1445
1446 case ir_unop_exp2:
1447 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1448 break;
1449 case ir_unop_exp:
1450 case ir_unop_log:
1451 assert(!"not reached: should be handled by ir_explog_to_explog2");
1452 break;
1453 case ir_unop_log2:
1454 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1455 break;
1456 case ir_unop_sin:
1457 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1458 break;
1459 case ir_unop_cos:
1460 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1461 break;
1462 case ir_unop_sin_reduced:
1463 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1464 break;
1465 case ir_unop_cos_reduced:
1466 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1467 break;
1468
1469 case ir_unop_dFdx:
1470 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1471 break;
1472 case ir_unop_dFdy:
1473 {
1474 /* The X component contains 1 or -1 depending on whether the framebuffer
1475 * is a FBO or the window system buffer, respectively.
1476 * It is then multiplied with the source operand of DDY.
1477 */
1478 static const gl_state_index transform_y_state[STATE_LENGTH]
1479 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1480
1481 unsigned transform_y_index =
1482 _mesa_add_state_reference(this->prog->Parameters,
1483 transform_y_state);
1484
1485 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1486 transform_y_index,
1487 glsl_type::vec4_type);
1488 transform_y.swizzle = SWIZZLE_XXXX;
1489
1490 st_src_reg temp = get_temp(glsl_type::vec4_type);
1491
1492 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1493 emit(ir, TGSI_OPCODE_DDY, result_dst, temp);
1494 break;
1495 }
1496
1497 case ir_unop_noise: {
1498 /* At some point, a motivated person could add a better
1499 * implementation of noise. Currently not even the nvidia
1500 * binary drivers do anything more than this. In any case, the
1501 * place to do this is in the GL state tracker, not the poor
1502 * driver.
1503 */
1504 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1505 break;
1506 }
1507
1508 case ir_binop_add:
1509 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1510 break;
1511 case ir_binop_sub:
1512 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1513 break;
1514
1515 case ir_binop_mul:
1516 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1517 break;
1518 case ir_binop_div:
1519 if (result_dst.type == GLSL_TYPE_FLOAT)
1520 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1521 else
1522 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1523 break;
1524 case ir_binop_mod:
1525 if (result_dst.type == GLSL_TYPE_FLOAT)
1526 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1527 else
1528 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1529 break;
1530
1531 case ir_binop_less:
1532 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1533 break;
1534 case ir_binop_greater:
1535 emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1536 break;
1537 case ir_binop_lequal:
1538 emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1539 break;
1540 case ir_binop_gequal:
1541 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1542 break;
1543 case ir_binop_equal:
1544 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1545 break;
1546 case ir_binop_nequal:
1547 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1548 break;
1549 case ir_binop_all_equal:
1550 /* "==" operator producing a scalar boolean. */
1551 if (ir->operands[0]->type->is_vector() ||
1552 ir->operands[1]->type->is_vector()) {
1553 st_src_reg temp = get_temp(native_integers ?
1554 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1555 glsl_type::vec4_type);
1556
1557 if (native_integers) {
1558 st_dst_reg temp_dst = st_dst_reg(temp);
1559 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1560
1561 emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1562
1563 /* Emit 1-3 AND operations to combine the SEQ results. */
1564 switch (ir->operands[0]->type->vector_elements) {
1565 case 2:
1566 break;
1567 case 3:
1568 temp_dst.writemask = WRITEMASK_Y;
1569 temp1.swizzle = SWIZZLE_YYYY;
1570 temp2.swizzle = SWIZZLE_ZZZZ;
1571 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1572 break;
1573 case 4:
1574 temp_dst.writemask = WRITEMASK_X;
1575 temp1.swizzle = SWIZZLE_XXXX;
1576 temp2.swizzle = SWIZZLE_YYYY;
1577 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1578 temp_dst.writemask = WRITEMASK_Y;
1579 temp1.swizzle = SWIZZLE_ZZZZ;
1580 temp2.swizzle = SWIZZLE_WWWW;
1581 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1582 }
1583
1584 temp1.swizzle = SWIZZLE_XXXX;
1585 temp2.swizzle = SWIZZLE_YYYY;
1586 emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1587 } else {
1588 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1589
1590 /* After the dot-product, the value will be an integer on the
1591 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1592 */
1593 emit_dp(ir, result_dst, temp, temp, vector_elements);
1594
1595 /* Negating the result of the dot-product gives values on the range
1596 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1597 * This is achieved using SGE.
1598 */
1599 st_src_reg sge_src = result_src;
1600 sge_src.negate = ~sge_src.negate;
1601 emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1602 }
1603 } else {
1604 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1605 }
1606 break;
1607 case ir_binop_any_nequal:
1608 /* "!=" operator producing a scalar boolean. */
1609 if (ir->operands[0]->type->is_vector() ||
1610 ir->operands[1]->type->is_vector()) {
1611 st_src_reg temp = get_temp(native_integers ?
1612 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1613 glsl_type::vec4_type);
1614 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1615
1616 if (native_integers) {
1617 st_dst_reg temp_dst = st_dst_reg(temp);
1618 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1619
1620 /* Emit 1-3 OR operations to combine the SNE results. */
1621 switch (ir->operands[0]->type->vector_elements) {
1622 case 2:
1623 break;
1624 case 3:
1625 temp_dst.writemask = WRITEMASK_Y;
1626 temp1.swizzle = SWIZZLE_YYYY;
1627 temp2.swizzle = SWIZZLE_ZZZZ;
1628 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1629 break;
1630 case 4:
1631 temp_dst.writemask = WRITEMASK_X;
1632 temp1.swizzle = SWIZZLE_XXXX;
1633 temp2.swizzle = SWIZZLE_YYYY;
1634 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1635 temp_dst.writemask = WRITEMASK_Y;
1636 temp1.swizzle = SWIZZLE_ZZZZ;
1637 temp2.swizzle = SWIZZLE_WWWW;
1638 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1639 }
1640
1641 temp1.swizzle = SWIZZLE_XXXX;
1642 temp2.swizzle = SWIZZLE_YYYY;
1643 emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1644 } else {
1645 /* After the dot-product, the value will be an integer on the
1646 * range [0,4]. Zero stays zero, and positive values become 1.0.
1647 */
1648 glsl_to_tgsi_instruction *const dp =
1649 emit_dp(ir, result_dst, temp, temp, vector_elements);
1650 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1651 /* The clamping to [0,1] can be done for free in the fragment
1652 * shader with a saturate.
1653 */
1654 dp->saturate = true;
1655 } else {
1656 /* Negating the result of the dot-product gives values on the range
1657 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1658 * achieved using SLT.
1659 */
1660 st_src_reg slt_src = result_src;
1661 slt_src.negate = ~slt_src.negate;
1662 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1663 }
1664 }
1665 } else {
1666 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1667 }
1668 break;
1669
1670 case ir_unop_any: {
1671 assert(ir->operands[0]->type->is_vector());
1672
1673 if (native_integers) {
1674 int dst_swizzle = 0, op0_swizzle, i;
1675 st_src_reg accum = op[0];
1676
1677 op0_swizzle = op[0].swizzle;
1678 accum.swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 0),
1679 GET_SWZ(op0_swizzle, 0),
1680 GET_SWZ(op0_swizzle, 0),
1681 GET_SWZ(op0_swizzle, 0));
1682 for (i = 0; i < 4; i++) {
1683 if (result_dst.writemask & (1 << i)) {
1684 dst_swizzle = MAKE_SWIZZLE4(i, i, i, i);
1685 break;
1686 }
1687 }
1688 assert(i != 4);
1689 assert(ir->operands[0]->type->is_boolean());
1690
1691 /* OR all the components together, since they should be either 0 or ~0
1692 */
1693 switch (ir->operands[0]->type->vector_elements) {
1694 case 4:
1695 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 3),
1696 GET_SWZ(op0_swizzle, 3),
1697 GET_SWZ(op0_swizzle, 3),
1698 GET_SWZ(op0_swizzle, 3));
1699 emit(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1700 accum = st_src_reg(result_dst);
1701 accum.swizzle = dst_swizzle;
1702 /* fallthrough */
1703 case 3:
1704 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 2),
1705 GET_SWZ(op0_swizzle, 2),
1706 GET_SWZ(op0_swizzle, 2),
1707 GET_SWZ(op0_swizzle, 2));
1708 emit(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1709 accum = st_src_reg(result_dst);
1710 accum.swizzle = dst_swizzle;
1711 /* fallthrough */
1712 case 2:
1713 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 1),
1714 GET_SWZ(op0_swizzle, 1),
1715 GET_SWZ(op0_swizzle, 1),
1716 GET_SWZ(op0_swizzle, 1));
1717 emit(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1718 break;
1719 default:
1720 assert(!"Unexpected vector size");
1721 break;
1722 }
1723 } else {
1724 /* After the dot-product, the value will be an integer on the
1725 * range [0,4]. Zero stays zero, and positive values become 1.0.
1726 */
1727 glsl_to_tgsi_instruction *const dp =
1728 emit_dp(ir, result_dst, op[0], op[0],
1729 ir->operands[0]->type->vector_elements);
1730 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1731 result_dst.type == GLSL_TYPE_FLOAT) {
1732 /* The clamping to [0,1] can be done for free in the fragment
1733 * shader with a saturate.
1734 */
1735 dp->saturate = true;
1736 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1737 /* Negating the result of the dot-product gives values on the range
1738 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1739 * is achieved using SLT.
1740 */
1741 st_src_reg slt_src = result_src;
1742 slt_src.negate = ~slt_src.negate;
1743 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1744 }
1745 else {
1746 /* Use SNE 0 if integers are being used as boolean values. */
1747 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1748 }
1749 }
1750 break;
1751 }
1752
1753 case ir_binop_logic_xor:
1754 if (native_integers)
1755 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1756 else
1757 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1758 break;
1759
1760 case ir_binop_logic_or: {
1761 if (native_integers) {
1762 /* If integers are used as booleans, we can use an actual "or"
1763 * instruction.
1764 */
1765 assert(native_integers);
1766 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1767 } else {
1768 /* After the addition, the value will be an integer on the
1769 * range [0,2]. Zero stays zero, and positive values become 1.0.
1770 */
1771 glsl_to_tgsi_instruction *add =
1772 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1773 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1774 /* The clamping to [0,1] can be done for free in the fragment
1775 * shader with a saturate if floats are being used as boolean values.
1776 */
1777 add->saturate = true;
1778 } else {
1779 /* Negating the result of the addition gives values on the range
1780 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1781 * is achieved using SLT.
1782 */
1783 st_src_reg slt_src = result_src;
1784 slt_src.negate = ~slt_src.negate;
1785 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1786 }
1787 }
1788 break;
1789 }
1790
1791 case ir_binop_logic_and:
1792 /* If native integers are disabled, the bool args are stored as float 0.0
1793 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1794 * actual AND opcode.
1795 */
1796 if (native_integers)
1797 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1798 else
1799 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1800 break;
1801
1802 case ir_binop_dot:
1803 assert(ir->operands[0]->type->is_vector());
1804 assert(ir->operands[0]->type == ir->operands[1]->type);
1805 emit_dp(ir, result_dst, op[0], op[1],
1806 ir->operands[0]->type->vector_elements);
1807 break;
1808
1809 case ir_unop_sqrt:
1810 if (have_sqrt) {
1811 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1812 }
1813 else {
1814 /* sqrt(x) = x * rsq(x). */
1815 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1816 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1817 /* For incoming channels <= 0, set the result to 0. */
1818 op[0].negate = ~op[0].negate;
1819 emit(ir, TGSI_OPCODE_CMP, result_dst,
1820 op[0], result_src, st_src_reg_for_float(0.0));
1821 }
1822 break;
1823 case ir_unop_rsq:
1824 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1825 break;
1826 case ir_unop_i2f:
1827 if (native_integers) {
1828 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1829 break;
1830 }
1831 /* fallthrough to next case otherwise */
1832 case ir_unop_b2f:
1833 if (native_integers) {
1834 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1835 break;
1836 }
1837 /* fallthrough to next case otherwise */
1838 case ir_unop_i2u:
1839 case ir_unop_u2i:
1840 /* Converting between signed and unsigned integers is a no-op. */
1841 result_src = op[0];
1842 break;
1843 case ir_unop_b2i:
1844 if (native_integers) {
1845 /* Booleans are stored as integers using ~0 for true and 0 for false.
1846 * GLSL requires that int(bool) return 1 for true and 0 for false.
1847 * This conversion is done with AND, but it could be done with NEG.
1848 */
1849 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1850 } else {
1851 /* Booleans and integers are both stored as floats when native
1852 * integers are disabled.
1853 */
1854 result_src = op[0];
1855 }
1856 break;
1857 case ir_unop_f2i:
1858 if (native_integers)
1859 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1860 else
1861 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1862 break;
1863 case ir_unop_f2u:
1864 if (native_integers)
1865 emit(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1866 else
1867 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1868 break;
1869 case ir_unop_bitcast_f2i:
1870 result_src = op[0];
1871 result_src.type = GLSL_TYPE_INT;
1872 break;
1873 case ir_unop_bitcast_f2u:
1874 result_src = op[0];
1875 result_src.type = GLSL_TYPE_UINT;
1876 break;
1877 case ir_unop_bitcast_i2f:
1878 case ir_unop_bitcast_u2f:
1879 result_src = op[0];
1880 result_src.type = GLSL_TYPE_FLOAT;
1881 break;
1882 case ir_unop_f2b:
1883 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1884 break;
1885 case ir_unop_i2b:
1886 if (native_integers)
1887 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1888 else
1889 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1890 break;
1891 case ir_unop_trunc:
1892 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1893 break;
1894 case ir_unop_ceil:
1895 emit(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1896 break;
1897 case ir_unop_floor:
1898 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1899 break;
1900 case ir_unop_round_even:
1901 emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1902 break;
1903 case ir_unop_fract:
1904 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1905 break;
1906
1907 case ir_binop_min:
1908 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1909 break;
1910 case ir_binop_max:
1911 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1912 break;
1913 case ir_binop_pow:
1914 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1915 break;
1916
1917 case ir_unop_bit_not:
1918 if (native_integers) {
1919 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1920 break;
1921 }
1922 case ir_unop_u2f:
1923 if (native_integers) {
1924 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1925 break;
1926 }
1927 case ir_binop_lshift:
1928 if (native_integers) {
1929 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1930 break;
1931 }
1932 case ir_binop_rshift:
1933 if (native_integers) {
1934 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1935 break;
1936 }
1937 case ir_binop_bit_and:
1938 if (native_integers) {
1939 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1940 break;
1941 }
1942 case ir_binop_bit_xor:
1943 if (native_integers) {
1944 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1945 break;
1946 }
1947 case ir_binop_bit_or:
1948 if (native_integers) {
1949 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1950 break;
1951 }
1952
1953 assert(!"GLSL 1.30 features unsupported");
1954 break;
1955
1956 case ir_binop_ubo_load: {
1957 ir_constant *uniform_block = ir->operands[0]->as_constant();
1958 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1959 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1960 st_src_reg index_reg = get_temp(glsl_type::uint_type);
1961 st_src_reg cbuf;
1962
1963 cbuf.type = glsl_type::vec4_type->base_type;
1964 cbuf.file = PROGRAM_CONSTANT;
1965 cbuf.index = 0;
1966 cbuf.index2D = uniform_block->value.u[0] + 1;
1967 cbuf.reladdr = NULL;
1968 cbuf.negate = 0;
1969
1970 assert(ir->type->is_vector() || ir->type->is_scalar());
1971
1972 if (const_offset_ir) {
1973 index_reg = st_src_reg_for_int(const_offset / 16);
1974 } else {
1975 emit(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1], st_src_reg_for_int(4));
1976 }
1977
1978 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
1979 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
1980 const_offset % 16 / 4,
1981 const_offset % 16 / 4,
1982 const_offset % 16 / 4);
1983
1984 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1985 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
1986
1987 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1988 emit(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
1989 } else {
1990 emit(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
1991 }
1992 break;
1993 }
1994 case ir_triop_lrp:
1995 /* note: we have to reorder the three args here */
1996 emit(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1997 break;
1998 case ir_triop_csel:
1999 if (this->ctx->Const.NativeIntegers)
2000 emit(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2001 else {
2002 op[0].negate = ~op[0].negate;
2003 emit(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2004 }
2005 break;
2006 case ir_triop_bitfield_extract:
2007 emit(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2008 break;
2009 case ir_quadop_bitfield_insert:
2010 emit(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2011 break;
2012 case ir_unop_bitfield_reverse:
2013 emit(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2014 break;
2015 case ir_unop_bit_count:
2016 emit(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2017 break;
2018 case ir_unop_find_msb:
2019 emit(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2020 break;
2021 case ir_unop_find_lsb:
2022 emit(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2023 break;
2024 case ir_binop_imul_high:
2025 emit(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2026 break;
2027 case ir_triop_fma:
2028 /* NOTE: Perhaps there should be a special opcode that enforces fused
2029 * mul-add. Just use MAD for now.
2030 */
2031 emit(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2032 break;
2033 case ir_unop_pack_snorm_2x16:
2034 case ir_unop_pack_unorm_2x16:
2035 case ir_unop_pack_half_2x16:
2036 case ir_unop_pack_snorm_4x8:
2037 case ir_unop_pack_unorm_4x8:
2038 case ir_unop_unpack_snorm_2x16:
2039 case ir_unop_unpack_unorm_2x16:
2040 case ir_unop_unpack_half_2x16:
2041 case ir_unop_unpack_half_2x16_split_x:
2042 case ir_unop_unpack_half_2x16_split_y:
2043 case ir_unop_unpack_snorm_4x8:
2044 case ir_unop_unpack_unorm_4x8:
2045 case ir_binop_pack_half_2x16_split:
2046 case ir_binop_bfm:
2047 case ir_triop_bfi:
2048 case ir_quadop_vector:
2049 case ir_binop_vector_extract:
2050 case ir_triop_vector_insert:
2051 case ir_binop_ldexp:
2052 case ir_binop_carry:
2053 case ir_binop_borrow:
2054 /* This operation is not supported, or should have already been handled.
2055 */
2056 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2057 break;
2058 }
2059
2060 this->result = result_src;
2061 }
2062
2063
2064 void
2065 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2066 {
2067 st_src_reg src;
2068 int i;
2069 int swizzle[4];
2070
2071 /* Note that this is only swizzles in expressions, not those on the left
2072 * hand side of an assignment, which do write masking. See ir_assignment
2073 * for that.
2074 */
2075
2076 ir->val->accept(this);
2077 src = this->result;
2078 assert(src.file != PROGRAM_UNDEFINED);
2079
2080 for (i = 0; i < 4; i++) {
2081 if (i < ir->type->vector_elements) {
2082 switch (i) {
2083 case 0:
2084 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2085 break;
2086 case 1:
2087 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2088 break;
2089 case 2:
2090 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2091 break;
2092 case 3:
2093 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2094 break;
2095 }
2096 } else {
2097 /* If the type is smaller than a vec4, replicate the last
2098 * channel out.
2099 */
2100 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2101 }
2102 }
2103
2104 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2105
2106 this->result = src;
2107 }
2108
2109 void
2110 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2111 {
2112 variable_storage *entry = find_variable_storage(ir->var);
2113 ir_variable *var = ir->var;
2114
2115 if (!entry) {
2116 switch (var->data.mode) {
2117 case ir_var_uniform:
2118 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2119 var->data.location);
2120 this->variables.push_tail(entry);
2121 break;
2122 case ir_var_shader_in:
2123 /* The linker assigns locations for varyings and attributes,
2124 * including deprecated builtins (like gl_Color), user-assign
2125 * generic attributes (glBindVertexLocation), and
2126 * user-defined varyings.
2127 */
2128 assert(var->data.location != -1);
2129 entry = new(mem_ctx) variable_storage(var,
2130 PROGRAM_INPUT,
2131 var->data.location);
2132 break;
2133 case ir_var_shader_out:
2134 assert(var->data.location != -1);
2135 entry = new(mem_ctx) variable_storage(var,
2136 PROGRAM_OUTPUT,
2137 var->data.location
2138 + var->data.index);
2139 break;
2140 case ir_var_system_value:
2141 entry = new(mem_ctx) variable_storage(var,
2142 PROGRAM_SYSTEM_VALUE,
2143 var->data.location);
2144 break;
2145 case ir_var_auto:
2146 case ir_var_temporary:
2147 st_src_reg src = get_temp(var->type);
2148
2149 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2150 this->variables.push_tail(entry);
2151
2152 break;
2153 }
2154
2155 if (!entry) {
2156 printf("Failed to make storage for %s\n", var->name);
2157 exit(1);
2158 }
2159 }
2160
2161 this->result = st_src_reg(entry->file, entry->index, var->type);
2162 if (!native_integers)
2163 this->result.type = GLSL_TYPE_FLOAT;
2164 }
2165
2166 void
2167 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2168 {
2169 ir_constant *index;
2170 st_src_reg src;
2171 int element_size = type_size(ir->type);
2172 bool is_2D_input;
2173
2174 index = ir->array_index->constant_expression_value();
2175
2176 ir->array->accept(this);
2177 src = this->result;
2178
2179 is_2D_input = this->prog->Target == GL_GEOMETRY_PROGRAM_NV &&
2180 src.file == PROGRAM_INPUT &&
2181 ir->array->ir_type != ir_type_dereference_array;
2182
2183 if (is_2D_input)
2184 element_size = 1;
2185
2186 if (index) {
2187 if (is_2D_input) {
2188 src.index2D = index->value.i[0];
2189 src.has_index2 = true;
2190 } else
2191 src.index += index->value.i[0] * element_size;
2192 } else {
2193 /* Variable index array dereference. It eats the "vec4" of the
2194 * base of the array and an index that offsets the TGSI register
2195 * index.
2196 */
2197 ir->array_index->accept(this);
2198
2199 st_src_reg index_reg;
2200
2201 if (element_size == 1) {
2202 index_reg = this->result;
2203 } else {
2204 index_reg = get_temp(native_integers ?
2205 glsl_type::int_type : glsl_type::float_type);
2206
2207 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2208 this->result, st_src_reg_for_type(index_reg.type, element_size));
2209 }
2210
2211 /* If there was already a relative address register involved, add the
2212 * new and the old together to get the new offset.
2213 */
2214 if (!is_2D_input && src.reladdr != NULL) {
2215 st_src_reg accum_reg = get_temp(native_integers ?
2216 glsl_type::int_type : glsl_type::float_type);
2217
2218 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2219 index_reg, *src.reladdr);
2220
2221 index_reg = accum_reg;
2222 }
2223
2224 if (is_2D_input) {
2225 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2226 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2227 src.index2D = 0;
2228 src.has_index2 = true;
2229 } else {
2230 src.reladdr = ralloc(mem_ctx, st_src_reg);
2231 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2232 }
2233 }
2234
2235 /* If the type is smaller than a vec4, replicate the last channel out. */
2236 if (ir->type->is_scalar() || ir->type->is_vector())
2237 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2238 else
2239 src.swizzle = SWIZZLE_NOOP;
2240
2241 /* Change the register type to the element type of the array. */
2242 src.type = ir->type->base_type;
2243
2244 this->result = src;
2245 }
2246
2247 void
2248 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2249 {
2250 unsigned int i;
2251 const glsl_type *struct_type = ir->record->type;
2252 int offset = 0;
2253
2254 ir->record->accept(this);
2255
2256 for (i = 0; i < struct_type->length; i++) {
2257 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2258 break;
2259 offset += type_size(struct_type->fields.structure[i].type);
2260 }
2261
2262 /* If the type is smaller than a vec4, replicate the last channel out. */
2263 if (ir->type->is_scalar() || ir->type->is_vector())
2264 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2265 else
2266 this->result.swizzle = SWIZZLE_NOOP;
2267
2268 this->result.index += offset;
2269 this->result.type = ir->type->base_type;
2270 }
2271
2272 /**
2273 * We want to be careful in assignment setup to hit the actual storage
2274 * instead of potentially using a temporary like we might with the
2275 * ir_dereference handler.
2276 */
2277 static st_dst_reg
2278 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2279 {
2280 /* The LHS must be a dereference. If the LHS is a variable indexed array
2281 * access of a vector, it must be separated into a series conditional moves
2282 * before reaching this point (see ir_vec_index_to_cond_assign).
2283 */
2284 assert(ir->as_dereference());
2285 ir_dereference_array *deref_array = ir->as_dereference_array();
2286 if (deref_array) {
2287 assert(!deref_array->array->type->is_vector());
2288 }
2289
2290 /* Use the rvalue deref handler for the most part. We'll ignore
2291 * swizzles in it and write swizzles using writemask, though.
2292 */
2293 ir->accept(v);
2294 return st_dst_reg(v->result);
2295 }
2296
2297 /**
2298 * Process the condition of a conditional assignment
2299 *
2300 * Examines the condition of a conditional assignment to generate the optimal
2301 * first operand of a \c CMP instruction. If the condition is a relational
2302 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2303 * used as the source for the \c CMP instruction. Otherwise the comparison
2304 * is processed to a boolean result, and the boolean result is used as the
2305 * operand to the CMP instruction.
2306 */
2307 bool
2308 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2309 {
2310 ir_rvalue *src_ir = ir;
2311 bool negate = true;
2312 bool switch_order = false;
2313
2314 ir_expression *const expr = ir->as_expression();
2315 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2316 bool zero_on_left = false;
2317
2318 if (expr->operands[0]->is_zero()) {
2319 src_ir = expr->operands[1];
2320 zero_on_left = true;
2321 } else if (expr->operands[1]->is_zero()) {
2322 src_ir = expr->operands[0];
2323 zero_on_left = false;
2324 }
2325
2326 /* a is - 0 + - 0 +
2327 * (a < 0) T F F ( a < 0) T F F
2328 * (0 < a) F F T (-a < 0) F F T
2329 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2330 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2331 * (a > 0) F F T (-a < 0) F F T
2332 * (0 > a) T F F ( a < 0) T F F
2333 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2334 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2335 *
2336 * Note that exchanging the order of 0 and 'a' in the comparison simply
2337 * means that the value of 'a' should be negated.
2338 */
2339 if (src_ir != ir) {
2340 switch (expr->operation) {
2341 case ir_binop_less:
2342 switch_order = false;
2343 negate = zero_on_left;
2344 break;
2345
2346 case ir_binop_greater:
2347 switch_order = false;
2348 negate = !zero_on_left;
2349 break;
2350
2351 case ir_binop_lequal:
2352 switch_order = true;
2353 negate = !zero_on_left;
2354 break;
2355
2356 case ir_binop_gequal:
2357 switch_order = true;
2358 negate = zero_on_left;
2359 break;
2360
2361 default:
2362 /* This isn't the right kind of comparison afterall, so make sure
2363 * the whole condition is visited.
2364 */
2365 src_ir = ir;
2366 break;
2367 }
2368 }
2369 }
2370
2371 src_ir->accept(this);
2372
2373 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2374 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2375 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2376 * computing the condition.
2377 */
2378 if (negate)
2379 this->result.negate = ~this->result.negate;
2380
2381 return switch_order;
2382 }
2383
2384 void
2385 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2386 st_dst_reg *l, st_src_reg *r)
2387 {
2388 if (type->base_type == GLSL_TYPE_STRUCT) {
2389 for (unsigned int i = 0; i < type->length; i++) {
2390 emit_block_mov(ir, type->fields.structure[i].type, l, r);
2391 }
2392 return;
2393 }
2394
2395 if (type->is_array()) {
2396 for (unsigned int i = 0; i < type->length; i++) {
2397 emit_block_mov(ir, type->fields.array, l, r);
2398 }
2399 return;
2400 }
2401
2402 if (type->is_matrix()) {
2403 const struct glsl_type *vec_type;
2404
2405 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
2406 type->vector_elements, 1);
2407
2408 for (int i = 0; i < type->matrix_columns; i++) {
2409 emit_block_mov(ir, vec_type, l, r);
2410 }
2411 return;
2412 }
2413
2414 assert(type->is_scalar() || type->is_vector());
2415
2416 r->type = type->base_type;
2417 emit(ir, TGSI_OPCODE_MOV, *l, *r);
2418 l->index++;
2419 r->index++;
2420 }
2421
2422 void
2423 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2424 {
2425 st_dst_reg l;
2426 st_src_reg r;
2427 int i;
2428
2429 ir->rhs->accept(this);
2430 r = this->result;
2431
2432 l = get_assignment_lhs(ir->lhs, this);
2433
2434 /* FINISHME: This should really set to the correct maximal writemask for each
2435 * FINISHME: component written (in the loops below). This case can only
2436 * FINISHME: occur for matrices, arrays, and structures.
2437 */
2438 if (ir->write_mask == 0) {
2439 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2440 l.writemask = WRITEMASK_XYZW;
2441 } else if (ir->lhs->type->is_scalar() &&
2442 ir->lhs->variable_referenced()->data.mode == ir_var_shader_out) {
2443 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2444 * FINISHME: W component of fragment shader output zero, work correctly.
2445 */
2446 l.writemask = WRITEMASK_XYZW;
2447 } else {
2448 int swizzles[4];
2449 int first_enabled_chan = 0;
2450 int rhs_chan = 0;
2451
2452 l.writemask = ir->write_mask;
2453
2454 for (int i = 0; i < 4; i++) {
2455 if (l.writemask & (1 << i)) {
2456 first_enabled_chan = GET_SWZ(r.swizzle, i);
2457 break;
2458 }
2459 }
2460
2461 /* Swizzle a small RHS vector into the channels being written.
2462 *
2463 * glsl ir treats write_mask as dictating how many channels are
2464 * present on the RHS while TGSI treats write_mask as just
2465 * showing which channels of the vec4 RHS get written.
2466 */
2467 for (int i = 0; i < 4; i++) {
2468 if (l.writemask & (1 << i))
2469 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2470 else
2471 swizzles[i] = first_enabled_chan;
2472 }
2473 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2474 swizzles[2], swizzles[3]);
2475 }
2476
2477 assert(l.file != PROGRAM_UNDEFINED);
2478 assert(r.file != PROGRAM_UNDEFINED);
2479
2480 if (ir->condition) {
2481 const bool switch_order = this->process_move_condition(ir->condition);
2482 st_src_reg condition = this->result;
2483
2484 for (i = 0; i < type_size(ir->lhs->type); i++) {
2485 st_src_reg l_src = st_src_reg(l);
2486 st_src_reg condition_temp = condition;
2487 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2488
2489 if (native_integers) {
2490 /* This is necessary because TGSI's CMP instruction expects the
2491 * condition to be a float, and we store booleans as integers.
2492 * TODO: really want to avoid i2f path and use UCMP. Requires
2493 * changes to process_move_condition though too.
2494 */
2495 condition_temp = get_temp(glsl_type::vec4_type);
2496 condition.negate = 0;
2497 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2498 condition_temp.swizzle = condition.swizzle;
2499 }
2500
2501 if (switch_order) {
2502 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2503 } else {
2504 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2505 }
2506
2507 l.index++;
2508 r.index++;
2509 }
2510 } else if (ir->rhs->as_expression() &&
2511 this->instructions.get_tail() &&
2512 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2513 type_size(ir->lhs->type) == 1 &&
2514 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2515 /* To avoid emitting an extra MOV when assigning an expression to a
2516 * variable, emit the last instruction of the expression again, but
2517 * replace the destination register with the target of the assignment.
2518 * Dead code elimination will remove the original instruction.
2519 */
2520 glsl_to_tgsi_instruction *inst, *new_inst;
2521 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2522 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2523 new_inst->saturate = inst->saturate;
2524 inst->dead_mask = inst->dst.writemask;
2525 } else {
2526 emit_block_mov(ir, ir->rhs->type, &l, &r);
2527 }
2528 }
2529
2530
2531 void
2532 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2533 {
2534 st_src_reg src;
2535 GLfloat stack_vals[4] = { 0 };
2536 gl_constant_value *values = (gl_constant_value *) stack_vals;
2537 GLenum gl_type = GL_NONE;
2538 unsigned int i;
2539 static int in_array = 0;
2540 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2541
2542 /* Unfortunately, 4 floats is all we can get into
2543 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2544 * aggregate constant and move each constant value into it. If we
2545 * get lucky, copy propagation will eliminate the extra moves.
2546 */
2547 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2548 st_src_reg temp_base = get_temp(ir->type);
2549 st_dst_reg temp = st_dst_reg(temp_base);
2550
2551 foreach_list(node, &ir->components) {
2552 ir_constant *field_value = (ir_constant *) node;
2553 int size = type_size(field_value->type);
2554
2555 assert(size > 0);
2556
2557 field_value->accept(this);
2558 src = this->result;
2559
2560 for (i = 0; i < (unsigned int)size; i++) {
2561 emit(ir, TGSI_OPCODE_MOV, temp, src);
2562
2563 src.index++;
2564 temp.index++;
2565 }
2566 }
2567 this->result = temp_base;
2568 return;
2569 }
2570
2571 if (ir->type->is_array()) {
2572 st_src_reg temp_base = get_temp(ir->type);
2573 st_dst_reg temp = st_dst_reg(temp_base);
2574 int size = type_size(ir->type->fields.array);
2575
2576 assert(size > 0);
2577 in_array++;
2578
2579 for (i = 0; i < ir->type->length; i++) {
2580 ir->array_elements[i]->accept(this);
2581 src = this->result;
2582 for (int j = 0; j < size; j++) {
2583 emit(ir, TGSI_OPCODE_MOV, temp, src);
2584
2585 src.index++;
2586 temp.index++;
2587 }
2588 }
2589 this->result = temp_base;
2590 in_array--;
2591 return;
2592 }
2593
2594 if (ir->type->is_matrix()) {
2595 st_src_reg mat = get_temp(ir->type);
2596 st_dst_reg mat_column = st_dst_reg(mat);
2597
2598 for (i = 0; i < ir->type->matrix_columns; i++) {
2599 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2600 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2601
2602 src = st_src_reg(file, -1, ir->type->base_type);
2603 src.index = add_constant(file,
2604 values,
2605 ir->type->vector_elements,
2606 GL_FLOAT,
2607 &src.swizzle);
2608 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2609
2610 mat_column.index++;
2611 }
2612
2613 this->result = mat;
2614 return;
2615 }
2616
2617 switch (ir->type->base_type) {
2618 case GLSL_TYPE_FLOAT:
2619 gl_type = GL_FLOAT;
2620 for (i = 0; i < ir->type->vector_elements; i++) {
2621 values[i].f = ir->value.f[i];
2622 }
2623 break;
2624 case GLSL_TYPE_UINT:
2625 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2626 for (i = 0; i < ir->type->vector_elements; i++) {
2627 if (native_integers)
2628 values[i].u = ir->value.u[i];
2629 else
2630 values[i].f = ir->value.u[i];
2631 }
2632 break;
2633 case GLSL_TYPE_INT:
2634 gl_type = native_integers ? GL_INT : GL_FLOAT;
2635 for (i = 0; i < ir->type->vector_elements; i++) {
2636 if (native_integers)
2637 values[i].i = ir->value.i[i];
2638 else
2639 values[i].f = ir->value.i[i];
2640 }
2641 break;
2642 case GLSL_TYPE_BOOL:
2643 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2644 for (i = 0; i < ir->type->vector_elements; i++) {
2645 if (native_integers)
2646 values[i].u = ir->value.b[i] ? ~0 : 0;
2647 else
2648 values[i].f = ir->value.b[i];
2649 }
2650 break;
2651 default:
2652 assert(!"Non-float/uint/int/bool constant");
2653 }
2654
2655 this->result = st_src_reg(file, -1, ir->type);
2656 this->result.index = add_constant(file,
2657 values,
2658 ir->type->vector_elements,
2659 gl_type,
2660 &this->result.swizzle);
2661 }
2662
2663 function_entry *
2664 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2665 {
2666 function_entry *entry;
2667
2668 foreach_list(node, &this->function_signatures) {
2669 entry = (function_entry *) node;
2670
2671 if (entry->sig == sig)
2672 return entry;
2673 }
2674
2675 entry = ralloc(mem_ctx, function_entry);
2676 entry->sig = sig;
2677 entry->sig_id = this->next_signature_id++;
2678 entry->bgn_inst = NULL;
2679
2680 /* Allocate storage for all the parameters. */
2681 foreach_list(node, &sig->parameters) {
2682 ir_variable *param = (ir_variable *) node;
2683 variable_storage *storage;
2684
2685 storage = find_variable_storage(param);
2686 assert(!storage);
2687
2688 st_src_reg src = get_temp(param->type);
2689
2690 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
2691 this->variables.push_tail(storage);
2692 }
2693
2694 if (!sig->return_type->is_void()) {
2695 entry->return_reg = get_temp(sig->return_type);
2696 } else {
2697 entry->return_reg = undef_src;
2698 }
2699
2700 this->function_signatures.push_tail(entry);
2701 return entry;
2702 }
2703
2704 void
2705 glsl_to_tgsi_visitor::visit(ir_call *ir)
2706 {
2707 glsl_to_tgsi_instruction *call_inst;
2708 ir_function_signature *sig = ir->callee;
2709 function_entry *entry = get_function_signature(sig);
2710 int i;
2711
2712 /* Process in parameters. */
2713 foreach_two_lists(formal_node, &sig->parameters,
2714 actual_node, &ir->actual_parameters) {
2715 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
2716 ir_variable *param = (ir_variable *) formal_node;
2717
2718 if (param->data.mode == ir_var_function_in ||
2719 param->data.mode == ir_var_function_inout) {
2720 variable_storage *storage = find_variable_storage(param);
2721 assert(storage);
2722
2723 param_rval->accept(this);
2724 st_src_reg r = this->result;
2725
2726 st_dst_reg l;
2727 l.file = storage->file;
2728 l.index = storage->index;
2729 l.reladdr = NULL;
2730 l.writemask = WRITEMASK_XYZW;
2731 l.cond_mask = COND_TR;
2732
2733 for (i = 0; i < type_size(param->type); i++) {
2734 emit(ir, TGSI_OPCODE_MOV, l, r);
2735 l.index++;
2736 r.index++;
2737 }
2738 }
2739 }
2740
2741 /* Emit call instruction */
2742 call_inst = emit(ir, TGSI_OPCODE_CAL);
2743 call_inst->function = entry;
2744
2745 /* Process out parameters. */
2746 foreach_two_lists(formal_node, &sig->parameters,
2747 actual_node, &ir->actual_parameters) {
2748 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
2749 ir_variable *param = (ir_variable *) formal_node;
2750
2751 if (param->data.mode == ir_var_function_out ||
2752 param->data.mode == ir_var_function_inout) {
2753 variable_storage *storage = find_variable_storage(param);
2754 assert(storage);
2755
2756 st_src_reg r;
2757 r.file = storage->file;
2758 r.index = storage->index;
2759 r.reladdr = NULL;
2760 r.swizzle = SWIZZLE_NOOP;
2761 r.negate = 0;
2762
2763 param_rval->accept(this);
2764 st_dst_reg l = st_dst_reg(this->result);
2765
2766 for (i = 0; i < type_size(param->type); i++) {
2767 emit(ir, TGSI_OPCODE_MOV, l, r);
2768 l.index++;
2769 r.index++;
2770 }
2771 }
2772 }
2773
2774 /* Process return value. */
2775 this->result = entry->return_reg;
2776 }
2777
2778 void
2779 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2780 {
2781 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy, offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
2782 st_dst_reg result_dst, coord_dst, cube_sc_dst;
2783 glsl_to_tgsi_instruction *inst = NULL;
2784 unsigned opcode = TGSI_OPCODE_NOP;
2785 const glsl_type *sampler_type = ir->sampler->type;
2786 bool is_cube_array = false;
2787 unsigned i;
2788
2789 /* if we are a cube array sampler */
2790 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2791 sampler_type->sampler_array)) {
2792 is_cube_array = true;
2793 }
2794
2795 if (ir->coordinate) {
2796 ir->coordinate->accept(this);
2797
2798 /* Put our coords in a temp. We'll need to modify them for shadow,
2799 * projection, or LOD, so the only case we'd use it as is is if
2800 * we're doing plain old texturing. The optimization passes on
2801 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2802 */
2803 coord = get_temp(glsl_type::vec4_type);
2804 coord_dst = st_dst_reg(coord);
2805 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
2806 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2807 }
2808
2809 if (ir->projector) {
2810 ir->projector->accept(this);
2811 projector = this->result;
2812 }
2813
2814 /* Storage for our result. Ideally for an assignment we'd be using
2815 * the actual storage for the result here, instead.
2816 */
2817 result_src = get_temp(ir->type);
2818 result_dst = st_dst_reg(result_src);
2819
2820 switch (ir->op) {
2821 case ir_tex:
2822 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
2823 if (ir->offset) {
2824 ir->offset->accept(this);
2825 offset[0] = this->result;
2826 }
2827 break;
2828 case ir_txb:
2829 opcode = is_cube_array ? TGSI_OPCODE_TXB2 : TGSI_OPCODE_TXB;
2830 ir->lod_info.bias->accept(this);
2831 lod_info = this->result;
2832 if (ir->offset) {
2833 ir->offset->accept(this);
2834 offset[0] = this->result;
2835 }
2836 break;
2837 case ir_txl:
2838 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
2839 ir->lod_info.lod->accept(this);
2840 lod_info = this->result;
2841 if (ir->offset) {
2842 ir->offset->accept(this);
2843 offset[0] = this->result;
2844 }
2845 break;
2846 case ir_txd:
2847 opcode = TGSI_OPCODE_TXD;
2848 ir->lod_info.grad.dPdx->accept(this);
2849 dx = this->result;
2850 ir->lod_info.grad.dPdy->accept(this);
2851 dy = this->result;
2852 if (ir->offset) {
2853 ir->offset->accept(this);
2854 offset[0] = this->result;
2855 }
2856 break;
2857 case ir_txs:
2858 opcode = TGSI_OPCODE_TXQ;
2859 ir->lod_info.lod->accept(this);
2860 lod_info = this->result;
2861 break;
2862 case ir_txf:
2863 opcode = TGSI_OPCODE_TXF;
2864 ir->lod_info.lod->accept(this);
2865 lod_info = this->result;
2866 if (ir->offset) {
2867 ir->offset->accept(this);
2868 offset[0] = this->result;
2869 }
2870 break;
2871 case ir_txf_ms:
2872 opcode = TGSI_OPCODE_TXF;
2873 ir->lod_info.sample_index->accept(this);
2874 sample_index = this->result;
2875 break;
2876 case ir_tg4:
2877 opcode = TGSI_OPCODE_TG4;
2878 ir->lod_info.component->accept(this);
2879 component = this->result;
2880 if (ir->offset) {
2881 ir->offset->accept(this);
2882 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
2883 const glsl_type *elt_type = ir->offset->type->fields.array;
2884 for (i = 0; i < ir->offset->type->length; i++) {
2885 offset[i] = this->result;
2886 offset[i].index += i * type_size(elt_type);
2887 offset[i].type = elt_type->base_type;
2888 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
2889 }
2890 } else {
2891 offset[0] = this->result;
2892 }
2893 }
2894 break;
2895 case ir_lod:
2896 opcode = TGSI_OPCODE_LODQ;
2897 break;
2898 case ir_query_levels:
2899 assert(!"Unexpected ir_query_levels opcode");
2900 break;
2901 }
2902
2903 if (ir->projector) {
2904 if (opcode == TGSI_OPCODE_TEX) {
2905 /* Slot the projector in as the last component of the coord. */
2906 coord_dst.writemask = WRITEMASK_W;
2907 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2908 coord_dst.writemask = WRITEMASK_XYZW;
2909 opcode = TGSI_OPCODE_TXP;
2910 } else {
2911 st_src_reg coord_w = coord;
2912 coord_w.swizzle = SWIZZLE_WWWW;
2913
2914 /* For the other TEX opcodes there's no projective version
2915 * since the last slot is taken up by LOD info. Do the
2916 * projective divide now.
2917 */
2918 coord_dst.writemask = WRITEMASK_W;
2919 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2920
2921 /* In the case where we have to project the coordinates "by hand,"
2922 * the shadow comparator value must also be projected.
2923 */
2924 st_src_reg tmp_src = coord;
2925 if (ir->shadow_comparitor) {
2926 /* Slot the shadow value in as the second to last component of the
2927 * coord.
2928 */
2929 ir->shadow_comparitor->accept(this);
2930
2931 tmp_src = get_temp(glsl_type::vec4_type);
2932 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2933
2934 /* Projective division not allowed for array samplers. */
2935 assert(!sampler_type->sampler_array);
2936
2937 tmp_dst.writemask = WRITEMASK_Z;
2938 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2939
2940 tmp_dst.writemask = WRITEMASK_XY;
2941 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2942 }
2943
2944 coord_dst.writemask = WRITEMASK_XYZ;
2945 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2946
2947 coord_dst.writemask = WRITEMASK_XYZW;
2948 coord.swizzle = SWIZZLE_XYZW;
2949 }
2950 }
2951
2952 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2953 * comparator was put in the correct place (and projected) by the code,
2954 * above, that handles by-hand projection.
2955 */
2956 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2957 /* Slot the shadow value in as the second to last component of the
2958 * coord.
2959 */
2960 ir->shadow_comparitor->accept(this);
2961
2962 if (is_cube_array) {
2963 cube_sc = get_temp(glsl_type::float_type);
2964 cube_sc_dst = st_dst_reg(cube_sc);
2965 cube_sc_dst.writemask = WRITEMASK_X;
2966 emit(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
2967 cube_sc_dst.writemask = WRITEMASK_X;
2968 }
2969 else {
2970 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2971 sampler_type->sampler_array) ||
2972 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
2973 coord_dst.writemask = WRITEMASK_W;
2974 } else {
2975 coord_dst.writemask = WRITEMASK_Z;
2976 }
2977
2978 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2979 coord_dst.writemask = WRITEMASK_XYZW;
2980 }
2981 }
2982
2983 if (ir->op == ir_txf_ms) {
2984 coord_dst.writemask = WRITEMASK_W;
2985 emit(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
2986 coord_dst.writemask = WRITEMASK_XYZW;
2987 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2988 opcode == TGSI_OPCODE_TXF) {
2989 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2990 coord_dst.writemask = WRITEMASK_W;
2991 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2992 coord_dst.writemask = WRITEMASK_XYZW;
2993 }
2994
2995 if (opcode == TGSI_OPCODE_TXD)
2996 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2997 else if (opcode == TGSI_OPCODE_TXQ)
2998 inst = emit(ir, opcode, result_dst, lod_info);
2999 else if (opcode == TGSI_OPCODE_TXF) {
3000 inst = emit(ir, opcode, result_dst, coord);
3001 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
3002 inst = emit(ir, opcode, result_dst, coord, lod_info);
3003 } else if (opcode == TGSI_OPCODE_TEX2) {
3004 inst = emit(ir, opcode, result_dst, coord, cube_sc);
3005 } else if (opcode == TGSI_OPCODE_TG4) {
3006 if (is_cube_array && ir->shadow_comparitor) {
3007 inst = emit(ir, opcode, result_dst, coord, cube_sc);
3008 } else {
3009 inst = emit(ir, opcode, result_dst, coord, component);
3010 }
3011 } else
3012 inst = emit(ir, opcode, result_dst, coord);
3013
3014 if (ir->shadow_comparitor)
3015 inst->tex_shadow = GL_TRUE;
3016
3017 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
3018 this->shader_program,
3019 this->prog);
3020
3021 if (ir->offset) {
3022 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
3023 inst->tex_offsets[i] = offset[i];
3024 inst->tex_offset_num_offset = i;
3025 }
3026
3027 switch (sampler_type->sampler_dimensionality) {
3028 case GLSL_SAMPLER_DIM_1D:
3029 inst->tex_target = (sampler_type->sampler_array)
3030 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
3031 break;
3032 case GLSL_SAMPLER_DIM_2D:
3033 inst->tex_target = (sampler_type->sampler_array)
3034 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
3035 break;
3036 case GLSL_SAMPLER_DIM_3D:
3037 inst->tex_target = TEXTURE_3D_INDEX;
3038 break;
3039 case GLSL_SAMPLER_DIM_CUBE:
3040 inst->tex_target = (sampler_type->sampler_array)
3041 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
3042 break;
3043 case GLSL_SAMPLER_DIM_RECT:
3044 inst->tex_target = TEXTURE_RECT_INDEX;
3045 break;
3046 case GLSL_SAMPLER_DIM_BUF:
3047 inst->tex_target = TEXTURE_BUFFER_INDEX;
3048 break;
3049 case GLSL_SAMPLER_DIM_EXTERNAL:
3050 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3051 break;
3052 case GLSL_SAMPLER_DIM_MS:
3053 inst->tex_target = (sampler_type->sampler_array)
3054 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3055 break;
3056 default:
3057 assert(!"Should not get here.");
3058 }
3059
3060 this->result = result_src;
3061 }
3062
3063 void
3064 glsl_to_tgsi_visitor::visit(ir_return *ir)
3065 {
3066 if (ir->get_value()) {
3067 st_dst_reg l;
3068 int i;
3069
3070 assert(current_function);
3071
3072 ir->get_value()->accept(this);
3073 st_src_reg r = this->result;
3074
3075 l = st_dst_reg(current_function->return_reg);
3076
3077 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
3078 emit(ir, TGSI_OPCODE_MOV, l, r);
3079 l.index++;
3080 r.index++;
3081 }
3082 }
3083
3084 emit(ir, TGSI_OPCODE_RET);
3085 }
3086
3087 void
3088 glsl_to_tgsi_visitor::visit(ir_discard *ir)
3089 {
3090 if (ir->condition) {
3091 ir->condition->accept(this);
3092 this->result.negate = ~this->result.negate;
3093 emit(ir, TGSI_OPCODE_KILL_IF, undef_dst, this->result);
3094 } else {
3095 /* unconditional kil */
3096 emit(ir, TGSI_OPCODE_KILL);
3097 }
3098 }
3099
3100 void
3101 glsl_to_tgsi_visitor::visit(ir_if *ir)
3102 {
3103 unsigned if_opcode;
3104 glsl_to_tgsi_instruction *if_inst;
3105
3106 ir->condition->accept(this);
3107 assert(this->result.file != PROGRAM_UNDEFINED);
3108
3109 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
3110
3111 if_inst = emit(ir->condition, if_opcode, undef_dst, this->result);
3112
3113 this->instructions.push_tail(if_inst);
3114
3115 visit_exec_list(&ir->then_instructions, this);
3116
3117 if (!ir->else_instructions.is_empty()) {
3118 emit(ir->condition, TGSI_OPCODE_ELSE);
3119 visit_exec_list(&ir->else_instructions, this);
3120 }
3121
3122 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
3123 }
3124
3125
3126 void
3127 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
3128 {
3129 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3130 emit(ir, TGSI_OPCODE_EMIT);
3131 }
3132
3133 void
3134 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
3135 {
3136 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3137 emit(ir, TGSI_OPCODE_ENDPRIM);
3138 }
3139
3140 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
3141 {
3142 result.file = PROGRAM_UNDEFINED;
3143 next_temp = 1;
3144 next_array = 0;
3145 next_signature_id = 1;
3146 num_immediates = 0;
3147 current_function = NULL;
3148 num_address_regs = 0;
3149 samplers_used = 0;
3150 indirect_addr_consts = false;
3151 glsl_version = 0;
3152 native_integers = false;
3153 mem_ctx = ralloc_context(NULL);
3154 ctx = NULL;
3155 prog = NULL;
3156 shader_program = NULL;
3157 options = NULL;
3158 }
3159
3160 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
3161 {
3162 ralloc_free(mem_ctx);
3163 }
3164
3165 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
3166 {
3167 delete v;
3168 }
3169
3170
3171 /**
3172 * Count resources used by the given gpu program (number of texture
3173 * samplers, etc).
3174 */
3175 static void
3176 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
3177 {
3178 v->samplers_used = 0;
3179
3180 foreach_list(node, &v->instructions) {
3181 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3182
3183 if (is_tex_instruction(inst->op)) {
3184 v->samplers_used |= 1 << inst->sampler;
3185
3186 if (inst->tex_shadow) {
3187 prog->ShadowSamplers |= 1 << inst->sampler;
3188 }
3189 }
3190 }
3191
3192 prog->SamplersUsed = v->samplers_used;
3193
3194 if (v->shader_program != NULL)
3195 _mesa_update_shader_textures_used(v->shader_program, prog);
3196 }
3197
3198 static void
3199 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
3200 struct gl_shader_program *shader_program,
3201 const char *name, const glsl_type *type,
3202 ir_constant *val)
3203 {
3204 if (type->is_record()) {
3205 ir_constant *field_constant;
3206
3207 field_constant = (ir_constant *)val->components.get_head();
3208
3209 for (unsigned int i = 0; i < type->length; i++) {
3210 const glsl_type *field_type = type->fields.structure[i].type;
3211 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
3212 type->fields.structure[i].name);
3213 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
3214 field_type, field_constant);
3215 field_constant = (ir_constant *)field_constant->next;
3216 }
3217 return;
3218 }
3219
3220 unsigned offset;
3221 unsigned index = _mesa_get_uniform_location(ctx, shader_program, name,
3222 &offset);
3223 if (offset == GL_INVALID_INDEX) {
3224 fail_link(shader_program,
3225 "Couldn't find uniform for initializer %s\n", name);
3226 return;
3227 }
3228 int loc = _mesa_uniform_merge_location_offset(shader_program, index, offset);
3229
3230 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
3231 ir_constant *element;
3232 const glsl_type *element_type;
3233 if (type->is_array()) {
3234 element = val->array_elements[i];
3235 element_type = type->fields.array;
3236 } else {
3237 element = val;
3238 element_type = type;
3239 }
3240
3241 void *values;
3242
3243 if (element_type->base_type == GLSL_TYPE_BOOL) {
3244 int *conv = ralloc_array(mem_ctx, int, element_type->components());
3245 for (unsigned int j = 0; j < element_type->components(); j++) {
3246 conv[j] = element->value.b[j];
3247 }
3248 values = (void *)conv;
3249 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
3250 element_type->vector_elements,
3251 1);
3252 } else {
3253 values = &element->value;
3254 }
3255
3256 if (element_type->is_matrix()) {
3257 _mesa_uniform_matrix(ctx, shader_program,
3258 element_type->matrix_columns,
3259 element_type->vector_elements,
3260 loc, 1, GL_FALSE, (GLfloat *)values);
3261 } else {
3262 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
3263 values, element_type->gl_type);
3264 }
3265
3266 loc++;
3267 }
3268 }
3269
3270 /**
3271 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3272 * are read from the given src in this instruction
3273 */
3274 static int
3275 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3276 {
3277 int read_mask = 0, comp;
3278
3279 /* Now, given the src swizzle and the written channels, find which
3280 * components are actually read
3281 */
3282 for (comp = 0; comp < 4; ++comp) {
3283 const unsigned coord = GET_SWZ(src.swizzle, comp);
3284 ASSERT(coord < 4);
3285 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3286 read_mask |= 1 << coord;
3287 }
3288
3289 return read_mask;
3290 }
3291
3292 /**
3293 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3294 * instruction is the first instruction to write to register T0. There are
3295 * several lowering passes done in GLSL IR (e.g. branches and
3296 * relative addressing) that create a large number of conditional assignments
3297 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3298 *
3299 * Here is why this conversion is safe:
3300 * CMP T0, T1 T2 T0 can be expanded to:
3301 * if (T1 < 0.0)
3302 * MOV T0, T2;
3303 * else
3304 * MOV T0, T0;
3305 *
3306 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3307 * as the original program. If (T1 < 0.0) evaluates to false, executing
3308 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3309 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3310 * because any instruction that was going to read from T0 after this was going
3311 * to read a garbage value anyway.
3312 */
3313 void
3314 glsl_to_tgsi_visitor::simplify_cmp(void)
3315 {
3316 unsigned *tempWrites;
3317 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3318
3319 tempWrites = new unsigned[MAX_TEMPS];
3320 if (!tempWrites) {
3321 return;
3322 }
3323 memset(tempWrites, 0, sizeof(unsigned) * MAX_TEMPS);
3324 memset(outputWrites, 0, sizeof(outputWrites));
3325
3326 foreach_list(node, &this->instructions) {
3327 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3328 unsigned prevWriteMask = 0;
3329
3330 /* Give up if we encounter relative addressing or flow control. */
3331 if (inst->dst.reladdr ||
3332 tgsi_get_opcode_info(inst->op)->is_branch ||
3333 inst->op == TGSI_OPCODE_BGNSUB ||
3334 inst->op == TGSI_OPCODE_CONT ||
3335 inst->op == TGSI_OPCODE_END ||
3336 inst->op == TGSI_OPCODE_ENDSUB ||
3337 inst->op == TGSI_OPCODE_RET) {
3338 break;
3339 }
3340
3341 if (inst->dst.file == PROGRAM_OUTPUT) {
3342 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3343 prevWriteMask = outputWrites[inst->dst.index];
3344 outputWrites[inst->dst.index] |= inst->dst.writemask;
3345 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3346 assert(inst->dst.index < MAX_TEMPS);
3347 prevWriteMask = tempWrites[inst->dst.index];
3348 tempWrites[inst->dst.index] |= inst->dst.writemask;
3349 } else
3350 continue;
3351
3352 /* For a CMP to be considered a conditional write, the destination
3353 * register and source register two must be the same. */
3354 if (inst->op == TGSI_OPCODE_CMP
3355 && !(inst->dst.writemask & prevWriteMask)
3356 && inst->src[2].file == inst->dst.file
3357 && inst->src[2].index == inst->dst.index
3358 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3359
3360 inst->op = TGSI_OPCODE_MOV;
3361 inst->src[0] = inst->src[1];
3362 }
3363 }
3364
3365 delete [] tempWrites;
3366 }
3367
3368 /* Replaces all references to a temporary register index with another index. */
3369 void
3370 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3371 {
3372 foreach_list(node, &this->instructions) {
3373 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3374 unsigned j;
3375
3376 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3377 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3378 inst->src[j].index == index) {
3379 inst->src[j].index = new_index;
3380 }
3381 }
3382
3383 for (j=0; j < inst->tex_offset_num_offset; j++) {
3384 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3385 inst->tex_offsets[j].index == index) {
3386 inst->tex_offsets[j].index = new_index;
3387 }
3388 }
3389
3390 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3391 inst->dst.index = new_index;
3392 }
3393 }
3394 }
3395
3396 int
3397 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3398 {
3399 int depth = 0; /* loop depth */
3400 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3401 unsigned i = 0, j;
3402
3403 foreach_list(node, &this->instructions) {
3404 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3405
3406 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3407 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3408 inst->src[j].index == index) {
3409 return (depth == 0) ? i : loop_start;
3410 }
3411 }
3412 for (j=0; j < inst->tex_offset_num_offset; j++) {
3413 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3414 inst->tex_offsets[j].index == index) {
3415 return (depth == 0) ? i : loop_start;
3416 }
3417 }
3418
3419 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3420 if(depth++ == 0)
3421 loop_start = i;
3422 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3423 if (--depth == 0)
3424 loop_start = -1;
3425 }
3426 assert(depth >= 0);
3427
3428 i++;
3429 }
3430
3431 return -1;
3432 }
3433
3434 int
3435 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3436 {
3437 int depth = 0; /* loop depth */
3438 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3439 int i = 0;
3440
3441 foreach_list(node, &this->instructions) {
3442 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3443
3444 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3445 return (depth == 0) ? i : loop_start;
3446 }
3447
3448 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3449 if(depth++ == 0)
3450 loop_start = i;
3451 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3452 if (--depth == 0)
3453 loop_start = -1;
3454 }
3455 assert(depth >= 0);
3456
3457 i++;
3458 }
3459
3460 return -1;
3461 }
3462
3463 int
3464 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3465 {
3466 int depth = 0; /* loop depth */
3467 int last = -1; /* index of last instruction that reads the temporary */
3468 unsigned i = 0, j;
3469
3470 foreach_list(node, &this->instructions) {
3471 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3472
3473 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3474 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3475 inst->src[j].index == index) {
3476 last = (depth == 0) ? i : -2;
3477 }
3478 }
3479 for (j=0; j < inst->tex_offset_num_offset; j++) {
3480 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY &&
3481 inst->tex_offsets[j].index == index)
3482 last = (depth == 0) ? i : -2;
3483 }
3484
3485 if (inst->op == TGSI_OPCODE_BGNLOOP)
3486 depth++;
3487 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3488 if (--depth == 0 && last == -2)
3489 last = i;
3490 assert(depth >= 0);
3491
3492 i++;
3493 }
3494
3495 assert(last >= -1);
3496 return last;
3497 }
3498
3499 int
3500 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3501 {
3502 int depth = 0; /* loop depth */
3503 int last = -1; /* index of last instruction that writes to the temporary */
3504 int i = 0;
3505
3506 foreach_list(node, &this->instructions) {
3507 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3508
3509 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3510 last = (depth == 0) ? i : -2;
3511
3512 if (inst->op == TGSI_OPCODE_BGNLOOP)
3513 depth++;
3514 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3515 if (--depth == 0 && last == -2)
3516 last = i;
3517 assert(depth >= 0);
3518
3519 i++;
3520 }
3521
3522 assert(last >= -1);
3523 return last;
3524 }
3525
3526 /*
3527 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3528 * channels for copy propagation and updates following instructions to
3529 * use the original versions.
3530 *
3531 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3532 * will occur. As an example, a TXP production before this pass:
3533 *
3534 * 0: MOV TEMP[1], INPUT[4].xyyy;
3535 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3536 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3537 *
3538 * and after:
3539 *
3540 * 0: MOV TEMP[1], INPUT[4].xyyy;
3541 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3542 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3543 *
3544 * which allows for dead code elimination on TEMP[1]'s writes.
3545 */
3546 void
3547 glsl_to_tgsi_visitor::copy_propagate(void)
3548 {
3549 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3550 glsl_to_tgsi_instruction *,
3551 this->next_temp * 4);
3552 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3553 int level = 0;
3554
3555 foreach_list(node, &this->instructions) {
3556 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3557
3558 assert(inst->dst.file != PROGRAM_TEMPORARY
3559 || inst->dst.index < this->next_temp);
3560
3561 /* First, do any copy propagation possible into the src regs. */
3562 for (int r = 0; r < 3; r++) {
3563 glsl_to_tgsi_instruction *first = NULL;
3564 bool good = true;
3565 int acp_base = inst->src[r].index * 4;
3566
3567 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3568 inst->src[r].reladdr ||
3569 inst->src[r].reladdr2)
3570 continue;
3571
3572 /* See if we can find entries in the ACP consisting of MOVs
3573 * from the same src register for all the swizzled channels
3574 * of this src register reference.
3575 */
3576 for (int i = 0; i < 4; i++) {
3577 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3578 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3579
3580 if (!copy_chan) {
3581 good = false;
3582 break;
3583 }
3584
3585 assert(acp_level[acp_base + src_chan] <= level);
3586
3587 if (!first) {
3588 first = copy_chan;
3589 } else {
3590 if (first->src[0].file != copy_chan->src[0].file ||
3591 first->src[0].index != copy_chan->src[0].index) {
3592 good = false;
3593 break;
3594 }
3595 }
3596 }
3597
3598 if (good) {
3599 /* We've now validated that we can copy-propagate to
3600 * replace this src register reference. Do it.
3601 */
3602 inst->src[r].file = first->src[0].file;
3603 inst->src[r].index = first->src[0].index;
3604 inst->src[r].index2D = first->src[0].index2D;
3605 inst->src[r].has_index2 = first->src[0].has_index2;
3606
3607 int swizzle = 0;
3608 for (int i = 0; i < 4; i++) {
3609 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3610 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3611 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3612 (3 * i));
3613 }
3614 inst->src[r].swizzle = swizzle;
3615 }
3616 }
3617
3618 switch (inst->op) {
3619 case TGSI_OPCODE_BGNLOOP:
3620 case TGSI_OPCODE_ENDLOOP:
3621 /* End of a basic block, clear the ACP entirely. */
3622 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3623 break;
3624
3625 case TGSI_OPCODE_IF:
3626 case TGSI_OPCODE_UIF:
3627 ++level;
3628 break;
3629
3630 case TGSI_OPCODE_ENDIF:
3631 case TGSI_OPCODE_ELSE:
3632 /* Clear all channels written inside the block from the ACP, but
3633 * leaving those that were not touched.
3634 */
3635 for (int r = 0; r < this->next_temp; r++) {
3636 for (int c = 0; c < 4; c++) {
3637 if (!acp[4 * r + c])
3638 continue;
3639
3640 if (acp_level[4 * r + c] >= level)
3641 acp[4 * r + c] = NULL;
3642 }
3643 }
3644 if (inst->op == TGSI_OPCODE_ENDIF)
3645 --level;
3646 break;
3647
3648 default:
3649 /* Continuing the block, clear any written channels from
3650 * the ACP.
3651 */
3652 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3653 /* Any temporary might be written, so no copy propagation
3654 * across this instruction.
3655 */
3656 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3657 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3658 inst->dst.reladdr) {
3659 /* Any output might be written, so no copy propagation
3660 * from outputs across this instruction.
3661 */
3662 for (int r = 0; r < this->next_temp; r++) {
3663 for (int c = 0; c < 4; c++) {
3664 if (!acp[4 * r + c])
3665 continue;
3666
3667 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3668 acp[4 * r + c] = NULL;
3669 }
3670 }
3671 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3672 inst->dst.file == PROGRAM_OUTPUT) {
3673 /* Clear where it's used as dst. */
3674 if (inst->dst.file == PROGRAM_TEMPORARY) {
3675 for (int c = 0; c < 4; c++) {
3676 if (inst->dst.writemask & (1 << c)) {
3677 acp[4 * inst->dst.index + c] = NULL;
3678 }
3679 }
3680 }
3681
3682 /* Clear where it's used as src. */
3683 for (int r = 0; r < this->next_temp; r++) {
3684 for (int c = 0; c < 4; c++) {
3685 if (!acp[4 * r + c])
3686 continue;
3687
3688 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3689
3690 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3691 acp[4 * r + c]->src[0].index == inst->dst.index &&
3692 inst->dst.writemask & (1 << src_chan))
3693 {
3694 acp[4 * r + c] = NULL;
3695 }
3696 }
3697 }
3698 }
3699 break;
3700 }
3701
3702 /* If this is a copy, add it to the ACP. */
3703 if (inst->op == TGSI_OPCODE_MOV &&
3704 inst->dst.file == PROGRAM_TEMPORARY &&
3705 !(inst->dst.file == inst->src[0].file &&
3706 inst->dst.index == inst->src[0].index) &&
3707 !inst->dst.reladdr &&
3708 !inst->saturate &&
3709 !inst->src[0].reladdr &&
3710 !inst->src[0].reladdr2 &&
3711 !inst->src[0].negate) {
3712 for (int i = 0; i < 4; i++) {
3713 if (inst->dst.writemask & (1 << i)) {
3714 acp[4 * inst->dst.index + i] = inst;
3715 acp_level[4 * inst->dst.index + i] = level;
3716 }
3717 }
3718 }
3719 }
3720
3721 ralloc_free(acp_level);
3722 ralloc_free(acp);
3723 }
3724
3725 /*
3726 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3727 * code elimination.
3728 *
3729 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3730 * will occur. As an example, a TXP production after copy propagation but
3731 * before this pass:
3732 *
3733 * 0: MOV TEMP[1], INPUT[4].xyyy;
3734 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3735 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3736 *
3737 * and after this pass:
3738 *
3739 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3740 */
3741 int
3742 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3743 {
3744 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3745 glsl_to_tgsi_instruction *,
3746 this->next_temp * 4);
3747 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3748 int level = 0;
3749 int removed = 0;
3750
3751 foreach_list(node, &this->instructions) {
3752 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3753
3754 assert(inst->dst.file != PROGRAM_TEMPORARY
3755 || inst->dst.index < this->next_temp);
3756
3757 switch (inst->op) {
3758 case TGSI_OPCODE_BGNLOOP:
3759 case TGSI_OPCODE_ENDLOOP:
3760 case TGSI_OPCODE_CONT:
3761 case TGSI_OPCODE_BRK:
3762 /* End of a basic block, clear the write array entirely.
3763 *
3764 * This keeps us from killing dead code when the writes are
3765 * on either side of a loop, even when the register isn't touched
3766 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
3767 * dead code of this type, so it shouldn't make a difference as long as
3768 * the dead code elimination pass in the GLSL compiler does its job.
3769 */
3770 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3771 break;
3772
3773 case TGSI_OPCODE_ENDIF:
3774 case TGSI_OPCODE_ELSE:
3775 /* Promote the recorded level of all channels written inside the
3776 * preceding if or else block to the level above the if/else block.
3777 */
3778 for (int r = 0; r < this->next_temp; r++) {
3779 for (int c = 0; c < 4; c++) {
3780 if (!writes[4 * r + c])
3781 continue;
3782
3783 if (write_level[4 * r + c] == level)
3784 write_level[4 * r + c] = level-1;
3785 }
3786 }
3787
3788 if(inst->op == TGSI_OPCODE_ENDIF)
3789 --level;
3790
3791 break;
3792
3793 case TGSI_OPCODE_IF:
3794 case TGSI_OPCODE_UIF:
3795 ++level;
3796 /* fallthrough to default case to mark the condition as read */
3797
3798 default:
3799 /* Continuing the block, clear any channels from the write array that
3800 * are read by this instruction.
3801 */
3802 for (unsigned i = 0; i < Elements(inst->src); i++) {
3803 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3804 /* Any temporary might be read, so no dead code elimination
3805 * across this instruction.
3806 */
3807 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3808 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3809 /* Clear where it's used as src. */
3810 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3811 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3812 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3813 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3814
3815 for (int c = 0; c < 4; c++) {
3816 if (src_chans & (1 << c)) {
3817 writes[4 * inst->src[i].index + c] = NULL;
3818 }
3819 }
3820 }
3821 }
3822 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
3823 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
3824 /* Any temporary might be read, so no dead code elimination
3825 * across this instruction.
3826 */
3827 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3828 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
3829 /* Clear where it's used as src. */
3830 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
3831 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
3832 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
3833 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
3834
3835 for (int c = 0; c < 4; c++) {
3836 if (src_chans & (1 << c)) {
3837 writes[4 * inst->tex_offsets[i].index + c] = NULL;
3838 }
3839 }
3840 }
3841 }
3842 break;
3843 }
3844
3845 /* If this instruction writes to a temporary, add it to the write array.
3846 * If there is already an instruction in the write array for one or more
3847 * of the channels, flag that channel write as dead.
3848 */
3849 if (inst->dst.file == PROGRAM_TEMPORARY &&
3850 !inst->dst.reladdr &&
3851 !inst->saturate) {
3852 for (int c = 0; c < 4; c++) {
3853 if (inst->dst.writemask & (1 << c)) {
3854 if (writes[4 * inst->dst.index + c]) {
3855 if (write_level[4 * inst->dst.index + c] < level)
3856 continue;
3857 else
3858 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3859 }
3860 writes[4 * inst->dst.index + c] = inst;
3861 write_level[4 * inst->dst.index + c] = level;
3862 }
3863 }
3864 }
3865 }
3866
3867 /* Anything still in the write array at this point is dead code. */
3868 for (int r = 0; r < this->next_temp; r++) {
3869 for (int c = 0; c < 4; c++) {
3870 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3871 if (inst)
3872 inst->dead_mask |= (1 << c);
3873 }
3874 }
3875
3876 /* Now actually remove the instructions that are completely dead and update
3877 * the writemask of other instructions with dead channels.
3878 */
3879 foreach_list_safe(node, &this->instructions) {
3880 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
3881
3882 if (!inst->dead_mask || !inst->dst.writemask)
3883 continue;
3884 else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3885 inst->remove();
3886 delete inst;
3887 removed++;
3888 } else
3889 inst->dst.writemask &= ~(inst->dead_mask);
3890 }
3891
3892 ralloc_free(write_level);
3893 ralloc_free(writes);
3894
3895 return removed;
3896 }
3897
3898 /* Merges temporary registers together where possible to reduce the number of
3899 * registers needed to run a program.
3900 *
3901 * Produces optimal code only after copy propagation and dead code elimination
3902 * have been run. */
3903 void
3904 glsl_to_tgsi_visitor::merge_registers(void)
3905 {
3906 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3907 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3908 int i, j;
3909
3910 /* Read the indices of the last read and first write to each temp register
3911 * into an array so that we don't have to traverse the instruction list as
3912 * much. */
3913 for (i=0; i < this->next_temp; i++) {
3914 last_reads[i] = get_last_temp_read(i);
3915 first_writes[i] = get_first_temp_write(i);
3916 }
3917
3918 /* Start looking for registers with non-overlapping usages that can be
3919 * merged together. */
3920 for (i=0; i < this->next_temp; i++) {
3921 /* Don't touch unused registers. */
3922 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3923
3924 for (j=0; j < this->next_temp; j++) {
3925 /* Don't touch unused registers. */
3926 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3927
3928 /* We can merge the two registers if the first write to j is after or
3929 * in the same instruction as the last read from i. Note that the
3930 * register at index i will always be used earlier or at the same time
3931 * as the register at index j. */
3932 if (first_writes[i] <= first_writes[j] &&
3933 last_reads[i] <= first_writes[j])
3934 {
3935 rename_temp_register(j, i); /* Replace all references to j with i.*/
3936
3937 /* Update the first_writes and last_reads arrays with the new
3938 * values for the merged register index, and mark the newly unused
3939 * register index as such. */
3940 last_reads[i] = last_reads[j];
3941 first_writes[j] = -1;
3942 last_reads[j] = -1;
3943 }
3944 }
3945 }
3946
3947 ralloc_free(last_reads);
3948 ralloc_free(first_writes);
3949 }
3950
3951 /* Reassign indices to temporary registers by reusing unused indices created
3952 * by optimization passes. */
3953 void
3954 glsl_to_tgsi_visitor::renumber_registers(void)
3955 {
3956 int i = 0;
3957 int new_index = 0;
3958
3959 for (i=0; i < this->next_temp; i++) {
3960 if (get_first_temp_read(i) < 0) continue;
3961 if (i != new_index)
3962 rename_temp_register(i, new_index);
3963 new_index++;
3964 }
3965
3966 this->next_temp = new_index;
3967 }
3968
3969 /**
3970 * Returns a fragment program which implements the current pixel transfer ops.
3971 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3972 */
3973 extern "C" void
3974 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3975 glsl_to_tgsi_visitor *original,
3976 int scale_and_bias, int pixel_maps)
3977 {
3978 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3979 struct st_context *st = st_context(original->ctx);
3980 struct gl_program *prog = &fp->Base.Base;
3981 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3982 st_src_reg coord, src0;
3983 st_dst_reg dst0;
3984 glsl_to_tgsi_instruction *inst;
3985
3986 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3987 v->ctx = original->ctx;
3988 v->prog = prog;
3989 v->shader_program = NULL;
3990 v->glsl_version = original->glsl_version;
3991 v->native_integers = original->native_integers;
3992 v->options = original->options;
3993 v->next_temp = original->next_temp;
3994 v->num_address_regs = original->num_address_regs;
3995 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3996 v->indirect_addr_consts = original->indirect_addr_consts;
3997 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3998 v->num_immediates = original->num_immediates;
3999
4000 /*
4001 * Get initial pixel color from the texture.
4002 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
4003 */
4004 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
4005 src0 = v->get_temp(glsl_type::vec4_type);
4006 dst0 = st_dst_reg(src0);
4007 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
4008 inst->sampler = 0;
4009 inst->tex_target = TEXTURE_2D_INDEX;
4010
4011 prog->InputsRead |= VARYING_BIT_TEX0;
4012 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
4013 v->samplers_used |= (1 << 0);
4014
4015 if (scale_and_bias) {
4016 static const gl_state_index scale_state[STATE_LENGTH] =
4017 { STATE_INTERNAL, STATE_PT_SCALE,
4018 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
4019 static const gl_state_index bias_state[STATE_LENGTH] =
4020 { STATE_INTERNAL, STATE_PT_BIAS,
4021 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
4022 GLint scale_p, bias_p;
4023 st_src_reg scale, bias;
4024
4025 scale_p = _mesa_add_state_reference(params, scale_state);
4026 bias_p = _mesa_add_state_reference(params, bias_state);
4027
4028 /* MAD colorTemp, colorTemp, scale, bias; */
4029 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
4030 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
4031 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
4032 }
4033
4034 if (pixel_maps) {
4035 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
4036 st_dst_reg temp_dst = st_dst_reg(temp);
4037
4038 assert(st->pixel_xfer.pixelmap_texture);
4039
4040 /* With a little effort, we can do four pixel map look-ups with
4041 * two TEX instructions:
4042 */
4043
4044 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
4045 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
4046 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
4047 inst->sampler = 1;
4048 inst->tex_target = TEXTURE_2D_INDEX;
4049
4050 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
4051 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
4052 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
4053 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
4054 inst->sampler = 1;
4055 inst->tex_target = TEXTURE_2D_INDEX;
4056
4057 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
4058 v->samplers_used |= (1 << 1);
4059
4060 /* MOV colorTemp, temp; */
4061 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
4062 }
4063
4064 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4065 * new visitor. */
4066 foreach_list(node, &original->instructions) {
4067 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
4068 glsl_to_tgsi_instruction *newinst;
4069 st_src_reg src_regs[3];
4070
4071 if (inst->dst.file == PROGRAM_OUTPUT)
4072 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4073
4074 for (int i=0; i<3; i++) {
4075 src_regs[i] = inst->src[i];
4076 if (src_regs[i].file == PROGRAM_INPUT &&
4077 src_regs[i].index == VARYING_SLOT_COL0)
4078 {
4079 src_regs[i].file = PROGRAM_TEMPORARY;
4080 src_regs[i].index = src0.index;
4081 }
4082 else if (src_regs[i].file == PROGRAM_INPUT)
4083 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
4084 }
4085
4086 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4087 newinst->tex_target = inst->tex_target;
4088 }
4089
4090 /* Make modifications to fragment program info. */
4091 prog->Parameters = _mesa_combine_parameter_lists(params,
4092 original->prog->Parameters);
4093 _mesa_free_parameter_list(params);
4094 count_resources(v, prog);
4095 fp->glsl_to_tgsi = v;
4096 }
4097
4098 /**
4099 * Make fragment program for glBitmap:
4100 * Sample the texture and kill the fragment if the bit is 0.
4101 * This program will be combined with the user's fragment program.
4102 *
4103 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
4104 */
4105 extern "C" void
4106 get_bitmap_visitor(struct st_fragment_program *fp,
4107 glsl_to_tgsi_visitor *original, int samplerIndex)
4108 {
4109 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
4110 struct st_context *st = st_context(original->ctx);
4111 struct gl_program *prog = &fp->Base.Base;
4112 st_src_reg coord, src0;
4113 st_dst_reg dst0;
4114 glsl_to_tgsi_instruction *inst;
4115
4116 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
4117 v->ctx = original->ctx;
4118 v->prog = prog;
4119 v->shader_program = NULL;
4120 v->glsl_version = original->glsl_version;
4121 v->native_integers = original->native_integers;
4122 v->options = original->options;
4123 v->next_temp = original->next_temp;
4124 v->num_address_regs = original->num_address_regs;
4125 v->samplers_used = prog->SamplersUsed = original->samplers_used;
4126 v->indirect_addr_consts = original->indirect_addr_consts;
4127 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
4128 v->num_immediates = original->num_immediates;
4129
4130 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
4131 coord = st_src_reg(PROGRAM_INPUT, VARYING_SLOT_TEX0, glsl_type::vec2_type);
4132 src0 = v->get_temp(glsl_type::vec4_type);
4133 dst0 = st_dst_reg(src0);
4134 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
4135 inst->sampler = samplerIndex;
4136 inst->tex_target = TEXTURE_2D_INDEX;
4137
4138 prog->InputsRead |= VARYING_BIT_TEX0;
4139 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
4140 v->samplers_used |= (1 << samplerIndex);
4141
4142 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
4143 src0.negate = NEGATE_XYZW;
4144 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
4145 src0.swizzle = SWIZZLE_XXXX;
4146 inst = v->emit(NULL, TGSI_OPCODE_KILL_IF, undef_dst, src0);
4147
4148 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4149 * new visitor. */
4150 foreach_list(node, &original->instructions) {
4151 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *) node;
4152 glsl_to_tgsi_instruction *newinst;
4153 st_src_reg src_regs[3];
4154
4155 if (inst->dst.file == PROGRAM_OUTPUT)
4156 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4157
4158 for (int i=0; i<3; i++) {
4159 src_regs[i] = inst->src[i];
4160 if (src_regs[i].file == PROGRAM_INPUT)
4161 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
4162 }
4163
4164 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4165 newinst->tex_target = inst->tex_target;
4166 }
4167
4168 /* Make modifications to fragment program info. */
4169 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
4170 count_resources(v, prog);
4171 fp->glsl_to_tgsi = v;
4172 }
4173
4174 /* ------------------------- TGSI conversion stuff -------------------------- */
4175 struct label {
4176 unsigned branch_target;
4177 unsigned token;
4178 };
4179
4180 /**
4181 * Intermediate state used during shader translation.
4182 */
4183 struct st_translate {
4184 struct ureg_program *ureg;
4185
4186 struct ureg_dst temps[MAX_TEMPS];
4187 struct ureg_dst arrays[MAX_ARRAYS];
4188 struct ureg_src *constants;
4189 struct ureg_src *immediates;
4190 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4191 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4192 struct ureg_dst address[2];
4193 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4194 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4195 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
4196 unsigned array_sizes[MAX_ARRAYS];
4197
4198 const GLuint *inputMapping;
4199 const GLuint *outputMapping;
4200
4201 /* For every instruction that contains a label (eg CALL), keep
4202 * details so that we can go back afterwards and emit the correct
4203 * tgsi instruction number for each label.
4204 */
4205 struct label *labels;
4206 unsigned labels_size;
4207 unsigned labels_count;
4208
4209 /* Keep a record of the tgsi instruction number that each mesa
4210 * instruction starts at, will be used to fix up labels after
4211 * translation.
4212 */
4213 unsigned *insn;
4214 unsigned insn_size;
4215 unsigned insn_count;
4216
4217 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4218
4219 boolean error;
4220 };
4221
4222 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4223 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4224 TGSI_SEMANTIC_FACE,
4225 TGSI_SEMANTIC_VERTEXID,
4226 TGSI_SEMANTIC_INSTANCEID,
4227 TGSI_SEMANTIC_SAMPLEID,
4228 TGSI_SEMANTIC_SAMPLEPOS,
4229 TGSI_SEMANTIC_SAMPLEMASK,
4230 TGSI_SEMANTIC_INVOCATIONID,
4231 };
4232
4233 /**
4234 * Make note of a branch to a label in the TGSI code.
4235 * After we've emitted all instructions, we'll go over the list
4236 * of labels built here and patch the TGSI code with the actual
4237 * location of each label.
4238 */
4239 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4240 {
4241 unsigned i;
4242
4243 if (t->labels_count + 1 >= t->labels_size) {
4244 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4245 t->labels = (struct label *)realloc(t->labels,
4246 t->labels_size * sizeof(struct label));
4247 if (t->labels == NULL) {
4248 static unsigned dummy;
4249 t->error = TRUE;
4250 return &dummy;
4251 }
4252 }
4253
4254 i = t->labels_count++;
4255 t->labels[i].branch_target = branch_target;
4256 return &t->labels[i].token;
4257 }
4258
4259 /**
4260 * Called prior to emitting the TGSI code for each instruction.
4261 * Allocate additional space for instructions if needed.
4262 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4263 * the next TGSI instruction.
4264 */
4265 static void set_insn_start(struct st_translate *t, unsigned start)
4266 {
4267 if (t->insn_count + 1 >= t->insn_size) {
4268 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4269 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4270 if (t->insn == NULL) {
4271 t->error = TRUE;
4272 return;
4273 }
4274 }
4275
4276 t->insn[t->insn_count++] = start;
4277 }
4278
4279 /**
4280 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4281 */
4282 static struct ureg_src
4283 emit_immediate(struct st_translate *t,
4284 gl_constant_value values[4],
4285 int type, int size)
4286 {
4287 struct ureg_program *ureg = t->ureg;
4288
4289 switch(type)
4290 {
4291 case GL_FLOAT:
4292 return ureg_DECL_immediate(ureg, &values[0].f, size);
4293 case GL_INT:
4294 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4295 case GL_UNSIGNED_INT:
4296 case GL_BOOL:
4297 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4298 default:
4299 assert(!"should not get here - type must be float, int, uint, or bool");
4300 return ureg_src_undef();
4301 }
4302 }
4303
4304 /**
4305 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4306 */
4307 static struct ureg_dst
4308 dst_register(struct st_translate *t,
4309 gl_register_file file,
4310 GLuint index)
4311 {
4312 unsigned array;
4313
4314 switch(file) {
4315 case PROGRAM_UNDEFINED:
4316 return ureg_dst_undef();
4317
4318 case PROGRAM_TEMPORARY:
4319 assert(index >= 0);
4320 assert(index < (int) Elements(t->temps));
4321
4322 if (ureg_dst_is_undef(t->temps[index]))
4323 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4324
4325 return t->temps[index];
4326
4327 case PROGRAM_ARRAY:
4328 array = index >> 16;
4329
4330 assert(array >= 0);
4331 assert(array < (int) Elements(t->arrays));
4332
4333 if (ureg_dst_is_undef(t->arrays[array]))
4334 t->arrays[array] = ureg_DECL_array_temporary(
4335 t->ureg, t->array_sizes[array], TRUE);
4336
4337 return ureg_dst_array_offset(t->arrays[array],
4338 (int)(index & 0xFFFF) - 0x8000);
4339
4340 case PROGRAM_OUTPUT:
4341 if (t->procType == TGSI_PROCESSOR_VERTEX)
4342 assert(index < VARYING_SLOT_MAX);
4343 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4344 assert(index < FRAG_RESULT_MAX);
4345 else
4346 assert(index < VARYING_SLOT_MAX);
4347
4348 assert(t->outputMapping[index] < Elements(t->outputs));
4349
4350 return t->outputs[t->outputMapping[index]];
4351
4352 case PROGRAM_ADDRESS:
4353 return t->address[index];
4354
4355 default:
4356 assert(!"unknown dst register file");
4357 return ureg_dst_undef();
4358 }
4359 }
4360
4361 /**
4362 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4363 */
4364 static struct ureg_src
4365 src_register(struct st_translate *t,
4366 gl_register_file file,
4367 GLint index, GLint index2D)
4368 {
4369 switch(file) {
4370 case PROGRAM_UNDEFINED:
4371 return ureg_src_undef();
4372
4373 case PROGRAM_TEMPORARY:
4374 case PROGRAM_ARRAY:
4375 return ureg_src(dst_register(t, file, index));
4376
4377 case PROGRAM_UNIFORM:
4378 assert(index >= 0);
4379 return t->constants[index];
4380 case PROGRAM_STATE_VAR:
4381 case PROGRAM_CONSTANT: /* ie, immediate */
4382 if (index2D) {
4383 struct ureg_src src;
4384 src = ureg_src_register(TGSI_FILE_CONSTANT, 0);
4385 src.Dimension = 1;
4386 src.DimensionIndex = index2D;
4387 return src;
4388 } else if (index < 0)
4389 return ureg_DECL_constant(t->ureg, 0);
4390 else
4391 return t->constants[index];
4392
4393 case PROGRAM_IMMEDIATE:
4394 return t->immediates[index];
4395
4396 case PROGRAM_INPUT:
4397 assert(t->inputMapping[index] < Elements(t->inputs));
4398 return t->inputs[t->inputMapping[index]];
4399
4400 case PROGRAM_OUTPUT:
4401 assert(t->outputMapping[index] < Elements(t->outputs));
4402 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4403
4404 case PROGRAM_ADDRESS:
4405 return ureg_src(t->address[index]);
4406
4407 case PROGRAM_SYSTEM_VALUE:
4408 assert(index < (int) Elements(t->systemValues));
4409 return t->systemValues[index];
4410
4411 default:
4412 assert(!"unknown src register file");
4413 return ureg_src_undef();
4414 }
4415 }
4416
4417 /**
4418 * Create a TGSI ureg_dst register from an st_dst_reg.
4419 */
4420 static struct ureg_dst
4421 translate_dst(struct st_translate *t,
4422 const st_dst_reg *dst_reg,
4423 bool saturate, bool clamp_color)
4424 {
4425 struct ureg_dst dst = dst_register(t,
4426 dst_reg->file,
4427 dst_reg->index);
4428
4429 dst = ureg_writemask(dst, dst_reg->writemask);
4430
4431 if (saturate)
4432 dst = ureg_saturate(dst);
4433 else if (clamp_color && dst_reg->file == PROGRAM_OUTPUT) {
4434 /* Clamp colors for ARB_color_buffer_float. */
4435 switch (t->procType) {
4436 case TGSI_PROCESSOR_VERTEX:
4437 /* XXX if the geometry shader is present, this must be done there
4438 * instead of here. */
4439 if (dst_reg->index == VARYING_SLOT_COL0 ||
4440 dst_reg->index == VARYING_SLOT_COL1 ||
4441 dst_reg->index == VARYING_SLOT_BFC0 ||
4442 dst_reg->index == VARYING_SLOT_BFC1) {
4443 dst = ureg_saturate(dst);
4444 }
4445 break;
4446
4447 case TGSI_PROCESSOR_FRAGMENT:
4448 if (dst_reg->index == FRAG_RESULT_COLOR ||
4449 dst_reg->index >= FRAG_RESULT_DATA0) {
4450 dst = ureg_saturate(dst);
4451 }
4452 break;
4453 }
4454 }
4455
4456 if (dst_reg->reladdr != NULL) {
4457 assert(dst_reg->file != PROGRAM_TEMPORARY);
4458 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4459 }
4460
4461 return dst;
4462 }
4463
4464 /**
4465 * Create a TGSI ureg_src register from an st_src_reg.
4466 */
4467 static struct ureg_src
4468 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4469 {
4470 struct ureg_src src = src_register(t, src_reg->file, src_reg->index, src_reg->index2D);
4471
4472 if (t->procType == TGSI_PROCESSOR_GEOMETRY && src_reg->has_index2) {
4473 src = src_register(t, src_reg->file, src_reg->index, src_reg->index2D);
4474 if (src_reg->reladdr2)
4475 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
4476 src_reg->index2D);
4477 else
4478 src = ureg_src_dimension(src, src_reg->index2D);
4479 }
4480
4481 src = ureg_swizzle(src,
4482 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4483 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4484 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4485 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4486
4487 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4488 src = ureg_negate(src);
4489
4490 if (src_reg->reladdr != NULL) {
4491 assert(src_reg->file != PROGRAM_TEMPORARY);
4492 src = ureg_src_indirect(src, ureg_src(t->address[0]));
4493 }
4494
4495 return src;
4496 }
4497
4498 static struct tgsi_texture_offset
4499 translate_tex_offset(struct st_translate *t,
4500 const st_src_reg *in_offset, int idx)
4501 {
4502 struct tgsi_texture_offset offset;
4503 struct ureg_src imm_src;
4504 struct ureg_dst dst;
4505 int array;
4506
4507 switch (in_offset->file) {
4508 case PROGRAM_IMMEDIATE:
4509 imm_src = t->immediates[in_offset->index];
4510
4511 offset.File = imm_src.File;
4512 offset.Index = imm_src.Index;
4513 offset.SwizzleX = imm_src.SwizzleX;
4514 offset.SwizzleY = imm_src.SwizzleY;
4515 offset.SwizzleZ = imm_src.SwizzleZ;
4516 offset.Padding = 0;
4517 break;
4518 case PROGRAM_TEMPORARY:
4519 imm_src = ureg_src(t->temps[in_offset->index]);
4520 offset.File = imm_src.File;
4521 offset.Index = imm_src.Index;
4522 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4523 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4524 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4525 offset.Padding = 0;
4526 break;
4527 case PROGRAM_ARRAY:
4528 array = in_offset->index >> 16;
4529
4530 assert(array >= 0);
4531 assert(array < (int) Elements(t->arrays));
4532
4533 dst = t->arrays[array];
4534 offset.File = dst.File;
4535 offset.Index = dst.Index + (in_offset->index & 0xFFFF) - 0x8000;
4536 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4537 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4538 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4539 offset.Padding = 0;
4540 break;
4541 default:
4542 break;
4543 }
4544 return offset;
4545 }
4546
4547 static void
4548 compile_tgsi_instruction(struct st_translate *t,
4549 const glsl_to_tgsi_instruction *inst,
4550 bool clamp_dst_color_output)
4551 {
4552 struct ureg_program *ureg = t->ureg;
4553 GLuint i;
4554 struct ureg_dst dst[1];
4555 struct ureg_src src[4];
4556 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4557
4558 unsigned num_dst;
4559 unsigned num_src;
4560 unsigned tex_target;
4561
4562 num_dst = num_inst_dst_regs(inst->op);
4563 num_src = num_inst_src_regs(inst->op);
4564
4565 if (num_dst)
4566 dst[0] = translate_dst(t,
4567 &inst->dst,
4568 inst->saturate,
4569 clamp_dst_color_output);
4570
4571 for (i = 0; i < num_src; i++)
4572 src[i] = translate_src(t, &inst->src[i]);
4573
4574 switch(inst->op) {
4575 case TGSI_OPCODE_BGNLOOP:
4576 case TGSI_OPCODE_CAL:
4577 case TGSI_OPCODE_ELSE:
4578 case TGSI_OPCODE_ENDLOOP:
4579 case TGSI_OPCODE_IF:
4580 case TGSI_OPCODE_UIF:
4581 assert(num_dst == 0);
4582 ureg_label_insn(ureg,
4583 inst->op,
4584 src, num_src,
4585 get_label(t,
4586 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4587 return;
4588
4589 case TGSI_OPCODE_TEX:
4590 case TGSI_OPCODE_TXB:
4591 case TGSI_OPCODE_TXD:
4592 case TGSI_OPCODE_TXL:
4593 case TGSI_OPCODE_TXP:
4594 case TGSI_OPCODE_TXQ:
4595 case TGSI_OPCODE_TXF:
4596 case TGSI_OPCODE_TEX2:
4597 case TGSI_OPCODE_TXB2:
4598 case TGSI_OPCODE_TXL2:
4599 case TGSI_OPCODE_TG4:
4600 case TGSI_OPCODE_LODQ:
4601 src[num_src++] = t->samplers[inst->sampler];
4602 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4603 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i], i);
4604 }
4605 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4606
4607 ureg_tex_insn(ureg,
4608 inst->op,
4609 dst, num_dst,
4610 tex_target,
4611 texoffsets, inst->tex_offset_num_offset,
4612 src, num_src);
4613 return;
4614
4615 case TGSI_OPCODE_SCS:
4616 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4617 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4618 break;
4619
4620 default:
4621 ureg_insn(ureg,
4622 inst->op,
4623 dst, num_dst,
4624 src, num_src);
4625 break;
4626 }
4627 }
4628
4629 /**
4630 * Emit the TGSI instructions for inverting and adjusting WPOS.
4631 * This code is unavoidable because it also depends on whether
4632 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4633 */
4634 static void
4635 emit_wpos_adjustment( struct st_translate *t,
4636 const struct gl_program *program,
4637 boolean invert,
4638 GLfloat adjX, GLfloat adjY[2])
4639 {
4640 struct ureg_program *ureg = t->ureg;
4641
4642 /* Fragment program uses fragment position input.
4643 * Need to replace instances of INPUT[WPOS] with temp T
4644 * where T = INPUT[WPOS] by y is inverted.
4645 */
4646 static const gl_state_index wposTransformState[STATE_LENGTH]
4647 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4648 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4649
4650 /* XXX: note we are modifying the incoming shader here! Need to
4651 * do this before emitting the constant decls below, or this
4652 * will be missed:
4653 */
4654 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4655 wposTransformState);
4656
4657 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4658 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4659 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
4660
4661 /* First, apply the coordinate shift: */
4662 if (adjX || adjY[0] || adjY[1]) {
4663 if (adjY[0] != adjY[1]) {
4664 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4665 * depending on whether inversion is actually going to be applied
4666 * or not, which is determined by testing against the inversion
4667 * state variable used below, which will be either +1 or -1.
4668 */
4669 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4670
4671 ureg_CMP(ureg, adj_temp,
4672 ureg_scalar(wpostrans, invert ? 2 : 0),
4673 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4674 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4675 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4676 } else {
4677 ureg_ADD(ureg, wpos_temp, wpos_input,
4678 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4679 }
4680 wpos_input = ureg_src(wpos_temp);
4681 } else {
4682 /* MOV wpos_temp, input[wpos]
4683 */
4684 ureg_MOV( ureg, wpos_temp, wpos_input );
4685 }
4686
4687 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4688 * inversion/identity, or the other way around if we're drawing to an FBO.
4689 */
4690 if (invert) {
4691 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4692 */
4693 ureg_MAD( ureg,
4694 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4695 wpos_input,
4696 ureg_scalar(wpostrans, 0),
4697 ureg_scalar(wpostrans, 1));
4698 } else {
4699 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4700 */
4701 ureg_MAD( ureg,
4702 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4703 wpos_input,
4704 ureg_scalar(wpostrans, 2),
4705 ureg_scalar(wpostrans, 3));
4706 }
4707
4708 /* Use wpos_temp as position input from here on:
4709 */
4710 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
4711 }
4712
4713
4714 /**
4715 * Emit fragment position/ooordinate code.
4716 */
4717 static void
4718 emit_wpos(struct st_context *st,
4719 struct st_translate *t,
4720 const struct gl_program *program,
4721 struct ureg_program *ureg)
4722 {
4723 const struct gl_fragment_program *fp =
4724 (const struct gl_fragment_program *) program;
4725 struct pipe_screen *pscreen = st->pipe->screen;
4726 GLfloat adjX = 0.0f;
4727 GLfloat adjY[2] = { 0.0f, 0.0f };
4728 boolean invert = FALSE;
4729
4730 /* Query the pixel center conventions supported by the pipe driver and set
4731 * adjX, adjY to help out if it cannot handle the requested one internally.
4732 *
4733 * The bias of the y-coordinate depends on whether y-inversion takes place
4734 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4735 * drawing to an FBO (causes additional inversion), and whether the the pipe
4736 * driver origin and the requested origin differ (the latter condition is
4737 * stored in the 'invert' variable).
4738 *
4739 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4740 *
4741 * center shift only:
4742 * i -> h: +0.5
4743 * h -> i: -0.5
4744 *
4745 * inversion only:
4746 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4747 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4748 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4749 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4750 *
4751 * inversion and center shift:
4752 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4753 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4754 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4755 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4756 */
4757 if (fp->OriginUpperLeft) {
4758 /* Fragment shader wants origin in upper-left */
4759 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4760 /* the driver supports upper-left origin */
4761 }
4762 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4763 /* the driver supports lower-left origin, need to invert Y */
4764 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4765 invert = TRUE;
4766 }
4767 else
4768 assert(0);
4769 }
4770 else {
4771 /* Fragment shader wants origin in lower-left */
4772 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4773 /* the driver supports lower-left origin */
4774 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4775 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4776 /* the driver supports upper-left origin, need to invert Y */
4777 invert = TRUE;
4778 else
4779 assert(0);
4780 }
4781
4782 if (fp->PixelCenterInteger) {
4783 /* Fragment shader wants pixel center integer */
4784 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4785 /* the driver supports pixel center integer */
4786 adjY[1] = 1.0f;
4787 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4788 }
4789 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4790 /* the driver supports pixel center half integer, need to bias X,Y */
4791 adjX = -0.5f;
4792 adjY[0] = -0.5f;
4793 adjY[1] = 0.5f;
4794 }
4795 else
4796 assert(0);
4797 }
4798 else {
4799 /* Fragment shader wants pixel center half integer */
4800 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4801 /* the driver supports pixel center half integer */
4802 }
4803 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4804 /* the driver supports pixel center integer, need to bias X,Y */
4805 adjX = adjY[0] = adjY[1] = 0.5f;
4806 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4807 }
4808 else
4809 assert(0);
4810 }
4811
4812 /* we invert after adjustment so that we avoid the MOV to temporary,
4813 * and reuse the adjustment ADD instead */
4814 emit_wpos_adjustment(t, program, invert, adjX, adjY);
4815 }
4816
4817 /**
4818 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4819 * TGSI uses +1 for front, -1 for back.
4820 * This function converts the TGSI value to the GL value. Simply clamping/
4821 * saturating the value to [0,1] does the job.
4822 */
4823 static void
4824 emit_face_var(struct st_translate *t)
4825 {
4826 struct ureg_program *ureg = t->ureg;
4827 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4828 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
4829
4830 /* MOV_SAT face_temp, input[face] */
4831 face_temp = ureg_saturate(face_temp);
4832 ureg_MOV(ureg, face_temp, face_input);
4833
4834 /* Use face_temp as face input from here on: */
4835 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
4836 }
4837
4838 static void
4839 emit_edgeflags(struct st_translate *t)
4840 {
4841 struct ureg_program *ureg = t->ureg;
4842 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VARYING_SLOT_EDGE]];
4843 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4844
4845 ureg_MOV(ureg, edge_dst, edge_src);
4846 }
4847
4848 /**
4849 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4850 * \param program the program to translate
4851 * \param numInputs number of input registers used
4852 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4853 * input indexes
4854 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4855 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4856 * each input
4857 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4858 * \param numOutputs number of output registers used
4859 * \param outputMapping maps Mesa fragment program outputs to TGSI
4860 * generic outputs
4861 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4862 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4863 * each output
4864 *
4865 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4866 */
4867 extern "C" enum pipe_error
4868 st_translate_program(
4869 struct gl_context *ctx,
4870 uint procType,
4871 struct ureg_program *ureg,
4872 glsl_to_tgsi_visitor *program,
4873 const struct gl_program *proginfo,
4874 GLuint numInputs,
4875 const GLuint inputMapping[],
4876 const ubyte inputSemanticName[],
4877 const ubyte inputSemanticIndex[],
4878 const GLuint interpMode[],
4879 const GLboolean is_centroid[],
4880 GLuint numOutputs,
4881 const GLuint outputMapping[],
4882 const ubyte outputSemanticName[],
4883 const ubyte outputSemanticIndex[],
4884 boolean passthrough_edgeflags,
4885 boolean clamp_color)
4886 {
4887 struct st_translate *t;
4888 unsigned i;
4889 enum pipe_error ret = PIPE_OK;
4890
4891 assert(numInputs <= Elements(t->inputs));
4892 assert(numOutputs <= Elements(t->outputs));
4893
4894 t = CALLOC_STRUCT(st_translate);
4895 if (!t) {
4896 ret = PIPE_ERROR_OUT_OF_MEMORY;
4897 goto out;
4898 }
4899
4900 memset(t, 0, sizeof *t);
4901
4902 t->procType = procType;
4903 t->inputMapping = inputMapping;
4904 t->outputMapping = outputMapping;
4905 t->ureg = ureg;
4906
4907 if (program->shader_program) {
4908 for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4909 struct gl_uniform_storage *const storage =
4910 &program->shader_program->UniformStorage[i];
4911
4912 _mesa_uniform_detach_all_driver_storage(storage);
4913 }
4914 }
4915
4916 /*
4917 * Declare input attributes.
4918 */
4919 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4920 for (i = 0; i < numInputs; i++) {
4921 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
4922 inputSemanticName[i],
4923 inputSemanticIndex[i],
4924 interpMode[i], 0,
4925 is_centroid[i]);
4926 }
4927
4928 if (proginfo->InputsRead & VARYING_BIT_POS) {
4929 /* Must do this after setting up t->inputs, and before
4930 * emitting constant references, below:
4931 */
4932 emit_wpos(st_context(ctx), t, proginfo, ureg);
4933 }
4934
4935 if (proginfo->InputsRead & VARYING_BIT_FACE)
4936 emit_face_var(t);
4937
4938 /*
4939 * Declare output attributes.
4940 */
4941 for (i = 0; i < numOutputs; i++) {
4942 switch (outputSemanticName[i]) {
4943 case TGSI_SEMANTIC_POSITION:
4944 t->outputs[i] = ureg_DECL_output(ureg,
4945 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4946 outputSemanticIndex[i]);
4947 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4948 break;
4949 case TGSI_SEMANTIC_STENCIL:
4950 t->outputs[i] = ureg_DECL_output(ureg,
4951 TGSI_SEMANTIC_STENCIL, /* Stencil */
4952 outputSemanticIndex[i]);
4953 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4954 break;
4955 case TGSI_SEMANTIC_COLOR:
4956 t->outputs[i] = ureg_DECL_output(ureg,
4957 TGSI_SEMANTIC_COLOR,
4958 outputSemanticIndex[i]);
4959 break;
4960 case TGSI_SEMANTIC_SAMPLEMASK:
4961 t->outputs[i] = ureg_DECL_output(ureg,
4962 TGSI_SEMANTIC_SAMPLEMASK,
4963 outputSemanticIndex[i]);
4964 /* TODO: If we ever support more than 32 samples, this will have
4965 * to become an array.
4966 */
4967 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
4968 break;
4969 default:
4970 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4971 ret = PIPE_ERROR_BAD_INPUT;
4972 goto out;
4973 }
4974 }
4975 }
4976 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4977 for (i = 0; i < numInputs; i++) {
4978 t->inputs[i] = ureg_DECL_gs_input(ureg,
4979 i,
4980 inputSemanticName[i],
4981 inputSemanticIndex[i]);
4982 }
4983
4984 for (i = 0; i < numOutputs; i++) {
4985 t->outputs[i] = ureg_DECL_output(ureg,
4986 outputSemanticName[i],
4987 outputSemanticIndex[i]);
4988 }
4989 }
4990 else {
4991 assert(procType == TGSI_PROCESSOR_VERTEX);
4992
4993 for (i = 0; i < numInputs; i++) {
4994 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4995 }
4996
4997 for (i = 0; i < numOutputs; i++) {
4998 t->outputs[i] = ureg_DECL_output(ureg,
4999 outputSemanticName[i],
5000 outputSemanticIndex[i]);
5001 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
5002 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
5003 ureg_MOV(ureg,
5004 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
5005 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
5006 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5007 }
5008 }
5009 if (passthrough_edgeflags)
5010 emit_edgeflags(t);
5011 }
5012
5013 /* Declare address register.
5014 */
5015 if (program->num_address_regs > 0) {
5016 assert(program->num_address_regs <= 2);
5017 t->address[0] = ureg_DECL_address(ureg);
5018 if (program->num_address_regs == 2)
5019 t->address[1] = ureg_DECL_address(ureg);
5020 }
5021
5022 /* Declare misc input registers
5023 */
5024 {
5025 GLbitfield sysInputs = proginfo->SystemValuesRead;
5026 unsigned numSys = 0;
5027 for (i = 0; sysInputs; i++) {
5028 if (sysInputs & (1 << i)) {
5029 unsigned semName = mesa_sysval_to_semantic[i];
5030 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
5031 if (semName == TGSI_SEMANTIC_INSTANCEID ||
5032 semName == TGSI_SEMANTIC_VERTEXID) {
5033 /* From Gallium perspective, these system values are always
5034 * integer, and require native integer support. However, if
5035 * native integer is supported on the vertex stage but not the
5036 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
5037 * assumes these system values are floats. To resolve the
5038 * inconsistency, we insert a U2F.
5039 */
5040 struct st_context *st = st_context(ctx);
5041 struct pipe_screen *pscreen = st->pipe->screen;
5042 assert(procType == TGSI_PROCESSOR_VERTEX);
5043 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
5044 if (!ctx->Const.NativeIntegers) {
5045 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
5046 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
5047 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
5048 }
5049 }
5050 numSys++;
5051 sysInputs &= ~(1 << i);
5052 }
5053 }
5054 }
5055
5056 /* Copy over array sizes
5057 */
5058 memcpy(t->array_sizes, program->array_sizes, sizeof(unsigned) * program->next_array);
5059
5060 /* Emit constants and uniforms. TGSI uses a single index space for these,
5061 * so we put all the translated regs in t->constants.
5062 */
5063 if (proginfo->Parameters) {
5064 t->constants = (struct ureg_src *)
5065 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
5066 if (t->constants == NULL) {
5067 ret = PIPE_ERROR_OUT_OF_MEMORY;
5068 goto out;
5069 }
5070
5071 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
5072 switch (proginfo->Parameters->Parameters[i].Type) {
5073 case PROGRAM_STATE_VAR:
5074 case PROGRAM_UNIFORM:
5075 t->constants[i] = ureg_DECL_constant(ureg, i);
5076 break;
5077
5078 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
5079 * addressing of the const buffer.
5080 * FIXME: Be smarter and recognize param arrays:
5081 * indirect addressing is only valid within the referenced
5082 * array.
5083 */
5084 case PROGRAM_CONSTANT:
5085 if (program->indirect_addr_consts)
5086 t->constants[i] = ureg_DECL_constant(ureg, i);
5087 else
5088 t->constants[i] = emit_immediate(t,
5089 proginfo->Parameters->ParameterValues[i],
5090 proginfo->Parameters->Parameters[i].DataType,
5091 4);
5092 break;
5093 default:
5094 break;
5095 }
5096 }
5097 }
5098
5099 if (program->shader_program) {
5100 unsigned num_ubos = program->shader_program->NumUniformBlocks;
5101
5102 for (i = 0; i < num_ubos; i++) {
5103 ureg_DECL_constant2D(t->ureg, 0, program->shader_program->UniformBlocks[i].UniformBufferSize / 4, i + 1);
5104 }
5105 }
5106
5107 /* Emit immediate values.
5108 */
5109 t->immediates = (struct ureg_src *)
5110 calloc(program->num_immediates, sizeof(struct ureg_src));
5111 if (t->immediates == NULL) {
5112 ret = PIPE_ERROR_OUT_OF_MEMORY;
5113 goto out;
5114 }
5115 i = 0;
5116 foreach_list(node, &program->immediates) {
5117 immediate_storage *imm = (immediate_storage *) node;
5118 assert(i < program->num_immediates);
5119 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
5120 }
5121 assert(i == program->num_immediates);
5122
5123 /* texture samplers */
5124 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
5125 if (program->samplers_used & (1 << i)) {
5126 t->samplers[i] = ureg_DECL_sampler(ureg, i);
5127 }
5128 }
5129
5130 /* Emit each instruction in turn:
5131 */
5132 foreach_list(n, &program->instructions) {
5133 set_insn_start(t, ureg_get_instruction_number(ureg));
5134 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *) n, clamp_color);
5135 }
5136
5137 /* Fix up all emitted labels:
5138 */
5139 for (i = 0; i < t->labels_count; i++) {
5140 ureg_fixup_label(ureg, t->labels[i].token,
5141 t->insn[t->labels[i].branch_target]);
5142 }
5143
5144 if (program->shader_program) {
5145 /* This has to be done last. Any operation the can cause
5146 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5147 * program constant) has to happen before creating this linkage.
5148 */
5149 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5150 if (program->shader_program->_LinkedShaders[i] == NULL)
5151 continue;
5152
5153 _mesa_associate_uniform_storage(ctx, program->shader_program,
5154 program->shader_program->_LinkedShaders[i]->Program->Parameters);
5155 }
5156 }
5157
5158 out:
5159 if (t) {
5160 free(t->insn);
5161 free(t->labels);
5162 free(t->constants);
5163 free(t->immediates);
5164
5165 if (t->error) {
5166 debug_printf("%s: translate error flag set\n", __FUNCTION__);
5167 }
5168
5169 free(t);
5170 }
5171
5172 return ret;
5173 }
5174 /* ----------------------------- End TGSI code ------------------------------ */
5175
5176
5177 static unsigned
5178 shader_stage_to_ptarget(gl_shader_stage stage)
5179 {
5180 switch (stage) {
5181 case MESA_SHADER_VERTEX:
5182 return PIPE_SHADER_VERTEX;
5183 case MESA_SHADER_FRAGMENT:
5184 return PIPE_SHADER_FRAGMENT;
5185 case MESA_SHADER_GEOMETRY:
5186 return PIPE_SHADER_GEOMETRY;
5187 case MESA_SHADER_COMPUTE:
5188 return PIPE_SHADER_COMPUTE;
5189 }
5190
5191 assert(!"should not be reached");
5192 return PIPE_SHADER_VERTEX;
5193 }
5194
5195
5196 /**
5197 * Convert a shader's GLSL IR into a Mesa gl_program, although without
5198 * generating Mesa IR.
5199 */
5200 static struct gl_program *
5201 get_mesa_program(struct gl_context *ctx,
5202 struct gl_shader_program *shader_program,
5203 struct gl_shader *shader)
5204 {
5205 glsl_to_tgsi_visitor* v;
5206 struct gl_program *prog;
5207 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
5208 bool progress;
5209 struct gl_shader_compiler_options *options =
5210 &ctx->ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(shader->Type)];
5211 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5212 unsigned ptarget = shader_stage_to_ptarget(shader->Stage);
5213
5214 validate_ir_tree(shader->ir);
5215
5216 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
5217 if (!prog)
5218 return NULL;
5219 prog->Parameters = _mesa_new_parameter_list();
5220 v = new glsl_to_tgsi_visitor();
5221 v->ctx = ctx;
5222 v->prog = prog;
5223 v->shader_program = shader_program;
5224 v->options = options;
5225 v->glsl_version = ctx->Const.GLSLVersion;
5226 v->native_integers = ctx->Const.NativeIntegers;
5227
5228 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
5229 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
5230
5231 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
5232 prog->Parameters);
5233
5234 /* Remove reads from output registers. */
5235 lower_output_reads(shader->ir);
5236
5237 /* Emit intermediate IR for main(). */
5238 visit_exec_list(shader->ir, v);
5239
5240 /* Now emit bodies for any functions that were used. */
5241 do {
5242 progress = GL_FALSE;
5243
5244 foreach_list(node, &v->function_signatures) {
5245 function_entry *entry = (function_entry *) node;
5246
5247 if (!entry->bgn_inst) {
5248 v->current_function = entry;
5249
5250 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
5251 entry->bgn_inst->function = entry;
5252
5253 visit_exec_list(&entry->sig->body, v);
5254
5255 glsl_to_tgsi_instruction *last;
5256 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
5257 if (last->op != TGSI_OPCODE_RET)
5258 v->emit(NULL, TGSI_OPCODE_RET);
5259
5260 glsl_to_tgsi_instruction *end;
5261 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
5262 end->function = entry;
5263
5264 progress = GL_TRUE;
5265 }
5266 }
5267 } while (progress);
5268
5269 #if 0
5270 /* Print out some information (for debugging purposes) used by the
5271 * optimization passes. */
5272 for (i=0; i < v->next_temp; i++) {
5273 int fr = v->get_first_temp_read(i);
5274 int fw = v->get_first_temp_write(i);
5275 int lr = v->get_last_temp_read(i);
5276 int lw = v->get_last_temp_write(i);
5277
5278 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
5279 assert(fw <= fr);
5280 }
5281 #endif
5282
5283 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5284 v->simplify_cmp();
5285 v->copy_propagate();
5286 while (v->eliminate_dead_code());
5287
5288 v->merge_registers();
5289 v->renumber_registers();
5290
5291 /* Write the END instruction. */
5292 v->emit(NULL, TGSI_OPCODE_END);
5293
5294 if (ctx->_Shader->Flags & GLSL_DUMP) {
5295 printf("\n");
5296 printf("GLSL IR for linked %s program %d:\n",
5297 _mesa_shader_stage_to_string(shader->Stage),
5298 shader_program->Name);
5299 _mesa_print_ir(stdout, shader->ir, NULL);
5300 printf("\n");
5301 printf("\n");
5302 fflush(stdout);
5303 }
5304
5305 prog->Instructions = NULL;
5306 prog->NumInstructions = 0;
5307
5308 do_set_program_inouts(shader->ir, prog, shader->Stage);
5309 count_resources(v, prog);
5310
5311 _mesa_reference_program(ctx, &shader->Program, prog);
5312
5313 /* This has to be done last. Any operation the can cause
5314 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5315 * program constant) has to happen before creating this linkage.
5316 */
5317 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5318 if (!shader_program->LinkStatus) {
5319 return NULL;
5320 }
5321
5322 struct st_vertex_program *stvp;
5323 struct st_fragment_program *stfp;
5324 struct st_geometry_program *stgp;
5325
5326 switch (shader->Type) {
5327 case GL_VERTEX_SHADER:
5328 stvp = (struct st_vertex_program *)prog;
5329 stvp->glsl_to_tgsi = v;
5330 break;
5331 case GL_FRAGMENT_SHADER:
5332 stfp = (struct st_fragment_program *)prog;
5333 stfp->glsl_to_tgsi = v;
5334 break;
5335 case GL_GEOMETRY_SHADER:
5336 stgp = (struct st_geometry_program *)prog;
5337 stgp->glsl_to_tgsi = v;
5338 stgp->Base.InputType = shader_program->Geom.InputType;
5339 stgp->Base.OutputType = shader_program->Geom.OutputType;
5340 stgp->Base.VerticesOut = shader_program->Geom.VerticesOut;
5341 stgp->Base.Invocations = shader_program->Geom.Invocations;
5342 break;
5343 default:
5344 assert(!"should not be reached");
5345 return NULL;
5346 }
5347
5348 return prog;
5349 }
5350
5351 extern "C" {
5352
5353 struct gl_shader *
5354 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
5355 {
5356 struct gl_shader *shader;
5357 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
5358 type == GL_GEOMETRY_SHADER_ARB);
5359 shader = rzalloc(NULL, struct gl_shader);
5360 if (shader) {
5361 shader->Type = type;
5362 shader->Stage = _mesa_shader_enum_to_shader_stage(type);
5363 shader->Name = name;
5364 _mesa_init_shader(ctx, shader);
5365 }
5366 return shader;
5367 }
5368
5369 struct gl_shader_program *
5370 st_new_shader_program(struct gl_context *ctx, GLuint name)
5371 {
5372 struct gl_shader_program *shProg;
5373 shProg = rzalloc(NULL, struct gl_shader_program);
5374 if (shProg) {
5375 shProg->Name = name;
5376 _mesa_init_shader_program(ctx, shProg);
5377 }
5378 return shProg;
5379 }
5380
5381 /**
5382 * Link a shader.
5383 * Called via ctx->Driver.LinkShader()
5384 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5385 * with code lowering and other optimizations.
5386 */
5387 GLboolean
5388 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5389 {
5390 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5391 assert(prog->LinkStatus);
5392
5393 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5394 if (prog->_LinkedShaders[i] == NULL)
5395 continue;
5396
5397 bool progress;
5398 exec_list *ir = prog->_LinkedShaders[i]->ir;
5399 const struct gl_shader_compiler_options *options =
5400 &ctx->ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(prog->_LinkedShaders[i]->Type)];
5401
5402 /* If there are forms of indirect addressing that the driver
5403 * cannot handle, perform the lowering pass.
5404 */
5405 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
5406 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
5407 lower_variable_index_to_cond_assign(ir,
5408 options->EmitNoIndirectInput,
5409 options->EmitNoIndirectOutput,
5410 options->EmitNoIndirectTemp,
5411 options->EmitNoIndirectUniform);
5412 }
5413
5414 if (ctx->Extensions.ARB_shading_language_packing) {
5415 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
5416 LOWER_UNPACK_SNORM_2x16 |
5417 LOWER_PACK_UNORM_2x16 |
5418 LOWER_UNPACK_UNORM_2x16 |
5419 LOWER_PACK_SNORM_4x8 |
5420 LOWER_UNPACK_SNORM_4x8 |
5421 LOWER_UNPACK_UNORM_4x8 |
5422 LOWER_PACK_UNORM_4x8 |
5423 LOWER_PACK_HALF_2x16 |
5424 LOWER_UNPACK_HALF_2x16;
5425
5426 lower_packing_builtins(ir, lower_inst);
5427 }
5428
5429 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
5430 lower_offset_arrays(ir);
5431 do_mat_op_to_vec(ir);
5432 lower_instructions(ir,
5433 MOD_TO_FRACT |
5434 DIV_TO_MUL_RCP |
5435 EXP_TO_EXP2 |
5436 LOG_TO_LOG2 |
5437 LDEXP_TO_ARITH |
5438 CARRY_TO_ARITH |
5439 BORROW_TO_ARITH |
5440 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
5441 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0));
5442
5443 lower_ubo_reference(prog->_LinkedShaders[i], ir);
5444 do_vec_index_to_cond_assign(ir);
5445 lower_vector_insert(ir, true);
5446 lower_quadop_vector(ir, false);
5447 lower_noise(ir);
5448 if (options->MaxIfDepth == 0) {
5449 lower_discard(ir);
5450 }
5451
5452 do {
5453 progress = false;
5454
5455 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5456
5457 progress = do_common_optimization(ir, true, true, options,
5458 ctx->Const.NativeIntegers)
5459 || progress;
5460
5461 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5462
5463 } while (progress);
5464
5465 validate_ir_tree(ir);
5466 }
5467
5468 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5469 struct gl_program *linked_prog;
5470
5471 if (prog->_LinkedShaders[i] == NULL)
5472 continue;
5473
5474 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5475
5476 if (linked_prog) {
5477 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5478 linked_prog);
5479 if (!ctx->Driver.ProgramStringNotify(ctx,
5480 _mesa_shader_stage_to_program(i),
5481 linked_prog)) {
5482 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5483 NULL);
5484 _mesa_reference_program(ctx, &linked_prog, NULL);
5485 return GL_FALSE;
5486 }
5487 }
5488
5489 _mesa_reference_program(ctx, &linked_prog, NULL);
5490 }
5491
5492 return GL_TRUE;
5493 }
5494
5495 void
5496 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5497 const GLuint outputMapping[],
5498 struct pipe_stream_output_info *so)
5499 {
5500 unsigned i;
5501 struct gl_transform_feedback_info *info =
5502 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5503
5504 for (i = 0; i < info->NumOutputs; i++) {
5505 so->output[i].register_index =
5506 outputMapping[info->Outputs[i].OutputRegister];
5507 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5508 so->output[i].num_components = info->Outputs[i].NumComponents;
5509 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5510 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5511 }
5512
5513 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5514 so->stride[i] = info->BufferStride[i];
5515 }
5516 so->num_outputs = info->NumOutputs;
5517 }
5518
5519 } /* extern "C" */