st/glsl_to_tgsi: ignore GL_TEXTURE_SRGB_DECODE_EXT for samplers used with texelFetch*()
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "compiler/glsl/glsl_parser_extras.h"
36 #include "compiler/glsl/ir_optimization.h"
37 #include "compiler/glsl/program.h"
38
39 #include "main/errors.h"
40 #include "main/shaderobj.h"
41 #include "main/uniforms.h"
42 #include "main/shaderapi.h"
43 #include "main/shaderimage.h"
44 #include "program/prog_instruction.h"
45
46 #include "pipe/p_context.h"
47 #include "pipe/p_screen.h"
48 #include "tgsi/tgsi_ureg.h"
49 #include "tgsi/tgsi_info.h"
50 #include "util/u_math.h"
51 #include "util/u_memory.h"
52 #include "st_glsl_types.h"
53 #include "st_program.h"
54 #include "st_mesa_to_tgsi.h"
55 #include "st_format.h"
56 #include "st_nir.h"
57 #include "st_shader_cache.h"
58 #include "st_glsl_to_tgsi_temprename.h"
59
60 #include "util/hash_table.h"
61 #include <algorithm>
62
63 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
64 (1 << PROGRAM_CONSTANT) | \
65 (1 << PROGRAM_UNIFORM))
66
67 #define MAX_GLSL_TEXTURE_OFFSET 4
68
69 static unsigned is_precise(const ir_variable *ir)
70 {
71 if (!ir)
72 return 0;
73 return ir->data.precise || ir->data.invariant;
74 }
75
76 class variable_storage {
77 DECLARE_RZALLOC_CXX_OPERATORS(variable_storage)
78
79 public:
80 variable_storage(ir_variable *var, gl_register_file file, int index,
81 unsigned array_id = 0)
82 : file(file), index(index), component(0), var(var), array_id(array_id)
83 {
84 assert(file != PROGRAM_ARRAY || array_id != 0);
85 }
86
87 gl_register_file file;
88 int index;
89
90 /* Explicit component location. This is given in terms of the GLSL-style
91 * swizzles where each double is a single component, i.e. for 64-bit types
92 * it can only be 0 or 1.
93 */
94 int component;
95 ir_variable *var; /* variable that maps to this, if any */
96 unsigned array_id;
97 };
98
99 class immediate_storage : public exec_node {
100 public:
101 immediate_storage(gl_constant_value *values, int size32, int type)
102 {
103 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
104 this->size32 = size32;
105 this->type = type;
106 }
107
108 /* doubles are stored across 2 gl_constant_values */
109 gl_constant_value values[4];
110 int size32; /**< Number of 32-bit components (1-4) */
111 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
112 };
113
114 static const st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
115 static const st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
116
117 struct inout_decl {
118 unsigned mesa_index;
119 unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
120 unsigned size;
121 unsigned interp_loc;
122 unsigned gs_out_streams;
123 enum glsl_interp_mode interp;
124 enum glsl_base_type base_type;
125 ubyte usage_mask; /* GLSL-style usage-mask, i.e. single bit per double */
126 };
127
128 static struct inout_decl *
129 find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
130 {
131 assert(array_id != 0);
132
133 for (unsigned i = 0; i < count; i++) {
134 struct inout_decl *decl = &decls[i];
135
136 if (array_id == decl->array_id) {
137 return decl;
138 }
139 }
140
141 return NULL;
142 }
143
144 static enum glsl_base_type
145 find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
146 {
147 if (!array_id)
148 return GLSL_TYPE_ERROR;
149 struct inout_decl *decl = find_inout_array(decls, count, array_id);
150 if (decl)
151 return decl->base_type;
152 return GLSL_TYPE_ERROR;
153 }
154
155 struct glsl_to_tgsi_visitor : public ir_visitor {
156 public:
157 glsl_to_tgsi_visitor();
158 ~glsl_to_tgsi_visitor();
159
160 struct gl_context *ctx;
161 struct gl_program *prog;
162 struct gl_shader_program *shader_program;
163 struct gl_linked_shader *shader;
164 struct gl_shader_compiler_options *options;
165
166 int next_temp;
167
168 unsigned *array_sizes;
169 unsigned max_num_arrays;
170 unsigned next_array;
171
172 struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
173 unsigned num_inputs;
174 unsigned num_input_arrays;
175 struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
176 unsigned num_outputs;
177 unsigned num_output_arrays;
178
179 int num_address_regs;
180 uint32_t samplers_used;
181 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
182 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
183 int images_used;
184 int image_targets[PIPE_MAX_SHADER_IMAGES];
185 unsigned image_formats[PIPE_MAX_SHADER_IMAGES];
186 bool indirect_addr_consts;
187 int wpos_transform_const;
188
189 int glsl_version;
190 bool native_integers;
191 bool have_sqrt;
192 bool have_fma;
193 bool use_shared_memory;
194 bool has_tex_txf_lz;
195 bool precise;
196 bool need_uarl;
197
198 variable_storage *find_variable_storage(ir_variable *var);
199
200 int add_constant(gl_register_file file, gl_constant_value values[8],
201 int size, int datatype, uint16_t *swizzle_out);
202
203 st_src_reg get_temp(const glsl_type *type);
204 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
205
206 st_src_reg st_src_reg_for_double(double val);
207 st_src_reg st_src_reg_for_float(float val);
208 st_src_reg st_src_reg_for_int(int val);
209 st_src_reg st_src_reg_for_int64(int64_t val);
210 st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
211
212 /**
213 * \name Visit methods
214 *
215 * As typical for the visitor pattern, there must be one \c visit method for
216 * each concrete subclass of \c ir_instruction. Virtual base classes within
217 * the hierarchy should not have \c visit methods.
218 */
219 /*@{*/
220 virtual void visit(ir_variable *);
221 virtual void visit(ir_loop *);
222 virtual void visit(ir_loop_jump *);
223 virtual void visit(ir_function_signature *);
224 virtual void visit(ir_function *);
225 virtual void visit(ir_expression *);
226 virtual void visit(ir_swizzle *);
227 virtual void visit(ir_dereference_variable *);
228 virtual void visit(ir_dereference_array *);
229 virtual void visit(ir_dereference_record *);
230 virtual void visit(ir_assignment *);
231 virtual void visit(ir_constant *);
232 virtual void visit(ir_call *);
233 virtual void visit(ir_return *);
234 virtual void visit(ir_discard *);
235 virtual void visit(ir_texture *);
236 virtual void visit(ir_if *);
237 virtual void visit(ir_emit_vertex *);
238 virtual void visit(ir_end_primitive *);
239 virtual void visit(ir_barrier *);
240 /*@}*/
241
242 void visit_expression(ir_expression *, st_src_reg *) ATTRIBUTE_NOINLINE;
243
244 void visit_atomic_counter_intrinsic(ir_call *);
245 void visit_ssbo_intrinsic(ir_call *);
246 void visit_membar_intrinsic(ir_call *);
247 void visit_shared_intrinsic(ir_call *);
248 void visit_image_intrinsic(ir_call *);
249 void visit_generic_intrinsic(ir_call *, unsigned op);
250
251 st_src_reg result;
252
253 /** List of variable_storage */
254 struct hash_table *variables;
255
256 /** List of immediate_storage */
257 exec_list immediates;
258 unsigned num_immediates;
259
260 /** List of glsl_to_tgsi_instruction */
261 exec_list instructions;
262
263 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
264 st_dst_reg dst = undef_dst,
265 st_src_reg src0 = undef_src,
266 st_src_reg src1 = undef_src,
267 st_src_reg src2 = undef_src,
268 st_src_reg src3 = undef_src);
269
270 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
271 st_dst_reg dst, st_dst_reg dst1,
272 st_src_reg src0 = undef_src,
273 st_src_reg src1 = undef_src,
274 st_src_reg src2 = undef_src,
275 st_src_reg src3 = undef_src);
276
277 unsigned get_opcode(unsigned op,
278 st_dst_reg dst,
279 st_src_reg src0, st_src_reg src1);
280
281 /**
282 * Emit the correct dot-product instruction for the type of arguments
283 */
284 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
285 st_dst_reg dst,
286 st_src_reg src0,
287 st_src_reg src1,
288 unsigned elements);
289
290 void emit_scalar(ir_instruction *ir, unsigned op,
291 st_dst_reg dst, st_src_reg src0);
292
293 void emit_scalar(ir_instruction *ir, unsigned op,
294 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
295
296 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
297
298 void get_deref_offsets(ir_dereference *ir,
299 unsigned *array_size,
300 unsigned *base,
301 uint16_t *index,
302 st_src_reg *reladdr,
303 bool opaque);
304 void calc_deref_offsets(ir_dereference *tail,
305 unsigned *array_elements,
306 uint16_t *index,
307 st_src_reg *indirect,
308 unsigned *location);
309 st_src_reg canonicalize_gather_offset(st_src_reg offset);
310
311 bool try_emit_mad(ir_expression *ir,
312 int mul_operand);
313 bool try_emit_mad_for_and_not(ir_expression *ir,
314 int mul_operand);
315
316 void emit_swz(ir_expression *ir);
317
318 bool process_move_condition(ir_rvalue *ir);
319
320 void simplify_cmp(void);
321
322 void rename_temp_registers(struct rename_reg_pair *renames);
323 void get_first_temp_read(int *first_reads);
324 void get_first_temp_write(int *first_writes);
325 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
326 void get_last_temp_write(int *last_writes);
327
328 void copy_propagate(void);
329 int eliminate_dead_code(void);
330
331 void merge_two_dsts(void);
332 void merge_registers(void);
333 void renumber_registers(void);
334
335 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
336 st_dst_reg *l, st_src_reg *r,
337 st_src_reg *cond, bool cond_swap);
338
339 void *mem_ctx;
340 };
341
342 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
343 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
344 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
345
346 static void
347 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
348
349 static void
350 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
351 {
352 va_list args;
353 va_start(args, fmt);
354 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
355 va_end(args);
356
357 prog->data->LinkStatus = linking_failure;
358 }
359
360 int
361 swizzle_for_size(int size)
362 {
363 static const int size_swizzles[4] = {
364 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
365 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
366 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
367 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
368 };
369
370 assert((size >= 1) && (size <= 4));
371 return size_swizzles[size - 1];
372 }
373
374
375 glsl_to_tgsi_instruction *
376 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
377 st_dst_reg dst, st_dst_reg dst1,
378 st_src_reg src0, st_src_reg src1,
379 st_src_reg src2, st_src_reg src3)
380 {
381 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
382 int num_reladdr = 0, i, j;
383 bool dst_is_64bit[2];
384
385 op = get_opcode(op, dst, src0, src1);
386
387 /* If we have to do relative addressing, we want to load the ARL
388 * reg directly for one of the regs, and preload the other reladdr
389 * sources into temps.
390 */
391 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
392 num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
393 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
394 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
395 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
396 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
397
398 reladdr_to_temp(ir, &src3, &num_reladdr);
399 reladdr_to_temp(ir, &src2, &num_reladdr);
400 reladdr_to_temp(ir, &src1, &num_reladdr);
401 reladdr_to_temp(ir, &src0, &num_reladdr);
402
403 if (dst.reladdr || dst.reladdr2) {
404 if (dst.reladdr)
405 emit_arl(ir, address_reg, *dst.reladdr);
406 if (dst.reladdr2)
407 emit_arl(ir, address_reg2, *dst.reladdr2);
408 num_reladdr--;
409 }
410 if (dst1.reladdr) {
411 emit_arl(ir, address_reg, *dst1.reladdr);
412 num_reladdr--;
413 }
414 assert(num_reladdr == 0);
415
416 /* inst->op has only 8 bits. */
417 STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
418
419 inst->op = op;
420 inst->precise = this->precise;
421 inst->info = tgsi_get_opcode_info(op);
422 inst->dst[0] = dst;
423 inst->dst[1] = dst1;
424 inst->src[0] = src0;
425 inst->src[1] = src1;
426 inst->src[2] = src2;
427 inst->src[3] = src3;
428 inst->is_64bit_expanded = false;
429 inst->ir = ir;
430 inst->dead_mask = 0;
431 inst->tex_offsets = NULL;
432 inst->tex_offset_num_offset = 0;
433 inst->saturate = 0;
434 inst->tex_shadow = 0;
435 /* default to float, for paths where this is not initialized
436 * (since 0==UINT which is likely wrong):
437 */
438 inst->tex_type = GLSL_TYPE_FLOAT;
439
440 /* Update indirect addressing status used by TGSI */
441 if (dst.reladdr || dst.reladdr2) {
442 switch(dst.file) {
443 case PROGRAM_STATE_VAR:
444 case PROGRAM_CONSTANT:
445 case PROGRAM_UNIFORM:
446 this->indirect_addr_consts = true;
447 break;
448 case PROGRAM_IMMEDIATE:
449 assert(!"immediates should not have indirect addressing");
450 break;
451 default:
452 break;
453 }
454 }
455 else {
456 for (i = 0; i < 4; i++) {
457 if(inst->src[i].reladdr) {
458 switch(inst->src[i].file) {
459 case PROGRAM_STATE_VAR:
460 case PROGRAM_CONSTANT:
461 case PROGRAM_UNIFORM:
462 this->indirect_addr_consts = true;
463 break;
464 case PROGRAM_IMMEDIATE:
465 assert(!"immediates should not have indirect addressing");
466 break;
467 default:
468 break;
469 }
470 }
471 }
472 }
473
474 /*
475 * This section contains the double processing.
476 * GLSL just represents doubles as single channel values,
477 * however most HW and TGSI represent doubles as pairs of register channels.
478 *
479 * so we have to fixup destination writemask/index and src swizzle/indexes.
480 * dest writemasks need to translate from single channel write mask
481 * to a dual-channel writemask, but also need to modify the index,
482 * if we are touching the Z,W fields in the pre-translated writemask.
483 *
484 * src channels have similiar index modifications along with swizzle
485 * changes to we pick the XY, ZW pairs from the correct index.
486 *
487 * GLSL [0].x -> TGSI [0].xy
488 * GLSL [0].y -> TGSI [0].zw
489 * GLSL [0].z -> TGSI [1].xy
490 * GLSL [0].w -> TGSI [1].zw
491 */
492 for (j = 0; j < 2; j++) {
493 dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
494 if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
495 enum glsl_base_type type = find_array_type(this->outputs, this->num_outputs, inst->dst[j].array_id);
496 if (glsl_base_type_is_64bit(type))
497 dst_is_64bit[j] = true;
498 }
499 }
500
501 if (dst_is_64bit[0] || dst_is_64bit[1] ||
502 glsl_base_type_is_64bit(inst->src[0].type)) {
503 glsl_to_tgsi_instruction *dinst = NULL;
504 int initial_src_swz[4], initial_src_idx[4];
505 int initial_dst_idx[2], initial_dst_writemask[2];
506 /* select the writemask for dst0 or dst1 */
507 unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED ? inst->dst[0].writemask : inst->dst[1].writemask;
508
509 /* copy out the writemask, index and swizzles for all src/dsts. */
510 for (j = 0; j < 2; j++) {
511 initial_dst_writemask[j] = inst->dst[j].writemask;
512 initial_dst_idx[j] = inst->dst[j].index;
513 }
514
515 for (j = 0; j < 4; j++) {
516 initial_src_swz[j] = inst->src[j].swizzle;
517 initial_src_idx[j] = inst->src[j].index;
518 }
519
520 /*
521 * scan all the components in the dst writemask
522 * generate an instruction for each of them if required.
523 */
524 st_src_reg addr;
525 while (writemask) {
526
527 int i = u_bit_scan(&writemask);
528
529 /* before emitting the instruction, see if we have to adjust load / store
530 * address */
531 if (i > 1 && (inst->op == TGSI_OPCODE_LOAD || inst->op == TGSI_OPCODE_STORE) &&
532 addr.file == PROGRAM_UNDEFINED) {
533 /* We have to advance the buffer address by 16 */
534 addr = get_temp(glsl_type::uint_type);
535 emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
536 inst->src[0], st_src_reg_for_int(16));
537 }
538
539 /* first time use previous instruction */
540 if (dinst == NULL) {
541 dinst = inst;
542 } else {
543 /* create a new instructions for subsequent attempts */
544 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
545 *dinst = *inst;
546 dinst->next = NULL;
547 dinst->prev = NULL;
548 }
549 this->instructions.push_tail(dinst);
550 dinst->is_64bit_expanded = true;
551
552 /* modify the destination if we are splitting */
553 for (j = 0; j < 2; j++) {
554 if (dst_is_64bit[j]) {
555 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
556 dinst->dst[j].index = initial_dst_idx[j];
557 if (i > 1) {
558 if (dinst->op == TGSI_OPCODE_LOAD || dinst->op == TGSI_OPCODE_STORE)
559 dinst->src[0] = addr;
560 if (dinst->op != TGSI_OPCODE_STORE)
561 dinst->dst[j].index++;
562 }
563 } else {
564 /* if we aren't writing to a double, just get the bit of the initial writemask
565 for this channel */
566 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
567 }
568 }
569
570 /* modify the src registers */
571 for (j = 0; j < 4; j++) {
572 int swz = GET_SWZ(initial_src_swz[j], i);
573
574 if (glsl_base_type_is_64bit(dinst->src[j].type)) {
575 dinst->src[j].index = initial_src_idx[j];
576 if (swz > 1) {
577 dinst->src[j].double_reg2 = true;
578 dinst->src[j].index++;
579 }
580
581 if (swz & 1)
582 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
583 else
584 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
585
586 } else {
587 /* some opcodes are special case in what they use as sources
588 - [FUI]2D/[UI]2I64 is a float/[u]int src0, (D)LDEXP is integer src1 */
589 if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D || op == TGSI_OPCODE_I2D ||
590 op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
591 op == TGSI_OPCODE_DLDEXP || op == TGSI_OPCODE_LDEXP ||
592 (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
593 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
594 }
595 }
596 }
597 }
598 inst = dinst;
599 } else {
600 this->instructions.push_tail(inst);
601 }
602
603
604 return inst;
605 }
606
607 glsl_to_tgsi_instruction *
608 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
609 st_dst_reg dst,
610 st_src_reg src0, st_src_reg src1,
611 st_src_reg src2, st_src_reg src3)
612 {
613 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
614 }
615
616 /**
617 * Determines whether to use an integer, unsigned integer, or float opcode
618 * based on the operands and input opcode, then emits the result.
619 */
620 unsigned
621 glsl_to_tgsi_visitor::get_opcode(unsigned op,
622 st_dst_reg dst,
623 st_src_reg src0, st_src_reg src1)
624 {
625 enum glsl_base_type type = GLSL_TYPE_FLOAT;
626
627 if (op == TGSI_OPCODE_MOV)
628 return op;
629
630 assert(src0.type != GLSL_TYPE_ARRAY);
631 assert(src0.type != GLSL_TYPE_STRUCT);
632 assert(src1.type != GLSL_TYPE_ARRAY);
633 assert(src1.type != GLSL_TYPE_STRUCT);
634
635 if (is_resource_instruction(op))
636 type = src1.type;
637 else if (src0.type == GLSL_TYPE_INT64 || src1.type == GLSL_TYPE_INT64)
638 type = GLSL_TYPE_INT64;
639 else if (src0.type == GLSL_TYPE_UINT64 || src1.type == GLSL_TYPE_UINT64)
640 type = GLSL_TYPE_UINT64;
641 else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
642 type = GLSL_TYPE_DOUBLE;
643 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
644 type = GLSL_TYPE_FLOAT;
645 else if (native_integers)
646 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
647
648 #define case7(c, f, i, u, d, i64, ui64) \
649 case TGSI_OPCODE_##c: \
650 if (type == GLSL_TYPE_UINT64) \
651 op = TGSI_OPCODE_##ui64; \
652 else if (type == GLSL_TYPE_INT64) \
653 op = TGSI_OPCODE_##i64; \
654 else if (type == GLSL_TYPE_DOUBLE) \
655 op = TGSI_OPCODE_##d; \
656 else if (type == GLSL_TYPE_INT) \
657 op = TGSI_OPCODE_##i; \
658 else if (type == GLSL_TYPE_UINT) \
659 op = TGSI_OPCODE_##u; \
660 else \
661 op = TGSI_OPCODE_##f; \
662 break;
663
664 #define casecomp(c, f, i, u, d, i64, ui64) \
665 case TGSI_OPCODE_##c: \
666 if (type == GLSL_TYPE_INT64) \
667 op = TGSI_OPCODE_##i64; \
668 else if (type == GLSL_TYPE_UINT64) \
669 op = TGSI_OPCODE_##ui64; \
670 else if (type == GLSL_TYPE_DOUBLE) \
671 op = TGSI_OPCODE_##d; \
672 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
673 op = TGSI_OPCODE_##i; \
674 else if (type == GLSL_TYPE_UINT) \
675 op = TGSI_OPCODE_##u; \
676 else if (native_integers) \
677 op = TGSI_OPCODE_##f; \
678 else \
679 op = TGSI_OPCODE_##c; \
680 break;
681
682 switch(op) {
683 /* Some instructions are initially selected without considering the type.
684 * This fixes the type:
685 *
686 * INIT FLOAT SINT UINT DOUBLE SINT64 UINT64
687 */
688 case7(ADD, ADD, UADD, UADD, DADD, U64ADD, U64ADD);
689 case7(CEIL, CEIL, LAST, LAST, DCEIL, LAST, LAST);
690 case7(DIV, DIV, IDIV, UDIV, DDIV, I64DIV, U64DIV);
691 case7(FMA, FMA, UMAD, UMAD, DFMA, LAST, LAST);
692 case7(FLR, FLR, LAST, LAST, DFLR, LAST, LAST);
693 case7(FRC, FRC, LAST, LAST, DFRAC, LAST, LAST);
694 case7(MUL, MUL, UMUL, UMUL, DMUL, U64MUL, U64MUL);
695 case7(MAD, MAD, UMAD, UMAD, DMAD, LAST, LAST);
696 case7(MAX, MAX, IMAX, UMAX, DMAX, I64MAX, U64MAX);
697 case7(MIN, MIN, IMIN, UMIN, DMIN, I64MIN, U64MIN);
698 case7(RCP, RCP, LAST, LAST, DRCP, LAST, LAST);
699 case7(ROUND, ROUND,LAST, LAST, DROUND, LAST, LAST);
700 case7(RSQ, RSQ, LAST, LAST, DRSQ, LAST, LAST);
701 case7(SQRT, SQRT, LAST, LAST, DSQRT, LAST, LAST);
702 case7(SSG, SSG, ISSG, ISSG, DSSG, I64SSG, I64SSG);
703 case7(TRUNC, TRUNC,LAST, LAST, DTRUNC, LAST, LAST);
704
705 case7(MOD, LAST, MOD, UMOD, LAST, I64MOD, U64MOD);
706 case7(SHL, LAST, SHL, SHL, LAST, U64SHL, U64SHL);
707 case7(IBFE, LAST, IBFE, UBFE, LAST, LAST, LAST);
708 case7(IMSB, LAST, IMSB, UMSB, LAST, LAST, LAST);
709 case7(IMUL_HI, LAST, IMUL_HI, UMUL_HI, LAST, LAST, LAST);
710 case7(ISHR, LAST, ISHR, USHR, LAST, I64SHR, U64SHR);
711 case7(ATOMIMAX,LAST, ATOMIMAX,ATOMUMAX,LAST, LAST, LAST);
712 case7(ATOMIMIN,LAST, ATOMIMIN,ATOMUMIN,LAST, LAST, LAST);
713
714 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ, U64SEQ, U64SEQ);
715 casecomp(SNE, FSNE, USNE, USNE, DSNE, U64SNE, U64SNE);
716 casecomp(SGE, FSGE, ISGE, USGE, DSGE, I64SGE, U64SGE);
717 casecomp(SLT, FSLT, ISLT, USLT, DSLT, I64SLT, U64SLT);
718
719 default: break;
720 }
721
722 assert(op != TGSI_OPCODE_LAST);
723 return op;
724 }
725
726 glsl_to_tgsi_instruction *
727 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
728 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
729 unsigned elements)
730 {
731 static const unsigned dot_opcodes[] = {
732 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
733 };
734
735 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
736 }
737
738 /**
739 * Emits TGSI scalar opcodes to produce unique answers across channels.
740 *
741 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
742 * channel determines the result across all channels. So to do a vec4
743 * of this operation, we want to emit a scalar per source channel used
744 * to produce dest channels.
745 */
746 void
747 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
748 st_dst_reg dst,
749 st_src_reg orig_src0, st_src_reg orig_src1)
750 {
751 int i, j;
752 int done_mask = ~dst.writemask;
753
754 /* TGSI RCP is a scalar operation splatting results to all channels,
755 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
756 * dst channels.
757 */
758 for (i = 0; i < 4; i++) {
759 GLuint this_mask = (1 << i);
760 st_src_reg src0 = orig_src0;
761 st_src_reg src1 = orig_src1;
762
763 if (done_mask & this_mask)
764 continue;
765
766 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
767 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
768 for (j = i + 1; j < 4; j++) {
769 /* If there is another enabled component in the destination that is
770 * derived from the same inputs, generate its value on this pass as
771 * well.
772 */
773 if (!(done_mask & (1 << j)) &&
774 GET_SWZ(src0.swizzle, j) == src0_swiz &&
775 GET_SWZ(src1.swizzle, j) == src1_swiz) {
776 this_mask |= (1 << j);
777 }
778 }
779 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
780 src0_swiz, src0_swiz);
781 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
782 src1_swiz, src1_swiz);
783
784 dst.writemask = this_mask;
785 emit_asm(ir, op, dst, src0, src1);
786 done_mask |= this_mask;
787 }
788 }
789
790 void
791 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
792 st_dst_reg dst, st_src_reg src0)
793 {
794 st_src_reg undef = undef_src;
795
796 undef.swizzle = SWIZZLE_XXXX;
797
798 emit_scalar(ir, op, dst, src0, undef);
799 }
800
801 void
802 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
803 st_dst_reg dst, st_src_reg src0)
804 {
805 int op = TGSI_OPCODE_ARL;
806
807 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT) {
808 if (!this->need_uarl && src0.is_legal_tgsi_address_operand())
809 return;
810
811 op = TGSI_OPCODE_UARL;
812 }
813
814 assert(dst.file == PROGRAM_ADDRESS);
815 if (dst.index >= this->num_address_regs)
816 this->num_address_regs = dst.index + 1;
817
818 emit_asm(NULL, op, dst, src0);
819 }
820
821 int
822 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
823 gl_constant_value values[8], int size, int datatype,
824 uint16_t *swizzle_out)
825 {
826 if (file == PROGRAM_CONSTANT) {
827 GLuint swizzle = swizzle_out ? *swizzle_out : 0;
828 int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
829 size, datatype, &swizzle);
830 if (swizzle_out)
831 *swizzle_out = swizzle;
832 return result;
833 }
834
835 assert(file == PROGRAM_IMMEDIATE);
836
837 int index = 0;
838 immediate_storage *entry;
839 int size32 = size * ((datatype == GL_DOUBLE ||
840 datatype == GL_INT64_ARB ||
841 datatype == GL_UNSIGNED_INT64_ARB)? 2 : 1);
842 int i;
843
844 /* Search immediate storage to see if we already have an identical
845 * immediate that we can use instead of adding a duplicate entry.
846 */
847 foreach_in_list(immediate_storage, entry, &this->immediates) {
848 immediate_storage *tmp = entry;
849
850 for (i = 0; i * 4 < size32; i++) {
851 int slot_size = MIN2(size32 - (i * 4), 4);
852 if (tmp->type != datatype || tmp->size32 != slot_size)
853 break;
854 if (memcmp(tmp->values, &values[i * 4],
855 slot_size * sizeof(gl_constant_value)))
856 break;
857
858 /* Everything matches, keep going until the full size is matched */
859 tmp = (immediate_storage *)tmp->next;
860 }
861
862 /* The full value matched */
863 if (i * 4 >= size32)
864 return index;
865
866 index++;
867 }
868
869 for (i = 0; i * 4 < size32; i++) {
870 int slot_size = MIN2(size32 - (i * 4), 4);
871 /* Add this immediate to the list. */
872 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
873 this->immediates.push_tail(entry);
874 this->num_immediates++;
875 }
876 return index;
877 }
878
879 st_src_reg
880 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
881 {
882 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
883 union gl_constant_value uval;
884
885 uval.f = val;
886 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
887
888 return src;
889 }
890
891 st_src_reg
892 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
893 {
894 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
895 union gl_constant_value uval[2];
896
897 memcpy(uval, &val, sizeof(uval));
898 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
899 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
900 return src;
901 }
902
903 st_src_reg
904 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
905 {
906 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
907 union gl_constant_value uval;
908
909 assert(native_integers);
910
911 uval.i = val;
912 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
913
914 return src;
915 }
916
917 st_src_reg
918 glsl_to_tgsi_visitor::st_src_reg_for_int64(int64_t val)
919 {
920 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT64);
921 union gl_constant_value uval[2];
922
923 memcpy(uval, &val, sizeof(uval));
924 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
925 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
926
927 return src;
928 }
929
930 st_src_reg
931 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
932 {
933 if (native_integers)
934 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
935 st_src_reg_for_int(val);
936 else
937 return st_src_reg_for_float(val);
938 }
939
940 static int
941 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
942 {
943 return type->count_attribute_slots(is_vs_input);
944 }
945
946 static int
947 type_size(const struct glsl_type *type)
948 {
949 return type->count_attribute_slots(false);
950 }
951
952 static void
953 add_buffer_to_load_and_stores(glsl_to_tgsi_instruction *inst, st_src_reg *buf,
954 exec_list *instructions, ir_constant *access)
955 {
956 /**
957 * emit_asm() might have actually split the op into pieces, e.g. for
958 * double stores. We have to go back and fix up all the generated ops.
959 */
960 unsigned op = inst->op;
961 do {
962 inst->resource = *buf;
963 if (access)
964 inst->buffer_access = access->value.u[0];
965
966 if (inst == instructions->get_head_raw())
967 break;
968 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
969
970 if (inst->op == TGSI_OPCODE_UADD) {
971 if (inst == instructions->get_head_raw())
972 break;
973 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
974 }
975 } while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
976 }
977
978 /**
979 * If the given GLSL type is an array or matrix or a structure containing
980 * an array/matrix member, return true. Else return false.
981 *
982 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
983 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
984 * we have an array that might be indexed with a variable, we need to use
985 * the later storage type.
986 */
987 static bool
988 type_has_array_or_matrix(const glsl_type *type)
989 {
990 if (type->is_array() || type->is_matrix())
991 return true;
992
993 if (type->is_record()) {
994 for (unsigned i = 0; i < type->length; i++) {
995 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
996 return true;
997 }
998 }
999 }
1000
1001 return false;
1002 }
1003
1004
1005 /**
1006 * In the initial pass of codegen, we assign temporary numbers to
1007 * intermediate results. (not SSA -- variable assignments will reuse
1008 * storage).
1009 */
1010 st_src_reg
1011 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1012 {
1013 st_src_reg src;
1014
1015 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1016 src.reladdr = NULL;
1017 src.negate = 0;
1018 src.abs = 0;
1019
1020 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1021 if (next_array >= max_num_arrays) {
1022 max_num_arrays += 32;
1023 array_sizes = (unsigned*)
1024 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1025 }
1026
1027 src.file = PROGRAM_ARRAY;
1028 src.index = 0;
1029 src.array_id = next_array + 1;
1030 array_sizes[next_array] = type_size(type);
1031 ++next_array;
1032
1033 } else {
1034 src.file = PROGRAM_TEMPORARY;
1035 src.index = next_temp;
1036 next_temp += type_size(type);
1037 }
1038
1039 if (type->is_array() || type->is_record()) {
1040 src.swizzle = SWIZZLE_NOOP;
1041 } else {
1042 src.swizzle = swizzle_for_size(type->vector_elements);
1043 }
1044
1045 return src;
1046 }
1047
1048 variable_storage *
1049 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1050 {
1051 struct hash_entry *entry;
1052
1053 entry = _mesa_hash_table_search(this->variables, var);
1054 if (!entry)
1055 return NULL;
1056
1057 return (variable_storage *)entry->data;
1058 }
1059
1060 void
1061 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1062 {
1063 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1064 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
1065 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
1066 }
1067
1068 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1069 unsigned int i;
1070 const ir_state_slot *const slots = ir->get_state_slots();
1071 assert(slots != NULL);
1072
1073 /* Check if this statevar's setup in the STATE file exactly
1074 * matches how we'll want to reference it as a
1075 * struct/array/whatever. If not, then we need to move it into
1076 * temporary storage and hope that it'll get copy-propagated
1077 * out.
1078 */
1079 for (i = 0; i < ir->get_num_state_slots(); i++) {
1080 if (slots[i].swizzle != SWIZZLE_XYZW) {
1081 break;
1082 }
1083 }
1084
1085 variable_storage *storage;
1086 st_dst_reg dst;
1087 if (i == ir->get_num_state_slots()) {
1088 /* We'll set the index later. */
1089 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1090
1091 _mesa_hash_table_insert(this->variables, ir, storage);
1092
1093 dst = undef_dst;
1094 } else {
1095 /* The variable_storage constructor allocates slots based on the size
1096 * of the type. However, this had better match the number of state
1097 * elements that we're going to copy into the new temporary.
1098 */
1099 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1100
1101 dst = st_dst_reg(get_temp(ir->type));
1102
1103 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
1104 dst.array_id);
1105
1106 _mesa_hash_table_insert(this->variables, ir, storage);
1107 }
1108
1109
1110 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1111 int index = _mesa_add_state_reference(this->prog->Parameters,
1112 (gl_state_index *)slots[i].tokens);
1113
1114 if (storage->file == PROGRAM_STATE_VAR) {
1115 if (storage->index == -1) {
1116 storage->index = index;
1117 } else {
1118 assert(index == storage->index + (int)i);
1119 }
1120 } else {
1121 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1122 * the data being moved since MOV does not care about the type of
1123 * data it is moving, and we don't want to declare registers with
1124 * array or struct types.
1125 */
1126 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1127 src.swizzle = slots[i].swizzle;
1128 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1129 /* even a float takes up a whole vec4 reg in a struct/array. */
1130 dst.index++;
1131 }
1132 }
1133
1134 if (storage->file == PROGRAM_TEMPORARY &&
1135 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1136 fail_link(this->shader_program,
1137 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1138 ir->name, dst.index - storage->index,
1139 type_size(ir->type));
1140 }
1141 }
1142 }
1143
1144 void
1145 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1146 {
1147 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1148
1149 visit_exec_list(&ir->body_instructions, this);
1150
1151 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1152 }
1153
1154 void
1155 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1156 {
1157 switch (ir->mode) {
1158 case ir_loop_jump::jump_break:
1159 emit_asm(NULL, TGSI_OPCODE_BRK);
1160 break;
1161 case ir_loop_jump::jump_continue:
1162 emit_asm(NULL, TGSI_OPCODE_CONT);
1163 break;
1164 }
1165 }
1166
1167
1168 void
1169 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1170 {
1171 assert(0);
1172 (void)ir;
1173 }
1174
1175 void
1176 glsl_to_tgsi_visitor::visit(ir_function *ir)
1177 {
1178 /* Ignore function bodies other than main() -- we shouldn't see calls to
1179 * them since they should all be inlined before we get to glsl_to_tgsi.
1180 */
1181 if (strcmp(ir->name, "main") == 0) {
1182 const ir_function_signature *sig;
1183 exec_list empty;
1184
1185 sig = ir->matching_signature(NULL, &empty, false);
1186
1187 assert(sig);
1188
1189 foreach_in_list(ir_instruction, ir, &sig->body) {
1190 ir->accept(this);
1191 }
1192 }
1193 }
1194
1195 bool
1196 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1197 {
1198 int nonmul_operand = 1 - mul_operand;
1199 st_src_reg a, b, c;
1200 st_dst_reg result_dst;
1201
1202 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1203 if (!expr || expr->operation != ir_binop_mul)
1204 return false;
1205
1206 expr->operands[0]->accept(this);
1207 a = this->result;
1208 expr->operands[1]->accept(this);
1209 b = this->result;
1210 ir->operands[nonmul_operand]->accept(this);
1211 c = this->result;
1212
1213 this->result = get_temp(ir->type);
1214 result_dst = st_dst_reg(this->result);
1215 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1216 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1217
1218 return true;
1219 }
1220
1221 /**
1222 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1223 *
1224 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1225 * implemented using multiplication, and logical-or is implemented using
1226 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1227 * As result, the logical expression (a & !b) can be rewritten as:
1228 *
1229 * - a * !b
1230 * - a * (1 - b)
1231 * - (a * 1) - (a * b)
1232 * - a + -(a * b)
1233 * - a + (a * -b)
1234 *
1235 * This final expression can be implemented as a single MAD(a, -b, a)
1236 * instruction.
1237 */
1238 bool
1239 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1240 {
1241 const int other_operand = 1 - try_operand;
1242 st_src_reg a, b;
1243
1244 ir_expression *expr = ir->operands[try_operand]->as_expression();
1245 if (!expr || expr->operation != ir_unop_logic_not)
1246 return false;
1247
1248 ir->operands[other_operand]->accept(this);
1249 a = this->result;
1250 expr->operands[0]->accept(this);
1251 b = this->result;
1252
1253 b.negate = ~b.negate;
1254
1255 this->result = get_temp(ir->type);
1256 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1257
1258 return true;
1259 }
1260
1261 void
1262 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1263 st_src_reg *reg, int *num_reladdr)
1264 {
1265 if (!reg->reladdr && !reg->reladdr2)
1266 return;
1267
1268 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1269 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1270
1271 if (*num_reladdr != 1) {
1272 st_src_reg temp = get_temp(reg->type == GLSL_TYPE_DOUBLE ? glsl_type::dvec4_type : glsl_type::vec4_type);
1273
1274 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1275 *reg = temp;
1276 }
1277
1278 (*num_reladdr)--;
1279 }
1280
1281 void
1282 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1283 {
1284 st_src_reg op[ARRAY_SIZE(ir->operands)];
1285
1286 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1287 */
1288 if (!this->precise && ir->operation == ir_binop_add) {
1289 if (try_emit_mad(ir, 1))
1290 return;
1291 if (try_emit_mad(ir, 0))
1292 return;
1293 }
1294
1295 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1296 */
1297 if (!native_integers && ir->operation == ir_binop_logic_and) {
1298 if (try_emit_mad_for_and_not(ir, 1))
1299 return;
1300 if (try_emit_mad_for_and_not(ir, 0))
1301 return;
1302 }
1303
1304 if (ir->operation == ir_quadop_vector)
1305 assert(!"ir_quadop_vector should have been lowered");
1306
1307 for (unsigned int operand = 0; operand < ir->num_operands; operand++) {
1308 this->result.file = PROGRAM_UNDEFINED;
1309 ir->operands[operand]->accept(this);
1310 if (this->result.file == PROGRAM_UNDEFINED) {
1311 printf("Failed to get tree for expression operand:\n");
1312 ir->operands[operand]->print();
1313 printf("\n");
1314 exit(1);
1315 }
1316 op[operand] = this->result;
1317
1318 /* Matrix expression operands should have been broken down to vector
1319 * operations already.
1320 */
1321 assert(!ir->operands[operand]->type->is_matrix());
1322 }
1323
1324 visit_expression(ir, op);
1325 }
1326
1327 /* The non-recursive part of the expression visitor lives in a separate
1328 * function and should be prevented from being inlined, to avoid a stack
1329 * explosion when deeply nested expressions are visited.
1330 */
1331 void
1332 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
1333 {
1334 st_src_reg result_src;
1335 st_dst_reg result_dst;
1336
1337 int vector_elements = ir->operands[0]->type->vector_elements;
1338 if (ir->operands[1]) {
1339 vector_elements = MAX2(vector_elements,
1340 ir->operands[1]->type->vector_elements);
1341 }
1342
1343 this->result.file = PROGRAM_UNDEFINED;
1344
1345 /* Storage for our result. Ideally for an assignment we'd be using
1346 * the actual storage for the result here, instead.
1347 */
1348 result_src = get_temp(ir->type);
1349 /* convenience for the emit functions below. */
1350 result_dst = st_dst_reg(result_src);
1351 /* Limit writes to the channels that will be used by result_src later.
1352 * This does limit this temp's use as a temporary for multi-instruction
1353 * sequences.
1354 */
1355 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1356
1357 switch (ir->operation) {
1358 case ir_unop_logic_not:
1359 if (result_dst.type != GLSL_TYPE_FLOAT)
1360 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1361 else {
1362 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1363 * older GPUs implement SEQ using multiple instructions (i915 uses two
1364 * SGE instructions and a MUL instruction). Since our logic values are
1365 * 0.0 and 1.0, 1-x also implements !x.
1366 */
1367 op[0].negate = ~op[0].negate;
1368 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1369 }
1370 break;
1371 case ir_unop_neg:
1372 if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1373 emit_asm(ir, TGSI_OPCODE_I64NEG, result_dst, op[0]);
1374 else if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1375 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1376 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1377 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1378 else {
1379 op[0].negate = ~op[0].negate;
1380 result_src = op[0];
1381 }
1382 break;
1383 case ir_unop_subroutine_to_int:
1384 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1385 break;
1386 case ir_unop_abs:
1387 if (result_dst.type == GLSL_TYPE_FLOAT)
1388 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
1389 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1390 emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
1391 else if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1392 emit_asm(ir, TGSI_OPCODE_I64ABS, result_dst, op[0]);
1393 else
1394 emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
1395 break;
1396 case ir_unop_sign:
1397 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1398 break;
1399 case ir_unop_rcp:
1400 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1401 break;
1402
1403 case ir_unop_exp2:
1404 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1405 break;
1406 case ir_unop_exp:
1407 assert(!"not reached: should be handled by exp_to_exp2");
1408 break;
1409 case ir_unop_log:
1410 assert(!"not reached: should be handled by log_to_log2");
1411 break;
1412 case ir_unop_log2:
1413 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1414 break;
1415 case ir_unop_sin:
1416 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1417 break;
1418 case ir_unop_cos:
1419 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1420 break;
1421 case ir_unop_saturate: {
1422 glsl_to_tgsi_instruction *inst;
1423 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1424 inst->saturate = true;
1425 break;
1426 }
1427
1428 case ir_unop_dFdx:
1429 case ir_unop_dFdx_coarse:
1430 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1431 break;
1432 case ir_unop_dFdx_fine:
1433 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1434 break;
1435 case ir_unop_dFdy:
1436 case ir_unop_dFdy_coarse:
1437 case ir_unop_dFdy_fine:
1438 {
1439 /* The X component contains 1 or -1 depending on whether the framebuffer
1440 * is a FBO or the window system buffer, respectively.
1441 * It is then multiplied with the source operand of DDY.
1442 */
1443 static const gl_state_index transform_y_state[STATE_LENGTH]
1444 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1445
1446 unsigned transform_y_index =
1447 _mesa_add_state_reference(this->prog->Parameters,
1448 transform_y_state);
1449
1450 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1451 transform_y_index,
1452 glsl_type::vec4_type);
1453 transform_y.swizzle = SWIZZLE_XXXX;
1454
1455 st_src_reg temp = get_temp(glsl_type::vec4_type);
1456
1457 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1458 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1459 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1460 break;
1461 }
1462
1463 case ir_unop_frexp_sig:
1464 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1465 break;
1466
1467 case ir_unop_frexp_exp:
1468 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1469 break;
1470
1471 case ir_unop_noise: {
1472 /* At some point, a motivated person could add a better
1473 * implementation of noise. Currently not even the nvidia
1474 * binary drivers do anything more than this. In any case, the
1475 * place to do this is in the GL state tracker, not the poor
1476 * driver.
1477 */
1478 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1479 break;
1480 }
1481
1482 case ir_binop_add:
1483 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1484 break;
1485 case ir_binop_sub:
1486 op[1].negate = ~op[1].negate;
1487 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1488 break;
1489
1490 case ir_binop_mul:
1491 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1492 break;
1493 case ir_binop_div:
1494 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1495 break;
1496 case ir_binop_mod:
1497 if (result_dst.type == GLSL_TYPE_FLOAT)
1498 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1499 else
1500 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1501 break;
1502
1503 case ir_binop_less:
1504 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1505 break;
1506 case ir_binop_greater:
1507 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1508 break;
1509 case ir_binop_lequal:
1510 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1511 break;
1512 case ir_binop_gequal:
1513 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1514 break;
1515 case ir_binop_equal:
1516 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1517 break;
1518 case ir_binop_nequal:
1519 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1520 break;
1521 case ir_binop_all_equal:
1522 /* "==" operator producing a scalar boolean. */
1523 if (ir->operands[0]->type->is_vector() ||
1524 ir->operands[1]->type->is_vector()) {
1525 st_src_reg temp = get_temp(native_integers ?
1526 glsl_type::uvec4_type :
1527 glsl_type::vec4_type);
1528
1529 if (native_integers) {
1530 st_dst_reg temp_dst = st_dst_reg(temp);
1531 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1532
1533 if (ir->operands[0]->type->is_boolean() &&
1534 ir->operands[1]->as_constant() &&
1535 ir->operands[1]->as_constant()->is_one()) {
1536 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1537 } else {
1538 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1539 }
1540
1541 /* Emit 1-3 AND operations to combine the SEQ results. */
1542 switch (ir->operands[0]->type->vector_elements) {
1543 case 2:
1544 break;
1545 case 3:
1546 temp_dst.writemask = WRITEMASK_Y;
1547 temp1.swizzle = SWIZZLE_YYYY;
1548 temp2.swizzle = SWIZZLE_ZZZZ;
1549 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1550 break;
1551 case 4:
1552 temp_dst.writemask = WRITEMASK_X;
1553 temp1.swizzle = SWIZZLE_XXXX;
1554 temp2.swizzle = SWIZZLE_YYYY;
1555 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1556 temp_dst.writemask = WRITEMASK_Y;
1557 temp1.swizzle = SWIZZLE_ZZZZ;
1558 temp2.swizzle = SWIZZLE_WWWW;
1559 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1560 }
1561
1562 temp1.swizzle = SWIZZLE_XXXX;
1563 temp2.swizzle = SWIZZLE_YYYY;
1564 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1565 } else {
1566 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1567
1568 /* After the dot-product, the value will be an integer on the
1569 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1570 */
1571 emit_dp(ir, result_dst, temp, temp, vector_elements);
1572
1573 /* Negating the result of the dot-product gives values on the range
1574 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1575 * This is achieved using SGE.
1576 */
1577 st_src_reg sge_src = result_src;
1578 sge_src.negate = ~sge_src.negate;
1579 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1580 }
1581 } else {
1582 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1583 }
1584 break;
1585 case ir_binop_any_nequal:
1586 /* "!=" operator producing a scalar boolean. */
1587 if (ir->operands[0]->type->is_vector() ||
1588 ir->operands[1]->type->is_vector()) {
1589 st_src_reg temp = get_temp(native_integers ?
1590 glsl_type::uvec4_type :
1591 glsl_type::vec4_type);
1592 if (ir->operands[0]->type->is_boolean() &&
1593 ir->operands[1]->as_constant() &&
1594 ir->operands[1]->as_constant()->is_zero()) {
1595 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1596 } else {
1597 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1598 }
1599
1600 if (native_integers) {
1601 st_dst_reg temp_dst = st_dst_reg(temp);
1602 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1603
1604 /* Emit 1-3 OR operations to combine the SNE results. */
1605 switch (ir->operands[0]->type->vector_elements) {
1606 case 2:
1607 break;
1608 case 3:
1609 temp_dst.writemask = WRITEMASK_Y;
1610 temp1.swizzle = SWIZZLE_YYYY;
1611 temp2.swizzle = SWIZZLE_ZZZZ;
1612 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1613 break;
1614 case 4:
1615 temp_dst.writemask = WRITEMASK_X;
1616 temp1.swizzle = SWIZZLE_XXXX;
1617 temp2.swizzle = SWIZZLE_YYYY;
1618 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1619 temp_dst.writemask = WRITEMASK_Y;
1620 temp1.swizzle = SWIZZLE_ZZZZ;
1621 temp2.swizzle = SWIZZLE_WWWW;
1622 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1623 }
1624
1625 temp1.swizzle = SWIZZLE_XXXX;
1626 temp2.swizzle = SWIZZLE_YYYY;
1627 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1628 } else {
1629 /* After the dot-product, the value will be an integer on the
1630 * range [0,4]. Zero stays zero, and positive values become 1.0.
1631 */
1632 glsl_to_tgsi_instruction *const dp =
1633 emit_dp(ir, result_dst, temp, temp, vector_elements);
1634 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1635 /* The clamping to [0,1] can be done for free in the fragment
1636 * shader with a saturate.
1637 */
1638 dp->saturate = true;
1639 } else {
1640 /* Negating the result of the dot-product gives values on the range
1641 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1642 * achieved using SLT.
1643 */
1644 st_src_reg slt_src = result_src;
1645 slt_src.negate = ~slt_src.negate;
1646 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1647 }
1648 }
1649 } else {
1650 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1651 }
1652 break;
1653
1654 case ir_binop_logic_xor:
1655 if (native_integers)
1656 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1657 else
1658 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1659 break;
1660
1661 case ir_binop_logic_or: {
1662 if (native_integers) {
1663 /* If integers are used as booleans, we can use an actual "or"
1664 * instruction.
1665 */
1666 assert(native_integers);
1667 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1668 } else {
1669 /* After the addition, the value will be an integer on the
1670 * range [0,2]. Zero stays zero, and positive values become 1.0.
1671 */
1672 glsl_to_tgsi_instruction *add =
1673 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1674 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1675 /* The clamping to [0,1] can be done for free in the fragment
1676 * shader with a saturate if floats are being used as boolean values.
1677 */
1678 add->saturate = true;
1679 } else {
1680 /* Negating the result of the addition gives values on the range
1681 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1682 * is achieved using SLT.
1683 */
1684 st_src_reg slt_src = result_src;
1685 slt_src.negate = ~slt_src.negate;
1686 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1687 }
1688 }
1689 break;
1690 }
1691
1692 case ir_binop_logic_and:
1693 /* If native integers are disabled, the bool args are stored as float 0.0
1694 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1695 * actual AND opcode.
1696 */
1697 if (native_integers)
1698 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1699 else
1700 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1701 break;
1702
1703 case ir_binop_dot:
1704 assert(ir->operands[0]->type->is_vector());
1705 assert(ir->operands[0]->type == ir->operands[1]->type);
1706 emit_dp(ir, result_dst, op[0], op[1],
1707 ir->operands[0]->type->vector_elements);
1708 break;
1709
1710 case ir_unop_sqrt:
1711 if (have_sqrt) {
1712 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1713 } else {
1714 /* This is the only instruction sequence that makes the game "Risen"
1715 * render correctly. ABS is not required for the game, but since GLSL
1716 * declares negative values as "undefined", allowing us to do whatever
1717 * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
1718 * behavior.
1719 */
1720 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
1721 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
1722 }
1723 break;
1724 case ir_unop_rsq:
1725 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1726 break;
1727 case ir_unop_i2f:
1728 if (native_integers) {
1729 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1730 break;
1731 }
1732 /* fallthrough to next case otherwise */
1733 case ir_unop_b2f:
1734 if (native_integers) {
1735 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1736 break;
1737 }
1738 /* fallthrough to next case otherwise */
1739 case ir_unop_i2u:
1740 case ir_unop_u2i:
1741 case ir_unop_i642u64:
1742 case ir_unop_u642i64:
1743 /* Converting between signed and unsigned integers is a no-op. */
1744 result_src = op[0];
1745 result_src.type = result_dst.type;
1746 break;
1747 case ir_unop_b2i:
1748 if (native_integers) {
1749 /* Booleans are stored as integers using ~0 for true and 0 for false.
1750 * GLSL requires that int(bool) return 1 for true and 0 for false.
1751 * This conversion is done with AND, but it could be done with NEG.
1752 */
1753 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1754 } else {
1755 /* Booleans and integers are both stored as floats when native
1756 * integers are disabled.
1757 */
1758 result_src = op[0];
1759 }
1760 break;
1761 case ir_unop_f2i:
1762 if (native_integers)
1763 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1764 else
1765 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1766 break;
1767 case ir_unop_f2u:
1768 if (native_integers)
1769 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1770 else
1771 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1772 break;
1773 case ir_unop_bitcast_f2i:
1774 case ir_unop_bitcast_f2u:
1775 /* Make sure we don't propagate the negate modifier to integer opcodes. */
1776 if (op[0].negate || op[0].abs)
1777 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1778 else
1779 result_src = op[0];
1780 result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
1781 GLSL_TYPE_UINT;
1782 break;
1783 case ir_unop_bitcast_i2f:
1784 case ir_unop_bitcast_u2f:
1785 result_src = op[0];
1786 result_src.type = GLSL_TYPE_FLOAT;
1787 break;
1788 case ir_unop_f2b:
1789 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1790 break;
1791 case ir_unop_d2b:
1792 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
1793 break;
1794 case ir_unop_i2b:
1795 if (native_integers)
1796 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
1797 else
1798 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1799 break;
1800 case ir_unop_bitcast_u642d:
1801 case ir_unop_bitcast_i642d:
1802 result_src = op[0];
1803 result_src.type = GLSL_TYPE_DOUBLE;
1804 break;
1805 case ir_unop_bitcast_d2i64:
1806 result_src = op[0];
1807 result_src.type = GLSL_TYPE_INT64;
1808 break;
1809 case ir_unop_bitcast_d2u64:
1810 result_src = op[0];
1811 result_src.type = GLSL_TYPE_UINT64;
1812 break;
1813 case ir_unop_trunc:
1814 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1815 break;
1816 case ir_unop_ceil:
1817 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1818 break;
1819 case ir_unop_floor:
1820 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1821 break;
1822 case ir_unop_round_even:
1823 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1824 break;
1825 case ir_unop_fract:
1826 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1827 break;
1828
1829 case ir_binop_min:
1830 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1831 break;
1832 case ir_binop_max:
1833 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1834 break;
1835 case ir_binop_pow:
1836 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1837 break;
1838
1839 case ir_unop_bit_not:
1840 if (native_integers) {
1841 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1842 break;
1843 }
1844 case ir_unop_u2f:
1845 if (native_integers) {
1846 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1847 break;
1848 }
1849 case ir_binop_lshift:
1850 case ir_binop_rshift:
1851 if (native_integers) {
1852 unsigned opcode = ir->operation == ir_binop_lshift ? TGSI_OPCODE_SHL
1853 : TGSI_OPCODE_ISHR;
1854 st_src_reg count;
1855
1856 if (glsl_base_type_is_64bit(op[0].type)) {
1857 /* GLSL shift operations have 32-bit shift counts, but TGSI uses
1858 * 64 bits.
1859 */
1860 count = get_temp(glsl_type::u64vec(ir->operands[1]->type->components()));
1861 emit_asm(ir, TGSI_OPCODE_U2I64, st_dst_reg(count), op[1]);
1862 } else {
1863 count = op[1];
1864 }
1865
1866 emit_asm(ir, opcode, result_dst, op[0], count);
1867 break;
1868 }
1869 case ir_binop_bit_and:
1870 if (native_integers) {
1871 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1872 break;
1873 }
1874 case ir_binop_bit_xor:
1875 if (native_integers) {
1876 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1877 break;
1878 }
1879 case ir_binop_bit_or:
1880 if (native_integers) {
1881 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1882 break;
1883 }
1884
1885 assert(!"GLSL 1.30 features unsupported");
1886 break;
1887
1888 case ir_binop_ubo_load: {
1889 if (ctx->Const.UseSTD430AsDefaultPacking) {
1890 ir_rvalue *block = ir->operands[0];
1891 ir_rvalue *offset = ir->operands[1];
1892 ir_constant *const_block = block->as_constant();
1893
1894 st_src_reg cbuf(PROGRAM_CONSTANT,
1895 (const_block ? const_block->value.u[0] + 1 : 1),
1896 ir->type->base_type);
1897
1898 cbuf.has_index2 = true;
1899
1900 if (!const_block) {
1901 block->accept(this);
1902 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1903 *cbuf.reladdr = this->result;
1904 emit_arl(ir, sampler_reladdr, this->result);
1905 }
1906
1907 /* Calculate the surface offset */
1908 offset->accept(this);
1909 st_src_reg off = this->result;
1910
1911 glsl_to_tgsi_instruction *inst =
1912 emit_asm(ir, TGSI_OPCODE_LOAD, result_dst, off);
1913
1914 if (result_dst.type == GLSL_TYPE_BOOL)
1915 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, st_src_reg(result_dst),
1916 st_src_reg_for_int(0));
1917
1918 add_buffer_to_load_and_stores(inst, &cbuf, &this->instructions,
1919 NULL);
1920 } else {
1921 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1922 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1923 unsigned const_offset = const_offset_ir ?
1924 const_offset_ir->value.u[0] : 0;
1925 unsigned const_block = const_uniform_block ?
1926 const_uniform_block->value.u[0] + 1 : 1;
1927 st_src_reg index_reg = get_temp(glsl_type::uint_type);
1928 st_src_reg cbuf;
1929
1930 cbuf.type = ir->type->base_type;
1931 cbuf.file = PROGRAM_CONSTANT;
1932 cbuf.index = 0;
1933 cbuf.reladdr = NULL;
1934 cbuf.negate = 0;
1935 cbuf.abs = 0;
1936 cbuf.index2D = const_block;
1937
1938 assert(ir->type->is_vector() || ir->type->is_scalar());
1939
1940 if (const_offset_ir) {
1941 /* Constant index into constant buffer */
1942 cbuf.reladdr = NULL;
1943 cbuf.index = const_offset / 16;
1944 } else {
1945 ir_expression *offset_expr = ir->operands[1]->as_expression();
1946 st_src_reg offset = op[1];
1947
1948 /* The OpenGL spec is written in such a way that accesses with
1949 * non-constant offset are almost always vec4-aligned. The only
1950 * exception to this are members of structs in arrays of structs:
1951 * each struct in an array of structs is at least vec4-aligned,
1952 * but single-element and [ui]vec2 members of the struct may be at
1953 * an offset that is not a multiple of 16 bytes.
1954 *
1955 * Here, we extract that offset, relying on previous passes to
1956 * always generate offset expressions of the form
1957 * (+ expr constant_offset).
1958 *
1959 * Note that the std430 layout, which allows more cases of
1960 * alignment less than vec4 in arrays, is not supported for
1961 * uniform blocks, so we do not have to deal with it here.
1962 */
1963 if (offset_expr && offset_expr->operation == ir_binop_add) {
1964 const_offset_ir = offset_expr->operands[1]->as_constant();
1965 if (const_offset_ir) {
1966 const_offset = const_offset_ir->value.u[0];
1967 cbuf.index = const_offset / 16;
1968 offset_expr->operands[0]->accept(this);
1969 offset = this->result;
1970 }
1971 }
1972
1973 /* Relative/variable index into constant buffer */
1974 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
1975 st_src_reg_for_int(4));
1976 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1977 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
1978 }
1979
1980 if (const_uniform_block) {
1981 /* Constant constant buffer */
1982 cbuf.reladdr2 = NULL;
1983 } else {
1984 /* Relative/variable constant buffer */
1985 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
1986 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
1987 }
1988 cbuf.has_index2 = true;
1989
1990 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
1991 if (glsl_base_type_is_64bit(cbuf.type))
1992 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
1993 const_offset % 16 / 8,
1994 const_offset % 16 / 8,
1995 const_offset % 16 / 8);
1996 else
1997 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
1998 const_offset % 16 / 4,
1999 const_offset % 16 / 4,
2000 const_offset % 16 / 4);
2001
2002 if (ir->type->is_boolean()) {
2003 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf,
2004 st_src_reg_for_int(0));
2005 } else {
2006 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2007 }
2008 }
2009 break;
2010 }
2011 case ir_triop_lrp:
2012 /* note: we have to reorder the three args here */
2013 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2014 break;
2015 case ir_triop_csel:
2016 if (this->ctx->Const.NativeIntegers)
2017 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2018 else {
2019 op[0].negate = ~op[0].negate;
2020 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2021 }
2022 break;
2023 case ir_triop_bitfield_extract:
2024 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2025 break;
2026 case ir_quadop_bitfield_insert:
2027 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2028 break;
2029 case ir_unop_bitfield_reverse:
2030 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2031 break;
2032 case ir_unop_bit_count:
2033 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2034 break;
2035 case ir_unop_find_msb:
2036 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2037 break;
2038 case ir_unop_find_lsb:
2039 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2040 break;
2041 case ir_binop_imul_high:
2042 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2043 break;
2044 case ir_triop_fma:
2045 /* In theory, MAD is incorrect here. */
2046 if (have_fma)
2047 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2048 else
2049 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2050 break;
2051 case ir_unop_interpolate_at_centroid:
2052 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2053 break;
2054 case ir_binop_interpolate_at_offset: {
2055 /* The y coordinate needs to be flipped for the default fb */
2056 static const gl_state_index transform_y_state[STATE_LENGTH]
2057 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
2058
2059 unsigned transform_y_index =
2060 _mesa_add_state_reference(this->prog->Parameters,
2061 transform_y_state);
2062
2063 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
2064 transform_y_index,
2065 glsl_type::vec4_type);
2066 transform_y.swizzle = SWIZZLE_XXXX;
2067
2068 st_src_reg temp = get_temp(glsl_type::vec2_type);
2069 st_dst_reg temp_dst = st_dst_reg(temp);
2070
2071 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
2072 temp_dst.writemask = WRITEMASK_Y;
2073 emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
2074 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
2075 break;
2076 }
2077 case ir_binop_interpolate_at_sample:
2078 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2079 break;
2080
2081 case ir_unop_d2f:
2082 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2083 break;
2084 case ir_unop_f2d:
2085 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2086 break;
2087 case ir_unop_d2i:
2088 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2089 break;
2090 case ir_unop_i2d:
2091 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2092 break;
2093 case ir_unop_d2u:
2094 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2095 break;
2096 case ir_unop_u2d:
2097 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2098 break;
2099 case ir_unop_unpack_double_2x32:
2100 case ir_unop_pack_double_2x32:
2101 case ir_unop_unpack_int_2x32:
2102 case ir_unop_pack_int_2x32:
2103 case ir_unop_unpack_uint_2x32:
2104 case ir_unop_pack_uint_2x32:
2105 case ir_unop_unpack_sampler_2x32:
2106 case ir_unop_pack_sampler_2x32:
2107 case ir_unop_unpack_image_2x32:
2108 case ir_unop_pack_image_2x32:
2109 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2110 break;
2111
2112 case ir_binop_ldexp:
2113 if (ir->operands[0]->type->is_double()) {
2114 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2115 } else if (ir->operands[0]->type->is_float()) {
2116 emit_asm(ir, TGSI_OPCODE_LDEXP, result_dst, op[0], op[1]);
2117 } else {
2118 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2119 }
2120 break;
2121
2122 case ir_unop_pack_half_2x16:
2123 emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2124 break;
2125 case ir_unop_unpack_half_2x16:
2126 emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2127 break;
2128
2129 case ir_unop_get_buffer_size: {
2130 ir_constant *const_offset = ir->operands[0]->as_constant();
2131 st_src_reg buffer(
2132 PROGRAM_BUFFER,
2133 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
2134 (const_offset ? const_offset->value.u[0] : 0),
2135 GLSL_TYPE_UINT);
2136 if (!const_offset) {
2137 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
2138 *buffer.reladdr = op[0];
2139 emit_arl(ir, sampler_reladdr, op[0]);
2140 }
2141 emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
2142 break;
2143 }
2144
2145 case ir_unop_u2i64:
2146 case ir_unop_u2u64:
2147 case ir_unop_b2i64: {
2148 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2149 st_dst_reg temp_dst = st_dst_reg(temp);
2150 unsigned orig_swz = op[0].swizzle;
2151 /*
2152 * To convert unsigned to 64-bit:
2153 * zero Y channel, copy X channel.
2154 */
2155 temp_dst.writemask = WRITEMASK_Y;
2156 if (vector_elements > 1)
2157 temp_dst.writemask |= WRITEMASK_W;
2158 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2159 temp_dst.writemask = WRITEMASK_X;
2160 if (vector_elements > 1)
2161 temp_dst.writemask |= WRITEMASK_Z;
2162 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 0), GET_SWZ(orig_swz, 0),
2163 GET_SWZ(orig_swz, 1), GET_SWZ(orig_swz, 1));
2164 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2165 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2166 else
2167 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2168 result_src = temp;
2169 result_src.type = GLSL_TYPE_UINT64;
2170 if (vector_elements > 2) {
2171 /* Subtle: We rely on the fact that get_temp here returns the next
2172 * TGSI temporary register directly after the temp register used for
2173 * the first two components, so that the result gets picked up
2174 * automatically.
2175 */
2176 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2177 st_dst_reg temp_dst = st_dst_reg(temp);
2178 temp_dst.writemask = WRITEMASK_Y;
2179 if (vector_elements > 3)
2180 temp_dst.writemask |= WRITEMASK_W;
2181 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2182
2183 temp_dst.writemask = WRITEMASK_X;
2184 if (vector_elements > 3)
2185 temp_dst.writemask |= WRITEMASK_Z;
2186 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 2), GET_SWZ(orig_swz, 2),
2187 GET_SWZ(orig_swz, 3), GET_SWZ(orig_swz, 3));
2188 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2189 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2190 else
2191 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2192 }
2193 break;
2194 }
2195 case ir_unop_i642i:
2196 case ir_unop_u642i:
2197 case ir_unop_u642u:
2198 case ir_unop_i642u: {
2199 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2200 st_dst_reg temp_dst = st_dst_reg(temp);
2201 unsigned orig_swz = op[0].swizzle;
2202 unsigned orig_idx = op[0].index;
2203 int el;
2204 temp_dst.writemask = WRITEMASK_X;
2205
2206 for (el = 0; el < vector_elements; el++) {
2207 unsigned swz = GET_SWZ(orig_swz, el);
2208 if (swz & 1)
2209 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z);
2210 else
2211 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
2212 if (swz > 2)
2213 op[0].index = orig_idx + 1;
2214 op[0].type = GLSL_TYPE_UINT;
2215 temp_dst.writemask = WRITEMASK_X << el;
2216 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2217 }
2218 result_src = temp;
2219 if (ir->operation == ir_unop_u642u || ir->operation == ir_unop_i642u)
2220 result_src.type = GLSL_TYPE_UINT;
2221 else
2222 result_src.type = GLSL_TYPE_INT;
2223 break;
2224 }
2225 case ir_unop_i642b:
2226 emit_asm(ir, TGSI_OPCODE_U64SNE, result_dst, op[0], st_src_reg_for_int64(0));
2227 break;
2228 case ir_unop_i642f:
2229 emit_asm(ir, TGSI_OPCODE_I642F, result_dst, op[0]);
2230 break;
2231 case ir_unop_u642f:
2232 emit_asm(ir, TGSI_OPCODE_U642F, result_dst, op[0]);
2233 break;
2234 case ir_unop_i642d:
2235 emit_asm(ir, TGSI_OPCODE_I642D, result_dst, op[0]);
2236 break;
2237 case ir_unop_u642d:
2238 emit_asm(ir, TGSI_OPCODE_U642D, result_dst, op[0]);
2239 break;
2240 case ir_unop_i2i64:
2241 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2242 break;
2243 case ir_unop_f2i64:
2244 emit_asm(ir, TGSI_OPCODE_F2I64, result_dst, op[0]);
2245 break;
2246 case ir_unop_d2i64:
2247 emit_asm(ir, TGSI_OPCODE_D2I64, result_dst, op[0]);
2248 break;
2249 case ir_unop_i2u64:
2250 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2251 break;
2252 case ir_unop_f2u64:
2253 emit_asm(ir, TGSI_OPCODE_F2U64, result_dst, op[0]);
2254 break;
2255 case ir_unop_d2u64:
2256 emit_asm(ir, TGSI_OPCODE_D2U64, result_dst, op[0]);
2257 break;
2258 /* these might be needed */
2259 case ir_unop_pack_snorm_2x16:
2260 case ir_unop_pack_unorm_2x16:
2261 case ir_unop_pack_snorm_4x8:
2262 case ir_unop_pack_unorm_4x8:
2263
2264 case ir_unop_unpack_snorm_2x16:
2265 case ir_unop_unpack_unorm_2x16:
2266 case ir_unop_unpack_snorm_4x8:
2267 case ir_unop_unpack_unorm_4x8:
2268
2269 case ir_quadop_vector:
2270 case ir_binop_vector_extract:
2271 case ir_triop_vector_insert:
2272 case ir_binop_carry:
2273 case ir_binop_borrow:
2274 case ir_unop_ssbo_unsized_array_length:
2275 /* This operation is not supported, or should have already been handled.
2276 */
2277 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2278 break;
2279 }
2280
2281 this->result = result_src;
2282 }
2283
2284
2285 void
2286 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2287 {
2288 st_src_reg src;
2289 int i;
2290 int swizzle[4];
2291
2292 /* Note that this is only swizzles in expressions, not those on the left
2293 * hand side of an assignment, which do write masking. See ir_assignment
2294 * for that.
2295 */
2296
2297 ir->val->accept(this);
2298 src = this->result;
2299 assert(src.file != PROGRAM_UNDEFINED);
2300 assert(ir->type->vector_elements > 0);
2301
2302 for (i = 0; i < 4; i++) {
2303 if (i < ir->type->vector_elements) {
2304 switch (i) {
2305 case 0:
2306 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2307 break;
2308 case 1:
2309 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2310 break;
2311 case 2:
2312 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2313 break;
2314 case 3:
2315 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2316 break;
2317 }
2318 } else {
2319 /* If the type is smaller than a vec4, replicate the last
2320 * channel out.
2321 */
2322 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2323 }
2324 }
2325
2326 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2327
2328 this->result = src;
2329 }
2330
2331 /* Test if the variable is an array. Note that geometry and
2332 * tessellation shader inputs are outputs are always arrays (except
2333 * for patch inputs), so only the array element type is considered.
2334 */
2335 static bool
2336 is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
2337 {
2338 const glsl_type *type = var->type;
2339
2340 *remove_array = false;
2341
2342 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2343 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2344 return false;
2345
2346 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2347 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2348 stage == MESA_SHADER_TESS_CTRL) &&
2349 !var->data.patch) {
2350 if (!var->type->is_array())
2351 return false; /* a system value probably */
2352
2353 type = var->type->fields.array;
2354 *remove_array = true;
2355 }
2356
2357 return type->is_array() || type->is_matrix();
2358 }
2359
2360 static unsigned
2361 st_translate_interp_loc(ir_variable *var)
2362 {
2363 if (var->data.centroid)
2364 return TGSI_INTERPOLATE_LOC_CENTROID;
2365 else if (var->data.sample)
2366 return TGSI_INTERPOLATE_LOC_SAMPLE;
2367 else
2368 return TGSI_INTERPOLATE_LOC_CENTER;
2369 }
2370
2371 void
2372 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2373 {
2374 variable_storage *entry = find_variable_storage(ir->var);
2375 ir_variable *var = ir->var;
2376 bool remove_array;
2377
2378 if (!entry) {
2379 switch (var->data.mode) {
2380 case ir_var_uniform:
2381 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2382 var->data.param_index);
2383 _mesa_hash_table_insert(this->variables, var, entry);
2384 break;
2385 case ir_var_shader_in: {
2386 /* The linker assigns locations for varyings and attributes,
2387 * including deprecated builtins (like gl_Color), user-assign
2388 * generic attributes (glBindVertexLocation), and
2389 * user-defined varyings.
2390 */
2391 assert(var->data.location != -1);
2392
2393 const glsl_type *type_without_array = var->type->without_array();
2394 struct inout_decl *decl = &inputs[num_inputs];
2395 unsigned component = var->data.location_frac;
2396 unsigned num_components;
2397 num_inputs++;
2398
2399 if (type_without_array->is_64bit())
2400 component = component / 2;
2401 if (type_without_array->vector_elements)
2402 num_components = type_without_array->vector_elements;
2403 else
2404 num_components = 4;
2405
2406 decl->mesa_index = var->data.location;
2407 decl->interp = (glsl_interp_mode) var->data.interpolation;
2408 decl->interp_loc = st_translate_interp_loc(var);
2409 decl->base_type = type_without_array->base_type;
2410 decl->usage_mask = u_bit_consecutive(component, num_components);
2411
2412 if (is_inout_array(shader->Stage, var, &remove_array)) {
2413 decl->array_id = num_input_arrays + 1;
2414 num_input_arrays++;
2415 } else {
2416 decl->array_id = 0;
2417 }
2418
2419 if (remove_array)
2420 decl->size = type_size(var->type->fields.array);
2421 else
2422 decl->size = type_size(var->type);
2423
2424 entry = new(mem_ctx) variable_storage(var,
2425 PROGRAM_INPUT,
2426 decl->mesa_index,
2427 decl->array_id);
2428 entry->component = component;
2429
2430 _mesa_hash_table_insert(this->variables, var, entry);
2431
2432 break;
2433 }
2434 case ir_var_shader_out: {
2435 assert(var->data.location != -1);
2436
2437 const glsl_type *type_without_array = var->type->without_array();
2438 struct inout_decl *decl = &outputs[num_outputs];
2439 unsigned component = var->data.location_frac;
2440 unsigned num_components;
2441 num_outputs++;
2442
2443 if (type_without_array->is_64bit())
2444 component = component / 2;
2445 if (type_without_array->vector_elements)
2446 num_components = type_without_array->vector_elements;
2447 else
2448 num_components = 4;
2449
2450 decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
2451 decl->base_type = type_without_array->base_type;
2452 decl->usage_mask = u_bit_consecutive(component, num_components);
2453 if (var->data.stream & (1u << 31)) {
2454 decl->gs_out_streams = var->data.stream & ~(1u << 31);
2455 } else {
2456 assert(var->data.stream < 4);
2457 decl->gs_out_streams = 0;
2458 for (unsigned i = 0; i < num_components; ++i)
2459 decl->gs_out_streams |= var->data.stream << (2 * (component + i));
2460 }
2461
2462 if (is_inout_array(shader->Stage, var, &remove_array)) {
2463 decl->array_id = num_output_arrays + 1;
2464 num_output_arrays++;
2465 } else {
2466 decl->array_id = 0;
2467 }
2468
2469 if (remove_array)
2470 decl->size = type_size(var->type->fields.array);
2471 else
2472 decl->size = type_size(var->type);
2473
2474 if (var->data.fb_fetch_output) {
2475 st_dst_reg dst = st_dst_reg(get_temp(var->type));
2476 st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
2477 var->type, component, decl->array_id);
2478 emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
2479 entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
2480 dst.array_id);
2481 } else {
2482 entry = new(mem_ctx) variable_storage(var,
2483 PROGRAM_OUTPUT,
2484 decl->mesa_index,
2485 decl->array_id);
2486 }
2487 entry->component = component;
2488
2489 _mesa_hash_table_insert(this->variables, var, entry);
2490
2491 break;
2492 }
2493 case ir_var_system_value:
2494 entry = new(mem_ctx) variable_storage(var,
2495 PROGRAM_SYSTEM_VALUE,
2496 var->data.location);
2497 break;
2498 case ir_var_auto:
2499 case ir_var_temporary:
2500 st_src_reg src = get_temp(var->type);
2501
2502 entry = new(mem_ctx) variable_storage(var, src.file, src.index,
2503 src.array_id);
2504 _mesa_hash_table_insert(this->variables, var, entry);
2505
2506 break;
2507 }
2508
2509 if (!entry) {
2510 printf("Failed to make storage for %s\n", var->name);
2511 exit(1);
2512 }
2513 }
2514
2515 this->result = st_src_reg(entry->file, entry->index, var->type,
2516 entry->component, entry->array_id);
2517 if (this->shader->Stage == MESA_SHADER_VERTEX &&
2518 var->data.mode == ir_var_shader_in &&
2519 var->type->without_array()->is_double())
2520 this->result.is_double_vertex_input = true;
2521 if (!native_integers)
2522 this->result.type = GLSL_TYPE_FLOAT;
2523 }
2524
2525 static void
2526 shrink_array_declarations(struct inout_decl *decls, unsigned count,
2527 GLbitfield64* usage_mask,
2528 GLbitfield64 double_usage_mask,
2529 GLbitfield* patch_usage_mask)
2530 {
2531 unsigned i;
2532 int j;
2533
2534 /* Fix array declarations by removing unused array elements at both ends
2535 * of the arrays. For example, mat4[3] where only mat[1] is used.
2536 */
2537 for (i = 0; i < count; i++) {
2538 struct inout_decl *decl = &decls[i];
2539 if (!decl->array_id)
2540 continue;
2541
2542 /* Shrink the beginning. */
2543 for (j = 0; j < (int)decl->size; j++) {
2544 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2545 if (*patch_usage_mask &
2546 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2547 break;
2548 }
2549 else {
2550 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2551 break;
2552 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2553 break;
2554 }
2555
2556 decl->mesa_index++;
2557 decl->size--;
2558 j--;
2559 }
2560
2561 /* Shrink the end. */
2562 for (j = decl->size-1; j >= 0; j--) {
2563 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2564 if (*patch_usage_mask &
2565 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2566 break;
2567 }
2568 else {
2569 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2570 break;
2571 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2572 break;
2573 }
2574
2575 decl->size--;
2576 }
2577
2578 /* When not all entries of an array are accessed, we mark them as used
2579 * here anyway, to ensure that the input/output mapping logic doesn't get
2580 * confused.
2581 *
2582 * TODO This happens when an array isn't used via indirect access, which
2583 * some game ports do (at least eON-based). There is an optimization
2584 * opportunity here by replacing the array declaration with non-array
2585 * declarations of those slots that are actually used.
2586 */
2587 for (j = 1; j < (int)decl->size; ++j) {
2588 if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2589 *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2590 else
2591 *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2592 }
2593 }
2594 }
2595
2596 void
2597 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2598 {
2599 ir_constant *index;
2600 st_src_reg src;
2601 bool is_2D = false;
2602 ir_variable *var = ir->variable_referenced();
2603
2604 /* We only need the logic provided by st_glsl_storage_type_size()
2605 * for arrays of structs. Indirect sampler and image indexing is handled
2606 * elsewhere.
2607 */
2608 int element_size = ir->type->without_array()->is_record() ?
2609 st_glsl_storage_type_size(ir->type, var->data.bindless) :
2610 type_size(ir->type);
2611
2612 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
2613
2614 ir->array->accept(this);
2615 src = this->result;
2616
2617 if (!src.has_index2) {
2618 switch (this->prog->Target) {
2619 case GL_TESS_CONTROL_PROGRAM_NV:
2620 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2621 !ir->variable_referenced()->data.patch;
2622 break;
2623 case GL_TESS_EVALUATION_PROGRAM_NV:
2624 is_2D = src.file == PROGRAM_INPUT &&
2625 !ir->variable_referenced()->data.patch;
2626 break;
2627 case GL_GEOMETRY_PROGRAM_NV:
2628 is_2D = src.file == PROGRAM_INPUT;
2629 break;
2630 }
2631 }
2632
2633 if (is_2D)
2634 element_size = 1;
2635
2636 if (index) {
2637
2638 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
2639 src.file == PROGRAM_INPUT)
2640 element_size = attrib_type_size(ir->type, true);
2641 if (is_2D) {
2642 src.index2D = index->value.i[0];
2643 src.has_index2 = true;
2644 } else
2645 src.index += index->value.i[0] * element_size;
2646 } else {
2647 /* Variable index array dereference. It eats the "vec4" of the
2648 * base of the array and an index that offsets the TGSI register
2649 * index.
2650 */
2651 ir->array_index->accept(this);
2652
2653 st_src_reg index_reg;
2654
2655 if (element_size == 1) {
2656 index_reg = this->result;
2657 } else {
2658 index_reg = get_temp(native_integers ?
2659 glsl_type::int_type : glsl_type::float_type);
2660
2661 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2662 this->result, st_src_reg_for_type(index_reg.type, element_size));
2663 }
2664
2665 /* If there was already a relative address register involved, add the
2666 * new and the old together to get the new offset.
2667 */
2668 if (!is_2D && src.reladdr != NULL) {
2669 st_src_reg accum_reg = get_temp(native_integers ?
2670 glsl_type::int_type : glsl_type::float_type);
2671
2672 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2673 index_reg, *src.reladdr);
2674
2675 index_reg = accum_reg;
2676 }
2677
2678 if (is_2D) {
2679 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2680 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2681 src.index2D = 0;
2682 src.has_index2 = true;
2683 } else {
2684 src.reladdr = ralloc(mem_ctx, st_src_reg);
2685 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2686 }
2687 }
2688
2689 /* Change the register type to the element type of the array. */
2690 src.type = ir->type->base_type;
2691
2692 this->result = src;
2693 }
2694
2695 void
2696 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2697 {
2698 unsigned int i;
2699 const glsl_type *struct_type = ir->record->type;
2700 ir_variable *var = ir->record->variable_referenced();
2701 int offset = 0;
2702
2703 ir->record->accept(this);
2704
2705 assert(ir->field_idx >= 0);
2706 assert(var);
2707 for (i = 0; i < struct_type->length; i++) {
2708 if (i == (unsigned) ir->field_idx)
2709 break;
2710 const glsl_type *member_type = struct_type->fields.structure[i].type;
2711 offset += st_glsl_storage_type_size(member_type, var->data.bindless);
2712 }
2713
2714 /* If the type is smaller than a vec4, replicate the last channel out. */
2715 if (ir->type->is_scalar() || ir->type->is_vector())
2716 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2717 else
2718 this->result.swizzle = SWIZZLE_NOOP;
2719
2720 this->result.index += offset;
2721 this->result.type = ir->type->base_type;
2722 }
2723
2724 /**
2725 * We want to be careful in assignment setup to hit the actual storage
2726 * instead of potentially using a temporary like we might with the
2727 * ir_dereference handler.
2728 */
2729 static st_dst_reg
2730 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
2731 {
2732 /* The LHS must be a dereference. If the LHS is a variable indexed array
2733 * access of a vector, it must be separated into a series conditional moves
2734 * before reaching this point (see ir_vec_index_to_cond_assign).
2735 */
2736 assert(ir->as_dereference());
2737 ir_dereference_array *deref_array = ir->as_dereference_array();
2738 if (deref_array) {
2739 assert(!deref_array->array->type->is_vector());
2740 }
2741
2742 /* Use the rvalue deref handler for the most part. We write swizzles using
2743 * the writemask, but we do extract the base component for enhanced layouts
2744 * from the source swizzle.
2745 */
2746 ir->accept(v);
2747 *component = GET_SWZ(v->result.swizzle, 0);
2748 return st_dst_reg(v->result);
2749 }
2750
2751 /**
2752 * Process the condition of a conditional assignment
2753 *
2754 * Examines the condition of a conditional assignment to generate the optimal
2755 * first operand of a \c CMP instruction. If the condition is a relational
2756 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2757 * used as the source for the \c CMP instruction. Otherwise the comparison
2758 * is processed to a boolean result, and the boolean result is used as the
2759 * operand to the CMP instruction.
2760 */
2761 bool
2762 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2763 {
2764 ir_rvalue *src_ir = ir;
2765 bool negate = true;
2766 bool switch_order = false;
2767
2768 ir_expression *const expr = ir->as_expression();
2769
2770 if (native_integers) {
2771 if ((expr != NULL) && (expr->num_operands == 2)) {
2772 enum glsl_base_type type = expr->operands[0]->type->base_type;
2773 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2774 type == GLSL_TYPE_BOOL) {
2775 if (expr->operation == ir_binop_equal) {
2776 if (expr->operands[0]->is_zero()) {
2777 src_ir = expr->operands[1];
2778 switch_order = true;
2779 }
2780 else if (expr->operands[1]->is_zero()) {
2781 src_ir = expr->operands[0];
2782 switch_order = true;
2783 }
2784 }
2785 else if (expr->operation == ir_binop_nequal) {
2786 if (expr->operands[0]->is_zero()) {
2787 src_ir = expr->operands[1];
2788 }
2789 else if (expr->operands[1]->is_zero()) {
2790 src_ir = expr->operands[0];
2791 }
2792 }
2793 }
2794 }
2795
2796 src_ir->accept(this);
2797 return switch_order;
2798 }
2799
2800 if ((expr != NULL) && (expr->num_operands == 2)) {
2801 bool zero_on_left = false;
2802
2803 if (expr->operands[0]->is_zero()) {
2804 src_ir = expr->operands[1];
2805 zero_on_left = true;
2806 } else if (expr->operands[1]->is_zero()) {
2807 src_ir = expr->operands[0];
2808 zero_on_left = false;
2809 }
2810
2811 /* a is - 0 + - 0 +
2812 * (a < 0) T F F ( a < 0) T F F
2813 * (0 < a) F F T (-a < 0) F F T
2814 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2815 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2816 * (a > 0) F F T (-a < 0) F F T
2817 * (0 > a) T F F ( a < 0) T F F
2818 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2819 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2820 *
2821 * Note that exchanging the order of 0 and 'a' in the comparison simply
2822 * means that the value of 'a' should be negated.
2823 */
2824 if (src_ir != ir) {
2825 switch (expr->operation) {
2826 case ir_binop_less:
2827 switch_order = false;
2828 negate = zero_on_left;
2829 break;
2830
2831 case ir_binop_greater:
2832 switch_order = false;
2833 negate = !zero_on_left;
2834 break;
2835
2836 case ir_binop_lequal:
2837 switch_order = true;
2838 negate = !zero_on_left;
2839 break;
2840
2841 case ir_binop_gequal:
2842 switch_order = true;
2843 negate = zero_on_left;
2844 break;
2845
2846 default:
2847 /* This isn't the right kind of comparison afterall, so make sure
2848 * the whole condition is visited.
2849 */
2850 src_ir = ir;
2851 break;
2852 }
2853 }
2854 }
2855
2856 src_ir->accept(this);
2857
2858 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2859 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2860 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2861 * computing the condition.
2862 */
2863 if (negate)
2864 this->result.negate = ~this->result.negate;
2865
2866 return switch_order;
2867 }
2868
2869 void
2870 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2871 st_dst_reg *l, st_src_reg *r,
2872 st_src_reg *cond, bool cond_swap)
2873 {
2874 if (type->is_record()) {
2875 for (unsigned int i = 0; i < type->length; i++) {
2876 emit_block_mov(ir, type->fields.structure[i].type, l, r,
2877 cond, cond_swap);
2878 }
2879 return;
2880 }
2881
2882 if (type->is_array()) {
2883 for (unsigned int i = 0; i < type->length; i++) {
2884 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
2885 }
2886 return;
2887 }
2888
2889 if (type->is_matrix()) {
2890 const struct glsl_type *vec_type;
2891
2892 vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
2893 type->vector_elements, 1);
2894
2895 for (int i = 0; i < type->matrix_columns; i++) {
2896 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
2897 }
2898 return;
2899 }
2900
2901 assert(type->is_scalar() || type->is_vector());
2902
2903 l->type = type->base_type;
2904 r->type = type->base_type;
2905 if (cond) {
2906 st_src_reg l_src = st_src_reg(*l);
2907
2908 if (l_src.file == PROGRAM_OUTPUT &&
2909 this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
2910 (l_src.index == FRAG_RESULT_DEPTH || l_src.index == FRAG_RESULT_STENCIL)) {
2911 /* This is a special case because the source swizzles will be shifted
2912 * later to account for the difference between GLSL (where they're
2913 * plain floats) and TGSI (where they're Z and Y components). */
2914 l_src.swizzle = SWIZZLE_XXXX;
2915 }
2916
2917 if (native_integers) {
2918 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
2919 cond_swap ? l_src : *r,
2920 cond_swap ? *r : l_src);
2921 } else {
2922 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
2923 cond_swap ? l_src : *r,
2924 cond_swap ? *r : l_src);
2925 }
2926 } else {
2927 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
2928 }
2929 l->index++;
2930 r->index++;
2931 if (type->is_dual_slot()) {
2932 l->index++;
2933 if (r->is_double_vertex_input == false)
2934 r->index++;
2935 }
2936 }
2937
2938 void
2939 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2940 {
2941 int dst_component;
2942 st_dst_reg l;
2943 st_src_reg r;
2944
2945 /* all generated instructions need to be flaged as precise */
2946 this->precise = is_precise(ir->lhs->variable_referenced());
2947 ir->rhs->accept(this);
2948 r = this->result;
2949
2950 l = get_assignment_lhs(ir->lhs, this, &dst_component);
2951
2952 {
2953 int swizzles[4];
2954 int first_enabled_chan = 0;
2955 int rhs_chan = 0;
2956 ir_variable *variable = ir->lhs->variable_referenced();
2957
2958 if (shader->Stage == MESA_SHADER_FRAGMENT &&
2959 variable->data.mode == ir_var_shader_out &&
2960 (variable->data.location == FRAG_RESULT_DEPTH ||
2961 variable->data.location == FRAG_RESULT_STENCIL)) {
2962 assert(ir->lhs->type->is_scalar());
2963 assert(ir->write_mask == WRITEMASK_X);
2964
2965 if (variable->data.location == FRAG_RESULT_DEPTH)
2966 l.writemask = WRITEMASK_Z;
2967 else {
2968 assert(variable->data.location == FRAG_RESULT_STENCIL);
2969 l.writemask = WRITEMASK_Y;
2970 }
2971 } else if (ir->write_mask == 0) {
2972 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2973
2974 unsigned num_elements = ir->lhs->type->without_array()->vector_elements;
2975
2976 if (num_elements) {
2977 l.writemask = u_bit_consecutive(0, num_elements);
2978 } else {
2979 /* The type is a struct or an array of (array of) structs. */
2980 l.writemask = WRITEMASK_XYZW;
2981 }
2982 } else {
2983 l.writemask = ir->write_mask;
2984 }
2985
2986 for (int i = 0; i < 4; i++) {
2987 if (l.writemask & (1 << i)) {
2988 first_enabled_chan = GET_SWZ(r.swizzle, i);
2989 break;
2990 }
2991 }
2992
2993 l.writemask = l.writemask << dst_component;
2994
2995 /* Swizzle a small RHS vector into the channels being written.
2996 *
2997 * glsl ir treats write_mask as dictating how many channels are
2998 * present on the RHS while TGSI treats write_mask as just
2999 * showing which channels of the vec4 RHS get written.
3000 */
3001 for (int i = 0; i < 4; i++) {
3002 if (l.writemask & (1 << i))
3003 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
3004 else
3005 swizzles[i] = first_enabled_chan;
3006 }
3007 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
3008 swizzles[2], swizzles[3]);
3009 }
3010
3011 assert(l.file != PROGRAM_UNDEFINED);
3012 assert(r.file != PROGRAM_UNDEFINED);
3013
3014 if (ir->condition) {
3015 const bool switch_order = this->process_move_condition(ir->condition);
3016 st_src_reg condition = this->result;
3017
3018 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
3019 } else if (ir->rhs->as_expression() &&
3020 this->instructions.get_tail() &&
3021 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
3022 !((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
3023 type_size(ir->lhs->type) == 1 &&
3024 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
3025 /* To avoid emitting an extra MOV when assigning an expression to a
3026 * variable, emit the last instruction of the expression again, but
3027 * replace the destination register with the target of the assignment.
3028 * Dead code elimination will remove the original instruction.
3029 */
3030 glsl_to_tgsi_instruction *inst, *new_inst;
3031 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
3032 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
3033 new_inst->saturate = inst->saturate;
3034 new_inst->resource = inst->resource;
3035 inst->dead_mask = inst->dst[0].writemask;
3036 } else {
3037 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
3038 }
3039 this->precise = 0;
3040 }
3041
3042
3043 void
3044 glsl_to_tgsi_visitor::visit(ir_constant *ir)
3045 {
3046 st_src_reg src;
3047 GLdouble stack_vals[4] = { 0 };
3048 gl_constant_value *values = (gl_constant_value *) stack_vals;
3049 GLenum gl_type = GL_NONE;
3050 unsigned int i;
3051 static int in_array = 0;
3052 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
3053
3054 /* Unfortunately, 4 floats is all we can get into
3055 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
3056 * aggregate constant and move each constant value into it. If we
3057 * get lucky, copy propagation will eliminate the extra moves.
3058 */
3059 if (ir->type->is_record()) {
3060 st_src_reg temp_base = get_temp(ir->type);
3061 st_dst_reg temp = st_dst_reg(temp_base);
3062
3063 for (i = 0; i < ir->type->length; i++) {
3064 ir_constant *const field_value = ir->get_record_field(i);
3065 int size = type_size(field_value->type);
3066
3067 assert(size > 0);
3068
3069 field_value->accept(this);
3070 src = this->result;
3071
3072 for (unsigned j = 0; j < (unsigned int)size; j++) {
3073 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3074
3075 src.index++;
3076 temp.index++;
3077 }
3078 }
3079 this->result = temp_base;
3080 return;
3081 }
3082
3083 if (ir->type->is_array()) {
3084 st_src_reg temp_base = get_temp(ir->type);
3085 st_dst_reg temp = st_dst_reg(temp_base);
3086 int size = type_size(ir->type->fields.array);
3087
3088 assert(size > 0);
3089 in_array++;
3090
3091 for (i = 0; i < ir->type->length; i++) {
3092 ir->const_elements[i]->accept(this);
3093 src = this->result;
3094 for (int j = 0; j < size; j++) {
3095 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3096
3097 src.index++;
3098 temp.index++;
3099 }
3100 }
3101 this->result = temp_base;
3102 in_array--;
3103 return;
3104 }
3105
3106 if (ir->type->is_matrix()) {
3107 st_src_reg mat = get_temp(ir->type);
3108 st_dst_reg mat_column = st_dst_reg(mat);
3109
3110 for (i = 0; i < ir->type->matrix_columns; i++) {
3111 switch (ir->type->base_type) {
3112 case GLSL_TYPE_FLOAT:
3113 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
3114
3115 src = st_src_reg(file, -1, ir->type->base_type);
3116 src.index = add_constant(file,
3117 values,
3118 ir->type->vector_elements,
3119 GL_FLOAT,
3120 &src.swizzle);
3121 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3122 break;
3123 case GLSL_TYPE_DOUBLE:
3124 values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
3125 src = st_src_reg(file, -1, ir->type->base_type);
3126 src.index = add_constant(file,
3127 values,
3128 ir->type->vector_elements,
3129 GL_DOUBLE,
3130 &src.swizzle);
3131 if (ir->type->vector_elements >= 2) {
3132 mat_column.writemask = WRITEMASK_XY;
3133 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3134 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3135 } else {
3136 mat_column.writemask = WRITEMASK_X;
3137 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
3138 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3139 }
3140 src.index++;
3141 if (ir->type->vector_elements > 2) {
3142 if (ir->type->vector_elements == 4) {
3143 mat_column.writemask = WRITEMASK_ZW;
3144 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3145 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3146 } else {
3147 mat_column.writemask = WRITEMASK_Z;
3148 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
3149 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3150 mat_column.writemask = WRITEMASK_XYZW;
3151 src.swizzle = SWIZZLE_XYZW;
3152 }
3153 mat_column.index++;
3154 }
3155 break;
3156 default:
3157 unreachable("Illegal matrix constant type.\n");
3158 break;
3159 }
3160 mat_column.index++;
3161 }
3162 this->result = mat;
3163 return;
3164 }
3165
3166 switch (ir->type->base_type) {
3167 case GLSL_TYPE_FLOAT:
3168 gl_type = GL_FLOAT;
3169 for (i = 0; i < ir->type->vector_elements; i++) {
3170 values[i].f = ir->value.f[i];
3171 }
3172 break;
3173 case GLSL_TYPE_DOUBLE:
3174 gl_type = GL_DOUBLE;
3175 for (i = 0; i < ir->type->vector_elements; i++) {
3176 memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
3177 }
3178 break;
3179 case GLSL_TYPE_INT64:
3180 gl_type = GL_INT64_ARB;
3181 for (i = 0; i < ir->type->vector_elements; i++) {
3182 memcpy(&values[i * 2], &ir->value.d[i], sizeof(int64_t));
3183 }
3184 break;
3185 case GLSL_TYPE_UINT64:
3186 gl_type = GL_UNSIGNED_INT64_ARB;
3187 for (i = 0; i < ir->type->vector_elements; i++) {
3188 memcpy(&values[i * 2], &ir->value.d[i], sizeof(uint64_t));
3189 }
3190 break;
3191 case GLSL_TYPE_UINT:
3192 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3193 for (i = 0; i < ir->type->vector_elements; i++) {
3194 if (native_integers)
3195 values[i].u = ir->value.u[i];
3196 else
3197 values[i].f = ir->value.u[i];
3198 }
3199 break;
3200 case GLSL_TYPE_INT:
3201 gl_type = native_integers ? GL_INT : GL_FLOAT;
3202 for (i = 0; i < ir->type->vector_elements; i++) {
3203 if (native_integers)
3204 values[i].i = ir->value.i[i];
3205 else
3206 values[i].f = ir->value.i[i];
3207 }
3208 break;
3209 case GLSL_TYPE_BOOL:
3210 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3211 for (i = 0; i < ir->type->vector_elements; i++) {
3212 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3213 }
3214 break;
3215 default:
3216 assert(!"Non-float/uint/int/bool constant");
3217 }
3218
3219 this->result = st_src_reg(file, -1, ir->type);
3220 this->result.index = add_constant(file,
3221 values,
3222 ir->type->vector_elements,
3223 gl_type,
3224 &this->result.swizzle);
3225 }
3226
3227 void
3228 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3229 {
3230 exec_node *param = ir->actual_parameters.get_head();
3231 ir_dereference *deref = static_cast<ir_dereference *>(param);
3232 ir_variable *location = deref->variable_referenced();
3233
3234 st_src_reg buffer(
3235 PROGRAM_BUFFER, location->data.binding, GLSL_TYPE_ATOMIC_UINT);
3236
3237 /* Calculate the surface offset */
3238 st_src_reg offset;
3239 unsigned array_size = 0, base = 0;
3240 uint16_t index = 0;
3241
3242 get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
3243
3244 if (offset.file != PROGRAM_UNDEFINED) {
3245 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
3246 offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
3247 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
3248 offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
3249 } else {
3250 offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
3251 }
3252
3253 ir->return_deref->accept(this);
3254 st_dst_reg dst(this->result);
3255 dst.writemask = WRITEMASK_X;
3256
3257 glsl_to_tgsi_instruction *inst;
3258
3259 if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
3260 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
3261 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
3262 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3263 st_src_reg_for_int(1));
3264 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
3265 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3266 st_src_reg_for_int(-1));
3267 emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
3268 } else {
3269 param = param->get_next();
3270 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3271 val->accept(this);
3272
3273 st_src_reg data = this->result, data2 = undef_src;
3274 unsigned opcode;
3275 switch (ir->callee->intrinsic_id) {
3276 case ir_intrinsic_atomic_counter_add:
3277 opcode = TGSI_OPCODE_ATOMUADD;
3278 break;
3279 case ir_intrinsic_atomic_counter_min:
3280 opcode = TGSI_OPCODE_ATOMIMIN;
3281 break;
3282 case ir_intrinsic_atomic_counter_max:
3283 opcode = TGSI_OPCODE_ATOMIMAX;
3284 break;
3285 case ir_intrinsic_atomic_counter_and:
3286 opcode = TGSI_OPCODE_ATOMAND;
3287 break;
3288 case ir_intrinsic_atomic_counter_or:
3289 opcode = TGSI_OPCODE_ATOMOR;
3290 break;
3291 case ir_intrinsic_atomic_counter_xor:
3292 opcode = TGSI_OPCODE_ATOMXOR;
3293 break;
3294 case ir_intrinsic_atomic_counter_exchange:
3295 opcode = TGSI_OPCODE_ATOMXCHG;
3296 break;
3297 case ir_intrinsic_atomic_counter_comp_swap: {
3298 opcode = TGSI_OPCODE_ATOMCAS;
3299 param = param->get_next();
3300 val = ((ir_instruction *)param)->as_rvalue();
3301 val->accept(this);
3302 data2 = this->result;
3303 break;
3304 }
3305 default:
3306 assert(!"Unexpected intrinsic");
3307 return;
3308 }
3309
3310 inst = emit_asm(ir, opcode, dst, offset, data, data2);
3311 }
3312
3313 inst->resource = buffer;
3314 }
3315
3316 void
3317 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
3318 {
3319 exec_node *param = ir->actual_parameters.get_head();
3320
3321 ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
3322
3323 param = param->get_next();
3324 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3325
3326 ir_constant *const_block = block->as_constant();
3327
3328 st_src_reg buffer(
3329 PROGRAM_BUFFER,
3330 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
3331 (const_block ? const_block->value.u[0] : 0),
3332 GLSL_TYPE_UINT);
3333
3334 if (!const_block) {
3335 block->accept(this);
3336 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3337 *buffer.reladdr = this->result;
3338 emit_arl(ir, sampler_reladdr, this->result);
3339 }
3340
3341 /* Calculate the surface offset */
3342 offset->accept(this);
3343 st_src_reg off = this->result;
3344
3345 st_dst_reg dst = undef_dst;
3346 if (ir->return_deref) {
3347 ir->return_deref->accept(this);
3348 dst = st_dst_reg(this->result);
3349 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3350 }
3351
3352 glsl_to_tgsi_instruction *inst;
3353
3354 if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
3355 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3356 if (dst.type == GLSL_TYPE_BOOL)
3357 emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst), st_src_reg_for_int(0));
3358 } else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
3359 param = param->get_next();
3360 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3361 val->accept(this);
3362
3363 param = param->get_next();
3364 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3365 assert(write_mask);
3366 dst.writemask = write_mask->value.u[0];
3367
3368 dst.type = this->result.type;
3369 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3370 } else {
3371 param = param->get_next();
3372 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3373 val->accept(this);
3374
3375 st_src_reg data = this->result, data2 = undef_src;
3376 unsigned opcode;
3377 switch (ir->callee->intrinsic_id) {
3378 case ir_intrinsic_ssbo_atomic_add:
3379 opcode = TGSI_OPCODE_ATOMUADD;
3380 break;
3381 case ir_intrinsic_ssbo_atomic_min:
3382 opcode = TGSI_OPCODE_ATOMIMIN;
3383 break;
3384 case ir_intrinsic_ssbo_atomic_max:
3385 opcode = TGSI_OPCODE_ATOMIMAX;
3386 break;
3387 case ir_intrinsic_ssbo_atomic_and:
3388 opcode = TGSI_OPCODE_ATOMAND;
3389 break;
3390 case ir_intrinsic_ssbo_atomic_or:
3391 opcode = TGSI_OPCODE_ATOMOR;
3392 break;
3393 case ir_intrinsic_ssbo_atomic_xor:
3394 opcode = TGSI_OPCODE_ATOMXOR;
3395 break;
3396 case ir_intrinsic_ssbo_atomic_exchange:
3397 opcode = TGSI_OPCODE_ATOMXCHG;
3398 break;
3399 case ir_intrinsic_ssbo_atomic_comp_swap:
3400 opcode = TGSI_OPCODE_ATOMCAS;
3401 param = param->get_next();
3402 val = ((ir_instruction *)param)->as_rvalue();
3403 val->accept(this);
3404 data2 = this->result;
3405 break;
3406 default:
3407 assert(!"Unexpected intrinsic");
3408 return;
3409 }
3410
3411 inst = emit_asm(ir, opcode, dst, off, data, data2);
3412 }
3413
3414 param = param->get_next();
3415 ir_constant *access = NULL;
3416 if (!param->is_tail_sentinel()) {
3417 access = ((ir_instruction *)param)->as_constant();
3418 assert(access);
3419 }
3420
3421 add_buffer_to_load_and_stores(inst, &buffer, &this->instructions, access);
3422 }
3423
3424 void
3425 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
3426 {
3427 switch (ir->callee->intrinsic_id) {
3428 case ir_intrinsic_memory_barrier:
3429 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3430 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3431 TGSI_MEMBAR_ATOMIC_BUFFER |
3432 TGSI_MEMBAR_SHADER_IMAGE |
3433 TGSI_MEMBAR_SHARED));
3434 break;
3435 case ir_intrinsic_memory_barrier_atomic_counter:
3436 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3437 st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
3438 break;
3439 case ir_intrinsic_memory_barrier_buffer:
3440 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3441 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
3442 break;
3443 case ir_intrinsic_memory_barrier_image:
3444 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3445 st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
3446 break;
3447 case ir_intrinsic_memory_barrier_shared:
3448 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3449 st_src_reg_for_int(TGSI_MEMBAR_SHARED));
3450 break;
3451 case ir_intrinsic_group_memory_barrier:
3452 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3453 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3454 TGSI_MEMBAR_ATOMIC_BUFFER |
3455 TGSI_MEMBAR_SHADER_IMAGE |
3456 TGSI_MEMBAR_SHARED |
3457 TGSI_MEMBAR_THREAD_GROUP));
3458 break;
3459 default:
3460 assert(!"Unexpected memory barrier intrinsic");
3461 }
3462 }
3463
3464 void
3465 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
3466 {
3467 exec_node *param = ir->actual_parameters.get_head();
3468
3469 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3470
3471 st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
3472
3473 /* Calculate the surface offset */
3474 offset->accept(this);
3475 st_src_reg off = this->result;
3476
3477 st_dst_reg dst = undef_dst;
3478 if (ir->return_deref) {
3479 ir->return_deref->accept(this);
3480 dst = st_dst_reg(this->result);
3481 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3482 }
3483
3484 glsl_to_tgsi_instruction *inst;
3485
3486 if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
3487 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3488 inst->resource = buffer;
3489 } else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
3490 param = param->get_next();
3491 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3492 val->accept(this);
3493
3494 param = param->get_next();
3495 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3496 assert(write_mask);
3497 dst.writemask = write_mask->value.u[0];
3498
3499 dst.type = this->result.type;
3500 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3501 inst->resource = buffer;
3502 } else {
3503 param = param->get_next();
3504 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3505 val->accept(this);
3506
3507 st_src_reg data = this->result, data2 = undef_src;
3508 unsigned opcode;
3509 switch (ir->callee->intrinsic_id) {
3510 case ir_intrinsic_shared_atomic_add:
3511 opcode = TGSI_OPCODE_ATOMUADD;
3512 break;
3513 case ir_intrinsic_shared_atomic_min:
3514 opcode = TGSI_OPCODE_ATOMIMIN;
3515 break;
3516 case ir_intrinsic_shared_atomic_max:
3517 opcode = TGSI_OPCODE_ATOMIMAX;
3518 break;
3519 case ir_intrinsic_shared_atomic_and:
3520 opcode = TGSI_OPCODE_ATOMAND;
3521 break;
3522 case ir_intrinsic_shared_atomic_or:
3523 opcode = TGSI_OPCODE_ATOMOR;
3524 break;
3525 case ir_intrinsic_shared_atomic_xor:
3526 opcode = TGSI_OPCODE_ATOMXOR;
3527 break;
3528 case ir_intrinsic_shared_atomic_exchange:
3529 opcode = TGSI_OPCODE_ATOMXCHG;
3530 break;
3531 case ir_intrinsic_shared_atomic_comp_swap:
3532 opcode = TGSI_OPCODE_ATOMCAS;
3533 param = param->get_next();
3534 val = ((ir_instruction *)param)->as_rvalue();
3535 val->accept(this);
3536 data2 = this->result;
3537 break;
3538 default:
3539 assert(!"Unexpected intrinsic");
3540 return;
3541 }
3542
3543 inst = emit_asm(ir, opcode, dst, off, data, data2);
3544 inst->resource = buffer;
3545 }
3546 }
3547
3548 static void
3549 get_image_qualifiers(ir_dereference *ir, const glsl_type **type,
3550 bool *memory_coherent, bool *memory_volatile,
3551 bool *memory_restrict, unsigned *image_format)
3552 {
3553
3554 switch (ir->ir_type) {
3555 case ir_type_dereference_record: {
3556 ir_dereference_record *deref_record = ir->as_dereference_record();
3557 const glsl_type *struct_type = deref_record->record->type;
3558 int fild_idx = deref_record->field_idx;
3559
3560 *type = struct_type->fields.structure[fild_idx].type->without_array();
3561 *memory_coherent =
3562 struct_type->fields.structure[fild_idx].memory_coherent;
3563 *memory_volatile =
3564 struct_type->fields.structure[fild_idx].memory_volatile;
3565 *memory_restrict =
3566 struct_type->fields.structure[fild_idx].memory_restrict;
3567 *image_format =
3568 struct_type->fields.structure[fild_idx].image_format;
3569 break;
3570 }
3571
3572 case ir_type_dereference_array: {
3573 ir_dereference_array *deref_arr = ir->as_dereference_array();
3574 get_image_qualifiers((ir_dereference *)deref_arr->array, type,
3575 memory_coherent, memory_volatile, memory_restrict,
3576 image_format);
3577 break;
3578 }
3579
3580 case ir_type_dereference_variable: {
3581 ir_variable *var = ir->variable_referenced();
3582
3583 *type = var->type->without_array();
3584 *memory_coherent = var->data.memory_coherent;
3585 *memory_volatile = var->data.memory_volatile;
3586 *memory_restrict = var->data.memory_restrict;
3587 *image_format = var->data.image_format;
3588 break;
3589 }
3590
3591 default:
3592 break;
3593 }
3594 }
3595
3596 void
3597 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
3598 {
3599 exec_node *param = ir->actual_parameters.get_head();
3600
3601 ir_dereference *img = (ir_dereference *)param;
3602 const ir_variable *imgvar = img->variable_referenced();
3603 unsigned sampler_array_size = 1, sampler_base = 0;
3604 bool memory_coherent = false, memory_volatile = false, memory_restrict = false;
3605 unsigned image_format = 0;
3606 const glsl_type *type = NULL;
3607
3608 get_image_qualifiers(img, &type, &memory_coherent, &memory_volatile,
3609 &memory_restrict, &image_format);
3610
3611 st_src_reg reladdr;
3612 st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
3613 uint16_t index = 0;
3614 get_deref_offsets(img, &sampler_array_size, &sampler_base,
3615 &index, &reladdr, !imgvar->contains_bindless());
3616
3617 image.index = index;
3618 if (reladdr.file != PROGRAM_UNDEFINED) {
3619 image.reladdr = ralloc(mem_ctx, st_src_reg);
3620 *image.reladdr = reladdr;
3621 emit_arl(ir, sampler_reladdr, reladdr);
3622 }
3623
3624 st_dst_reg dst = undef_dst;
3625 if (ir->return_deref) {
3626 ir->return_deref->accept(this);
3627 dst = st_dst_reg(this->result);
3628 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3629 }
3630
3631 glsl_to_tgsi_instruction *inst;
3632
3633 st_src_reg bindless;
3634 if (imgvar->contains_bindless()) {
3635 img->accept(this);
3636 bindless = this->result;
3637 }
3638
3639 if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
3640 dst.writemask = WRITEMASK_XYZ;
3641 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
3642 } else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
3643 st_src_reg res = get_temp(glsl_type::ivec4_type);
3644 st_dst_reg dstres = st_dst_reg(res);
3645 dstres.writemask = WRITEMASK_W;
3646 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
3647 res.swizzle = SWIZZLE_WWWW;
3648 emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
3649 } else {
3650 st_src_reg arg1 = undef_src, arg2 = undef_src;
3651 st_src_reg coord;
3652 st_dst_reg coord_dst;
3653 coord = get_temp(glsl_type::ivec4_type);
3654 coord_dst = st_dst_reg(coord);
3655 coord_dst.writemask = (1 << type->coordinate_components()) - 1;
3656 param = param->get_next();
3657 ((ir_dereference *)param)->accept(this);
3658 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3659 coord.swizzle = SWIZZLE_XXXX;
3660 switch (type->coordinate_components()) {
3661 case 4: assert(!"unexpected coord count");
3662 /* fallthrough */
3663 case 3: coord.swizzle |= SWIZZLE_Z << 6;
3664 /* fallthrough */
3665 case 2: coord.swizzle |= SWIZZLE_Y << 3;
3666 }
3667
3668 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
3669 param = param->get_next();
3670 ((ir_dereference *)param)->accept(this);
3671 st_src_reg sample = this->result;
3672 sample.swizzle = SWIZZLE_XXXX;
3673 coord_dst.writemask = WRITEMASK_W;
3674 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
3675 coord.swizzle |= SWIZZLE_W << 9;
3676 }
3677
3678 param = param->get_next();
3679 if (!param->is_tail_sentinel()) {
3680 ((ir_dereference *)param)->accept(this);
3681 arg1 = this->result;
3682 param = param->get_next();
3683 }
3684
3685 if (!param->is_tail_sentinel()) {
3686 ((ir_dereference *)param)->accept(this);
3687 arg2 = this->result;
3688 param = param->get_next();
3689 }
3690
3691 assert(param->is_tail_sentinel());
3692
3693 unsigned opcode;
3694 switch (ir->callee->intrinsic_id) {
3695 case ir_intrinsic_image_load:
3696 opcode = TGSI_OPCODE_LOAD;
3697 break;
3698 case ir_intrinsic_image_store:
3699 opcode = TGSI_OPCODE_STORE;
3700 break;
3701 case ir_intrinsic_image_atomic_add:
3702 opcode = TGSI_OPCODE_ATOMUADD;
3703 break;
3704 case ir_intrinsic_image_atomic_min:
3705 opcode = TGSI_OPCODE_ATOMIMIN;
3706 break;
3707 case ir_intrinsic_image_atomic_max:
3708 opcode = TGSI_OPCODE_ATOMIMAX;
3709 break;
3710 case ir_intrinsic_image_atomic_and:
3711 opcode = TGSI_OPCODE_ATOMAND;
3712 break;
3713 case ir_intrinsic_image_atomic_or:
3714 opcode = TGSI_OPCODE_ATOMOR;
3715 break;
3716 case ir_intrinsic_image_atomic_xor:
3717 opcode = TGSI_OPCODE_ATOMXOR;
3718 break;
3719 case ir_intrinsic_image_atomic_exchange:
3720 opcode = TGSI_OPCODE_ATOMXCHG;
3721 break;
3722 case ir_intrinsic_image_atomic_comp_swap:
3723 opcode = TGSI_OPCODE_ATOMCAS;
3724 break;
3725 default:
3726 assert(!"Unexpected intrinsic");
3727 return;
3728 }
3729
3730 inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
3731 if (opcode == TGSI_OPCODE_STORE)
3732 inst->dst[0].writemask = WRITEMASK_XYZW;
3733 }
3734
3735 if (imgvar->contains_bindless()) {
3736 inst->resource = bindless;
3737 inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3738 SWIZZLE_X, SWIZZLE_Y);
3739 } else {
3740 inst->resource = image;
3741 inst->sampler_array_size = sampler_array_size;
3742 inst->sampler_base = sampler_base;
3743 }
3744
3745 inst->tex_target = type->sampler_index();
3746 inst->image_format = st_mesa_format_to_pipe_format(st_context(ctx),
3747 _mesa_get_shader_image_format(image_format));
3748
3749 if (memory_coherent)
3750 inst->buffer_access |= TGSI_MEMORY_COHERENT;
3751 if (memory_restrict)
3752 inst->buffer_access |= TGSI_MEMORY_RESTRICT;
3753 if (memory_volatile)
3754 inst->buffer_access |= TGSI_MEMORY_VOLATILE;
3755 }
3756
3757 void
3758 glsl_to_tgsi_visitor::visit_generic_intrinsic(ir_call *ir, unsigned op)
3759 {
3760 ir->return_deref->accept(this);
3761 st_dst_reg dst = st_dst_reg(this->result);
3762
3763 dst.writemask = u_bit_consecutive(0, ir->return_deref->var->type->vector_elements);
3764
3765 st_src_reg src[4] = { undef_src, undef_src, undef_src, undef_src };
3766 unsigned num_src = 0;
3767 foreach_in_list(ir_rvalue, param, &ir->actual_parameters) {
3768 assert(num_src < ARRAY_SIZE(src));
3769
3770 this->result.file = PROGRAM_UNDEFINED;
3771 param->accept(this);
3772 assert(this->result.file != PROGRAM_UNDEFINED);
3773
3774 src[num_src] = this->result;
3775 num_src++;
3776 }
3777
3778 emit_asm(ir, op, dst, src[0], src[1], src[2], src[3]);
3779 }
3780
3781 void
3782 glsl_to_tgsi_visitor::visit(ir_call *ir)
3783 {
3784 ir_function_signature *sig = ir->callee;
3785
3786 /* Filter out intrinsics */
3787 switch (sig->intrinsic_id) {
3788 case ir_intrinsic_atomic_counter_read:
3789 case ir_intrinsic_atomic_counter_increment:
3790 case ir_intrinsic_atomic_counter_predecrement:
3791 case ir_intrinsic_atomic_counter_add:
3792 case ir_intrinsic_atomic_counter_min:
3793 case ir_intrinsic_atomic_counter_max:
3794 case ir_intrinsic_atomic_counter_and:
3795 case ir_intrinsic_atomic_counter_or:
3796 case ir_intrinsic_atomic_counter_xor:
3797 case ir_intrinsic_atomic_counter_exchange:
3798 case ir_intrinsic_atomic_counter_comp_swap:
3799 visit_atomic_counter_intrinsic(ir);
3800 return;
3801
3802 case ir_intrinsic_ssbo_load:
3803 case ir_intrinsic_ssbo_store:
3804 case ir_intrinsic_ssbo_atomic_add:
3805 case ir_intrinsic_ssbo_atomic_min:
3806 case ir_intrinsic_ssbo_atomic_max:
3807 case ir_intrinsic_ssbo_atomic_and:
3808 case ir_intrinsic_ssbo_atomic_or:
3809 case ir_intrinsic_ssbo_atomic_xor:
3810 case ir_intrinsic_ssbo_atomic_exchange:
3811 case ir_intrinsic_ssbo_atomic_comp_swap:
3812 visit_ssbo_intrinsic(ir);
3813 return;
3814
3815 case ir_intrinsic_memory_barrier:
3816 case ir_intrinsic_memory_barrier_atomic_counter:
3817 case ir_intrinsic_memory_barrier_buffer:
3818 case ir_intrinsic_memory_barrier_image:
3819 case ir_intrinsic_memory_barrier_shared:
3820 case ir_intrinsic_group_memory_barrier:
3821 visit_membar_intrinsic(ir);
3822 return;
3823
3824 case ir_intrinsic_shared_load:
3825 case ir_intrinsic_shared_store:
3826 case ir_intrinsic_shared_atomic_add:
3827 case ir_intrinsic_shared_atomic_min:
3828 case ir_intrinsic_shared_atomic_max:
3829 case ir_intrinsic_shared_atomic_and:
3830 case ir_intrinsic_shared_atomic_or:
3831 case ir_intrinsic_shared_atomic_xor:
3832 case ir_intrinsic_shared_atomic_exchange:
3833 case ir_intrinsic_shared_atomic_comp_swap:
3834 visit_shared_intrinsic(ir);
3835 return;
3836
3837 case ir_intrinsic_image_load:
3838 case ir_intrinsic_image_store:
3839 case ir_intrinsic_image_atomic_add:
3840 case ir_intrinsic_image_atomic_min:
3841 case ir_intrinsic_image_atomic_max:
3842 case ir_intrinsic_image_atomic_and:
3843 case ir_intrinsic_image_atomic_or:
3844 case ir_intrinsic_image_atomic_xor:
3845 case ir_intrinsic_image_atomic_exchange:
3846 case ir_intrinsic_image_atomic_comp_swap:
3847 case ir_intrinsic_image_size:
3848 case ir_intrinsic_image_samples:
3849 visit_image_intrinsic(ir);
3850 return;
3851
3852 case ir_intrinsic_shader_clock:
3853 visit_generic_intrinsic(ir, TGSI_OPCODE_CLOCK);
3854 return;
3855
3856 case ir_intrinsic_vote_all:
3857 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ALL);
3858 return;
3859 case ir_intrinsic_vote_any:
3860 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ANY);
3861 return;
3862 case ir_intrinsic_vote_eq:
3863 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_EQ);
3864 return;
3865 case ir_intrinsic_ballot:
3866 visit_generic_intrinsic(ir, TGSI_OPCODE_BALLOT);
3867 return;
3868 case ir_intrinsic_read_first_invocation:
3869 visit_generic_intrinsic(ir, TGSI_OPCODE_READ_FIRST);
3870 return;
3871 case ir_intrinsic_read_invocation:
3872 visit_generic_intrinsic(ir, TGSI_OPCODE_READ_INVOC);
3873 return;
3874
3875 case ir_intrinsic_invalid:
3876 case ir_intrinsic_generic_load:
3877 case ir_intrinsic_generic_store:
3878 case ir_intrinsic_generic_atomic_add:
3879 case ir_intrinsic_generic_atomic_and:
3880 case ir_intrinsic_generic_atomic_or:
3881 case ir_intrinsic_generic_atomic_xor:
3882 case ir_intrinsic_generic_atomic_min:
3883 case ir_intrinsic_generic_atomic_max:
3884 case ir_intrinsic_generic_atomic_exchange:
3885 case ir_intrinsic_generic_atomic_comp_swap:
3886 unreachable("Invalid intrinsic");
3887 }
3888 }
3889
3890 void
3891 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
3892 unsigned *array_elements,
3893 uint16_t *index,
3894 st_src_reg *indirect,
3895 unsigned *location)
3896 {
3897 switch (tail->ir_type) {
3898 case ir_type_dereference_record: {
3899 ir_dereference_record *deref_record = tail->as_dereference_record();
3900 const glsl_type *struct_type = deref_record->record->type;
3901 int field_index = deref_record->field_idx;
3902
3903 calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
3904
3905 assert(field_index >= 0);
3906 *location += struct_type->record_location_offset(field_index);
3907 break;
3908 }
3909
3910 case ir_type_dereference_array: {
3911 ir_dereference_array *deref_arr = tail->as_dereference_array();
3912
3913 void *mem_ctx = ralloc_parent(deref_arr);
3914 ir_constant *array_index =
3915 deref_arr->array_index->constant_expression_value(mem_ctx);
3916
3917 if (!array_index) {
3918 st_src_reg temp_reg;
3919 st_dst_reg temp_dst;
3920
3921 temp_reg = get_temp(glsl_type::uint_type);
3922 temp_dst = st_dst_reg(temp_reg);
3923 temp_dst.writemask = 1;
3924
3925 deref_arr->array_index->accept(this);
3926 if (*array_elements != 1)
3927 emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
3928 else
3929 emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
3930
3931 if (indirect->file == PROGRAM_UNDEFINED)
3932 *indirect = temp_reg;
3933 else {
3934 temp_dst = st_dst_reg(*indirect);
3935 temp_dst.writemask = 1;
3936 emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
3937 }
3938 } else
3939 *index += array_index->value.u[0] * *array_elements;
3940
3941 *array_elements *= deref_arr->array->type->length;
3942
3943 calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
3944 break;
3945 }
3946 default:
3947 break;
3948 }
3949 }
3950
3951 void
3952 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
3953 unsigned *array_size,
3954 unsigned *base,
3955 uint16_t *index,
3956 st_src_reg *reladdr,
3957 bool opaque)
3958 {
3959 GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
3960 unsigned location = 0;
3961 ir_variable *var = ir->variable_referenced();
3962
3963 memset(reladdr, 0, sizeof(*reladdr));
3964 reladdr->file = PROGRAM_UNDEFINED;
3965
3966 *base = 0;
3967 *array_size = 1;
3968
3969 assert(var);
3970 location = var->data.location;
3971 calc_deref_offsets(ir, array_size, index, reladdr, &location);
3972
3973 /*
3974 * If we end up with no indirect then adjust the base to the index,
3975 * and set the array size to 1.
3976 */
3977 if (reladdr->file == PROGRAM_UNDEFINED) {
3978 *base = *index;
3979 *array_size = 1;
3980 }
3981
3982 if (opaque) {
3983 assert(location != 0xffffffff);
3984 *base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
3985 *index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
3986 }
3987 }
3988
3989 st_src_reg
3990 glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
3991 {
3992 if (offset.reladdr || offset.reladdr2) {
3993 st_src_reg tmp = get_temp(glsl_type::ivec2_type);
3994 st_dst_reg tmp_dst = st_dst_reg(tmp);
3995 tmp_dst.writemask = WRITEMASK_XY;
3996 emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
3997 return tmp;
3998 }
3999
4000 return offset;
4001 }
4002
4003 void
4004 glsl_to_tgsi_visitor::visit(ir_texture *ir)
4005 {
4006 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
4007 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
4008 st_src_reg levels_src, reladdr;
4009 st_dst_reg result_dst, coord_dst, cube_sc_dst;
4010 glsl_to_tgsi_instruction *inst = NULL;
4011 unsigned opcode = TGSI_OPCODE_NOP;
4012 const glsl_type *sampler_type = ir->sampler->type;
4013 unsigned sampler_array_size = 1, sampler_base = 0;
4014 bool is_cube_array = false, is_cube_shadow = false;
4015 ir_variable *var = ir->sampler->variable_referenced();
4016 unsigned i;
4017
4018 /* if we are a cube array sampler or a cube shadow */
4019 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4020 is_cube_array = sampler_type->sampler_array;
4021 is_cube_shadow = sampler_type->sampler_shadow;
4022 }
4023
4024 if (ir->coordinate) {
4025 ir->coordinate->accept(this);
4026
4027 /* Put our coords in a temp. We'll need to modify them for shadow,
4028 * projection, or LOD, so the only case we'd use it as-is is if
4029 * we're doing plain old texturing. The optimization passes on
4030 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
4031 */
4032 coord = get_temp(glsl_type::vec4_type);
4033 coord_dst = st_dst_reg(coord);
4034 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
4035 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4036 }
4037
4038 if (ir->projector) {
4039 ir->projector->accept(this);
4040 projector = this->result;
4041 }
4042
4043 /* Storage for our result. Ideally for an assignment we'd be using
4044 * the actual storage for the result here, instead.
4045 */
4046 result_src = get_temp(ir->type);
4047 result_dst = st_dst_reg(result_src);
4048 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
4049
4050 switch (ir->op) {
4051 case ir_tex:
4052 opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
4053 if (ir->offset) {
4054 ir->offset->accept(this);
4055 offset[0] = this->result;
4056 }
4057 break;
4058 case ir_txb:
4059 if (is_cube_array || is_cube_shadow) {
4060 opcode = TGSI_OPCODE_TXB2;
4061 }
4062 else {
4063 opcode = TGSI_OPCODE_TXB;
4064 }
4065 ir->lod_info.bias->accept(this);
4066 lod_info = this->result;
4067 if (ir->offset) {
4068 ir->offset->accept(this);
4069 offset[0] = this->result;
4070 }
4071 break;
4072 case ir_txl:
4073 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4074 opcode = TGSI_OPCODE_TEX_LZ;
4075 } else {
4076 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
4077 ir->lod_info.lod->accept(this);
4078 lod_info = this->result;
4079 }
4080 if (ir->offset) {
4081 ir->offset->accept(this);
4082 offset[0] = this->result;
4083 }
4084 break;
4085 case ir_txd:
4086 opcode = TGSI_OPCODE_TXD;
4087 ir->lod_info.grad.dPdx->accept(this);
4088 dx = this->result;
4089 ir->lod_info.grad.dPdy->accept(this);
4090 dy = this->result;
4091 if (ir->offset) {
4092 ir->offset->accept(this);
4093 offset[0] = this->result;
4094 }
4095 break;
4096 case ir_txs:
4097 opcode = TGSI_OPCODE_TXQ;
4098 ir->lod_info.lod->accept(this);
4099 lod_info = this->result;
4100 break;
4101 case ir_query_levels:
4102 opcode = TGSI_OPCODE_TXQ;
4103 lod_info = undef_src;
4104 levels_src = get_temp(ir->type);
4105 break;
4106 case ir_txf:
4107 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4108 opcode = TGSI_OPCODE_TXF_LZ;
4109 } else {
4110 opcode = TGSI_OPCODE_TXF;
4111 ir->lod_info.lod->accept(this);
4112 lod_info = this->result;
4113 }
4114 if (ir->offset) {
4115 ir->offset->accept(this);
4116 offset[0] = this->result;
4117 }
4118 break;
4119 case ir_txf_ms:
4120 opcode = TGSI_OPCODE_TXF;
4121 ir->lod_info.sample_index->accept(this);
4122 sample_index = this->result;
4123 break;
4124 case ir_tg4:
4125 opcode = TGSI_OPCODE_TG4;
4126 ir->lod_info.component->accept(this);
4127 component = this->result;
4128 if (ir->offset) {
4129 ir->offset->accept(this);
4130 if (ir->offset->type->is_array()) {
4131 const glsl_type *elt_type = ir->offset->type->fields.array;
4132 for (i = 0; i < ir->offset->type->length; i++) {
4133 offset[i] = this->result;
4134 offset[i].index += i * type_size(elt_type);
4135 offset[i].type = elt_type->base_type;
4136 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
4137 offset[i] = canonicalize_gather_offset(offset[i]);
4138 }
4139 } else {
4140 offset[0] = canonicalize_gather_offset(this->result);
4141 }
4142 }
4143 break;
4144 case ir_lod:
4145 opcode = TGSI_OPCODE_LODQ;
4146 break;
4147 case ir_texture_samples:
4148 opcode = TGSI_OPCODE_TXQS;
4149 break;
4150 case ir_samples_identical:
4151 unreachable("Unexpected ir_samples_identical opcode");
4152 }
4153
4154 if (ir->projector) {
4155 if (opcode == TGSI_OPCODE_TEX) {
4156 /* Slot the projector in as the last component of the coord. */
4157 coord_dst.writemask = WRITEMASK_W;
4158 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
4159 coord_dst.writemask = WRITEMASK_XYZW;
4160 opcode = TGSI_OPCODE_TXP;
4161 } else {
4162 st_src_reg coord_w = coord;
4163 coord_w.swizzle = SWIZZLE_WWWW;
4164
4165 /* For the other TEX opcodes there's no projective version
4166 * since the last slot is taken up by LOD info. Do the
4167 * projective divide now.
4168 */
4169 coord_dst.writemask = WRITEMASK_W;
4170 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
4171
4172 /* In the case where we have to project the coordinates "by hand,"
4173 * the shadow comparator value must also be projected.
4174 */
4175 st_src_reg tmp_src = coord;
4176 if (ir->shadow_comparator) {
4177 /* Slot the shadow value in as the second to last component of the
4178 * coord.
4179 */
4180 ir->shadow_comparator->accept(this);
4181
4182 tmp_src = get_temp(glsl_type::vec4_type);
4183 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
4184
4185 /* Projective division not allowed for array samplers. */
4186 assert(!sampler_type->sampler_array);
4187
4188 tmp_dst.writemask = WRITEMASK_Z;
4189 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
4190
4191 tmp_dst.writemask = WRITEMASK_XY;
4192 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
4193 }
4194
4195 coord_dst.writemask = WRITEMASK_XYZ;
4196 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
4197
4198 coord_dst.writemask = WRITEMASK_XYZW;
4199 coord.swizzle = SWIZZLE_XYZW;
4200 }
4201 }
4202
4203 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
4204 * comparator was put in the correct place (and projected) by the code,
4205 * above, that handles by-hand projection.
4206 */
4207 if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
4208 /* Slot the shadow value in as the second to last component of the
4209 * coord.
4210 */
4211 ir->shadow_comparator->accept(this);
4212
4213 if (is_cube_array) {
4214 cube_sc = get_temp(glsl_type::float_type);
4215 cube_sc_dst = st_dst_reg(cube_sc);
4216 cube_sc_dst.writemask = WRITEMASK_X;
4217 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
4218 cube_sc_dst.writemask = WRITEMASK_X;
4219 }
4220 else {
4221 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
4222 sampler_type->sampler_array) ||
4223 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4224 coord_dst.writemask = WRITEMASK_W;
4225 } else {
4226 coord_dst.writemask = WRITEMASK_Z;
4227 }
4228 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4229 coord_dst.writemask = WRITEMASK_XYZW;
4230 }
4231 }
4232
4233 if (ir->op == ir_txf_ms) {
4234 coord_dst.writemask = WRITEMASK_W;
4235 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
4236 coord_dst.writemask = WRITEMASK_XYZW;
4237 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
4238 opcode == TGSI_OPCODE_TXF) {
4239 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
4240 coord_dst.writemask = WRITEMASK_W;
4241 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
4242 coord_dst.writemask = WRITEMASK_XYZW;
4243 }
4244
4245 st_src_reg sampler(PROGRAM_SAMPLER, 0, GLSL_TYPE_UINT);
4246
4247 uint16_t index = 0;
4248 get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
4249 &index, &reladdr, !var->contains_bindless());
4250
4251 sampler.index = index;
4252 if (reladdr.file != PROGRAM_UNDEFINED) {
4253 sampler.reladdr = ralloc(mem_ctx, st_src_reg);
4254 *sampler.reladdr = reladdr;
4255 emit_arl(ir, sampler_reladdr, reladdr);
4256 }
4257
4258 st_src_reg bindless;
4259 if (var->contains_bindless()) {
4260 ir->sampler->accept(this);
4261 bindless = this->result;
4262 }
4263
4264 if (opcode == TGSI_OPCODE_TXD)
4265 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
4266 else if (opcode == TGSI_OPCODE_TXQ) {
4267 if (ir->op == ir_query_levels) {
4268 /* the level is stored in W */
4269 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
4270 result_dst.writemask = WRITEMASK_X;
4271 levels_src.swizzle = SWIZZLE_WWWW;
4272 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
4273 } else
4274 inst = emit_asm(ir, opcode, result_dst, lod_info);
4275 } else if (opcode == TGSI_OPCODE_TXQS) {
4276 inst = emit_asm(ir, opcode, result_dst);
4277 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
4278 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
4279 } else if (opcode == TGSI_OPCODE_TEX2) {
4280 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4281 } else if (opcode == TGSI_OPCODE_TG4) {
4282 if (is_cube_array && ir->shadow_comparator) {
4283 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4284 } else {
4285 inst = emit_asm(ir, opcode, result_dst, coord, component);
4286 }
4287 } else
4288 inst = emit_asm(ir, opcode, result_dst, coord);
4289
4290 if (ir->shadow_comparator)
4291 inst->tex_shadow = GL_TRUE;
4292
4293 if (var->contains_bindless()) {
4294 inst->resource = bindless;
4295 inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
4296 SWIZZLE_X, SWIZZLE_Y);
4297 } else {
4298 inst->resource = sampler;
4299 inst->sampler_array_size = sampler_array_size;
4300 inst->sampler_base = sampler_base;
4301 }
4302
4303 if (ir->offset) {
4304 if (!inst->tex_offsets)
4305 inst->tex_offsets = rzalloc_array(inst, st_src_reg, MAX_GLSL_TEXTURE_OFFSET);
4306
4307 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
4308 inst->tex_offsets[i] = offset[i];
4309 inst->tex_offset_num_offset = i;
4310 }
4311
4312 inst->tex_target = sampler_type->sampler_index();
4313 inst->tex_type = ir->type->base_type;
4314
4315 this->result = result_src;
4316 }
4317
4318 void
4319 glsl_to_tgsi_visitor::visit(ir_return *ir)
4320 {
4321 assert(!ir->get_value());
4322
4323 emit_asm(ir, TGSI_OPCODE_RET);
4324 }
4325
4326 void
4327 glsl_to_tgsi_visitor::visit(ir_discard *ir)
4328 {
4329 if (ir->condition) {
4330 ir->condition->accept(this);
4331 st_src_reg condition = this->result;
4332
4333 /* Convert the bool condition to a float so we can negate. */
4334 if (native_integers) {
4335 st_src_reg temp = get_temp(ir->condition->type);
4336 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
4337 condition, st_src_reg_for_float(1.0));
4338 condition = temp;
4339 }
4340
4341 condition.negate = ~condition.negate;
4342 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
4343 } else {
4344 /* unconditional kil */
4345 emit_asm(ir, TGSI_OPCODE_KILL);
4346 }
4347 }
4348
4349 void
4350 glsl_to_tgsi_visitor::visit(ir_if *ir)
4351 {
4352 unsigned if_opcode;
4353 glsl_to_tgsi_instruction *if_inst;
4354
4355 ir->condition->accept(this);
4356 assert(this->result.file != PROGRAM_UNDEFINED);
4357
4358 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
4359
4360 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
4361
4362 this->instructions.push_tail(if_inst);
4363
4364 visit_exec_list(&ir->then_instructions, this);
4365
4366 if (!ir->else_instructions.is_empty()) {
4367 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
4368 visit_exec_list(&ir->else_instructions, this);
4369 }
4370
4371 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
4372 }
4373
4374
4375 void
4376 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
4377 {
4378 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4379
4380 ir->stream->accept(this);
4381 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
4382 }
4383
4384 void
4385 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
4386 {
4387 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4388
4389 ir->stream->accept(this);
4390 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
4391 }
4392
4393 void
4394 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
4395 {
4396 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
4397 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
4398
4399 emit_asm(ir, TGSI_OPCODE_BARRIER);
4400 }
4401
4402 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
4403 {
4404 STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
4405
4406 result.file = PROGRAM_UNDEFINED;
4407 next_temp = 1;
4408 array_sizes = NULL;
4409 max_num_arrays = 0;
4410 next_array = 0;
4411 num_inputs = 0;
4412 num_outputs = 0;
4413 num_input_arrays = 0;
4414 num_output_arrays = 0;
4415 num_immediates = 0;
4416 num_address_regs = 0;
4417 samplers_used = 0;
4418 images_used = 0;
4419 indirect_addr_consts = false;
4420 wpos_transform_const = -1;
4421 glsl_version = 0;
4422 native_integers = false;
4423 mem_ctx = ralloc_context(NULL);
4424 ctx = NULL;
4425 prog = NULL;
4426 precise = 0;
4427 shader_program = NULL;
4428 shader = NULL;
4429 options = NULL;
4430 have_sqrt = false;
4431 have_fma = false;
4432 use_shared_memory = false;
4433 has_tex_txf_lz = false;
4434 variables = NULL;
4435 }
4436
4437 static void var_destroy(struct hash_entry *entry)
4438 {
4439 variable_storage *storage = (variable_storage *)entry->data;
4440
4441 delete storage;
4442 }
4443
4444 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
4445 {
4446 _mesa_hash_table_destroy(variables, var_destroy);
4447 free(array_sizes);
4448 ralloc_free(mem_ctx);
4449 }
4450
4451 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
4452 {
4453 delete v;
4454 }
4455
4456
4457 /**
4458 * Count resources used by the given gpu program (number of texture
4459 * samplers, etc).
4460 */
4461 static void
4462 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
4463 {
4464 v->samplers_used = 0;
4465 v->images_used = 0;
4466
4467 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
4468 if (inst->info->is_tex) {
4469 for (int i = 0; i < inst->sampler_array_size; i++) {
4470 unsigned idx = inst->sampler_base + i;
4471 v->samplers_used |= 1u << idx;
4472
4473 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
4474 v->sampler_types[idx] = inst->tex_type;
4475 v->sampler_targets[idx] =
4476 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4477
4478 if (inst->tex_shadow) {
4479 prog->ShadowSamplers |= 1 << (inst->resource.index + i);
4480 }
4481
4482 if (inst->op == TGSI_OPCODE_TXF || inst->op == TGSI_OPCODE_TXF_LZ) {
4483 prog->TexelFetchSamplers |= 1u << idx;
4484 }
4485 }
4486 }
4487
4488 if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
4489 prog->ExternalSamplersUsed |= 1 << inst->resource.index;
4490
4491 if (inst->resource.file != PROGRAM_UNDEFINED && (
4492 is_resource_instruction(inst->op) ||
4493 inst->op == TGSI_OPCODE_STORE)) {
4494 if (inst->resource.file == PROGRAM_MEMORY) {
4495 v->use_shared_memory = true;
4496 } else if (inst->resource.file == PROGRAM_IMAGE) {
4497 for (int i = 0; i < inst->sampler_array_size; i++) {
4498 unsigned idx = inst->sampler_base + i;
4499 v->images_used |= 1 << idx;
4500 v->image_targets[idx] =
4501 st_translate_texture_target(inst->tex_target, false);
4502 v->image_formats[idx] = inst->image_format;
4503 }
4504 }
4505 }
4506 }
4507 prog->SamplersUsed = v->samplers_used;
4508
4509 if (v->shader_program != NULL)
4510 _mesa_update_shader_textures_used(v->shader_program, prog);
4511 }
4512
4513 /**
4514 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
4515 * are read from the given src in this instruction
4516 */
4517 static int
4518 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
4519 {
4520 int read_mask = 0, comp;
4521
4522 /* Now, given the src swizzle and the written channels, find which
4523 * components are actually read
4524 */
4525 for (comp = 0; comp < 4; ++comp) {
4526 const unsigned coord = GET_SWZ(src.swizzle, comp);
4527 assert(coord < 4);
4528 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
4529 read_mask |= 1 << coord;
4530 }
4531
4532 return read_mask;
4533 }
4534
4535 /**
4536 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
4537 * instruction is the first instruction to write to register T0. There are
4538 * several lowering passes done in GLSL IR (e.g. branches and
4539 * relative addressing) that create a large number of conditional assignments
4540 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
4541 *
4542 * Here is why this conversion is safe:
4543 * CMP T0, T1 T2 T0 can be expanded to:
4544 * if (T1 < 0.0)
4545 * MOV T0, T2;
4546 * else
4547 * MOV T0, T0;
4548 *
4549 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
4550 * as the original program. If (T1 < 0.0) evaluates to false, executing
4551 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
4552 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
4553 * because any instruction that was going to read from T0 after this was going
4554 * to read a garbage value anyway.
4555 */
4556 void
4557 glsl_to_tgsi_visitor::simplify_cmp(void)
4558 {
4559 int tempWritesSize = 0;
4560 unsigned *tempWrites = NULL;
4561 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
4562
4563 memset(outputWrites, 0, sizeof(outputWrites));
4564
4565 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4566 unsigned prevWriteMask = 0;
4567
4568 /* Give up if we encounter relative addressing or flow control. */
4569 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
4570 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
4571 inst->info->is_branch ||
4572 inst->op == TGSI_OPCODE_CONT ||
4573 inst->op == TGSI_OPCODE_END ||
4574 inst->op == TGSI_OPCODE_RET) {
4575 break;
4576 }
4577
4578 if (inst->dst[0].file == PROGRAM_OUTPUT) {
4579 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
4580 prevWriteMask = outputWrites[inst->dst[0].index];
4581 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4582 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
4583 if (inst->dst[0].index >= tempWritesSize) {
4584 const int inc = 4096;
4585
4586 tempWrites = (unsigned*)
4587 realloc(tempWrites,
4588 (tempWritesSize + inc) * sizeof(unsigned));
4589 if (!tempWrites)
4590 return;
4591
4592 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
4593 tempWritesSize += inc;
4594 }
4595
4596 prevWriteMask = tempWrites[inst->dst[0].index];
4597 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4598 } else
4599 continue;
4600
4601 /* For a CMP to be considered a conditional write, the destination
4602 * register and source register two must be the same. */
4603 if (inst->op == TGSI_OPCODE_CMP
4604 && !(inst->dst[0].writemask & prevWriteMask)
4605 && inst->src[2].file == inst->dst[0].file
4606 && inst->src[2].index == inst->dst[0].index
4607 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
4608
4609 inst->op = TGSI_OPCODE_MOV;
4610 inst->info = tgsi_get_opcode_info(inst->op);
4611 inst->src[0] = inst->src[1];
4612 }
4613 }
4614
4615 free(tempWrites);
4616 }
4617
4618 static void
4619 rename_temp_handle_src(struct rename_reg_pair *renames,
4620 struct st_src_reg *src)
4621 {
4622 if (src && src->file == PROGRAM_TEMPORARY) {
4623 int old_idx = src->index;
4624 if (renames[old_idx].valid)
4625 src->index = renames[old_idx].new_reg;
4626 }
4627 }
4628
4629 /* Replaces all references to a temporary register index with another index. */
4630 void
4631 glsl_to_tgsi_visitor::rename_temp_registers(struct rename_reg_pair *renames)
4632 {
4633 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4634 unsigned j;
4635 for (j = 0; j < num_inst_src_regs(inst); j++) {
4636 rename_temp_handle_src(renames, &inst->src[j]);
4637 rename_temp_handle_src(renames, inst->src[j].reladdr);
4638 rename_temp_handle_src(renames, inst->src[j].reladdr2);
4639 }
4640
4641 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4642 rename_temp_handle_src(renames, &inst->tex_offsets[j]);
4643 rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr);
4644 rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr2);
4645 }
4646
4647 rename_temp_handle_src(renames, &inst->resource);
4648 rename_temp_handle_src(renames, inst->resource.reladdr);
4649 rename_temp_handle_src(renames, inst->resource.reladdr2);
4650
4651 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4652 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4653 int old_idx = inst->dst[j].index;
4654 if (renames[old_idx].valid)
4655 inst->dst[j].index = renames[old_idx].new_reg;
4656 }
4657 rename_temp_handle_src(renames, inst->dst[j].reladdr);
4658 rename_temp_handle_src(renames, inst->dst[j].reladdr2);
4659 }
4660 }
4661 }
4662
4663 void
4664 glsl_to_tgsi_visitor::get_first_temp_write(int *first_writes)
4665 {
4666 int depth = 0; /* loop depth */
4667 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4668 unsigned i = 0, j;
4669
4670 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4671 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4672 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4673 if (first_writes[inst->dst[j].index] == -1)
4674 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4675 }
4676 }
4677
4678 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4679 if(depth++ == 0)
4680 loop_start = i;
4681 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4682 if (--depth == 0)
4683 loop_start = -1;
4684 }
4685 assert(depth >= 0);
4686 i++;
4687 }
4688 }
4689
4690 void
4691 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
4692 {
4693 int depth = 0; /* loop depth */
4694 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4695 unsigned i = 0, j;
4696
4697 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4698 for (j = 0; j < num_inst_src_regs(inst); j++) {
4699 if (inst->src[j].file == PROGRAM_TEMPORARY) {
4700 if (first_reads[inst->src[j].index] == -1)
4701 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
4702 }
4703 }
4704 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4705 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
4706 if (first_reads[inst->tex_offsets[j].index] == -1)
4707 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
4708 }
4709 }
4710 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4711 if(depth++ == 0)
4712 loop_start = i;
4713 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4714 if (--depth == 0)
4715 loop_start = -1;
4716 }
4717 assert(depth >= 0);
4718 i++;
4719 }
4720 }
4721
4722 void
4723 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
4724 {
4725 int depth = 0; /* loop depth */
4726 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4727 unsigned i = 0, j;
4728 int k;
4729 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4730 for (j = 0; j < num_inst_src_regs(inst); j++) {
4731 if (inst->src[j].file == PROGRAM_TEMPORARY)
4732 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
4733 }
4734 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4735 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4736 if (first_writes[inst->dst[j].index] == -1)
4737 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4738 last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
4739 }
4740 }
4741 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4742 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4743 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
4744 }
4745 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4746 if(depth++ == 0)
4747 loop_start = i;
4748 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4749 if (--depth == 0) {
4750 loop_start = -1;
4751 for (k = 0; k < this->next_temp; k++) {
4752 if (last_reads[k] == -2) {
4753 last_reads[k] = i;
4754 }
4755 }
4756 }
4757 }
4758 assert(depth >= 0);
4759 i++;
4760 }
4761 }
4762
4763 void
4764 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
4765 {
4766 int depth = 0; /* loop depth */
4767 int i = 0, k;
4768 unsigned j;
4769
4770 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4771 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4772 if (inst->dst[j].file == PROGRAM_TEMPORARY)
4773 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
4774 }
4775
4776 if (inst->op == TGSI_OPCODE_BGNLOOP)
4777 depth++;
4778 else if (inst->op == TGSI_OPCODE_ENDLOOP)
4779 if (--depth == 0) {
4780 for (k = 0; k < this->next_temp; k++) {
4781 if (last_writes[k] == -2) {
4782 last_writes[k] = i;
4783 }
4784 }
4785 }
4786 assert(depth >= 0);
4787 i++;
4788 }
4789 }
4790
4791 /*
4792 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
4793 * channels for copy propagation and updates following instructions to
4794 * use the original versions.
4795 *
4796 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4797 * will occur. As an example, a TXP production before this pass:
4798 *
4799 * 0: MOV TEMP[1], INPUT[4].xyyy;
4800 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4801 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
4802 *
4803 * and after:
4804 *
4805 * 0: MOV TEMP[1], INPUT[4].xyyy;
4806 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4807 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4808 *
4809 * which allows for dead code elimination on TEMP[1]'s writes.
4810 */
4811 void
4812 glsl_to_tgsi_visitor::copy_propagate(void)
4813 {
4814 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
4815 glsl_to_tgsi_instruction *,
4816 this->next_temp * 4);
4817 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4818 int level = 0;
4819
4820 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4821 assert(inst->dst[0].file != PROGRAM_TEMPORARY
4822 || inst->dst[0].index < this->next_temp);
4823
4824 /* First, do any copy propagation possible into the src regs. */
4825 for (int r = 0; r < 3; r++) {
4826 glsl_to_tgsi_instruction *first = NULL;
4827 bool good = true;
4828 int acp_base = inst->src[r].index * 4;
4829
4830 if (inst->src[r].file != PROGRAM_TEMPORARY ||
4831 inst->src[r].reladdr ||
4832 inst->src[r].reladdr2)
4833 continue;
4834
4835 /* See if we can find entries in the ACP consisting of MOVs
4836 * from the same src register for all the swizzled channels
4837 * of this src register reference.
4838 */
4839 for (int i = 0; i < 4; i++) {
4840 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4841 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
4842
4843 if (!copy_chan) {
4844 good = false;
4845 break;
4846 }
4847
4848 assert(acp_level[acp_base + src_chan] <= level);
4849
4850 if (!first) {
4851 first = copy_chan;
4852 } else {
4853 if (first->src[0].file != copy_chan->src[0].file ||
4854 first->src[0].index != copy_chan->src[0].index ||
4855 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
4856 first->src[0].index2D != copy_chan->src[0].index2D) {
4857 good = false;
4858 break;
4859 }
4860 }
4861 }
4862
4863 if (good) {
4864 /* We've now validated that we can copy-propagate to
4865 * replace this src register reference. Do it.
4866 */
4867 inst->src[r].file = first->src[0].file;
4868 inst->src[r].index = first->src[0].index;
4869 inst->src[r].index2D = first->src[0].index2D;
4870 inst->src[r].has_index2 = first->src[0].has_index2;
4871 inst->src[r].double_reg2 = first->src[0].double_reg2;
4872 inst->src[r].array_id = first->src[0].array_id;
4873
4874 int swizzle = 0;
4875 for (int i = 0; i < 4; i++) {
4876 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4877 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
4878 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
4879 }
4880 inst->src[r].swizzle = swizzle;
4881 }
4882 }
4883
4884 switch (inst->op) {
4885 case TGSI_OPCODE_BGNLOOP:
4886 case TGSI_OPCODE_ENDLOOP:
4887 /* End of a basic block, clear the ACP entirely. */
4888 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4889 break;
4890
4891 case TGSI_OPCODE_IF:
4892 case TGSI_OPCODE_UIF:
4893 ++level;
4894 break;
4895
4896 case TGSI_OPCODE_ENDIF:
4897 case TGSI_OPCODE_ELSE:
4898 /* Clear all channels written inside the block from the ACP, but
4899 * leaving those that were not touched.
4900 */
4901 for (int r = 0; r < this->next_temp; r++) {
4902 for (int c = 0; c < 4; c++) {
4903 if (!acp[4 * r + c])
4904 continue;
4905
4906 if (acp_level[4 * r + c] >= level)
4907 acp[4 * r + c] = NULL;
4908 }
4909 }
4910 if (inst->op == TGSI_OPCODE_ENDIF)
4911 --level;
4912 break;
4913
4914 default:
4915 /* Continuing the block, clear any written channels from
4916 * the ACP.
4917 */
4918 for (int d = 0; d < 2; d++) {
4919 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
4920 /* Any temporary might be written, so no copy propagation
4921 * across this instruction.
4922 */
4923 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4924 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
4925 inst->dst[d].reladdr) {
4926 /* Any output might be written, so no copy propagation
4927 * from outputs across this instruction.
4928 */
4929 for (int r = 0; r < this->next_temp; r++) {
4930 for (int c = 0; c < 4; c++) {
4931 if (!acp[4 * r + c])
4932 continue;
4933
4934 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
4935 acp[4 * r + c] = NULL;
4936 }
4937 }
4938 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
4939 inst->dst[d].file == PROGRAM_OUTPUT) {
4940 /* Clear where it's used as dst. */
4941 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
4942 for (int c = 0; c < 4; c++) {
4943 if (inst->dst[d].writemask & (1 << c))
4944 acp[4 * inst->dst[d].index + c] = NULL;
4945 }
4946 }
4947
4948 /* Clear where it's used as src. */
4949 for (int r = 0; r < this->next_temp; r++) {
4950 for (int c = 0; c < 4; c++) {
4951 if (!acp[4 * r + c])
4952 continue;
4953
4954 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
4955
4956 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
4957 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
4958 inst->dst[d].writemask & (1 << src_chan)) {
4959 acp[4 * r + c] = NULL;
4960 }
4961 }
4962 }
4963 }
4964 }
4965 break;
4966 }
4967
4968 /* If this is a copy, add it to the ACP. */
4969 if (inst->op == TGSI_OPCODE_MOV &&
4970 inst->dst[0].file == PROGRAM_TEMPORARY &&
4971 !(inst->dst[0].file == inst->src[0].file &&
4972 inst->dst[0].index == inst->src[0].index) &&
4973 !inst->dst[0].reladdr &&
4974 !inst->dst[0].reladdr2 &&
4975 !inst->saturate &&
4976 inst->src[0].file != PROGRAM_ARRAY &&
4977 (inst->src[0].file != PROGRAM_OUTPUT ||
4978 this->shader->Stage != MESA_SHADER_TESS_CTRL) &&
4979 !inst->src[0].reladdr &&
4980 !inst->src[0].reladdr2 &&
4981 !inst->src[0].negate &&
4982 !inst->src[0].abs) {
4983 for (int i = 0; i < 4; i++) {
4984 if (inst->dst[0].writemask & (1 << i)) {
4985 acp[4 * inst->dst[0].index + i] = inst;
4986 acp_level[4 * inst->dst[0].index + i] = level;
4987 }
4988 }
4989 }
4990 }
4991
4992 ralloc_free(acp_level);
4993 ralloc_free(acp);
4994 }
4995
4996 static void
4997 dead_code_handle_reladdr(glsl_to_tgsi_instruction **writes, st_src_reg *reladdr)
4998 {
4999 if (reladdr && reladdr->file == PROGRAM_TEMPORARY) {
5000 /* Clear where it's used as src. */
5001 int swz = GET_SWZ(reladdr->swizzle, 0);
5002 writes[4 * reladdr->index + swz] = NULL;
5003 }
5004 }
5005
5006 /*
5007 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
5008 * code elimination.
5009 *
5010 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5011 * will occur. As an example, a TXP production after copy propagation but
5012 * before this pass:
5013 *
5014 * 0: MOV TEMP[1], INPUT[4].xyyy;
5015 * 1: MOV TEMP[1].w, INPUT[4].wwww;
5016 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5017 *
5018 * and after this pass:
5019 *
5020 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5021 */
5022 int
5023 glsl_to_tgsi_visitor::eliminate_dead_code(void)
5024 {
5025 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
5026 glsl_to_tgsi_instruction *,
5027 this->next_temp * 4);
5028 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5029 int level = 0;
5030 int removed = 0;
5031
5032 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5033 assert(inst->dst[0].file != PROGRAM_TEMPORARY
5034 || inst->dst[0].index < this->next_temp);
5035
5036 switch (inst->op) {
5037 case TGSI_OPCODE_BGNLOOP:
5038 case TGSI_OPCODE_ENDLOOP:
5039 case TGSI_OPCODE_CONT:
5040 case TGSI_OPCODE_BRK:
5041 /* End of a basic block, clear the write array entirely.
5042 *
5043 * This keeps us from killing dead code when the writes are
5044 * on either side of a loop, even when the register isn't touched
5045 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
5046 * dead code of this type, so it shouldn't make a difference as long as
5047 * the dead code elimination pass in the GLSL compiler does its job.
5048 */
5049 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5050 break;
5051
5052 case TGSI_OPCODE_ENDIF:
5053 case TGSI_OPCODE_ELSE:
5054 /* Promote the recorded level of all channels written inside the
5055 * preceding if or else block to the level above the if/else block.
5056 */
5057 for (int r = 0; r < this->next_temp; r++) {
5058 for (int c = 0; c < 4; c++) {
5059 if (!writes[4 * r + c])
5060 continue;
5061
5062 if (write_level[4 * r + c] == level)
5063 write_level[4 * r + c] = level-1;
5064 }
5065 }
5066 if(inst->op == TGSI_OPCODE_ENDIF)
5067 --level;
5068 break;
5069
5070 case TGSI_OPCODE_IF:
5071 case TGSI_OPCODE_UIF:
5072 ++level;
5073 /* fallthrough to default case to mark the condition as read */
5074 default:
5075 /* Continuing the block, clear any channels from the write array that
5076 * are read by this instruction.
5077 */
5078 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
5079 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
5080 /* Any temporary might be read, so no dead code elimination
5081 * across this instruction.
5082 */
5083 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5084 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
5085 /* Clear where it's used as src. */
5086 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
5087 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
5088 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
5089 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
5090
5091 for (int c = 0; c < 4; c++) {
5092 if (src_chans & (1 << c))
5093 writes[4 * inst->src[i].index + c] = NULL;
5094 }
5095 }
5096 dead_code_handle_reladdr(writes, inst->src[i].reladdr);
5097 dead_code_handle_reladdr(writes, inst->src[i].reladdr2);
5098 }
5099 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
5100 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
5101 /* Any temporary might be read, so no dead code elimination
5102 * across this instruction.
5103 */
5104 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5105 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
5106 /* Clear where it's used as src. */
5107 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
5108 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
5109 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
5110 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
5111
5112 for (int c = 0; c < 4; c++) {
5113 if (src_chans & (1 << c))
5114 writes[4 * inst->tex_offsets[i].index + c] = NULL;
5115 }
5116 }
5117 dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr);
5118 dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr2);
5119 }
5120
5121 if (inst->resource.file == PROGRAM_TEMPORARY) {
5122 int src_chans;
5123
5124 src_chans = 1 << GET_SWZ(inst->resource.swizzle, 0);
5125 src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 1);
5126 src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 2);
5127 src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 3);
5128
5129 for (int c = 0; c < 4; c++) {
5130 if (src_chans & (1 << c))
5131 writes[4 * inst->resource.index + c] = NULL;
5132 }
5133 }
5134 dead_code_handle_reladdr(writes, inst->resource.reladdr);
5135 dead_code_handle_reladdr(writes, inst->resource.reladdr2);
5136
5137 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5138 dead_code_handle_reladdr(writes, inst->dst[i].reladdr);
5139 dead_code_handle_reladdr(writes, inst->dst[i].reladdr2);
5140 }
5141 break;
5142 }
5143
5144 /* If this instruction writes to a temporary, add it to the write array.
5145 * If there is already an instruction in the write array for one or more
5146 * of the channels, flag that channel write as dead.
5147 */
5148 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5149 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
5150 !inst->dst[i].reladdr) {
5151 for (int c = 0; c < 4; c++) {
5152 if (inst->dst[i].writemask & (1 << c)) {
5153 if (writes[4 * inst->dst[i].index + c]) {
5154 if (write_level[4 * inst->dst[i].index + c] < level)
5155 continue;
5156 else
5157 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
5158 }
5159 writes[4 * inst->dst[i].index + c] = inst;
5160 write_level[4 * inst->dst[i].index + c] = level;
5161 }
5162 }
5163 }
5164 }
5165 }
5166
5167 /* Anything still in the write array at this point is dead code. */
5168 for (int r = 0; r < this->next_temp; r++) {
5169 for (int c = 0; c < 4; c++) {
5170 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
5171 if (inst)
5172 inst->dead_mask |= (1 << c);
5173 }
5174 }
5175
5176 /* Now actually remove the instructions that are completely dead and update
5177 * the writemask of other instructions with dead channels.
5178 */
5179 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5180 if (!inst->dead_mask || !inst->dst[0].writemask)
5181 continue;
5182 /* No amount of dead masks should remove memory stores */
5183 if (inst->info->is_store)
5184 continue;
5185
5186 if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
5187 inst->remove();
5188 delete inst;
5189 removed++;
5190 } else {
5191 if (glsl_base_type_is_64bit(inst->dst[0].type)) {
5192 if (inst->dead_mask == WRITEMASK_XY ||
5193 inst->dead_mask == WRITEMASK_ZW)
5194 inst->dst[0].writemask &= ~(inst->dead_mask);
5195 } else
5196 inst->dst[0].writemask &= ~(inst->dead_mask);
5197 }
5198 }
5199
5200 ralloc_free(write_level);
5201 ralloc_free(writes);
5202
5203 return removed;
5204 }
5205
5206 /* merge DFRACEXP instructions into one. */
5207 void
5208 glsl_to_tgsi_visitor::merge_two_dsts(void)
5209 {
5210 /* We never delete inst, but we may delete its successor. */
5211 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5212 glsl_to_tgsi_instruction *inst2;
5213 bool merged;
5214 if (num_inst_dst_regs(inst) != 2)
5215 continue;
5216
5217 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
5218 inst->dst[1].file != PROGRAM_UNDEFINED)
5219 continue;
5220
5221 inst2 = (glsl_to_tgsi_instruction *) inst->next;
5222 do {
5223
5224 if (inst->src[0].file == inst2->src[0].file &&
5225 inst->src[0].index == inst2->src[0].index &&
5226 inst->src[0].type == inst2->src[0].type &&
5227 inst->src[0].swizzle == inst2->src[0].swizzle)
5228 break;
5229 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
5230 } while (inst2);
5231
5232 if (!inst2)
5233 continue;
5234 merged = false;
5235 if (inst->dst[0].file == PROGRAM_UNDEFINED) {
5236 merged = true;
5237 inst->dst[0] = inst2->dst[0];
5238 } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
5239 inst->dst[1] = inst2->dst[1];
5240 merged = true;
5241 }
5242
5243 if (merged) {
5244 inst2->remove();
5245 delete inst2;
5246 }
5247 }
5248 }
5249
5250 /* Merges temporary registers together where possible to reduce the number of
5251 * registers needed to run a program.
5252 *
5253 * Produces optimal code only after copy propagation and dead code elimination
5254 * have been run. */
5255 void
5256 glsl_to_tgsi_visitor::merge_registers(void)
5257 {
5258 assert(need_uarl);
5259 struct lifetime *lifetimes =
5260 rzalloc_array(mem_ctx, struct lifetime, this->next_temp);
5261
5262 if (get_temp_registers_required_lifetimes(mem_ctx, &this->instructions,
5263 this->next_temp, lifetimes)) {
5264 struct rename_reg_pair *renames =
5265 rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5266 get_temp_registers_remapping(mem_ctx, this->next_temp, lifetimes, renames);
5267 rename_temp_registers(renames);
5268 ralloc_free(renames);
5269 }
5270
5271 ralloc_free(lifetimes);
5272 }
5273
5274 /* Reassign indices to temporary registers by reusing unused indices created
5275 * by optimization passes. */
5276 void
5277 glsl_to_tgsi_visitor::renumber_registers(void)
5278 {
5279 int i = 0;
5280 int new_index = 0;
5281 int *first_writes = ralloc_array(mem_ctx, int, this->next_temp);
5282 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5283
5284 for (i = 0; i < this->next_temp; i++) {
5285 first_writes[i] = -1;
5286 }
5287 get_first_temp_write(first_writes);
5288
5289 for (i = 0; i < this->next_temp; i++) {
5290 if (first_writes[i] < 0) continue;
5291 if (i != new_index) {
5292 renames[i].new_reg = new_index;
5293 renames[i].valid = true;
5294 }
5295 new_index++;
5296 }
5297
5298 rename_temp_registers(renames);
5299 this->next_temp = new_index;
5300 ralloc_free(renames);
5301 ralloc_free(first_writes);
5302 }
5303
5304 /* ------------------------- TGSI conversion stuff -------------------------- */
5305
5306 /**
5307 * Intermediate state used during shader translation.
5308 */
5309 struct st_translate {
5310 struct ureg_program *ureg;
5311
5312 unsigned temps_size;
5313 struct ureg_dst *temps;
5314
5315 struct ureg_dst *arrays;
5316 unsigned num_temp_arrays;
5317 struct ureg_src *constants;
5318 int num_constants;
5319 struct ureg_src *immediates;
5320 int num_immediates;
5321 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
5322 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
5323 struct ureg_dst address[3];
5324 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
5325 struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
5326 struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
5327 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
5328 struct ureg_src shared_memory;
5329 unsigned *array_sizes;
5330 struct inout_decl *input_decls;
5331 unsigned num_input_decls;
5332 struct inout_decl *output_decls;
5333 unsigned num_output_decls;
5334
5335 const ubyte *inputMapping;
5336 const ubyte *outputMapping;
5337
5338 unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
5339 bool need_uarl;
5340 };
5341
5342 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
5343 unsigned
5344 _mesa_sysval_to_semantic(unsigned sysval)
5345 {
5346 switch (sysval) {
5347 /* Vertex shader */
5348 case SYSTEM_VALUE_VERTEX_ID:
5349 return TGSI_SEMANTIC_VERTEXID;
5350 case SYSTEM_VALUE_INSTANCE_ID:
5351 return TGSI_SEMANTIC_INSTANCEID;
5352 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
5353 return TGSI_SEMANTIC_VERTEXID_NOBASE;
5354 case SYSTEM_VALUE_BASE_VERTEX:
5355 return TGSI_SEMANTIC_BASEVERTEX;
5356 case SYSTEM_VALUE_BASE_INSTANCE:
5357 return TGSI_SEMANTIC_BASEINSTANCE;
5358 case SYSTEM_VALUE_DRAW_ID:
5359 return TGSI_SEMANTIC_DRAWID;
5360
5361 /* Geometry shader */
5362 case SYSTEM_VALUE_INVOCATION_ID:
5363 return TGSI_SEMANTIC_INVOCATIONID;
5364
5365 /* Fragment shader */
5366 case SYSTEM_VALUE_FRAG_COORD:
5367 return TGSI_SEMANTIC_POSITION;
5368 case SYSTEM_VALUE_FRONT_FACE:
5369 return TGSI_SEMANTIC_FACE;
5370 case SYSTEM_VALUE_SAMPLE_ID:
5371 return TGSI_SEMANTIC_SAMPLEID;
5372 case SYSTEM_VALUE_SAMPLE_POS:
5373 return TGSI_SEMANTIC_SAMPLEPOS;
5374 case SYSTEM_VALUE_SAMPLE_MASK_IN:
5375 return TGSI_SEMANTIC_SAMPLEMASK;
5376 case SYSTEM_VALUE_HELPER_INVOCATION:
5377 return TGSI_SEMANTIC_HELPER_INVOCATION;
5378
5379 /* Tessellation shader */
5380 case SYSTEM_VALUE_TESS_COORD:
5381 return TGSI_SEMANTIC_TESSCOORD;
5382 case SYSTEM_VALUE_VERTICES_IN:
5383 return TGSI_SEMANTIC_VERTICESIN;
5384 case SYSTEM_VALUE_PRIMITIVE_ID:
5385 return TGSI_SEMANTIC_PRIMID;
5386 case SYSTEM_VALUE_TESS_LEVEL_OUTER:
5387 return TGSI_SEMANTIC_TESSOUTER;
5388 case SYSTEM_VALUE_TESS_LEVEL_INNER:
5389 return TGSI_SEMANTIC_TESSINNER;
5390
5391 /* Compute shader */
5392 case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
5393 return TGSI_SEMANTIC_THREAD_ID;
5394 case SYSTEM_VALUE_WORK_GROUP_ID:
5395 return TGSI_SEMANTIC_BLOCK_ID;
5396 case SYSTEM_VALUE_NUM_WORK_GROUPS:
5397 return TGSI_SEMANTIC_GRID_SIZE;
5398 case SYSTEM_VALUE_LOCAL_GROUP_SIZE:
5399 return TGSI_SEMANTIC_BLOCK_SIZE;
5400
5401 /* ARB_shader_ballot */
5402 case SYSTEM_VALUE_SUBGROUP_SIZE:
5403 return TGSI_SEMANTIC_SUBGROUP_SIZE;
5404 case SYSTEM_VALUE_SUBGROUP_INVOCATION:
5405 return TGSI_SEMANTIC_SUBGROUP_INVOCATION;
5406 case SYSTEM_VALUE_SUBGROUP_EQ_MASK:
5407 return TGSI_SEMANTIC_SUBGROUP_EQ_MASK;
5408 case SYSTEM_VALUE_SUBGROUP_GE_MASK:
5409 return TGSI_SEMANTIC_SUBGROUP_GE_MASK;
5410 case SYSTEM_VALUE_SUBGROUP_GT_MASK:
5411 return TGSI_SEMANTIC_SUBGROUP_GT_MASK;
5412 case SYSTEM_VALUE_SUBGROUP_LE_MASK:
5413 return TGSI_SEMANTIC_SUBGROUP_LE_MASK;
5414 case SYSTEM_VALUE_SUBGROUP_LT_MASK:
5415 return TGSI_SEMANTIC_SUBGROUP_LT_MASK;
5416
5417 /* Unhandled */
5418 case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
5419 case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
5420 case SYSTEM_VALUE_VERTEX_CNT:
5421 default:
5422 assert(!"Unexpected SYSTEM_VALUE_ enum");
5423 return TGSI_SEMANTIC_COUNT;
5424 }
5425 }
5426
5427 /**
5428 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
5429 */
5430 static struct ureg_src
5431 emit_immediate(struct st_translate *t,
5432 gl_constant_value values[4],
5433 int type, int size)
5434 {
5435 struct ureg_program *ureg = t->ureg;
5436
5437 switch(type)
5438 {
5439 case GL_FLOAT:
5440 return ureg_DECL_immediate(ureg, &values[0].f, size);
5441 case GL_DOUBLE:
5442 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
5443 case GL_INT64_ARB:
5444 return ureg_DECL_immediate_int64(ureg, (int64_t *)&values[0].f, size);
5445 case GL_UNSIGNED_INT64_ARB:
5446 return ureg_DECL_immediate_uint64(ureg, (uint64_t *)&values[0].f, size);
5447 case GL_INT:
5448 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
5449 case GL_UNSIGNED_INT:
5450 case GL_BOOL:
5451 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
5452 default:
5453 assert(!"should not get here - type must be float, int, uint, or bool");
5454 return ureg_src_undef();
5455 }
5456 }
5457
5458 /**
5459 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
5460 */
5461 static struct ureg_dst
5462 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
5463 unsigned array_id)
5464 {
5465 unsigned array;
5466
5467 switch(file) {
5468 case PROGRAM_UNDEFINED:
5469 return ureg_dst_undef();
5470
5471 case PROGRAM_TEMPORARY:
5472 /* Allocate space for temporaries on demand. */
5473 if (index >= t->temps_size) {
5474 const int inc = align(index - t->temps_size + 1, 4096);
5475
5476 t->temps = (struct ureg_dst*)
5477 realloc(t->temps,
5478 (t->temps_size + inc) * sizeof(struct ureg_dst));
5479 if (!t->temps)
5480 return ureg_dst_undef();
5481
5482 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
5483 t->temps_size += inc;
5484 }
5485
5486 if (ureg_dst_is_undef(t->temps[index]))
5487 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
5488
5489 return t->temps[index];
5490
5491 case PROGRAM_ARRAY:
5492 assert(array_id && array_id <= t->num_temp_arrays);
5493 array = array_id - 1;
5494
5495 if (ureg_dst_is_undef(t->arrays[array]))
5496 t->arrays[array] = ureg_DECL_array_temporary(
5497 t->ureg, t->array_sizes[array], TRUE);
5498
5499 return ureg_dst_array_offset(t->arrays[array], index);
5500
5501 case PROGRAM_OUTPUT:
5502 if (!array_id) {
5503 if (t->procType == PIPE_SHADER_FRAGMENT)
5504 assert(index < 2 * FRAG_RESULT_MAX);
5505 else if (t->procType == PIPE_SHADER_TESS_CTRL ||
5506 t->procType == PIPE_SHADER_TESS_EVAL)
5507 assert(index < VARYING_SLOT_TESS_MAX);
5508 else
5509 assert(index < VARYING_SLOT_MAX);
5510
5511 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
5512 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
5513 return t->outputs[t->outputMapping[index]];
5514 }
5515 else {
5516 struct inout_decl *decl = find_inout_array(t->output_decls, t->num_output_decls, array_id);
5517 unsigned mesa_index = decl->mesa_index;
5518 int slot = t->outputMapping[mesa_index];
5519
5520 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
5521
5522 struct ureg_dst dst = t->outputs[slot];
5523 dst.ArrayID = array_id;
5524 return ureg_dst_array_offset(dst, index - mesa_index);
5525 }
5526
5527 case PROGRAM_ADDRESS:
5528 return t->address[index];
5529
5530 default:
5531 assert(!"unknown dst register file");
5532 return ureg_dst_undef();
5533 }
5534 }
5535
5536 static struct ureg_src
5537 translate_src(struct st_translate *t, const st_src_reg *src_reg);
5538
5539 static struct ureg_src
5540 translate_addr(struct st_translate *t, const st_src_reg *reladdr,
5541 unsigned addr_index)
5542 {
5543 if (t->need_uarl || !reladdr->is_legal_tgsi_address_operand())
5544 return ureg_src(t->address[addr_index]);
5545
5546 return translate_src(t, reladdr);
5547 }
5548
5549 /**
5550 * Create a TGSI ureg_dst register from an st_dst_reg.
5551 */
5552 static struct ureg_dst
5553 translate_dst(struct st_translate *t,
5554 const st_dst_reg *dst_reg,
5555 bool saturate)
5556 {
5557 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
5558 dst_reg->array_id);
5559
5560 if (dst.File == TGSI_FILE_NULL)
5561 return dst;
5562
5563 dst = ureg_writemask(dst, dst_reg->writemask);
5564
5565 if (saturate)
5566 dst = ureg_saturate(dst);
5567
5568 if (dst_reg->reladdr != NULL) {
5569 assert(dst_reg->file != PROGRAM_TEMPORARY);
5570 dst = ureg_dst_indirect(dst, translate_addr(t, dst_reg->reladdr, 0));
5571 }
5572
5573 if (dst_reg->has_index2) {
5574 if (dst_reg->reladdr2)
5575 dst = ureg_dst_dimension_indirect(dst,
5576 translate_addr(t, dst_reg->reladdr2, 1),
5577 dst_reg->index2D);
5578 else
5579 dst = ureg_dst_dimension(dst, dst_reg->index2D);
5580 }
5581
5582 return dst;
5583 }
5584
5585 /**
5586 * Create a TGSI ureg_src register from an st_src_reg.
5587 */
5588 static struct ureg_src
5589 translate_src(struct st_translate *t, const st_src_reg *src_reg)
5590 {
5591 struct ureg_src src;
5592 int index = src_reg->index;
5593 int double_reg2 = src_reg->double_reg2 ? 1 : 0;
5594
5595 switch(src_reg->file) {
5596 case PROGRAM_UNDEFINED:
5597 src = ureg_imm4f(t->ureg, 0, 0, 0, 0);
5598 break;
5599
5600 case PROGRAM_TEMPORARY:
5601 case PROGRAM_ARRAY:
5602 src = ureg_src(dst_register(t, src_reg->file, src_reg->index, src_reg->array_id));
5603 break;
5604
5605 case PROGRAM_OUTPUT: {
5606 struct ureg_dst dst = dst_register(t, src_reg->file, src_reg->index, src_reg->array_id);
5607 assert(dst.WriteMask != 0);
5608 unsigned shift = ffs(dst.WriteMask) - 1;
5609 src = ureg_swizzle(ureg_src(dst),
5610 shift,
5611 MIN2(shift + 1, 3),
5612 MIN2(shift + 2, 3),
5613 MIN2(shift + 3, 3));
5614 break;
5615 }
5616
5617 case PROGRAM_UNIFORM:
5618 assert(src_reg->index >= 0);
5619 src = src_reg->index < t->num_constants ?
5620 t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5621 break;
5622 case PROGRAM_STATE_VAR:
5623 case PROGRAM_CONSTANT: /* ie, immediate */
5624 if (src_reg->has_index2)
5625 src = ureg_src_register(TGSI_FILE_CONSTANT, src_reg->index);
5626 else
5627 src = src_reg->index >= 0 && src_reg->index < t->num_constants ?
5628 t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5629 break;
5630
5631 case PROGRAM_IMMEDIATE:
5632 assert(src_reg->index >= 0 && src_reg->index < t->num_immediates);
5633 src = t->immediates[src_reg->index];
5634 break;
5635
5636 case PROGRAM_INPUT:
5637 /* GLSL inputs are 64-bit containers, so we have to
5638 * map back to the original index and add the offset after
5639 * mapping. */
5640 index -= double_reg2;
5641 if (!src_reg->array_id) {
5642 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
5643 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
5644 src = t->inputs[t->inputMapping[index] + double_reg2];
5645 }
5646 else {
5647 struct inout_decl *decl = find_inout_array(t->input_decls, t->num_input_decls,
5648 src_reg->array_id);
5649 unsigned mesa_index = decl->mesa_index;
5650 int slot = t->inputMapping[mesa_index];
5651
5652 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
5653
5654 src = t->inputs[slot];
5655 src.ArrayID = src_reg->array_id;
5656 src = ureg_src_array_offset(src, index + double_reg2 - mesa_index);
5657 }
5658 break;
5659
5660 case PROGRAM_ADDRESS:
5661 src = ureg_src(t->address[src_reg->index]);
5662 break;
5663
5664 case PROGRAM_SYSTEM_VALUE:
5665 assert(src_reg->index < (int) ARRAY_SIZE(t->systemValues));
5666 src = t->systemValues[src_reg->index];
5667 break;
5668
5669 default:
5670 assert(!"unknown src register file");
5671 return ureg_src_undef();
5672 }
5673
5674 if (src_reg->has_index2) {
5675 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
5676 * and UBO constant buffers (buffer, position).
5677 */
5678 if (src_reg->reladdr2)
5679 src = ureg_src_dimension_indirect(src,
5680 translate_addr(t, src_reg->reladdr2, 1),
5681 src_reg->index2D);
5682 else
5683 src = ureg_src_dimension(src, src_reg->index2D);
5684 }
5685
5686 src = ureg_swizzle(src,
5687 GET_SWZ(src_reg->swizzle, 0) & 0x3,
5688 GET_SWZ(src_reg->swizzle, 1) & 0x3,
5689 GET_SWZ(src_reg->swizzle, 2) & 0x3,
5690 GET_SWZ(src_reg->swizzle, 3) & 0x3);
5691
5692 if (src_reg->abs)
5693 src = ureg_abs(src);
5694
5695 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
5696 src = ureg_negate(src);
5697
5698 if (src_reg->reladdr != NULL) {
5699 assert(src_reg->file != PROGRAM_TEMPORARY);
5700 src = ureg_src_indirect(src, translate_addr(t, src_reg->reladdr, 0));
5701 }
5702
5703 return src;
5704 }
5705
5706 static struct tgsi_texture_offset
5707 translate_tex_offset(struct st_translate *t,
5708 const st_src_reg *in_offset)
5709 {
5710 struct tgsi_texture_offset offset;
5711 struct ureg_src src = translate_src(t, in_offset);
5712
5713 offset.File = src.File;
5714 offset.Index = src.Index;
5715 offset.SwizzleX = src.SwizzleX;
5716 offset.SwizzleY = src.SwizzleY;
5717 offset.SwizzleZ = src.SwizzleZ;
5718 offset.Padding = 0;
5719
5720 assert(!src.Indirect);
5721 assert(!src.DimIndirect);
5722 assert(!src.Dimension);
5723 assert(!src.Absolute); /* those shouldn't be used with integers anyway */
5724 assert(!src.Negate);
5725
5726 return offset;
5727 }
5728
5729 static void
5730 compile_tgsi_instruction(struct st_translate *t,
5731 const glsl_to_tgsi_instruction *inst)
5732 {
5733 struct ureg_program *ureg = t->ureg;
5734 int i;
5735 struct ureg_dst dst[2];
5736 struct ureg_src src[4];
5737 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
5738
5739 int num_dst;
5740 int num_src;
5741 unsigned tex_target = 0;
5742
5743 num_dst = num_inst_dst_regs(inst);
5744 num_src = num_inst_src_regs(inst);
5745
5746 for (i = 0; i < num_dst; i++)
5747 dst[i] = translate_dst(t,
5748 &inst->dst[i],
5749 inst->saturate);
5750
5751 for (i = 0; i < num_src; i++)
5752 src[i] = translate_src(t, &inst->src[i]);
5753
5754 switch(inst->op) {
5755 case TGSI_OPCODE_BGNLOOP:
5756 case TGSI_OPCODE_ELSE:
5757 case TGSI_OPCODE_ENDLOOP:
5758 case TGSI_OPCODE_IF:
5759 case TGSI_OPCODE_UIF:
5760 assert(num_dst == 0);
5761 ureg_insn(ureg, inst->op, NULL, 0, src, num_src, inst->precise);
5762 return;
5763
5764 case TGSI_OPCODE_TEX:
5765 case TGSI_OPCODE_TEX_LZ:
5766 case TGSI_OPCODE_TXB:
5767 case TGSI_OPCODE_TXD:
5768 case TGSI_OPCODE_TXL:
5769 case TGSI_OPCODE_TXP:
5770 case TGSI_OPCODE_TXQ:
5771 case TGSI_OPCODE_TXQS:
5772 case TGSI_OPCODE_TXF:
5773 case TGSI_OPCODE_TXF_LZ:
5774 case TGSI_OPCODE_TEX2:
5775 case TGSI_OPCODE_TXB2:
5776 case TGSI_OPCODE_TXL2:
5777 case TGSI_OPCODE_TG4:
5778 case TGSI_OPCODE_LODQ:
5779 if (inst->resource.file == PROGRAM_SAMPLER) {
5780 src[num_src] = t->samplers[inst->resource.index];
5781 } else {
5782 /* Bindless samplers. */
5783 src[num_src] = translate_src(t, &inst->resource);
5784 }
5785 assert(src[num_src].File != TGSI_FILE_NULL);
5786 if (inst->resource.reladdr)
5787 src[num_src] =
5788 ureg_src_indirect(src[num_src],
5789 translate_addr(t, inst->resource.reladdr, 2));
5790 num_src++;
5791 for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
5792 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
5793 }
5794 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5795
5796 ureg_tex_insn(ureg,
5797 inst->op,
5798 dst, num_dst,
5799 tex_target,
5800 st_translate_texture_type(inst->tex_type),
5801 texoffsets, inst->tex_offset_num_offset,
5802 src, num_src);
5803 return;
5804
5805 case TGSI_OPCODE_RESQ:
5806 case TGSI_OPCODE_LOAD:
5807 case TGSI_OPCODE_ATOMUADD:
5808 case TGSI_OPCODE_ATOMXCHG:
5809 case TGSI_OPCODE_ATOMCAS:
5810 case TGSI_OPCODE_ATOMAND:
5811 case TGSI_OPCODE_ATOMOR:
5812 case TGSI_OPCODE_ATOMXOR:
5813 case TGSI_OPCODE_ATOMUMIN:
5814 case TGSI_OPCODE_ATOMUMAX:
5815 case TGSI_OPCODE_ATOMIMIN:
5816 case TGSI_OPCODE_ATOMIMAX:
5817 for (i = num_src - 1; i >= 0; i--)
5818 src[i + 1] = src[i];
5819 num_src++;
5820 if (inst->resource.file == PROGRAM_MEMORY) {
5821 src[0] = t->shared_memory;
5822 } else if (inst->resource.file == PROGRAM_BUFFER) {
5823 src[0] = t->buffers[inst->resource.index];
5824 } else if (inst->resource.file == PROGRAM_CONSTANT) {
5825 assert(inst->resource.has_index2);
5826 src[0] = ureg_src_register(TGSI_FILE_CONSTBUF, inst->resource.index);
5827 } else {
5828 assert(inst->resource.file != PROGRAM_UNDEFINED);
5829 if (inst->resource.file == PROGRAM_IMAGE) {
5830 src[0] = t->images[inst->resource.index];
5831 } else {
5832 /* Bindless images. */
5833 src[0] = translate_src(t, &inst->resource);
5834 }
5835 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5836 }
5837 if (inst->resource.reladdr)
5838 src[0] = ureg_src_indirect(src[0],
5839 translate_addr(t, inst->resource.reladdr, 2));
5840 assert(src[0].File != TGSI_FILE_NULL);
5841 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5842 inst->buffer_access,
5843 tex_target, inst->image_format);
5844 break;
5845
5846 case TGSI_OPCODE_STORE:
5847 if (inst->resource.file == PROGRAM_MEMORY) {
5848 dst[0] = ureg_dst(t->shared_memory);
5849 } else if (inst->resource.file == PROGRAM_BUFFER) {
5850 dst[0] = ureg_dst(t->buffers[inst->resource.index]);
5851 } else {
5852 if (inst->resource.file == PROGRAM_IMAGE) {
5853 dst[0] = ureg_dst(t->images[inst->resource.index]);
5854 } else {
5855 /* Bindless images. */
5856 dst[0] = ureg_dst(translate_src(t, &inst->resource));
5857 }
5858 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5859 }
5860 dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
5861 if (inst->resource.reladdr)
5862 dst[0] = ureg_dst_indirect(dst[0],
5863 translate_addr(t, inst->resource.reladdr, 2));
5864 assert(dst[0].File != TGSI_FILE_NULL);
5865 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5866 inst->buffer_access,
5867 tex_target, inst->image_format);
5868 break;
5869
5870 default:
5871 ureg_insn(ureg,
5872 inst->op,
5873 dst, num_dst,
5874 src, num_src, inst->precise);
5875 break;
5876 }
5877 }
5878
5879 /**
5880 * Emit the TGSI instructions for inverting and adjusting WPOS.
5881 * This code is unavoidable because it also depends on whether
5882 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
5883 */
5884 static void
5885 emit_wpos_adjustment(struct gl_context *ctx,
5886 struct st_translate *t,
5887 int wpos_transform_const,
5888 boolean invert,
5889 GLfloat adjX, GLfloat adjY[2])
5890 {
5891 struct ureg_program *ureg = t->ureg;
5892
5893 assert(wpos_transform_const >= 0);
5894
5895 /* Fragment program uses fragment position input.
5896 * Need to replace instances of INPUT[WPOS] with temp T
5897 * where T = INPUT[WPOS] is inverted by Y.
5898 */
5899 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
5900 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
5901 struct ureg_src *wpos =
5902 ctx->Const.GLSLFragCoordIsSysVal ?
5903 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
5904 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
5905 struct ureg_src wpos_input = *wpos;
5906
5907 /* First, apply the coordinate shift: */
5908 if (adjX || adjY[0] || adjY[1]) {
5909 if (adjY[0] != adjY[1]) {
5910 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
5911 * depending on whether inversion is actually going to be applied
5912 * or not, which is determined by testing against the inversion
5913 * state variable used below, which will be either +1 or -1.
5914 */
5915 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
5916
5917 ureg_CMP(ureg, adj_temp,
5918 ureg_scalar(wpostrans, invert ? 2 : 0),
5919 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
5920 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
5921 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
5922 } else {
5923 ureg_ADD(ureg, wpos_temp, wpos_input,
5924 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
5925 }
5926 wpos_input = ureg_src(wpos_temp);
5927 } else {
5928 /* MOV wpos_temp, input[wpos]
5929 */
5930 ureg_MOV( ureg, wpos_temp, wpos_input );
5931 }
5932
5933 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
5934 * inversion/identity, or the other way around if we're drawing to an FBO.
5935 */
5936 if (invert) {
5937 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
5938 */
5939 ureg_MAD( ureg,
5940 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5941 wpos_input,
5942 ureg_scalar(wpostrans, 0),
5943 ureg_scalar(wpostrans, 1));
5944 } else {
5945 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
5946 */
5947 ureg_MAD( ureg,
5948 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5949 wpos_input,
5950 ureg_scalar(wpostrans, 2),
5951 ureg_scalar(wpostrans, 3));
5952 }
5953
5954 /* Use wpos_temp as position input from here on:
5955 */
5956 *wpos = ureg_src(wpos_temp);
5957 }
5958
5959
5960 /**
5961 * Emit fragment position/ooordinate code.
5962 */
5963 static void
5964 emit_wpos(struct st_context *st,
5965 struct st_translate *t,
5966 const struct gl_program *program,
5967 struct ureg_program *ureg,
5968 int wpos_transform_const)
5969 {
5970 struct pipe_screen *pscreen = st->pipe->screen;
5971 GLfloat adjX = 0.0f;
5972 GLfloat adjY[2] = { 0.0f, 0.0f };
5973 boolean invert = FALSE;
5974
5975 /* Query the pixel center conventions supported by the pipe driver and set
5976 * adjX, adjY to help out if it cannot handle the requested one internally.
5977 *
5978 * The bias of the y-coordinate depends on whether y-inversion takes place
5979 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
5980 * drawing to an FBO (causes additional inversion), and whether the pipe
5981 * driver origin and the requested origin differ (the latter condition is
5982 * stored in the 'invert' variable).
5983 *
5984 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
5985 *
5986 * center shift only:
5987 * i -> h: +0.5
5988 * h -> i: -0.5
5989 *
5990 * inversion only:
5991 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
5992 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
5993 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
5994 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
5995 *
5996 * inversion and center shift:
5997 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
5998 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
5999 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
6000 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
6001 */
6002 if (program->OriginUpperLeft) {
6003 /* Fragment shader wants origin in upper-left */
6004 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
6005 /* the driver supports upper-left origin */
6006 }
6007 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
6008 /* the driver supports lower-left origin, need to invert Y */
6009 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6010 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6011 invert = TRUE;
6012 }
6013 else
6014 assert(0);
6015 }
6016 else {
6017 /* Fragment shader wants origin in lower-left */
6018 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
6019 /* the driver supports lower-left origin */
6020 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6021 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6022 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
6023 /* the driver supports upper-left origin, need to invert Y */
6024 invert = TRUE;
6025 else
6026 assert(0);
6027 }
6028
6029 if (program->PixelCenterInteger) {
6030 /* Fragment shader wants pixel center integer */
6031 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6032 /* the driver supports pixel center integer */
6033 adjY[1] = 1.0f;
6034 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6035 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6036 }
6037 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6038 /* the driver supports pixel center half integer, need to bias X,Y */
6039 adjX = -0.5f;
6040 adjY[0] = -0.5f;
6041 adjY[1] = 0.5f;
6042 }
6043 else
6044 assert(0);
6045 }
6046 else {
6047 /* Fragment shader wants pixel center half integer */
6048 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6049 /* the driver supports pixel center half integer */
6050 }
6051 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6052 /* the driver supports pixel center integer, need to bias X,Y */
6053 adjX = adjY[0] = adjY[1] = 0.5f;
6054 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6055 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6056 }
6057 else
6058 assert(0);
6059 }
6060
6061 /* we invert after adjustment so that we avoid the MOV to temporary,
6062 * and reuse the adjustment ADD instead */
6063 emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
6064 }
6065
6066 /**
6067 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
6068 * TGSI uses +1 for front, -1 for back.
6069 * This function converts the TGSI value to the GL value. Simply clamping/
6070 * saturating the value to [0,1] does the job.
6071 */
6072 static void
6073 emit_face_var(struct gl_context *ctx, struct st_translate *t)
6074 {
6075 struct ureg_program *ureg = t->ureg;
6076 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
6077 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
6078
6079 if (ctx->Const.NativeIntegers) {
6080 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
6081 }
6082 else {
6083 /* MOV_SAT face_temp, input[face] */
6084 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
6085 }
6086
6087 /* Use face_temp as face input from here on: */
6088 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
6089 }
6090
6091 static void
6092 emit_compute_block_size(const struct gl_program *prog,
6093 struct ureg_program *ureg) {
6094 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
6095 prog->info.cs.local_size[0]);
6096 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
6097 prog->info.cs.local_size[1]);
6098 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
6099 prog->info.cs.local_size[2]);
6100 }
6101
6102 struct sort_inout_decls {
6103 bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
6104 return mapping[a.mesa_index] < mapping[b.mesa_index];
6105 }
6106
6107 const ubyte *mapping;
6108 };
6109
6110 /* Sort the given array of decls by the corresponding slot (TGSI file index).
6111 *
6112 * This is for the benefit of older drivers which are broken when the
6113 * declarations aren't sorted in this way.
6114 */
6115 static void
6116 sort_inout_decls_by_slot(struct inout_decl *decls,
6117 unsigned count,
6118 const ubyte mapping[])
6119 {
6120 sort_inout_decls sorter;
6121 sorter.mapping = mapping;
6122 std::sort(decls, decls + count, sorter);
6123 }
6124
6125 static unsigned
6126 st_translate_interp(enum glsl_interp_mode glsl_qual, GLuint varying)
6127 {
6128 switch (glsl_qual) {
6129 case INTERP_MODE_NONE:
6130 if (varying == VARYING_SLOT_COL0 || varying == VARYING_SLOT_COL1)
6131 return TGSI_INTERPOLATE_COLOR;
6132 return TGSI_INTERPOLATE_PERSPECTIVE;
6133 case INTERP_MODE_SMOOTH:
6134 return TGSI_INTERPOLATE_PERSPECTIVE;
6135 case INTERP_MODE_FLAT:
6136 return TGSI_INTERPOLATE_CONSTANT;
6137 case INTERP_MODE_NOPERSPECTIVE:
6138 return TGSI_INTERPOLATE_LINEAR;
6139 default:
6140 assert(0 && "unexpected interp mode in st_translate_interp()");
6141 return TGSI_INTERPOLATE_PERSPECTIVE;
6142 }
6143 }
6144
6145 /**
6146 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
6147 * \param program the program to translate
6148 * \param numInputs number of input registers used
6149 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
6150 * input indexes
6151 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
6152 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
6153 * each input
6154 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
6155 * \param numOutputs number of output registers used
6156 * \param outputMapping maps Mesa fragment program outputs to TGSI
6157 * generic outputs
6158 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
6159 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
6160 * each output
6161 *
6162 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
6163 */
6164 extern "C" enum pipe_error
6165 st_translate_program(
6166 struct gl_context *ctx,
6167 uint procType,
6168 struct ureg_program *ureg,
6169 glsl_to_tgsi_visitor *program,
6170 const struct gl_program *proginfo,
6171 GLuint numInputs,
6172 const ubyte inputMapping[],
6173 const ubyte inputSlotToAttr[],
6174 const ubyte inputSemanticName[],
6175 const ubyte inputSemanticIndex[],
6176 const ubyte interpMode[],
6177 GLuint numOutputs,
6178 const ubyte outputMapping[],
6179 const ubyte outputSemanticName[],
6180 const ubyte outputSemanticIndex[])
6181 {
6182 struct pipe_screen *screen = st_context(ctx)->pipe->screen;
6183 struct st_translate *t;
6184 unsigned i;
6185 struct gl_program_constants *frag_const =
6186 &ctx->Const.Program[MESA_SHADER_FRAGMENT];
6187 enum pipe_error ret = PIPE_OK;
6188
6189 assert(numInputs <= ARRAY_SIZE(t->inputs));
6190 assert(numOutputs <= ARRAY_SIZE(t->outputs));
6191
6192 t = CALLOC_STRUCT(st_translate);
6193 if (!t) {
6194 ret = PIPE_ERROR_OUT_OF_MEMORY;
6195 goto out;
6196 }
6197
6198 t->procType = procType;
6199 t->need_uarl = !screen->get_param(screen, PIPE_CAP_TGSI_ANY_REG_AS_ADDRESS);
6200 t->inputMapping = inputMapping;
6201 t->outputMapping = outputMapping;
6202 t->ureg = ureg;
6203 t->num_temp_arrays = program->next_array;
6204 if (t->num_temp_arrays)
6205 t->arrays = (struct ureg_dst*)
6206 calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
6207
6208 /*
6209 * Declare input attributes.
6210 */
6211 switch (procType) {
6212 case PIPE_SHADER_FRAGMENT:
6213 case PIPE_SHADER_GEOMETRY:
6214 case PIPE_SHADER_TESS_EVAL:
6215 case PIPE_SHADER_TESS_CTRL:
6216 sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
6217
6218 for (i = 0; i < program->num_inputs; ++i) {
6219 struct inout_decl *decl = &program->inputs[i];
6220 unsigned slot = inputMapping[decl->mesa_index];
6221 struct ureg_src src;
6222 ubyte tgsi_usage_mask = decl->usage_mask;
6223
6224 if (glsl_base_type_is_64bit(decl->base_type)) {
6225 if (tgsi_usage_mask == 1)
6226 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6227 else if (tgsi_usage_mask == 2)
6228 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6229 else
6230 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6231 }
6232
6233 unsigned interp_mode = 0;
6234 unsigned interp_location = 0;
6235 if (procType == PIPE_SHADER_FRAGMENT) {
6236 assert(interpMode);
6237 interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
6238 interpMode[slot] :
6239 st_translate_interp(decl->interp, inputSlotToAttr[slot]);
6240
6241 interp_location = decl->interp_loc;
6242 }
6243
6244 src = ureg_DECL_fs_input_cyl_centroid_layout(ureg,
6245 inputSemanticName[slot], inputSemanticIndex[slot],
6246 interp_mode, 0, interp_location, slot, tgsi_usage_mask,
6247 decl->array_id, decl->size);
6248
6249 for (unsigned j = 0; j < decl->size; ++j) {
6250 if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
6251 /* The ArrayID is set up in dst_register */
6252 t->inputs[slot + j] = src;
6253 t->inputs[slot + j].ArrayID = 0;
6254 t->inputs[slot + j].Index += j;
6255 }
6256 }
6257 }
6258 break;
6259 case PIPE_SHADER_VERTEX:
6260 for (i = 0; i < numInputs; i++) {
6261 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
6262 }
6263 break;
6264 case PIPE_SHADER_COMPUTE:
6265 break;
6266 default:
6267 assert(0);
6268 }
6269
6270 /*
6271 * Declare output attributes.
6272 */
6273 switch (procType) {
6274 case PIPE_SHADER_FRAGMENT:
6275 case PIPE_SHADER_COMPUTE:
6276 break;
6277 case PIPE_SHADER_GEOMETRY:
6278 case PIPE_SHADER_TESS_EVAL:
6279 case PIPE_SHADER_TESS_CTRL:
6280 case PIPE_SHADER_VERTEX:
6281 sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
6282
6283 for (i = 0; i < program->num_outputs; ++i) {
6284 struct inout_decl *decl = &program->outputs[i];
6285 unsigned slot = outputMapping[decl->mesa_index];
6286 struct ureg_dst dst;
6287 ubyte tgsi_usage_mask = decl->usage_mask;
6288
6289 if (glsl_base_type_is_64bit(decl->base_type)) {
6290 if (tgsi_usage_mask == 1)
6291 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6292 else if (tgsi_usage_mask == 2)
6293 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6294 else
6295 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6296 }
6297
6298 dst = ureg_DECL_output_layout(ureg,
6299 outputSemanticName[slot], outputSemanticIndex[slot],
6300 decl->gs_out_streams,
6301 slot, tgsi_usage_mask, decl->array_id, decl->size);
6302
6303 for (unsigned j = 0; j < decl->size; ++j) {
6304 if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
6305 /* The ArrayID is set up in dst_register */
6306 t->outputs[slot + j] = dst;
6307 t->outputs[slot + j].ArrayID = 0;
6308 t->outputs[slot + j].Index += j;
6309 }
6310 }
6311 }
6312 break;
6313 default:
6314 assert(0);
6315 }
6316
6317 if (procType == PIPE_SHADER_FRAGMENT) {
6318 if (program->shader->Program->info.fs.early_fragment_tests ||
6319 program->shader->Program->info.fs.post_depth_coverage) {
6320 ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
6321
6322 if (program->shader->Program->info.fs.post_depth_coverage)
6323 ureg_property(ureg, TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE, 1);
6324 }
6325
6326 if (proginfo->info.inputs_read & VARYING_BIT_POS) {
6327 /* Must do this after setting up t->inputs. */
6328 emit_wpos(st_context(ctx), t, proginfo, ureg,
6329 program->wpos_transform_const);
6330 }
6331
6332 if (proginfo->info.inputs_read & VARYING_BIT_FACE)
6333 emit_face_var(ctx, t);
6334
6335 for (i = 0; i < numOutputs; i++) {
6336 switch (outputSemanticName[i]) {
6337 case TGSI_SEMANTIC_POSITION:
6338 t->outputs[i] = ureg_DECL_output(ureg,
6339 TGSI_SEMANTIC_POSITION, /* Z/Depth */
6340 outputSemanticIndex[i]);
6341 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
6342 break;
6343 case TGSI_SEMANTIC_STENCIL:
6344 t->outputs[i] = ureg_DECL_output(ureg,
6345 TGSI_SEMANTIC_STENCIL, /* Stencil */
6346 outputSemanticIndex[i]);
6347 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
6348 break;
6349 case TGSI_SEMANTIC_COLOR:
6350 t->outputs[i] = ureg_DECL_output(ureg,
6351 TGSI_SEMANTIC_COLOR,
6352 outputSemanticIndex[i]);
6353 break;
6354 case TGSI_SEMANTIC_SAMPLEMASK:
6355 t->outputs[i] = ureg_DECL_output(ureg,
6356 TGSI_SEMANTIC_SAMPLEMASK,
6357 outputSemanticIndex[i]);
6358 /* TODO: If we ever support more than 32 samples, this will have
6359 * to become an array.
6360 */
6361 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6362 break;
6363 default:
6364 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
6365 ret = PIPE_ERROR_BAD_INPUT;
6366 goto out;
6367 }
6368 }
6369 }
6370 else if (procType == PIPE_SHADER_VERTEX) {
6371 for (i = 0; i < numOutputs; i++) {
6372 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
6373 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
6374 ureg_MOV(ureg,
6375 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
6376 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
6377 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6378 }
6379 }
6380 }
6381
6382 if (procType == PIPE_SHADER_COMPUTE) {
6383 emit_compute_block_size(proginfo, ureg);
6384 }
6385
6386 /* Declare address register.
6387 */
6388 if (program->num_address_regs > 0) {
6389 assert(program->num_address_regs <= 3);
6390 for (int i = 0; i < program->num_address_regs; i++)
6391 t->address[i] = ureg_DECL_address(ureg);
6392 }
6393
6394 /* Declare misc input registers
6395 */
6396 {
6397 GLbitfield sysInputs = proginfo->info.system_values_read;
6398
6399 for (i = 0; sysInputs; i++) {
6400 if (sysInputs & (1 << i)) {
6401 unsigned semName = _mesa_sysval_to_semantic(i);
6402
6403 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
6404
6405 if (semName == TGSI_SEMANTIC_INSTANCEID ||
6406 semName == TGSI_SEMANTIC_VERTEXID) {
6407 /* From Gallium perspective, these system values are always
6408 * integer, and require native integer support. However, if
6409 * native integer is supported on the vertex stage but not the
6410 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
6411 * assumes these system values are floats. To resolve the
6412 * inconsistency, we insert a U2F.
6413 */
6414 struct st_context *st = st_context(ctx);
6415 struct pipe_screen *pscreen = st->pipe->screen;
6416 assert(procType == PIPE_SHADER_VERTEX);
6417 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
6418 (void) pscreen;
6419 if (!ctx->Const.NativeIntegers) {
6420 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
6421 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
6422 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
6423 }
6424 }
6425
6426 if (procType == PIPE_SHADER_FRAGMENT &&
6427 semName == TGSI_SEMANTIC_POSITION)
6428 emit_wpos(st_context(ctx), t, proginfo, ureg,
6429 program->wpos_transform_const);
6430
6431 sysInputs &= ~(1 << i);
6432 }
6433 }
6434 }
6435
6436 t->array_sizes = program->array_sizes;
6437 t->input_decls = program->inputs;
6438 t->num_input_decls = program->num_inputs;
6439 t->output_decls = program->outputs;
6440 t->num_output_decls = program->num_outputs;
6441
6442 /* Emit constants and uniforms. TGSI uses a single index space for these,
6443 * so we put all the translated regs in t->constants.
6444 */
6445 if (proginfo->Parameters) {
6446 t->constants = (struct ureg_src *)
6447 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
6448 if (t->constants == NULL) {
6449 ret = PIPE_ERROR_OUT_OF_MEMORY;
6450 goto out;
6451 }
6452 t->num_constants = proginfo->Parameters->NumParameters;
6453
6454 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
6455 switch (proginfo->Parameters->Parameters[i].Type) {
6456 case PROGRAM_STATE_VAR:
6457 case PROGRAM_UNIFORM:
6458 t->constants[i] = ureg_DECL_constant(ureg, i);
6459 break;
6460
6461 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
6462 * addressing of the const buffer.
6463 * FIXME: Be smarter and recognize param arrays:
6464 * indirect addressing is only valid within the referenced
6465 * array.
6466 */
6467 case PROGRAM_CONSTANT:
6468 if (program->indirect_addr_consts)
6469 t->constants[i] = ureg_DECL_constant(ureg, i);
6470 else
6471 t->constants[i] = emit_immediate(t,
6472 proginfo->Parameters->ParameterValues[i],
6473 proginfo->Parameters->Parameters[i].DataType,
6474 4);
6475 break;
6476 default:
6477 break;
6478 }
6479 }
6480 }
6481
6482 for (i = 0; i < proginfo->info.num_ubos; i++) {
6483 unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
6484 unsigned num_const_vecs = (size + 15) / 16;
6485 unsigned first, last;
6486 assert(num_const_vecs > 0);
6487 first = 0;
6488 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
6489 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
6490 }
6491
6492 /* Emit immediate values.
6493 */
6494 t->immediates = (struct ureg_src *)
6495 calloc(program->num_immediates, sizeof(struct ureg_src));
6496 if (t->immediates == NULL) {
6497 ret = PIPE_ERROR_OUT_OF_MEMORY;
6498 goto out;
6499 }
6500 t->num_immediates = program->num_immediates;
6501
6502 i = 0;
6503 foreach_in_list(immediate_storage, imm, &program->immediates) {
6504 assert(i < program->num_immediates);
6505 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
6506 }
6507 assert(i == program->num_immediates);
6508
6509 /* texture samplers */
6510 for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
6511 if (program->samplers_used & (1u << i)) {
6512 unsigned type = st_translate_texture_type(program->sampler_types[i]);
6513
6514 t->samplers[i] = ureg_DECL_sampler(ureg, i);
6515
6516 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
6517 type, type, type, type );
6518 }
6519 }
6520
6521 /* Declare atomic and shader storage buffers. */
6522 {
6523 struct gl_program *prog = program->prog;
6524
6525 for (i = 0; i < prog->info.num_abos; i++) {
6526 unsigned index = prog->sh.AtomicBuffers[i]->Binding;
6527 assert(index < frag_const->MaxAtomicBuffers);
6528 t->buffers[index] = ureg_DECL_buffer(ureg, index, true);
6529 }
6530
6531 assert(prog->info.num_ssbos <= frag_const->MaxShaderStorageBlocks);
6532 for (i = 0; i < prog->info.num_ssbos; i++) {
6533 unsigned index = frag_const->MaxAtomicBuffers + i;
6534 t->buffers[index] = ureg_DECL_buffer(ureg, index, false);
6535 }
6536 }
6537
6538 if (program->use_shared_memory)
6539 t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
6540
6541 for (i = 0; i < program->shader->Program->info.num_images; i++) {
6542 if (program->images_used & (1 << i)) {
6543 t->images[i] = ureg_DECL_image(ureg, i,
6544 program->image_targets[i],
6545 program->image_formats[i],
6546 true, false);
6547 }
6548 }
6549
6550 /* Emit each instruction in turn:
6551 */
6552 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
6553 compile_tgsi_instruction(t, inst);
6554
6555 /* Set the next shader stage hint for VS and TES. */
6556 switch (procType) {
6557 case PIPE_SHADER_VERTEX:
6558 case PIPE_SHADER_TESS_EVAL:
6559 if (program->shader_program->SeparateShader)
6560 break;
6561
6562 for (i = program->shader->Stage+1; i <= MESA_SHADER_FRAGMENT; i++) {
6563 if (program->shader_program->_LinkedShaders[i]) {
6564 ureg_set_next_shader_processor(
6565 ureg, pipe_shader_type_from_mesa((gl_shader_stage)i));
6566 break;
6567 }
6568 }
6569 break;
6570 }
6571
6572 out:
6573 if (t) {
6574 free(t->arrays);
6575 free(t->temps);
6576 free(t->constants);
6577 t->num_constants = 0;
6578 free(t->immediates);
6579 t->num_immediates = 0;
6580 FREE(t);
6581 }
6582
6583 return ret;
6584 }
6585 /* ----------------------------- End TGSI code ------------------------------ */
6586
6587
6588 /**
6589 * Convert a shader's GLSL IR into a Mesa gl_program, although without
6590 * generating Mesa IR.
6591 */
6592 static struct gl_program *
6593 get_mesa_program_tgsi(struct gl_context *ctx,
6594 struct gl_shader_program *shader_program,
6595 struct gl_linked_shader *shader)
6596 {
6597 glsl_to_tgsi_visitor* v;
6598 struct gl_program *prog;
6599 struct gl_shader_compiler_options *options =
6600 &ctx->Const.ShaderCompilerOptions[shader->Stage];
6601 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6602 enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(shader->Stage);
6603 unsigned skip_merge_registers;
6604
6605 validate_ir_tree(shader->ir);
6606
6607 prog = shader->Program;
6608
6609 prog->Parameters = _mesa_new_parameter_list();
6610 v = new glsl_to_tgsi_visitor();
6611 v->ctx = ctx;
6612 v->prog = prog;
6613 v->shader_program = shader_program;
6614 v->shader = shader;
6615 v->options = options;
6616 v->glsl_version = ctx->Const.GLSLVersion;
6617 v->native_integers = ctx->Const.NativeIntegers;
6618
6619 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
6620 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
6621 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
6622 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
6623 v->has_tex_txf_lz = pscreen->get_param(pscreen,
6624 PIPE_CAP_TGSI_TEX_TXF_LZ);
6625 v->need_uarl = !pscreen->get_param(pscreen, PIPE_CAP_TGSI_ANY_REG_AS_ADDRESS);
6626
6627 v->variables = _mesa_hash_table_create(v->mem_ctx, _mesa_hash_pointer,
6628 _mesa_key_pointer_equal);
6629 skip_merge_registers =
6630 pscreen->get_shader_param(pscreen, ptarget,
6631 PIPE_SHADER_CAP_TGSI_SKIP_MERGE_REGISTERS);
6632
6633 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
6634 prog->Parameters);
6635
6636 /* Remove reads from output registers. */
6637 if (!pscreen->get_param(pscreen, PIPE_CAP_TGSI_CAN_READ_OUTPUTS))
6638 lower_output_reads(shader->Stage, shader->ir);
6639
6640 /* Emit intermediate IR for main(). */
6641 visit_exec_list(shader->ir, v);
6642
6643 #if 0
6644 /* Print out some information (for debugging purposes) used by the
6645 * optimization passes. */
6646 {
6647 int i;
6648 int *first_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
6649 int *first_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
6650 int *last_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
6651 int *last_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
6652
6653 for (i = 0; i < v->next_temp; i++) {
6654 first_writes[i] = -1;
6655 first_reads[i] = -1;
6656 last_writes[i] = -1;
6657 last_reads[i] = -1;
6658 }
6659 v->get_first_temp_read(first_reads);
6660 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
6661 v->get_last_temp_write(last_writes);
6662 for (i = 0; i < v->next_temp; i++)
6663 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
6664 first_writes[i],
6665 last_reads[i],
6666 last_writes[i]);
6667 ralloc_free(first_writes);
6668 ralloc_free(first_reads);
6669 ralloc_free(last_writes);
6670 ralloc_free(last_reads);
6671 }
6672 #endif
6673
6674 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
6675 v->simplify_cmp();
6676 v->copy_propagate();
6677
6678 while (v->eliminate_dead_code());
6679
6680 v->merge_two_dsts();
6681 if (!skip_merge_registers)
6682 v->merge_registers();
6683 v->renumber_registers();
6684
6685 /* Write the END instruction. */
6686 v->emit_asm(NULL, TGSI_OPCODE_END);
6687
6688 if (ctx->_Shader->Flags & GLSL_DUMP) {
6689 _mesa_log("\n");
6690 _mesa_log("GLSL IR for linked %s program %d:\n",
6691 _mesa_shader_stage_to_string(shader->Stage),
6692 shader_program->Name);
6693 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
6694 _mesa_log("\n\n");
6695 }
6696
6697 do_set_program_inouts(shader->ir, prog, shader->Stage);
6698 _mesa_copy_linked_program_data(shader_program, shader);
6699 shrink_array_declarations(v->inputs, v->num_inputs,
6700 &prog->info.inputs_read,
6701 prog->info.double_inputs_read,
6702 &prog->info.patch_inputs_read);
6703 shrink_array_declarations(v->outputs, v->num_outputs,
6704 &prog->info.outputs_written, 0ULL,
6705 &prog->info.patch_outputs_written);
6706 count_resources(v, prog);
6707
6708 /* The GLSL IR won't be needed anymore. */
6709 ralloc_free(shader->ir);
6710 shader->ir = NULL;
6711
6712 /* This must be done before the uniform storage is associated. */
6713 if (shader->Stage == MESA_SHADER_FRAGMENT &&
6714 (prog->info.inputs_read & VARYING_BIT_POS ||
6715 prog->info.system_values_read & (1 << SYSTEM_VALUE_FRAG_COORD))) {
6716 static const gl_state_index wposTransformState[STATE_LENGTH] = {
6717 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
6718 };
6719
6720 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
6721 wposTransformState);
6722 }
6723
6724 /* Avoid reallocation of the program parameter list, because the uniform
6725 * storage is only associated with the original parameter list.
6726 * This should be enough for Bitmap and DrawPixels constants.
6727 */
6728 _mesa_reserve_parameter_storage(prog->Parameters, 8);
6729
6730 /* This has to be done last. Any operation the can cause
6731 * prog->ParameterValues to get reallocated (e.g., anything that adds a
6732 * program constant) has to happen before creating this linkage.
6733 */
6734 _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
6735 if (!shader_program->data->LinkStatus) {
6736 free_glsl_to_tgsi_visitor(v);
6737 _mesa_reference_program(ctx, &shader->Program, NULL);
6738 return NULL;
6739 }
6740
6741 struct st_vertex_program *stvp;
6742 struct st_fragment_program *stfp;
6743 struct st_common_program *stp;
6744 struct st_compute_program *stcp;
6745
6746 switch (shader->Stage) {
6747 case MESA_SHADER_VERTEX:
6748 stvp = (struct st_vertex_program *)prog;
6749 stvp->glsl_to_tgsi = v;
6750 break;
6751 case MESA_SHADER_FRAGMENT:
6752 stfp = (struct st_fragment_program *)prog;
6753 stfp->glsl_to_tgsi = v;
6754 break;
6755 case MESA_SHADER_TESS_CTRL:
6756 case MESA_SHADER_TESS_EVAL:
6757 case MESA_SHADER_GEOMETRY:
6758 stp = st_common_program(prog);
6759 stp->glsl_to_tgsi = v;
6760 break;
6761 case MESA_SHADER_COMPUTE:
6762 stcp = (struct st_compute_program *)prog;
6763 stcp->glsl_to_tgsi = v;
6764 break;
6765 default:
6766 assert(!"should not be reached");
6767 return NULL;
6768 }
6769
6770 return prog;
6771 }
6772
6773 /* See if there are unsupported control flow statements. */
6774 class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
6775 private:
6776 const struct gl_shader_compiler_options *options;
6777 public:
6778 ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
6779 : options(options),
6780 unsupported(false)
6781 {
6782 }
6783
6784 virtual ir_visitor_status visit_enter(ir_function *ir)
6785 {
6786 /* Other functions are skipped (same as glsl_to_tgsi). */
6787 if (strcmp(ir->name, "main") == 0)
6788 return visit_continue;
6789
6790 return visit_continue_with_parent;
6791 }
6792
6793 virtual ir_visitor_status visit_enter(ir_call *ir)
6794 {
6795 if (!ir->callee->is_intrinsic()) {
6796 unsupported = true; /* it's a function call */
6797 return visit_stop;
6798 }
6799 return visit_continue;
6800 }
6801
6802 virtual ir_visitor_status visit_enter(ir_return *ir)
6803 {
6804 if (options->EmitNoMainReturn) {
6805 unsupported = true;
6806 return visit_stop;
6807 }
6808 return visit_continue;
6809 }
6810
6811 bool unsupported;
6812 };
6813
6814 static bool
6815 has_unsupported_control_flow(exec_list *ir,
6816 const struct gl_shader_compiler_options *options)
6817 {
6818 ir_control_flow_info_visitor visitor(options);
6819 visit_list_elements(&visitor, ir);
6820 return visitor.unsupported;
6821 }
6822
6823 extern "C" {
6824
6825 /**
6826 * Link a shader.
6827 * Called via ctx->Driver.LinkShader()
6828 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
6829 * with code lowering and other optimizations.
6830 */
6831 GLboolean
6832 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
6833 {
6834 /* Return early if we are loading the shader from on-disk cache */
6835 if (st_load_tgsi_from_disk_cache(ctx, prog)) {
6836 return GL_TRUE;
6837 }
6838
6839 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6840 assert(prog->data->LinkStatus);
6841
6842 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6843 if (prog->_LinkedShaders[i] == NULL)
6844 continue;
6845
6846 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
6847 exec_list *ir = shader->ir;
6848 gl_shader_stage stage = shader->Stage;
6849 const struct gl_shader_compiler_options *options =
6850 &ctx->Const.ShaderCompilerOptions[stage];
6851 enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(stage);
6852 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
6853 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
6854 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
6855 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
6856 bool have_ldexp = pscreen->get_shader_param(pscreen, ptarget,
6857 PIPE_SHADER_CAP_TGSI_LDEXP_SUPPORTED);
6858 unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
6859 PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
6860
6861 /* If there are forms of indirect addressing that the driver
6862 * cannot handle, perform the lowering pass.
6863 */
6864 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
6865 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
6866 lower_variable_index_to_cond_assign(stage, ir,
6867 options->EmitNoIndirectInput,
6868 options->EmitNoIndirectOutput,
6869 options->EmitNoIndirectTemp,
6870 options->EmitNoIndirectUniform);
6871 }
6872
6873 if (!pscreen->get_param(pscreen, PIPE_CAP_INT64_DIVMOD))
6874 lower_64bit_integer_instructions(ir, DIV64 | MOD64);
6875
6876 if (ctx->Extensions.ARB_shading_language_packing) {
6877 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
6878 LOWER_UNPACK_SNORM_2x16 |
6879 LOWER_PACK_UNORM_2x16 |
6880 LOWER_UNPACK_UNORM_2x16 |
6881 LOWER_PACK_SNORM_4x8 |
6882 LOWER_UNPACK_SNORM_4x8 |
6883 LOWER_UNPACK_UNORM_4x8 |
6884 LOWER_PACK_UNORM_4x8;
6885
6886 if (ctx->Extensions.ARB_gpu_shader5)
6887 lower_inst |= LOWER_PACK_USE_BFI |
6888 LOWER_PACK_USE_BFE;
6889 if (!ctx->st->has_half_float_packing)
6890 lower_inst |= LOWER_PACK_HALF_2x16 |
6891 LOWER_UNPACK_HALF_2x16;
6892
6893 lower_packing_builtins(ir, lower_inst);
6894 }
6895
6896 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
6897 lower_offset_arrays(ir);
6898 do_mat_op_to_vec(ir);
6899
6900 if (stage == MESA_SHADER_FRAGMENT)
6901 lower_blend_equation_advanced(shader);
6902
6903 lower_instructions(ir,
6904 MOD_TO_FLOOR |
6905 FDIV_TO_MUL_RCP |
6906 EXP_TO_EXP2 |
6907 LOG_TO_LOG2 |
6908 (have_ldexp ? 0 : LDEXP_TO_ARITH) |
6909 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
6910 CARRY_TO_ARITH |
6911 BORROW_TO_ARITH |
6912 (have_dround ? 0 : DOPS_TO_DFRAC) |
6913 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
6914 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
6915 (options->EmitNoSat ? SAT_TO_CLAMP : 0) |
6916 (ctx->Const.ForceGLSLAbsSqrt ? SQRT_TO_ABS_SQRT : 0) |
6917 /* Assume that if ARB_gpu_shader5 is not supported
6918 * then all of the extended integer functions need
6919 * lowering. It may be necessary to add some caps
6920 * for individual instructions.
6921 */
6922 (!ctx->Extensions.ARB_gpu_shader5
6923 ? BIT_COUNT_TO_MATH |
6924 EXTRACT_TO_SHIFTS |
6925 INSERT_TO_SHIFTS |
6926 REVERSE_TO_SHIFTS |
6927 FIND_LSB_TO_FLOAT_CAST |
6928 FIND_MSB_TO_FLOAT_CAST |
6929 IMUL_HIGH_TO_MUL
6930 : 0));
6931
6932 do_vec_index_to_cond_assign(ir);
6933 lower_vector_insert(ir, true);
6934 lower_quadop_vector(ir, false);
6935 lower_noise(ir);
6936 if (options->MaxIfDepth == 0) {
6937 lower_discard(ir);
6938 }
6939
6940 if (ctx->Const.GLSLOptimizeConservatively) {
6941 /* Do it once and repeat only if there's unsupported control flow. */
6942 do {
6943 do_common_optimization(ir, true, true, options,
6944 ctx->Const.NativeIntegers);
6945 lower_if_to_cond_assign((gl_shader_stage)i, ir,
6946 options->MaxIfDepth, if_threshold);
6947 } while (has_unsupported_control_flow(ir, options));
6948 } else {
6949 /* Repeat it until it stops making changes. */
6950 bool progress;
6951 do {
6952 progress = do_common_optimization(ir, true, true, options,
6953 ctx->Const.NativeIntegers);
6954 progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
6955 options->MaxIfDepth, if_threshold);
6956 } while (progress);
6957 }
6958
6959 validate_ir_tree(ir);
6960 }
6961
6962 build_program_resource_list(ctx, prog);
6963
6964 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6965 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
6966 if (shader == NULL)
6967 continue;
6968
6969 enum pipe_shader_type ptarget =
6970 pipe_shader_type_from_mesa(shader->Stage);
6971 enum pipe_shader_ir preferred_ir = (enum pipe_shader_ir)
6972 pscreen->get_shader_param(pscreen, ptarget,
6973 PIPE_SHADER_CAP_PREFERRED_IR);
6974
6975 struct gl_program *linked_prog = NULL;
6976 if (preferred_ir == PIPE_SHADER_IR_NIR) {
6977 /* TODO only for GLSL VS/FS/CS for now: */
6978 switch (shader->Stage) {
6979 case MESA_SHADER_VERTEX:
6980 case MESA_SHADER_FRAGMENT:
6981 case MESA_SHADER_COMPUTE:
6982 linked_prog = st_nir_get_mesa_program(ctx, prog, shader);
6983 default:
6984 break;
6985 }
6986 } else {
6987 linked_prog = get_mesa_program_tgsi(ctx, prog, shader);
6988 }
6989
6990 if (linked_prog) {
6991 st_set_prog_affected_state_flags(linked_prog);
6992 if (!ctx->Driver.ProgramStringNotify(ctx,
6993 _mesa_shader_stage_to_program(i),
6994 linked_prog)) {
6995 _mesa_reference_program(ctx, &shader->Program, NULL);
6996 return GL_FALSE;
6997 }
6998 }
6999 }
7000
7001 return GL_TRUE;
7002 }
7003
7004 void
7005 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
7006 const ubyte outputMapping[],
7007 struct pipe_stream_output_info *so)
7008 {
7009 if (!glsl_to_tgsi->shader_program->last_vert_prog)
7010 return;
7011
7012 struct gl_transform_feedback_info *info =
7013 glsl_to_tgsi->shader_program->last_vert_prog->sh.LinkedTransformFeedback;
7014 st_translate_stream_output_info2(info, outputMapping, so);
7015 }
7016
7017 void
7018 st_translate_stream_output_info2(struct gl_transform_feedback_info *info,
7019 const ubyte outputMapping[],
7020 struct pipe_stream_output_info *so)
7021 {
7022 unsigned i;
7023
7024 for (i = 0; i < info->NumOutputs; i++) {
7025 so->output[i].register_index =
7026 outputMapping[info->Outputs[i].OutputRegister];
7027 so->output[i].start_component = info->Outputs[i].ComponentOffset;
7028 so->output[i].num_components = info->Outputs[i].NumComponents;
7029 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
7030 so->output[i].dst_offset = info->Outputs[i].DstOffset;
7031 so->output[i].stream = info->Outputs[i].StreamId;
7032 }
7033
7034 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
7035 so->stride[i] = info->Buffers[i].Stride;
7036 }
7037 so->num_outputs = info->NumOutputs;
7038 }
7039
7040 } /* extern "C" */