st_glsl_to_tgsi: only skip over slots of an input array that are present
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "compiler/glsl/glsl_parser_extras.h"
36 #include "compiler/glsl/ir_optimization.h"
37 #include "compiler/glsl/program.h"
38
39 #include "main/errors.h"
40 #include "main/shaderobj.h"
41 #include "main/uniforms.h"
42 #include "main/shaderapi.h"
43 #include "main/shaderimage.h"
44 #include "program/prog_instruction.h"
45
46 #include "pipe/p_context.h"
47 #include "pipe/p_screen.h"
48 #include "tgsi/tgsi_ureg.h"
49 #include "tgsi/tgsi_info.h"
50 #include "util/u_math.h"
51 #include "util/u_memory.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "st_format.h"
55 #include "st_glsl_types.h"
56 #include "st_nir.h"
57
58
59 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
60 (1 << PROGRAM_CONSTANT) | \
61 (1 << PROGRAM_UNIFORM))
62
63 #define MAX_GLSL_TEXTURE_OFFSET 4
64
65 class st_src_reg;
66 class st_dst_reg;
67
68 static int swizzle_for_size(int size);
69
70 /**
71 * This struct is a corresponding struct to TGSI ureg_src.
72 */
73 class st_src_reg {
74 public:
75 st_src_reg(gl_register_file file, int index, const glsl_type *type)
76 {
77 this->file = file;
78 this->index = index;
79 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
80 this->swizzle = swizzle_for_size(type->vector_elements);
81 else
82 this->swizzle = SWIZZLE_XYZW;
83 this->negate = 0;
84 this->index2D = 0;
85 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
86 this->reladdr = NULL;
87 this->reladdr2 = NULL;
88 this->has_index2 = false;
89 this->double_reg2 = false;
90 this->array_id = 0;
91 this->is_double_vertex_input = false;
92 }
93
94 st_src_reg(gl_register_file file, int index, enum glsl_base_type type)
95 {
96 this->type = type;
97 this->file = file;
98 this->index = index;
99 this->index2D = 0;
100 this->swizzle = SWIZZLE_XYZW;
101 this->negate = 0;
102 this->reladdr = NULL;
103 this->reladdr2 = NULL;
104 this->has_index2 = false;
105 this->double_reg2 = false;
106 this->array_id = 0;
107 this->is_double_vertex_input = false;
108 }
109
110 st_src_reg(gl_register_file file, int index, enum glsl_base_type type, int index2D)
111 {
112 this->type = type;
113 this->file = file;
114 this->index = index;
115 this->index2D = index2D;
116 this->swizzle = SWIZZLE_XYZW;
117 this->negate = 0;
118 this->reladdr = NULL;
119 this->reladdr2 = NULL;
120 this->has_index2 = false;
121 this->double_reg2 = false;
122 this->array_id = 0;
123 this->is_double_vertex_input = false;
124 }
125
126 st_src_reg()
127 {
128 this->type = GLSL_TYPE_ERROR;
129 this->file = PROGRAM_UNDEFINED;
130 this->index = 0;
131 this->index2D = 0;
132 this->swizzle = 0;
133 this->negate = 0;
134 this->reladdr = NULL;
135 this->reladdr2 = NULL;
136 this->has_index2 = false;
137 this->double_reg2 = false;
138 this->array_id = 0;
139 this->is_double_vertex_input = false;
140 }
141
142 explicit st_src_reg(st_dst_reg reg);
143
144 gl_register_file file; /**< PROGRAM_* from Mesa */
145 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
146 int index2D;
147 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
148 int negate; /**< NEGATE_XYZW mask from mesa */
149 enum glsl_base_type type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
150 /** Register index should be offset by the integer in this reg. */
151 st_src_reg *reladdr;
152 st_src_reg *reladdr2;
153 bool has_index2;
154 /*
155 * Is this the second half of a double register pair?
156 * currently used for input mapping only.
157 */
158 bool double_reg2;
159 unsigned array_id;
160 bool is_double_vertex_input;
161 };
162
163 class st_dst_reg {
164 public:
165 st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type, int index)
166 {
167 this->file = file;
168 this->index = index;
169 this->index2D = 0;
170 this->writemask = writemask;
171 this->reladdr = NULL;
172 this->reladdr2 = NULL;
173 this->has_index2 = false;
174 this->type = type;
175 this->array_id = 0;
176 }
177
178 st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type)
179 {
180 this->file = file;
181 this->index = 0;
182 this->index2D = 0;
183 this->writemask = writemask;
184 this->reladdr = NULL;
185 this->reladdr2 = NULL;
186 this->has_index2 = false;
187 this->type = type;
188 this->array_id = 0;
189 }
190
191 st_dst_reg()
192 {
193 this->type = GLSL_TYPE_ERROR;
194 this->file = PROGRAM_UNDEFINED;
195 this->index = 0;
196 this->index2D = 0;
197 this->writemask = 0;
198 this->reladdr = NULL;
199 this->reladdr2 = NULL;
200 this->has_index2 = false;
201 this->array_id = 0;
202 }
203
204 explicit st_dst_reg(st_src_reg reg);
205
206 gl_register_file file; /**< PROGRAM_* from Mesa */
207 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
208 int index2D;
209 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
210 enum glsl_base_type type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
211 /** Register index should be offset by the integer in this reg. */
212 st_src_reg *reladdr;
213 st_src_reg *reladdr2;
214 bool has_index2;
215 unsigned array_id;
216 };
217
218 st_src_reg::st_src_reg(st_dst_reg reg)
219 {
220 this->type = reg.type;
221 this->file = reg.file;
222 this->index = reg.index;
223 this->swizzle = SWIZZLE_XYZW;
224 this->negate = 0;
225 this->reladdr = reg.reladdr;
226 this->index2D = reg.index2D;
227 this->reladdr2 = reg.reladdr2;
228 this->has_index2 = reg.has_index2;
229 this->double_reg2 = false;
230 this->array_id = reg.array_id;
231 this->is_double_vertex_input = false;
232 }
233
234 st_dst_reg::st_dst_reg(st_src_reg reg)
235 {
236 this->type = reg.type;
237 this->file = reg.file;
238 this->index = reg.index;
239 this->writemask = WRITEMASK_XYZW;
240 this->reladdr = reg.reladdr;
241 this->index2D = reg.index2D;
242 this->reladdr2 = reg.reladdr2;
243 this->has_index2 = reg.has_index2;
244 this->array_id = reg.array_id;
245 }
246
247 class glsl_to_tgsi_instruction : public exec_node {
248 public:
249 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
250
251 unsigned op;
252 st_dst_reg dst[2];
253 st_src_reg src[4];
254 /** Pointer to the ir source this tree came from for debugging */
255 ir_instruction *ir;
256 GLboolean cond_update;
257 bool saturate;
258 st_src_reg sampler; /**< sampler register */
259 int sampler_base;
260 int sampler_array_size; /**< 1-based size of sampler array, 1 if not array */
261 int tex_target; /**< One of TEXTURE_*_INDEX */
262 glsl_base_type tex_type;
263 GLboolean tex_shadow;
264 unsigned image_format;
265
266 st_src_reg tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
267 unsigned tex_offset_num_offset;
268 int dead_mask; /**< Used in dead code elimination */
269
270 st_src_reg buffer; /**< buffer register */
271 unsigned buffer_access; /**< buffer access type */
272
273 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
274 const struct tgsi_opcode_info *info;
275 };
276
277 class variable_storage : public exec_node {
278 public:
279 variable_storage(ir_variable *var, gl_register_file file, int index,
280 unsigned array_id = 0)
281 : file(file), index(index), var(var), array_id(array_id)
282 {
283 /* empty */
284 }
285
286 gl_register_file file;
287 int index;
288 ir_variable *var; /* variable that maps to this, if any */
289 unsigned array_id;
290 };
291
292 class immediate_storage : public exec_node {
293 public:
294 immediate_storage(gl_constant_value *values, int size32, int type)
295 {
296 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
297 this->size32 = size32;
298 this->type = type;
299 }
300
301 /* doubles are stored across 2 gl_constant_values */
302 gl_constant_value values[4];
303 int size32; /**< Number of 32-bit components (1-4) */
304 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
305 };
306
307 class function_entry : public exec_node {
308 public:
309 ir_function_signature *sig;
310
311 /**
312 * identifier of this function signature used by the program.
313 *
314 * At the point that TGSI instructions for function calls are
315 * generated, we don't know the address of the first instruction of
316 * the function body. So we make the BranchTarget that is called a
317 * small integer and rewrite them during set_branchtargets().
318 */
319 int sig_id;
320
321 /**
322 * Pointer to first instruction of the function body.
323 *
324 * Set during function body emits after main() is processed.
325 */
326 glsl_to_tgsi_instruction *bgn_inst;
327
328 /**
329 * Index of the first instruction of the function body in actual TGSI.
330 *
331 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
332 */
333 int inst;
334
335 /** Storage for the return value. */
336 st_src_reg return_reg;
337 };
338
339 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
340 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
341
342 struct array_decl {
343 unsigned mesa_index;
344 unsigned array_id;
345 unsigned array_size;
346 enum glsl_base_type array_type;
347 };
348
349 static enum glsl_base_type
350 find_array_type(struct array_decl *arrays, unsigned count, unsigned array_id)
351 {
352 unsigned i;
353
354 for (i = 0; i < count; i++) {
355 struct array_decl *decl = &arrays[i];
356
357 if (array_id == decl->array_id) {
358 return decl->array_type;
359 }
360 }
361 return GLSL_TYPE_ERROR;
362 }
363
364 struct rename_reg_pair {
365 int old_reg;
366 int new_reg;
367 };
368
369 struct glsl_to_tgsi_visitor : public ir_visitor {
370 public:
371 glsl_to_tgsi_visitor();
372 ~glsl_to_tgsi_visitor();
373
374 function_entry *current_function;
375
376 struct gl_context *ctx;
377 struct gl_program *prog;
378 struct gl_shader_program *shader_program;
379 struct gl_linked_shader *shader;
380 struct gl_shader_compiler_options *options;
381
382 int next_temp;
383
384 unsigned *array_sizes;
385 unsigned max_num_arrays;
386 unsigned next_array;
387
388 struct array_decl input_arrays[PIPE_MAX_SHADER_INPUTS];
389 unsigned num_input_arrays;
390 struct array_decl output_arrays[PIPE_MAX_SHADER_OUTPUTS];
391 unsigned num_output_arrays;
392
393 int num_address_regs;
394 uint32_t samplers_used;
395 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
396 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
397 int buffers_used;
398 int images_used;
399 int image_targets[PIPE_MAX_SHADER_IMAGES];
400 unsigned image_formats[PIPE_MAX_SHADER_IMAGES];
401 bool indirect_addr_consts;
402 int wpos_transform_const;
403
404 int glsl_version;
405 bool native_integers;
406 bool have_sqrt;
407 bool have_fma;
408 bool use_shared_memory;
409
410 variable_storage *find_variable_storage(ir_variable *var);
411
412 int add_constant(gl_register_file file, gl_constant_value values[8],
413 int size, int datatype, GLuint *swizzle_out);
414
415 function_entry *get_function_signature(ir_function_signature *sig);
416
417 st_src_reg get_temp(const glsl_type *type);
418 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
419
420 st_src_reg st_src_reg_for_double(double val);
421 st_src_reg st_src_reg_for_float(float val);
422 st_src_reg st_src_reg_for_int(int val);
423 st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
424
425 /**
426 * \name Visit methods
427 *
428 * As typical for the visitor pattern, there must be one \c visit method for
429 * each concrete subclass of \c ir_instruction. Virtual base classes within
430 * the hierarchy should not have \c visit methods.
431 */
432 /*@{*/
433 virtual void visit(ir_variable *);
434 virtual void visit(ir_loop *);
435 virtual void visit(ir_loop_jump *);
436 virtual void visit(ir_function_signature *);
437 virtual void visit(ir_function *);
438 virtual void visit(ir_expression *);
439 virtual void visit(ir_swizzle *);
440 virtual void visit(ir_dereference_variable *);
441 virtual void visit(ir_dereference_array *);
442 virtual void visit(ir_dereference_record *);
443 virtual void visit(ir_assignment *);
444 virtual void visit(ir_constant *);
445 virtual void visit(ir_call *);
446 virtual void visit(ir_return *);
447 virtual void visit(ir_discard *);
448 virtual void visit(ir_texture *);
449 virtual void visit(ir_if *);
450 virtual void visit(ir_emit_vertex *);
451 virtual void visit(ir_end_primitive *);
452 virtual void visit(ir_barrier *);
453 /*@}*/
454
455 void visit_expression(ir_expression *, st_src_reg *) ATTRIBUTE_NOINLINE;
456
457 void visit_atomic_counter_intrinsic(ir_call *);
458 void visit_ssbo_intrinsic(ir_call *);
459 void visit_membar_intrinsic(ir_call *);
460 void visit_shared_intrinsic(ir_call *);
461 void visit_image_intrinsic(ir_call *);
462
463 st_src_reg result;
464
465 /** List of variable_storage */
466 exec_list variables;
467
468 /** List of immediate_storage */
469 exec_list immediates;
470 unsigned num_immediates;
471
472 /** List of function_entry */
473 exec_list function_signatures;
474 int next_signature_id;
475
476 /** List of glsl_to_tgsi_instruction */
477 exec_list instructions;
478
479 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
480 st_dst_reg dst = undef_dst,
481 st_src_reg src0 = undef_src,
482 st_src_reg src1 = undef_src,
483 st_src_reg src2 = undef_src,
484 st_src_reg src3 = undef_src);
485
486 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
487 st_dst_reg dst, st_dst_reg dst1,
488 st_src_reg src0 = undef_src,
489 st_src_reg src1 = undef_src,
490 st_src_reg src2 = undef_src,
491 st_src_reg src3 = undef_src);
492
493 unsigned get_opcode(ir_instruction *ir, unsigned op,
494 st_dst_reg dst,
495 st_src_reg src0, st_src_reg src1);
496
497 /**
498 * Emit the correct dot-product instruction for the type of arguments
499 */
500 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
501 st_dst_reg dst,
502 st_src_reg src0,
503 st_src_reg src1,
504 unsigned elements);
505
506 void emit_scalar(ir_instruction *ir, unsigned op,
507 st_dst_reg dst, st_src_reg src0);
508
509 void emit_scalar(ir_instruction *ir, unsigned op,
510 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
511
512 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
513
514 void get_deref_offsets(ir_dereference *ir,
515 unsigned *array_size,
516 unsigned *base,
517 unsigned *index,
518 st_src_reg *reladdr);
519 void calc_deref_offsets(ir_dereference *head,
520 ir_dereference *tail,
521 unsigned *array_elements,
522 unsigned *base,
523 unsigned *index,
524 st_src_reg *indirect,
525 unsigned *location);
526
527 bool try_emit_mad(ir_expression *ir,
528 int mul_operand);
529 bool try_emit_mad_for_and_not(ir_expression *ir,
530 int mul_operand);
531
532 void emit_swz(ir_expression *ir);
533
534 bool process_move_condition(ir_rvalue *ir);
535
536 void simplify_cmp(void);
537
538 void rename_temp_registers(int num_renames, struct rename_reg_pair *renames);
539 void get_first_temp_read(int *first_reads);
540 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
541 void get_last_temp_write(int *last_writes);
542
543 void copy_propagate(void);
544 int eliminate_dead_code(void);
545
546 void merge_two_dsts(void);
547 void merge_registers(void);
548 void renumber_registers(void);
549
550 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
551 st_dst_reg *l, st_src_reg *r,
552 st_src_reg *cond, bool cond_swap);
553
554 void *mem_ctx;
555 };
556
557 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
558 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
559 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
560
561 static void
562 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
563
564 static void
565 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
566 {
567 va_list args;
568 va_start(args, fmt);
569 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
570 va_end(args);
571
572 prog->LinkStatus = GL_FALSE;
573 }
574
575 static int
576 swizzle_for_size(int size)
577 {
578 static const int size_swizzles[4] = {
579 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
580 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
581 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
582 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
583 };
584
585 assert((size >= 1) && (size <= 4));
586 return size_swizzles[size - 1];
587 }
588
589 static bool
590 is_resource_instruction(unsigned opcode)
591 {
592 switch (opcode) {
593 case TGSI_OPCODE_RESQ:
594 case TGSI_OPCODE_LOAD:
595 case TGSI_OPCODE_ATOMUADD:
596 case TGSI_OPCODE_ATOMXCHG:
597 case TGSI_OPCODE_ATOMCAS:
598 case TGSI_OPCODE_ATOMAND:
599 case TGSI_OPCODE_ATOMOR:
600 case TGSI_OPCODE_ATOMXOR:
601 case TGSI_OPCODE_ATOMUMIN:
602 case TGSI_OPCODE_ATOMUMAX:
603 case TGSI_OPCODE_ATOMIMIN:
604 case TGSI_OPCODE_ATOMIMAX:
605 return true;
606 default:
607 return false;
608 }
609 }
610
611 static unsigned
612 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
613 {
614 return op->info->num_dst;
615 }
616
617 static unsigned
618 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
619 {
620 return op->info->is_tex || is_resource_instruction(op->op) ?
621 op->info->num_src - 1 : op->info->num_src;
622 }
623
624 glsl_to_tgsi_instruction *
625 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
626 st_dst_reg dst, st_dst_reg dst1,
627 st_src_reg src0, st_src_reg src1,
628 st_src_reg src2, st_src_reg src3)
629 {
630 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
631 int num_reladdr = 0, i, j;
632 bool dst_is_64bit[2];
633
634 op = get_opcode(ir, op, dst, src0, src1);
635
636 /* If we have to do relative addressing, we want to load the ARL
637 * reg directly for one of the regs, and preload the other reladdr
638 * sources into temps.
639 */
640 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
641 num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
642 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
643 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
644 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
645 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
646
647 reladdr_to_temp(ir, &src3, &num_reladdr);
648 reladdr_to_temp(ir, &src2, &num_reladdr);
649 reladdr_to_temp(ir, &src1, &num_reladdr);
650 reladdr_to_temp(ir, &src0, &num_reladdr);
651
652 if (dst.reladdr || dst.reladdr2) {
653 if (dst.reladdr)
654 emit_arl(ir, address_reg, *dst.reladdr);
655 if (dst.reladdr2)
656 emit_arl(ir, address_reg2, *dst.reladdr2);
657 num_reladdr--;
658 }
659 if (dst1.reladdr) {
660 emit_arl(ir, address_reg, *dst1.reladdr);
661 num_reladdr--;
662 }
663 assert(num_reladdr == 0);
664
665 inst->op = op;
666 inst->info = tgsi_get_opcode_info(op);
667 inst->dst[0] = dst;
668 inst->dst[1] = dst1;
669 inst->src[0] = src0;
670 inst->src[1] = src1;
671 inst->src[2] = src2;
672 inst->src[3] = src3;
673 inst->ir = ir;
674 inst->dead_mask = 0;
675 /* default to float, for paths where this is not initialized
676 * (since 0==UINT which is likely wrong):
677 */
678 inst->tex_type = GLSL_TYPE_FLOAT;
679
680 inst->function = NULL;
681
682 /* Update indirect addressing status used by TGSI */
683 if (dst.reladdr || dst.reladdr2) {
684 switch(dst.file) {
685 case PROGRAM_STATE_VAR:
686 case PROGRAM_CONSTANT:
687 case PROGRAM_UNIFORM:
688 this->indirect_addr_consts = true;
689 break;
690 case PROGRAM_IMMEDIATE:
691 assert(!"immediates should not have indirect addressing");
692 break;
693 default:
694 break;
695 }
696 }
697 else {
698 for (i = 0; i < 4; i++) {
699 if(inst->src[i].reladdr) {
700 switch(inst->src[i].file) {
701 case PROGRAM_STATE_VAR:
702 case PROGRAM_CONSTANT:
703 case PROGRAM_UNIFORM:
704 this->indirect_addr_consts = true;
705 break;
706 case PROGRAM_IMMEDIATE:
707 assert(!"immediates should not have indirect addressing");
708 break;
709 default:
710 break;
711 }
712 }
713 }
714 }
715
716 /*
717 * This section contains the double processing.
718 * GLSL just represents doubles as single channel values,
719 * however most HW and TGSI represent doubles as pairs of register channels.
720 *
721 * so we have to fixup destination writemask/index and src swizzle/indexes.
722 * dest writemasks need to translate from single channel write mask
723 * to a dual-channel writemask, but also need to modify the index,
724 * if we are touching the Z,W fields in the pre-translated writemask.
725 *
726 * src channels have similiar index modifications along with swizzle
727 * changes to we pick the XY, ZW pairs from the correct index.
728 *
729 * GLSL [0].x -> TGSI [0].xy
730 * GLSL [0].y -> TGSI [0].zw
731 * GLSL [0].z -> TGSI [1].xy
732 * GLSL [0].w -> TGSI [1].zw
733 */
734 for (j = 0; j < 2; j++) {
735 dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
736 if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
737 enum glsl_base_type type = find_array_type(this->output_arrays, this->num_output_arrays, inst->dst[j].array_id);
738 if (glsl_base_type_is_64bit(type))
739 dst_is_64bit[j] = true;
740 }
741 }
742
743 if (dst_is_64bit[0] || dst_is_64bit[1] ||
744 glsl_base_type_is_64bit(inst->src[0].type)) {
745 glsl_to_tgsi_instruction *dinst = NULL;
746 int initial_src_swz[4], initial_src_idx[4];
747 int initial_dst_idx[2], initial_dst_writemask[2];
748 /* select the writemask for dst0 or dst1 */
749 unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED ? inst->dst[0].writemask : inst->dst[1].writemask;
750
751 /* copy out the writemask, index and swizzles for all src/dsts. */
752 for (j = 0; j < 2; j++) {
753 initial_dst_writemask[j] = inst->dst[j].writemask;
754 initial_dst_idx[j] = inst->dst[j].index;
755 }
756
757 for (j = 0; j < 4; j++) {
758 initial_src_swz[j] = inst->src[j].swizzle;
759 initial_src_idx[j] = inst->src[j].index;
760 }
761
762 /*
763 * scan all the components in the dst writemask
764 * generate an instruction for each of them if required.
765 */
766 st_src_reg addr;
767 while (writemask) {
768
769 int i = u_bit_scan(&writemask);
770
771 /* before emitting the instruction, see if we have to adjust store
772 * address */
773 if (i > 1 && inst->op == TGSI_OPCODE_STORE &&
774 addr.file == PROGRAM_UNDEFINED) {
775 /* We have to advance the buffer address by 16 */
776 addr = get_temp(glsl_type::uint_type);
777 emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
778 inst->src[0], st_src_reg_for_int(16));
779 }
780
781
782 /* first time use previous instruction */
783 if (dinst == NULL) {
784 dinst = inst;
785 } else {
786 /* create a new instructions for subsequent attempts */
787 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
788 *dinst = *inst;
789 dinst->next = NULL;
790 dinst->prev = NULL;
791 }
792 this->instructions.push_tail(dinst);
793
794 /* modify the destination if we are splitting */
795 for (j = 0; j < 2; j++) {
796 if (dst_is_64bit[j]) {
797 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
798 dinst->dst[j].index = initial_dst_idx[j];
799 if (i > 1) {
800 if (dinst->op == TGSI_OPCODE_STORE) {
801 dinst->src[0] = addr;
802 } else {
803 dinst->dst[j].index++;
804 }
805 }
806 } else {
807 /* if we aren't writing to a double, just get the bit of the initial writemask
808 for this channel */
809 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
810 }
811 }
812
813 /* modify the src registers */
814 for (j = 0; j < 4; j++) {
815 int swz = GET_SWZ(initial_src_swz[j], i);
816
817 if (glsl_base_type_is_64bit(dinst->src[j].type)) {
818 dinst->src[j].index = initial_src_idx[j];
819 if (swz > 1) {
820 dinst->src[j].double_reg2 = true;
821 dinst->src[j].index++;
822 }
823
824 if (swz & 1)
825 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
826 else
827 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
828
829 } else {
830 /* some opcodes are special case in what they use as sources
831 - F2D is a float src0, DLDEXP is integer src1 */
832 if (op == TGSI_OPCODE_F2D ||
833 op == TGSI_OPCODE_DLDEXP ||
834 (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
835 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
836 }
837 }
838 }
839 }
840 inst = dinst;
841 } else {
842 this->instructions.push_tail(inst);
843 }
844
845
846 return inst;
847 }
848
849 glsl_to_tgsi_instruction *
850 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
851 st_dst_reg dst,
852 st_src_reg src0, st_src_reg src1,
853 st_src_reg src2, st_src_reg src3)
854 {
855 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
856 }
857
858 /**
859 * Determines whether to use an integer, unsigned integer, or float opcode
860 * based on the operands and input opcode, then emits the result.
861 */
862 unsigned
863 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
864 st_dst_reg dst,
865 st_src_reg src0, st_src_reg src1)
866 {
867 enum glsl_base_type type = GLSL_TYPE_FLOAT;
868
869 if (op == TGSI_OPCODE_MOV)
870 return op;
871
872 assert(src0.type != GLSL_TYPE_ARRAY);
873 assert(src0.type != GLSL_TYPE_STRUCT);
874 assert(src1.type != GLSL_TYPE_ARRAY);
875 assert(src1.type != GLSL_TYPE_STRUCT);
876
877 if (is_resource_instruction(op))
878 type = src1.type;
879 else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
880 type = GLSL_TYPE_DOUBLE;
881 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
882 type = GLSL_TYPE_FLOAT;
883 else if (native_integers)
884 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
885
886 #define case5(c, f, i, u, d) \
887 case TGSI_OPCODE_##c: \
888 if (type == GLSL_TYPE_DOUBLE) \
889 op = TGSI_OPCODE_##d; \
890 else if (type == GLSL_TYPE_INT) \
891 op = TGSI_OPCODE_##i; \
892 else if (type == GLSL_TYPE_UINT) \
893 op = TGSI_OPCODE_##u; \
894 else \
895 op = TGSI_OPCODE_##f; \
896 break;
897
898 #define case4(c, f, i, u) \
899 case TGSI_OPCODE_##c: \
900 if (type == GLSL_TYPE_INT) \
901 op = TGSI_OPCODE_##i; \
902 else if (type == GLSL_TYPE_UINT) \
903 op = TGSI_OPCODE_##u; \
904 else \
905 op = TGSI_OPCODE_##f; \
906 break;
907
908 #define case3(f, i, u) case4(f, f, i, u)
909 #define case4d(f, i, u, d) case5(f, f, i, u, d)
910 #define case3fid(f, i, d) case5(f, f, i, i, d)
911 #define case2fi(f, i) case4(f, f, i, i)
912 #define case2iu(i, u) case4(i, LAST, i, u)
913
914 #define casecomp(c, f, i, u, d) \
915 case TGSI_OPCODE_##c: \
916 if (type == GLSL_TYPE_DOUBLE) \
917 op = TGSI_OPCODE_##d; \
918 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
919 op = TGSI_OPCODE_##i; \
920 else if (type == GLSL_TYPE_UINT) \
921 op = TGSI_OPCODE_##u; \
922 else if (native_integers) \
923 op = TGSI_OPCODE_##f; \
924 else \
925 op = TGSI_OPCODE_##c; \
926 break;
927
928 switch(op) {
929 case3fid(ADD, UADD, DADD);
930 case3fid(MUL, UMUL, DMUL);
931 case3fid(MAD, UMAD, DMAD);
932 case3fid(FMA, UMAD, DFMA);
933 case3(DIV, IDIV, UDIV);
934 case4d(MAX, IMAX, UMAX, DMAX);
935 case4d(MIN, IMIN, UMIN, DMIN);
936 case2iu(MOD, UMOD);
937
938 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ);
939 casecomp(SNE, FSNE, USNE, USNE, DSNE);
940 casecomp(SGE, FSGE, ISGE, USGE, DSGE);
941 casecomp(SLT, FSLT, ISLT, USLT, DSLT);
942
943 case2iu(ISHR, USHR);
944
945 case3fid(SSG, ISSG, DSSG);
946 case3fid(ABS, IABS, DABS);
947
948 case2iu(IBFE, UBFE);
949 case2iu(IMSB, UMSB);
950 case2iu(IMUL_HI, UMUL_HI);
951
952 case3fid(SQRT, SQRT, DSQRT);
953
954 case3fid(RCP, RCP, DRCP);
955 case3fid(RSQ, RSQ, DRSQ);
956
957 case3fid(FRC, FRC, DFRAC);
958 case3fid(TRUNC, TRUNC, DTRUNC);
959 case3fid(CEIL, CEIL, DCEIL);
960 case3fid(FLR, FLR, DFLR);
961 case3fid(ROUND, ROUND, DROUND);
962
963 case2iu(ATOMIMAX, ATOMUMAX);
964 case2iu(ATOMIMIN, ATOMUMIN);
965
966 default: break;
967 }
968
969 assert(op != TGSI_OPCODE_LAST);
970 return op;
971 }
972
973 glsl_to_tgsi_instruction *
974 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
975 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
976 unsigned elements)
977 {
978 static const unsigned dot_opcodes[] = {
979 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
980 };
981
982 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
983 }
984
985 /**
986 * Emits TGSI scalar opcodes to produce unique answers across channels.
987 *
988 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
989 * channel determines the result across all channels. So to do a vec4
990 * of this operation, we want to emit a scalar per source channel used
991 * to produce dest channels.
992 */
993 void
994 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
995 st_dst_reg dst,
996 st_src_reg orig_src0, st_src_reg orig_src1)
997 {
998 int i, j;
999 int done_mask = ~dst.writemask;
1000
1001 /* TGSI RCP is a scalar operation splatting results to all channels,
1002 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
1003 * dst channels.
1004 */
1005 for (i = 0; i < 4; i++) {
1006 GLuint this_mask = (1 << i);
1007 st_src_reg src0 = orig_src0;
1008 st_src_reg src1 = orig_src1;
1009
1010 if (done_mask & this_mask)
1011 continue;
1012
1013 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
1014 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
1015 for (j = i + 1; j < 4; j++) {
1016 /* If there is another enabled component in the destination that is
1017 * derived from the same inputs, generate its value on this pass as
1018 * well.
1019 */
1020 if (!(done_mask & (1 << j)) &&
1021 GET_SWZ(src0.swizzle, j) == src0_swiz &&
1022 GET_SWZ(src1.swizzle, j) == src1_swiz) {
1023 this_mask |= (1 << j);
1024 }
1025 }
1026 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
1027 src0_swiz, src0_swiz);
1028 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
1029 src1_swiz, src1_swiz);
1030
1031 dst.writemask = this_mask;
1032 emit_asm(ir, op, dst, src0, src1);
1033 done_mask |= this_mask;
1034 }
1035 }
1036
1037 void
1038 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
1039 st_dst_reg dst, st_src_reg src0)
1040 {
1041 st_src_reg undef = undef_src;
1042
1043 undef.swizzle = SWIZZLE_XXXX;
1044
1045 emit_scalar(ir, op, dst, src0, undef);
1046 }
1047
1048 void
1049 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
1050 st_dst_reg dst, st_src_reg src0)
1051 {
1052 int op = TGSI_OPCODE_ARL;
1053
1054 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
1055 op = TGSI_OPCODE_UARL;
1056
1057 assert(dst.file == PROGRAM_ADDRESS);
1058 if (dst.index >= this->num_address_regs)
1059 this->num_address_regs = dst.index + 1;
1060
1061 emit_asm(NULL, op, dst, src0);
1062 }
1063
1064 int
1065 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
1066 gl_constant_value values[8], int size, int datatype,
1067 GLuint *swizzle_out)
1068 {
1069 if (file == PROGRAM_CONSTANT) {
1070 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
1071 size, datatype, swizzle_out);
1072 }
1073
1074 assert(file == PROGRAM_IMMEDIATE);
1075
1076 int index = 0;
1077 immediate_storage *entry;
1078 int size32 = size * (datatype == GL_DOUBLE ? 2 : 1);
1079 int i;
1080
1081 /* Search immediate storage to see if we already have an identical
1082 * immediate that we can use instead of adding a duplicate entry.
1083 */
1084 foreach_in_list(immediate_storage, entry, &this->immediates) {
1085 immediate_storage *tmp = entry;
1086
1087 for (i = 0; i * 4 < size32; i++) {
1088 int slot_size = MIN2(size32 - (i * 4), 4);
1089 if (tmp->type != datatype || tmp->size32 != slot_size)
1090 break;
1091 if (memcmp(tmp->values, &values[i * 4],
1092 slot_size * sizeof(gl_constant_value)))
1093 break;
1094
1095 /* Everything matches, keep going until the full size is matched */
1096 tmp = (immediate_storage *)tmp->next;
1097 }
1098
1099 /* The full value matched */
1100 if (i * 4 >= size32)
1101 return index;
1102
1103 index++;
1104 }
1105
1106 for (i = 0; i * 4 < size32; i++) {
1107 int slot_size = MIN2(size32 - (i * 4), 4);
1108 /* Add this immediate to the list. */
1109 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
1110 this->immediates.push_tail(entry);
1111 this->num_immediates++;
1112 }
1113 return index;
1114 }
1115
1116 st_src_reg
1117 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1118 {
1119 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1120 union gl_constant_value uval;
1121
1122 uval.f = val;
1123 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1124
1125 return src;
1126 }
1127
1128 st_src_reg
1129 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1130 {
1131 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1132 union gl_constant_value uval[2];
1133
1134 uval[0].u = *(uint32_t *)&val;
1135 uval[1].u = *(((uint32_t *)&val) + 1);
1136 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1137
1138 return src;
1139 }
1140
1141 st_src_reg
1142 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1143 {
1144 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1145 union gl_constant_value uval;
1146
1147 assert(native_integers);
1148
1149 uval.i = val;
1150 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1151
1152 return src;
1153 }
1154
1155 st_src_reg
1156 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
1157 {
1158 if (native_integers)
1159 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1160 st_src_reg_for_int(val);
1161 else
1162 return st_src_reg_for_float(val);
1163 }
1164
1165 static int
1166 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
1167 {
1168 return st_glsl_attrib_type_size(type, is_vs_input);
1169 }
1170
1171 static int
1172 type_size(const struct glsl_type *type)
1173 {
1174 return st_glsl_type_size(type);
1175 }
1176
1177 /**
1178 * If the given GLSL type is an array or matrix or a structure containing
1179 * an array/matrix member, return true. Else return false.
1180 *
1181 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1182 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
1183 * we have an array that might be indexed with a variable, we need to use
1184 * the later storage type.
1185 */
1186 static bool
1187 type_has_array_or_matrix(const glsl_type *type)
1188 {
1189 if (type->is_array() || type->is_matrix())
1190 return true;
1191
1192 if (type->is_record()) {
1193 for (unsigned i = 0; i < type->length; i++) {
1194 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1195 return true;
1196 }
1197 }
1198 }
1199
1200 return false;
1201 }
1202
1203
1204 /**
1205 * In the initial pass of codegen, we assign temporary numbers to
1206 * intermediate results. (not SSA -- variable assignments will reuse
1207 * storage).
1208 */
1209 st_src_reg
1210 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1211 {
1212 st_src_reg src;
1213
1214 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1215 src.reladdr = NULL;
1216 src.negate = 0;
1217
1218 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1219 if (next_array >= max_num_arrays) {
1220 max_num_arrays += 32;
1221 array_sizes = (unsigned*)
1222 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1223 }
1224
1225 src.file = PROGRAM_ARRAY;
1226 src.index = next_array << 16 | 0x8000;
1227 array_sizes[next_array] = type_size(type);
1228 ++next_array;
1229
1230 } else {
1231 src.file = PROGRAM_TEMPORARY;
1232 src.index = next_temp;
1233 next_temp += type_size(type);
1234 }
1235
1236 if (type->is_array() || type->is_record()) {
1237 src.swizzle = SWIZZLE_NOOP;
1238 } else {
1239 src.swizzle = swizzle_for_size(type->vector_elements);
1240 }
1241
1242 return src;
1243 }
1244
1245 variable_storage *
1246 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1247 {
1248
1249 foreach_in_list(variable_storage, entry, &this->variables) {
1250 if (entry->var == var)
1251 return entry;
1252 }
1253
1254 return NULL;
1255 }
1256
1257 void
1258 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1259 {
1260 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1261 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1262
1263 fp->OriginUpperLeft = ir->data.origin_upper_left;
1264 fp->PixelCenterInteger = ir->data.pixel_center_integer;
1265 }
1266
1267 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1268 unsigned int i;
1269 const ir_state_slot *const slots = ir->get_state_slots();
1270 assert(slots != NULL);
1271
1272 /* Check if this statevar's setup in the STATE file exactly
1273 * matches how we'll want to reference it as a
1274 * struct/array/whatever. If not, then we need to move it into
1275 * temporary storage and hope that it'll get copy-propagated
1276 * out.
1277 */
1278 for (i = 0; i < ir->get_num_state_slots(); i++) {
1279 if (slots[i].swizzle != SWIZZLE_XYZW) {
1280 break;
1281 }
1282 }
1283
1284 variable_storage *storage;
1285 st_dst_reg dst;
1286 if (i == ir->get_num_state_slots()) {
1287 /* We'll set the index later. */
1288 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1289 this->variables.push_tail(storage);
1290
1291 dst = undef_dst;
1292 } else {
1293 /* The variable_storage constructor allocates slots based on the size
1294 * of the type. However, this had better match the number of state
1295 * elements that we're going to copy into the new temporary.
1296 */
1297 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1298
1299 dst = st_dst_reg(get_temp(ir->type));
1300
1301 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1302
1303 this->variables.push_tail(storage);
1304 }
1305
1306
1307 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1308 int index = _mesa_add_state_reference(this->prog->Parameters,
1309 (gl_state_index *)slots[i].tokens);
1310
1311 if (storage->file == PROGRAM_STATE_VAR) {
1312 if (storage->index == -1) {
1313 storage->index = index;
1314 } else {
1315 assert(index == storage->index + (int)i);
1316 }
1317 } else {
1318 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1319 * the data being moved since MOV does not care about the type of
1320 * data it is moving, and we don't want to declare registers with
1321 * array or struct types.
1322 */
1323 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1324 src.swizzle = slots[i].swizzle;
1325 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1326 /* even a float takes up a whole vec4 reg in a struct/array. */
1327 dst.index++;
1328 }
1329 }
1330
1331 if (storage->file == PROGRAM_TEMPORARY &&
1332 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1333 fail_link(this->shader_program,
1334 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1335 ir->name, dst.index - storage->index,
1336 type_size(ir->type));
1337 }
1338 }
1339 }
1340
1341 void
1342 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1343 {
1344 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1345
1346 visit_exec_list(&ir->body_instructions, this);
1347
1348 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1349 }
1350
1351 void
1352 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1353 {
1354 switch (ir->mode) {
1355 case ir_loop_jump::jump_break:
1356 emit_asm(NULL, TGSI_OPCODE_BRK);
1357 break;
1358 case ir_loop_jump::jump_continue:
1359 emit_asm(NULL, TGSI_OPCODE_CONT);
1360 break;
1361 }
1362 }
1363
1364
1365 void
1366 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1367 {
1368 assert(0);
1369 (void)ir;
1370 }
1371
1372 void
1373 glsl_to_tgsi_visitor::visit(ir_function *ir)
1374 {
1375 /* Ignore function bodies other than main() -- we shouldn't see calls to
1376 * them since they should all be inlined before we get to glsl_to_tgsi.
1377 */
1378 if (strcmp(ir->name, "main") == 0) {
1379 const ir_function_signature *sig;
1380 exec_list empty;
1381
1382 sig = ir->matching_signature(NULL, &empty, false);
1383
1384 assert(sig);
1385
1386 foreach_in_list(ir_instruction, ir, &sig->body) {
1387 ir->accept(this);
1388 }
1389 }
1390 }
1391
1392 bool
1393 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1394 {
1395 int nonmul_operand = 1 - mul_operand;
1396 st_src_reg a, b, c;
1397 st_dst_reg result_dst;
1398
1399 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1400 if (!expr || expr->operation != ir_binop_mul)
1401 return false;
1402
1403 expr->operands[0]->accept(this);
1404 a = this->result;
1405 expr->operands[1]->accept(this);
1406 b = this->result;
1407 ir->operands[nonmul_operand]->accept(this);
1408 c = this->result;
1409
1410 this->result = get_temp(ir->type);
1411 result_dst = st_dst_reg(this->result);
1412 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1413 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1414
1415 return true;
1416 }
1417
1418 /**
1419 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1420 *
1421 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1422 * implemented using multiplication, and logical-or is implemented using
1423 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1424 * As result, the logical expression (a & !b) can be rewritten as:
1425 *
1426 * - a * !b
1427 * - a * (1 - b)
1428 * - (a * 1) - (a * b)
1429 * - a + -(a * b)
1430 * - a + (a * -b)
1431 *
1432 * This final expression can be implemented as a single MAD(a, -b, a)
1433 * instruction.
1434 */
1435 bool
1436 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1437 {
1438 const int other_operand = 1 - try_operand;
1439 st_src_reg a, b;
1440
1441 ir_expression *expr = ir->operands[try_operand]->as_expression();
1442 if (!expr || expr->operation != ir_unop_logic_not)
1443 return false;
1444
1445 ir->operands[other_operand]->accept(this);
1446 a = this->result;
1447 expr->operands[0]->accept(this);
1448 b = this->result;
1449
1450 b.negate = ~b.negate;
1451
1452 this->result = get_temp(ir->type);
1453 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1454
1455 return true;
1456 }
1457
1458 void
1459 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1460 st_src_reg *reg, int *num_reladdr)
1461 {
1462 if (!reg->reladdr && !reg->reladdr2)
1463 return;
1464
1465 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1466 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1467
1468 if (*num_reladdr != 1) {
1469 st_src_reg temp = get_temp(reg->type == GLSL_TYPE_DOUBLE ? glsl_type::dvec4_type : glsl_type::vec4_type);
1470
1471 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1472 *reg = temp;
1473 }
1474
1475 (*num_reladdr)--;
1476 }
1477
1478 void
1479 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1480 {
1481 st_src_reg op[ARRAY_SIZE(ir->operands)];
1482
1483 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1484 */
1485 if (ir->operation == ir_binop_add) {
1486 if (try_emit_mad(ir, 1))
1487 return;
1488 if (try_emit_mad(ir, 0))
1489 return;
1490 }
1491
1492 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1493 */
1494 if (!native_integers && ir->operation == ir_binop_logic_and) {
1495 if (try_emit_mad_for_and_not(ir, 1))
1496 return;
1497 if (try_emit_mad_for_and_not(ir, 0))
1498 return;
1499 }
1500
1501 if (ir->operation == ir_quadop_vector)
1502 assert(!"ir_quadop_vector should have been lowered");
1503
1504 for (unsigned int operand = 0; operand < ir->get_num_operands(); operand++) {
1505 this->result.file = PROGRAM_UNDEFINED;
1506 ir->operands[operand]->accept(this);
1507 if (this->result.file == PROGRAM_UNDEFINED) {
1508 printf("Failed to get tree for expression operand:\n");
1509 ir->operands[operand]->print();
1510 printf("\n");
1511 exit(1);
1512 }
1513 op[operand] = this->result;
1514
1515 /* Matrix expression operands should have been broken down to vector
1516 * operations already.
1517 */
1518 assert(!ir->operands[operand]->type->is_matrix());
1519 }
1520
1521 visit_expression(ir, op);
1522 }
1523
1524 /* The non-recursive part of the expression visitor lives in a separate
1525 * function and should be prevented from being inlined, to avoid a stack
1526 * explosion when deeply nested expressions are visited.
1527 */
1528 void
1529 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
1530 {
1531 st_src_reg result_src;
1532 st_dst_reg result_dst;
1533
1534 int vector_elements = ir->operands[0]->type->vector_elements;
1535 if (ir->operands[1]) {
1536 vector_elements = MAX2(vector_elements,
1537 ir->operands[1]->type->vector_elements);
1538 }
1539
1540 this->result.file = PROGRAM_UNDEFINED;
1541
1542 /* Storage for our result. Ideally for an assignment we'd be using
1543 * the actual storage for the result here, instead.
1544 */
1545 result_src = get_temp(ir->type);
1546 /* convenience for the emit functions below. */
1547 result_dst = st_dst_reg(result_src);
1548 /* Limit writes to the channels that will be used by result_src later.
1549 * This does limit this temp's use as a temporary for multi-instruction
1550 * sequences.
1551 */
1552 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1553
1554 switch (ir->operation) {
1555 case ir_unop_logic_not:
1556 if (result_dst.type != GLSL_TYPE_FLOAT)
1557 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1558 else {
1559 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1560 * older GPUs implement SEQ using multiple instructions (i915 uses two
1561 * SGE instructions and a MUL instruction). Since our logic values are
1562 * 0.0 and 1.0, 1-x also implements !x.
1563 */
1564 op[0].negate = ~op[0].negate;
1565 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1566 }
1567 break;
1568 case ir_unop_neg:
1569 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1570 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1571 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1572 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1573 else {
1574 op[0].negate = ~op[0].negate;
1575 result_src = op[0];
1576 }
1577 break;
1578 case ir_unop_subroutine_to_int:
1579 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1580 break;
1581 case ir_unop_abs:
1582 emit_asm(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1583 break;
1584 case ir_unop_sign:
1585 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1586 break;
1587 case ir_unop_rcp:
1588 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1589 break;
1590
1591 case ir_unop_exp2:
1592 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1593 break;
1594 case ir_unop_exp:
1595 case ir_unop_log:
1596 assert(!"not reached: should be handled by ir_explog_to_explog2");
1597 break;
1598 case ir_unop_log2:
1599 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1600 break;
1601 case ir_unop_sin:
1602 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1603 break;
1604 case ir_unop_cos:
1605 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1606 break;
1607 case ir_unop_saturate: {
1608 glsl_to_tgsi_instruction *inst;
1609 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1610 inst->saturate = true;
1611 break;
1612 }
1613
1614 case ir_unop_dFdx:
1615 case ir_unop_dFdx_coarse:
1616 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1617 break;
1618 case ir_unop_dFdx_fine:
1619 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1620 break;
1621 case ir_unop_dFdy:
1622 case ir_unop_dFdy_coarse:
1623 case ir_unop_dFdy_fine:
1624 {
1625 /* The X component contains 1 or -1 depending on whether the framebuffer
1626 * is a FBO or the window system buffer, respectively.
1627 * It is then multiplied with the source operand of DDY.
1628 */
1629 static const gl_state_index transform_y_state[STATE_LENGTH]
1630 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1631
1632 unsigned transform_y_index =
1633 _mesa_add_state_reference(this->prog->Parameters,
1634 transform_y_state);
1635
1636 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1637 transform_y_index,
1638 glsl_type::vec4_type);
1639 transform_y.swizzle = SWIZZLE_XXXX;
1640
1641 st_src_reg temp = get_temp(glsl_type::vec4_type);
1642
1643 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1644 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1645 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1646 break;
1647 }
1648
1649 case ir_unop_frexp_sig:
1650 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1651 break;
1652
1653 case ir_unop_frexp_exp:
1654 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1655 break;
1656
1657 case ir_unop_noise: {
1658 /* At some point, a motivated person could add a better
1659 * implementation of noise. Currently not even the nvidia
1660 * binary drivers do anything more than this. In any case, the
1661 * place to do this is in the GL state tracker, not the poor
1662 * driver.
1663 */
1664 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1665 break;
1666 }
1667
1668 case ir_binop_add:
1669 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1670 break;
1671 case ir_binop_sub:
1672 emit_asm(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1673 break;
1674
1675 case ir_binop_mul:
1676 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1677 break;
1678 case ir_binop_div:
1679 if (result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_DOUBLE)
1680 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1681 else
1682 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1683 break;
1684 case ir_binop_mod:
1685 if (result_dst.type == GLSL_TYPE_FLOAT)
1686 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1687 else
1688 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1689 break;
1690
1691 case ir_binop_less:
1692 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1693 break;
1694 case ir_binop_greater:
1695 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1696 break;
1697 case ir_binop_lequal:
1698 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1699 break;
1700 case ir_binop_gequal:
1701 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1702 break;
1703 case ir_binop_equal:
1704 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1705 break;
1706 case ir_binop_nequal:
1707 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1708 break;
1709 case ir_binop_all_equal:
1710 /* "==" operator producing a scalar boolean. */
1711 if (ir->operands[0]->type->is_vector() ||
1712 ir->operands[1]->type->is_vector()) {
1713 st_src_reg temp = get_temp(native_integers ?
1714 glsl_type::uvec4_type :
1715 glsl_type::vec4_type);
1716
1717 if (native_integers) {
1718 st_dst_reg temp_dst = st_dst_reg(temp);
1719 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1720
1721 if (ir->operands[0]->type->is_boolean() &&
1722 ir->operands[1]->as_constant() &&
1723 ir->operands[1]->as_constant()->is_one()) {
1724 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1725 } else {
1726 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1727 }
1728
1729 /* Emit 1-3 AND operations to combine the SEQ results. */
1730 switch (ir->operands[0]->type->vector_elements) {
1731 case 2:
1732 break;
1733 case 3:
1734 temp_dst.writemask = WRITEMASK_Y;
1735 temp1.swizzle = SWIZZLE_YYYY;
1736 temp2.swizzle = SWIZZLE_ZZZZ;
1737 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1738 break;
1739 case 4:
1740 temp_dst.writemask = WRITEMASK_X;
1741 temp1.swizzle = SWIZZLE_XXXX;
1742 temp2.swizzle = SWIZZLE_YYYY;
1743 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1744 temp_dst.writemask = WRITEMASK_Y;
1745 temp1.swizzle = SWIZZLE_ZZZZ;
1746 temp2.swizzle = SWIZZLE_WWWW;
1747 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1748 }
1749
1750 temp1.swizzle = SWIZZLE_XXXX;
1751 temp2.swizzle = SWIZZLE_YYYY;
1752 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1753 } else {
1754 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1755
1756 /* After the dot-product, the value will be an integer on the
1757 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1758 */
1759 emit_dp(ir, result_dst, temp, temp, vector_elements);
1760
1761 /* Negating the result of the dot-product gives values on the range
1762 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1763 * This is achieved using SGE.
1764 */
1765 st_src_reg sge_src = result_src;
1766 sge_src.negate = ~sge_src.negate;
1767 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1768 }
1769 } else {
1770 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1771 }
1772 break;
1773 case ir_binop_any_nequal:
1774 /* "!=" operator producing a scalar boolean. */
1775 if (ir->operands[0]->type->is_vector() ||
1776 ir->operands[1]->type->is_vector()) {
1777 st_src_reg temp = get_temp(native_integers ?
1778 glsl_type::uvec4_type :
1779 glsl_type::vec4_type);
1780 if (ir->operands[0]->type->is_boolean() &&
1781 ir->operands[1]->as_constant() &&
1782 ir->operands[1]->as_constant()->is_zero()) {
1783 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1784 } else {
1785 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1786 }
1787
1788 if (native_integers) {
1789 st_dst_reg temp_dst = st_dst_reg(temp);
1790 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1791
1792 /* Emit 1-3 OR operations to combine the SNE results. */
1793 switch (ir->operands[0]->type->vector_elements) {
1794 case 2:
1795 break;
1796 case 3:
1797 temp_dst.writemask = WRITEMASK_Y;
1798 temp1.swizzle = SWIZZLE_YYYY;
1799 temp2.swizzle = SWIZZLE_ZZZZ;
1800 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1801 break;
1802 case 4:
1803 temp_dst.writemask = WRITEMASK_X;
1804 temp1.swizzle = SWIZZLE_XXXX;
1805 temp2.swizzle = SWIZZLE_YYYY;
1806 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1807 temp_dst.writemask = WRITEMASK_Y;
1808 temp1.swizzle = SWIZZLE_ZZZZ;
1809 temp2.swizzle = SWIZZLE_WWWW;
1810 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1811 }
1812
1813 temp1.swizzle = SWIZZLE_XXXX;
1814 temp2.swizzle = SWIZZLE_YYYY;
1815 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1816 } else {
1817 /* After the dot-product, the value will be an integer on the
1818 * range [0,4]. Zero stays zero, and positive values become 1.0.
1819 */
1820 glsl_to_tgsi_instruction *const dp =
1821 emit_dp(ir, result_dst, temp, temp, vector_elements);
1822 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1823 /* The clamping to [0,1] can be done for free in the fragment
1824 * shader with a saturate.
1825 */
1826 dp->saturate = true;
1827 } else {
1828 /* Negating the result of the dot-product gives values on the range
1829 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1830 * achieved using SLT.
1831 */
1832 st_src_reg slt_src = result_src;
1833 slt_src.negate = ~slt_src.negate;
1834 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1835 }
1836 }
1837 } else {
1838 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1839 }
1840 break;
1841
1842 case ir_binop_logic_xor:
1843 if (native_integers)
1844 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1845 else
1846 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1847 break;
1848
1849 case ir_binop_logic_or: {
1850 if (native_integers) {
1851 /* If integers are used as booleans, we can use an actual "or"
1852 * instruction.
1853 */
1854 assert(native_integers);
1855 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1856 } else {
1857 /* After the addition, the value will be an integer on the
1858 * range [0,2]. Zero stays zero, and positive values become 1.0.
1859 */
1860 glsl_to_tgsi_instruction *add =
1861 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1862 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1863 /* The clamping to [0,1] can be done for free in the fragment
1864 * shader with a saturate if floats are being used as boolean values.
1865 */
1866 add->saturate = true;
1867 } else {
1868 /* Negating the result of the addition gives values on the range
1869 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1870 * is achieved using SLT.
1871 */
1872 st_src_reg slt_src = result_src;
1873 slt_src.negate = ~slt_src.negate;
1874 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1875 }
1876 }
1877 break;
1878 }
1879
1880 case ir_binop_logic_and:
1881 /* If native integers are disabled, the bool args are stored as float 0.0
1882 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1883 * actual AND opcode.
1884 */
1885 if (native_integers)
1886 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1887 else
1888 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1889 break;
1890
1891 case ir_binop_dot:
1892 assert(ir->operands[0]->type->is_vector());
1893 assert(ir->operands[0]->type == ir->operands[1]->type);
1894 emit_dp(ir, result_dst, op[0], op[1],
1895 ir->operands[0]->type->vector_elements);
1896 break;
1897
1898 case ir_unop_sqrt:
1899 if (have_sqrt) {
1900 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1901 } else {
1902 /* This is the only instruction sequence that makes the game "Risen"
1903 * render correctly. ABS is not required for the game, but since GLSL
1904 * declares negative values as "undefined", allowing us to do whatever
1905 * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
1906 * behavior.
1907 */
1908 emit_scalar(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1909 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, result_src);
1910 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
1911 }
1912 break;
1913 case ir_unop_rsq:
1914 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1915 break;
1916 case ir_unop_i2f:
1917 if (native_integers) {
1918 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1919 break;
1920 }
1921 /* fallthrough to next case otherwise */
1922 case ir_unop_b2f:
1923 if (native_integers) {
1924 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1925 break;
1926 }
1927 /* fallthrough to next case otherwise */
1928 case ir_unop_i2u:
1929 case ir_unop_u2i:
1930 /* Converting between signed and unsigned integers is a no-op. */
1931 result_src = op[0];
1932 result_src.type = result_dst.type;
1933 break;
1934 case ir_unop_b2i:
1935 if (native_integers) {
1936 /* Booleans are stored as integers using ~0 for true and 0 for false.
1937 * GLSL requires that int(bool) return 1 for true and 0 for false.
1938 * This conversion is done with AND, but it could be done with NEG.
1939 */
1940 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1941 } else {
1942 /* Booleans and integers are both stored as floats when native
1943 * integers are disabled.
1944 */
1945 result_src = op[0];
1946 }
1947 break;
1948 case ir_unop_f2i:
1949 if (native_integers)
1950 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1951 else
1952 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1953 break;
1954 case ir_unop_f2u:
1955 if (native_integers)
1956 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1957 else
1958 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1959 break;
1960 case ir_unop_bitcast_f2i:
1961 case ir_unop_bitcast_f2u:
1962 /* Make sure we don't propagate the negate modifier to integer opcodes. */
1963 if (op[0].negate)
1964 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1965 else
1966 result_src = op[0];
1967 result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
1968 GLSL_TYPE_UINT;
1969 break;
1970 case ir_unop_bitcast_i2f:
1971 case ir_unop_bitcast_u2f:
1972 result_src = op[0];
1973 result_src.type = GLSL_TYPE_FLOAT;
1974 break;
1975 case ir_unop_f2b:
1976 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1977 break;
1978 case ir_unop_d2b:
1979 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
1980 break;
1981 case ir_unop_i2b:
1982 if (native_integers)
1983 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
1984 else
1985 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1986 break;
1987 case ir_unop_trunc:
1988 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1989 break;
1990 case ir_unop_ceil:
1991 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1992 break;
1993 case ir_unop_floor:
1994 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1995 break;
1996 case ir_unop_round_even:
1997 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1998 break;
1999 case ir_unop_fract:
2000 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
2001 break;
2002
2003 case ir_binop_min:
2004 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
2005 break;
2006 case ir_binop_max:
2007 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
2008 break;
2009 case ir_binop_pow:
2010 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
2011 break;
2012
2013 case ir_unop_bit_not:
2014 if (native_integers) {
2015 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
2016 break;
2017 }
2018 case ir_unop_u2f:
2019 if (native_integers) {
2020 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
2021 break;
2022 }
2023 case ir_binop_lshift:
2024 if (native_integers) {
2025 emit_asm(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
2026 break;
2027 }
2028 case ir_binop_rshift:
2029 if (native_integers) {
2030 emit_asm(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
2031 break;
2032 }
2033 case ir_binop_bit_and:
2034 if (native_integers) {
2035 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2036 break;
2037 }
2038 case ir_binop_bit_xor:
2039 if (native_integers) {
2040 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
2041 break;
2042 }
2043 case ir_binop_bit_or:
2044 if (native_integers) {
2045 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
2046 break;
2047 }
2048
2049 assert(!"GLSL 1.30 features unsupported");
2050 break;
2051
2052 case ir_binop_ubo_load: {
2053 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2054 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2055 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
2056 unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
2057 st_src_reg index_reg = get_temp(glsl_type::uint_type);
2058 st_src_reg cbuf;
2059
2060 cbuf.type = ir->type->base_type;
2061 cbuf.file = PROGRAM_CONSTANT;
2062 cbuf.index = 0;
2063 cbuf.reladdr = NULL;
2064 cbuf.negate = 0;
2065
2066 assert(ir->type->is_vector() || ir->type->is_scalar());
2067
2068 if (const_offset_ir) {
2069 /* Constant index into constant buffer */
2070 cbuf.reladdr = NULL;
2071 cbuf.index = const_offset / 16;
2072 }
2073 else {
2074 /* Relative/variable index into constant buffer */
2075 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1],
2076 st_src_reg_for_int(4));
2077 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2078 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
2079 }
2080
2081 if (const_uniform_block) {
2082 /* Constant constant buffer */
2083 cbuf.reladdr2 = NULL;
2084 cbuf.index2D = const_block;
2085 cbuf.has_index2 = true;
2086 }
2087 else {
2088 /* Relative/variable constant buffer */
2089 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2090 cbuf.index2D = 1;
2091 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
2092 cbuf.has_index2 = true;
2093 }
2094
2095 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2096 if (glsl_base_type_is_64bit(cbuf.type))
2097 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2098 const_offset % 16 / 8,
2099 const_offset % 16 / 8,
2100 const_offset % 16 / 8);
2101 else
2102 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2103 const_offset % 16 / 4,
2104 const_offset % 16 / 4,
2105 const_offset % 16 / 4);
2106
2107 if (ir->type->base_type == GLSL_TYPE_BOOL) {
2108 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2109 } else {
2110 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2111 }
2112 break;
2113 }
2114 case ir_triop_lrp:
2115 /* note: we have to reorder the three args here */
2116 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2117 break;
2118 case ir_triop_csel:
2119 if (this->ctx->Const.NativeIntegers)
2120 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2121 else {
2122 op[0].negate = ~op[0].negate;
2123 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2124 }
2125 break;
2126 case ir_triop_bitfield_extract:
2127 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2128 break;
2129 case ir_quadop_bitfield_insert:
2130 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2131 break;
2132 case ir_unop_bitfield_reverse:
2133 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2134 break;
2135 case ir_unop_bit_count:
2136 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2137 break;
2138 case ir_unop_find_msb:
2139 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2140 break;
2141 case ir_unop_find_lsb:
2142 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2143 break;
2144 case ir_binop_imul_high:
2145 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2146 break;
2147 case ir_triop_fma:
2148 /* In theory, MAD is incorrect here. */
2149 if (have_fma)
2150 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2151 else
2152 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2153 break;
2154 case ir_unop_interpolate_at_centroid:
2155 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2156 break;
2157 case ir_binop_interpolate_at_offset: {
2158 /* The y coordinate needs to be flipped for the default fb */
2159 static const gl_state_index transform_y_state[STATE_LENGTH]
2160 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
2161
2162 unsigned transform_y_index =
2163 _mesa_add_state_reference(this->prog->Parameters,
2164 transform_y_state);
2165
2166 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
2167 transform_y_index,
2168 glsl_type::vec4_type);
2169 transform_y.swizzle = SWIZZLE_XXXX;
2170
2171 st_src_reg temp = get_temp(glsl_type::vec2_type);
2172 st_dst_reg temp_dst = st_dst_reg(temp);
2173
2174 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
2175 temp_dst.writemask = WRITEMASK_Y;
2176 emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
2177 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
2178 break;
2179 }
2180 case ir_binop_interpolate_at_sample:
2181 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2182 break;
2183
2184 case ir_unop_d2f:
2185 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2186 break;
2187 case ir_unop_f2d:
2188 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2189 break;
2190 case ir_unop_d2i:
2191 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2192 break;
2193 case ir_unop_i2d:
2194 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2195 break;
2196 case ir_unop_d2u:
2197 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2198 break;
2199 case ir_unop_u2d:
2200 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2201 break;
2202 case ir_unop_unpack_double_2x32:
2203 case ir_unop_pack_double_2x32:
2204 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2205 break;
2206
2207 case ir_binop_ldexp:
2208 if (ir->operands[0]->type->base_type == GLSL_TYPE_DOUBLE) {
2209 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2210 } else {
2211 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2212 }
2213 break;
2214
2215 case ir_unop_pack_half_2x16:
2216 emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2217 break;
2218 case ir_unop_unpack_half_2x16:
2219 emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2220 break;
2221
2222 case ir_unop_get_buffer_size: {
2223 ir_constant *const_offset = ir->operands[0]->as_constant();
2224 st_src_reg buffer(
2225 PROGRAM_BUFFER,
2226 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
2227 (const_offset ? const_offset->value.u[0] : 0),
2228 GLSL_TYPE_UINT);
2229 if (!const_offset) {
2230 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
2231 *buffer.reladdr = op[0];
2232 emit_arl(ir, sampler_reladdr, op[0]);
2233 }
2234 emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->buffer = buffer;
2235 break;
2236 }
2237
2238 case ir_unop_vote_any:
2239 emit_asm(ir, TGSI_OPCODE_VOTE_ANY, result_dst, op[0]);
2240 break;
2241 case ir_unop_vote_all:
2242 emit_asm(ir, TGSI_OPCODE_VOTE_ALL, result_dst, op[0]);
2243 break;
2244 case ir_unop_vote_eq:
2245 emit_asm(ir, TGSI_OPCODE_VOTE_EQ, result_dst, op[0]);
2246 break;
2247
2248 case ir_unop_pack_snorm_2x16:
2249 case ir_unop_pack_unorm_2x16:
2250 case ir_unop_pack_snorm_4x8:
2251 case ir_unop_pack_unorm_4x8:
2252
2253 case ir_unop_unpack_snorm_2x16:
2254 case ir_unop_unpack_unorm_2x16:
2255 case ir_unop_unpack_snorm_4x8:
2256 case ir_unop_unpack_unorm_4x8:
2257
2258 case ir_quadop_vector:
2259 case ir_binop_vector_extract:
2260 case ir_triop_vector_insert:
2261 case ir_binop_carry:
2262 case ir_binop_borrow:
2263 case ir_unop_ssbo_unsized_array_length:
2264 /* This operation is not supported, or should have already been handled.
2265 */
2266 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2267 break;
2268 }
2269
2270 this->result = result_src;
2271 }
2272
2273
2274 void
2275 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2276 {
2277 st_src_reg src;
2278 int i;
2279 int swizzle[4];
2280
2281 /* Note that this is only swizzles in expressions, not those on the left
2282 * hand side of an assignment, which do write masking. See ir_assignment
2283 * for that.
2284 */
2285
2286 ir->val->accept(this);
2287 src = this->result;
2288 assert(src.file != PROGRAM_UNDEFINED);
2289 assert(ir->type->vector_elements > 0);
2290
2291 for (i = 0; i < 4; i++) {
2292 if (i < ir->type->vector_elements) {
2293 switch (i) {
2294 case 0:
2295 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2296 break;
2297 case 1:
2298 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2299 break;
2300 case 2:
2301 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2302 break;
2303 case 3:
2304 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2305 break;
2306 }
2307 } else {
2308 /* If the type is smaller than a vec4, replicate the last
2309 * channel out.
2310 */
2311 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2312 }
2313 }
2314
2315 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2316
2317 this->result = src;
2318 }
2319
2320 /* Test if the variable is an array. Note that geometry and
2321 * tessellation shader inputs are outputs are always arrays (except
2322 * for patch inputs), so only the array element type is considered.
2323 */
2324 static bool
2325 is_inout_array(unsigned stage, ir_variable *var, bool *is_2d)
2326 {
2327 const glsl_type *type = var->type;
2328
2329 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2330 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2331 return false;
2332
2333 *is_2d = false;
2334
2335 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2336 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2337 stage == MESA_SHADER_TESS_CTRL) &&
2338 !var->data.patch) {
2339 if (!var->type->is_array())
2340 return false; /* a system value probably */
2341
2342 type = var->type->fields.array;
2343 *is_2d = true;
2344 }
2345
2346 return type->is_array() || type->is_matrix();
2347 }
2348
2349 void
2350 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2351 {
2352 variable_storage *entry = find_variable_storage(ir->var);
2353 ir_variable *var = ir->var;
2354 bool is_2d;
2355
2356 if (!entry) {
2357 switch (var->data.mode) {
2358 case ir_var_uniform:
2359 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2360 var->data.param_index);
2361 this->variables.push_tail(entry);
2362 break;
2363 case ir_var_shader_in:
2364 /* The linker assigns locations for varyings and attributes,
2365 * including deprecated builtins (like gl_Color), user-assign
2366 * generic attributes (glBindVertexLocation), and
2367 * user-defined varyings.
2368 */
2369 assert(var->data.location != -1);
2370
2371 if (is_inout_array(shader->Stage, var, &is_2d)) {
2372 struct array_decl *decl = &input_arrays[num_input_arrays];
2373
2374 decl->mesa_index = var->data.location;
2375 decl->array_id = num_input_arrays + 1;
2376 if (is_2d) {
2377 decl->array_size = type_size(var->type->fields.array);
2378 decl->array_type = var->type->fields.array->without_array()->base_type;
2379 } else {
2380 decl->array_size = type_size(var->type);
2381 decl->array_type = var->type->without_array()->base_type;
2382 }
2383 num_input_arrays++;
2384
2385 entry = new(mem_ctx) variable_storage(var,
2386 PROGRAM_INPUT,
2387 var->data.location,
2388 decl->array_id);
2389 }
2390 else {
2391 entry = new(mem_ctx) variable_storage(var,
2392 PROGRAM_INPUT,
2393 var->data.location);
2394 }
2395 this->variables.push_tail(entry);
2396 break;
2397 case ir_var_shader_out:
2398 assert(var->data.location != -1);
2399
2400 if (is_inout_array(shader->Stage, var, &is_2d)) {
2401 struct array_decl *decl = &output_arrays[num_output_arrays];
2402
2403 decl->mesa_index = var->data.location;
2404 decl->array_id = num_output_arrays + 1;
2405 if (is_2d) {
2406 decl->array_size = type_size(var->type->fields.array);
2407 decl->array_type = var->type->fields.array->without_array()->base_type;
2408 } else {
2409 decl->array_size = type_size(var->type);
2410 decl->array_type = var->type->without_array()->base_type;
2411 }
2412 num_output_arrays++;
2413
2414 entry = new(mem_ctx) variable_storage(var,
2415 PROGRAM_OUTPUT,
2416 var->data.location,
2417 decl->array_id);
2418 }
2419 else {
2420 entry = new(mem_ctx) variable_storage(var,
2421 PROGRAM_OUTPUT,
2422 var->data.location
2423 + var->data.index);
2424 }
2425 this->variables.push_tail(entry);
2426 break;
2427 case ir_var_system_value:
2428 entry = new(mem_ctx) variable_storage(var,
2429 PROGRAM_SYSTEM_VALUE,
2430 var->data.location);
2431 break;
2432 case ir_var_auto:
2433 case ir_var_temporary:
2434 st_src_reg src = get_temp(var->type);
2435
2436 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2437 this->variables.push_tail(entry);
2438
2439 break;
2440 }
2441
2442 if (!entry) {
2443 printf("Failed to make storage for %s\n", var->name);
2444 exit(1);
2445 }
2446 }
2447
2448 this->result = st_src_reg(entry->file, entry->index, var->type);
2449 this->result.array_id = entry->array_id;
2450 if (this->shader->Stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in && var->type->is_double())
2451 this->result.is_double_vertex_input = true;
2452 if (!native_integers)
2453 this->result.type = GLSL_TYPE_FLOAT;
2454 }
2455
2456 static void
2457 shrink_array_declarations(struct array_decl *arrays, unsigned count,
2458 GLbitfield64 usage_mask,
2459 GLbitfield64 double_usage_mask,
2460 GLbitfield patch_usage_mask)
2461 {
2462 unsigned i;
2463 int j;
2464
2465 /* Fix array declarations by removing unused array elements at both ends
2466 * of the arrays. For example, mat4[3] where only mat[1] is used.
2467 */
2468 for (i = 0; i < count; i++) {
2469 struct array_decl *decl = &arrays[i];
2470
2471 /* Shrink the beginning. */
2472 for (j = 0; j < (int)decl->array_size; j++) {
2473 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2474 if (patch_usage_mask &
2475 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2476 break;
2477 }
2478 else {
2479 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2480 break;
2481 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2482 break;
2483 }
2484
2485 decl->mesa_index++;
2486 decl->array_size--;
2487 j--;
2488 }
2489
2490 /* Shrink the end. */
2491 for (j = decl->array_size-1; j >= 0; j--) {
2492 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2493 if (patch_usage_mask &
2494 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2495 break;
2496 }
2497 else {
2498 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2499 break;
2500 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2501 break;
2502 }
2503
2504 decl->array_size--;
2505 }
2506 }
2507 }
2508
2509 void
2510 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2511 {
2512 ir_constant *index;
2513 st_src_reg src;
2514 int element_size = type_size(ir->type);
2515 bool is_2D = false;
2516
2517 index = ir->array_index->constant_expression_value();
2518
2519 ir->array->accept(this);
2520 src = this->result;
2521
2522 if (ir->array->ir_type != ir_type_dereference_array) {
2523 switch (this->prog->Target) {
2524 case GL_TESS_CONTROL_PROGRAM_NV:
2525 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2526 !ir->variable_referenced()->data.patch;
2527 break;
2528 case GL_TESS_EVALUATION_PROGRAM_NV:
2529 is_2D = src.file == PROGRAM_INPUT &&
2530 !ir->variable_referenced()->data.patch;
2531 break;
2532 case GL_GEOMETRY_PROGRAM_NV:
2533 is_2D = src.file == PROGRAM_INPUT;
2534 break;
2535 }
2536 }
2537
2538 if (is_2D)
2539 element_size = 1;
2540
2541 if (index) {
2542
2543 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
2544 src.file == PROGRAM_INPUT)
2545 element_size = attrib_type_size(ir->type, true);
2546 if (is_2D) {
2547 src.index2D = index->value.i[0];
2548 src.has_index2 = true;
2549 } else
2550 src.index += index->value.i[0] * element_size;
2551 } else {
2552 /* Variable index array dereference. It eats the "vec4" of the
2553 * base of the array and an index that offsets the TGSI register
2554 * index.
2555 */
2556 ir->array_index->accept(this);
2557
2558 st_src_reg index_reg;
2559
2560 if (element_size == 1) {
2561 index_reg = this->result;
2562 } else {
2563 index_reg = get_temp(native_integers ?
2564 glsl_type::int_type : glsl_type::float_type);
2565
2566 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2567 this->result, st_src_reg_for_type(index_reg.type, element_size));
2568 }
2569
2570 /* If there was already a relative address register involved, add the
2571 * new and the old together to get the new offset.
2572 */
2573 if (!is_2D && src.reladdr != NULL) {
2574 st_src_reg accum_reg = get_temp(native_integers ?
2575 glsl_type::int_type : glsl_type::float_type);
2576
2577 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2578 index_reg, *src.reladdr);
2579
2580 index_reg = accum_reg;
2581 }
2582
2583 if (is_2D) {
2584 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2585 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2586 src.index2D = 0;
2587 src.has_index2 = true;
2588 } else {
2589 src.reladdr = ralloc(mem_ctx, st_src_reg);
2590 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2591 }
2592 }
2593
2594 /* If the type is smaller than a vec4, replicate the last channel out. */
2595 if (ir->type->is_scalar() || ir->type->is_vector())
2596 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2597 else
2598 src.swizzle = SWIZZLE_NOOP;
2599
2600 /* Change the register type to the element type of the array. */
2601 src.type = ir->type->base_type;
2602
2603 this->result = src;
2604 }
2605
2606 void
2607 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2608 {
2609 unsigned int i;
2610 const glsl_type *struct_type = ir->record->type;
2611 int offset = 0;
2612
2613 ir->record->accept(this);
2614
2615 for (i = 0; i < struct_type->length; i++) {
2616 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2617 break;
2618 offset += type_size(struct_type->fields.structure[i].type);
2619 }
2620
2621 /* If the type is smaller than a vec4, replicate the last channel out. */
2622 if (ir->type->is_scalar() || ir->type->is_vector())
2623 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2624 else
2625 this->result.swizzle = SWIZZLE_NOOP;
2626
2627 this->result.index += offset;
2628 this->result.type = ir->type->base_type;
2629 }
2630
2631 /**
2632 * We want to be careful in assignment setup to hit the actual storage
2633 * instead of potentially using a temporary like we might with the
2634 * ir_dereference handler.
2635 */
2636 static st_dst_reg
2637 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2638 {
2639 /* The LHS must be a dereference. If the LHS is a variable indexed array
2640 * access of a vector, it must be separated into a series conditional moves
2641 * before reaching this point (see ir_vec_index_to_cond_assign).
2642 */
2643 assert(ir->as_dereference());
2644 ir_dereference_array *deref_array = ir->as_dereference_array();
2645 if (deref_array) {
2646 assert(!deref_array->array->type->is_vector());
2647 }
2648
2649 /* Use the rvalue deref handler for the most part. We'll ignore
2650 * swizzles in it and write swizzles using writemask, though.
2651 */
2652 ir->accept(v);
2653 return st_dst_reg(v->result);
2654 }
2655
2656 /**
2657 * Process the condition of a conditional assignment
2658 *
2659 * Examines the condition of a conditional assignment to generate the optimal
2660 * first operand of a \c CMP instruction. If the condition is a relational
2661 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2662 * used as the source for the \c CMP instruction. Otherwise the comparison
2663 * is processed to a boolean result, and the boolean result is used as the
2664 * operand to the CMP instruction.
2665 */
2666 bool
2667 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2668 {
2669 ir_rvalue *src_ir = ir;
2670 bool negate = true;
2671 bool switch_order = false;
2672
2673 ir_expression *const expr = ir->as_expression();
2674
2675 if (native_integers) {
2676 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2677 enum glsl_base_type type = expr->operands[0]->type->base_type;
2678 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2679 type == GLSL_TYPE_BOOL) {
2680 if (expr->operation == ir_binop_equal) {
2681 if (expr->operands[0]->is_zero()) {
2682 src_ir = expr->operands[1];
2683 switch_order = true;
2684 }
2685 else if (expr->operands[1]->is_zero()) {
2686 src_ir = expr->operands[0];
2687 switch_order = true;
2688 }
2689 }
2690 else if (expr->operation == ir_binop_nequal) {
2691 if (expr->operands[0]->is_zero()) {
2692 src_ir = expr->operands[1];
2693 }
2694 else if (expr->operands[1]->is_zero()) {
2695 src_ir = expr->operands[0];
2696 }
2697 }
2698 }
2699 }
2700
2701 src_ir->accept(this);
2702 return switch_order;
2703 }
2704
2705 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2706 bool zero_on_left = false;
2707
2708 if (expr->operands[0]->is_zero()) {
2709 src_ir = expr->operands[1];
2710 zero_on_left = true;
2711 } else if (expr->operands[1]->is_zero()) {
2712 src_ir = expr->operands[0];
2713 zero_on_left = false;
2714 }
2715
2716 /* a is - 0 + - 0 +
2717 * (a < 0) T F F ( a < 0) T F F
2718 * (0 < a) F F T (-a < 0) F F T
2719 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2720 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2721 * (a > 0) F F T (-a < 0) F F T
2722 * (0 > a) T F F ( a < 0) T F F
2723 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2724 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2725 *
2726 * Note that exchanging the order of 0 and 'a' in the comparison simply
2727 * means that the value of 'a' should be negated.
2728 */
2729 if (src_ir != ir) {
2730 switch (expr->operation) {
2731 case ir_binop_less:
2732 switch_order = false;
2733 negate = zero_on_left;
2734 break;
2735
2736 case ir_binop_greater:
2737 switch_order = false;
2738 negate = !zero_on_left;
2739 break;
2740
2741 case ir_binop_lequal:
2742 switch_order = true;
2743 negate = !zero_on_left;
2744 break;
2745
2746 case ir_binop_gequal:
2747 switch_order = true;
2748 negate = zero_on_left;
2749 break;
2750
2751 default:
2752 /* This isn't the right kind of comparison afterall, so make sure
2753 * the whole condition is visited.
2754 */
2755 src_ir = ir;
2756 break;
2757 }
2758 }
2759 }
2760
2761 src_ir->accept(this);
2762
2763 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2764 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2765 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2766 * computing the condition.
2767 */
2768 if (negate)
2769 this->result.negate = ~this->result.negate;
2770
2771 return switch_order;
2772 }
2773
2774 void
2775 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2776 st_dst_reg *l, st_src_reg *r,
2777 st_src_reg *cond, bool cond_swap)
2778 {
2779 if (type->base_type == GLSL_TYPE_STRUCT) {
2780 for (unsigned int i = 0; i < type->length; i++) {
2781 emit_block_mov(ir, type->fields.structure[i].type, l, r,
2782 cond, cond_swap);
2783 }
2784 return;
2785 }
2786
2787 if (type->is_array()) {
2788 for (unsigned int i = 0; i < type->length; i++) {
2789 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
2790 }
2791 return;
2792 }
2793
2794 if (type->is_matrix()) {
2795 const struct glsl_type *vec_type;
2796
2797 vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
2798 type->vector_elements, 1);
2799
2800 for (int i = 0; i < type->matrix_columns; i++) {
2801 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
2802 }
2803 return;
2804 }
2805
2806 assert(type->is_scalar() || type->is_vector());
2807
2808 r->type = type->base_type;
2809 if (cond) {
2810 st_src_reg l_src = st_src_reg(*l);
2811 l_src.swizzle = swizzle_for_size(type->vector_elements);
2812
2813 if (native_integers) {
2814 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
2815 cond_swap ? l_src : *r,
2816 cond_swap ? *r : l_src);
2817 } else {
2818 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
2819 cond_swap ? l_src : *r,
2820 cond_swap ? *r : l_src);
2821 }
2822 } else {
2823 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
2824 }
2825 l->index++;
2826 r->index++;
2827 if (type->is_dual_slot()) {
2828 l->index++;
2829 if (r->is_double_vertex_input == false)
2830 r->index++;
2831 }
2832 }
2833
2834 void
2835 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2836 {
2837 st_dst_reg l;
2838 st_src_reg r;
2839
2840 ir->rhs->accept(this);
2841 r = this->result;
2842
2843 l = get_assignment_lhs(ir->lhs, this);
2844
2845 /* FINISHME: This should really set to the correct maximal writemask for each
2846 * FINISHME: component written (in the loops below). This case can only
2847 * FINISHME: occur for matrices, arrays, and structures.
2848 */
2849 if (ir->write_mask == 0) {
2850 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2851
2852 if (ir->lhs->type->is_array() || ir->lhs->type->without_array()->is_matrix()) {
2853 if (ir->lhs->type->without_array()->is_64bit()) {
2854 switch (ir->lhs->type->without_array()->vector_elements) {
2855 case 1:
2856 l.writemask = WRITEMASK_X;
2857 break;
2858 case 2:
2859 l.writemask = WRITEMASK_XY;
2860 break;
2861 case 3:
2862 l.writemask = WRITEMASK_XYZ;
2863 break;
2864 case 4:
2865 l.writemask = WRITEMASK_XYZW;
2866 break;
2867 }
2868 } else
2869 l.writemask = WRITEMASK_XYZW;
2870 }
2871 } else if (ir->lhs->type->is_scalar() &&
2872 !ir->lhs->type->is_64bit() &&
2873 ir->lhs->variable_referenced()->data.mode == ir_var_shader_out) {
2874 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2875 * FINISHME: W component of fragment shader output zero, work correctly.
2876 */
2877 l.writemask = WRITEMASK_XYZW;
2878 } else {
2879 int swizzles[4];
2880 int first_enabled_chan = 0;
2881 int rhs_chan = 0;
2882
2883 l.writemask = ir->write_mask;
2884
2885 for (int i = 0; i < 4; i++) {
2886 if (l.writemask & (1 << i)) {
2887 first_enabled_chan = GET_SWZ(r.swizzle, i);
2888 break;
2889 }
2890 }
2891
2892 /* Swizzle a small RHS vector into the channels being written.
2893 *
2894 * glsl ir treats write_mask as dictating how many channels are
2895 * present on the RHS while TGSI treats write_mask as just
2896 * showing which channels of the vec4 RHS get written.
2897 */
2898 for (int i = 0; i < 4; i++) {
2899 if (l.writemask & (1 << i))
2900 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2901 else
2902 swizzles[i] = first_enabled_chan;
2903 }
2904 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2905 swizzles[2], swizzles[3]);
2906 }
2907
2908 assert(l.file != PROGRAM_UNDEFINED);
2909 assert(r.file != PROGRAM_UNDEFINED);
2910
2911 if (ir->condition) {
2912 const bool switch_order = this->process_move_condition(ir->condition);
2913 st_src_reg condition = this->result;
2914
2915 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
2916 } else if (ir->rhs->as_expression() &&
2917 this->instructions.get_tail() &&
2918 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2919 type_size(ir->lhs->type) == 1 &&
2920 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
2921 /* To avoid emitting an extra MOV when assigning an expression to a
2922 * variable, emit the last instruction of the expression again, but
2923 * replace the destination register with the target of the assignment.
2924 * Dead code elimination will remove the original instruction.
2925 */
2926 glsl_to_tgsi_instruction *inst, *new_inst;
2927 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2928 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
2929 new_inst->saturate = inst->saturate;
2930 inst->dead_mask = inst->dst[0].writemask;
2931 } else {
2932 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
2933 }
2934 }
2935
2936
2937 void
2938 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2939 {
2940 st_src_reg src;
2941 GLdouble stack_vals[4] = { 0 };
2942 gl_constant_value *values = (gl_constant_value *) stack_vals;
2943 GLenum gl_type = GL_NONE;
2944 unsigned int i;
2945 static int in_array = 0;
2946 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2947
2948 /* Unfortunately, 4 floats is all we can get into
2949 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2950 * aggregate constant and move each constant value into it. If we
2951 * get lucky, copy propagation will eliminate the extra moves.
2952 */
2953 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2954 st_src_reg temp_base = get_temp(ir->type);
2955 st_dst_reg temp = st_dst_reg(temp_base);
2956
2957 foreach_in_list(ir_constant, field_value, &ir->components) {
2958 int size = type_size(field_value->type);
2959
2960 assert(size > 0);
2961
2962 field_value->accept(this);
2963 src = this->result;
2964
2965 for (i = 0; i < (unsigned int)size; i++) {
2966 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2967
2968 src.index++;
2969 temp.index++;
2970 }
2971 }
2972 this->result = temp_base;
2973 return;
2974 }
2975
2976 if (ir->type->is_array()) {
2977 st_src_reg temp_base = get_temp(ir->type);
2978 st_dst_reg temp = st_dst_reg(temp_base);
2979 int size = type_size(ir->type->fields.array);
2980
2981 assert(size > 0);
2982 in_array++;
2983
2984 for (i = 0; i < ir->type->length; i++) {
2985 ir->array_elements[i]->accept(this);
2986 src = this->result;
2987 for (int j = 0; j < size; j++) {
2988 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2989
2990 src.index++;
2991 temp.index++;
2992 }
2993 }
2994 this->result = temp_base;
2995 in_array--;
2996 return;
2997 }
2998
2999 if (ir->type->is_matrix()) {
3000 st_src_reg mat = get_temp(ir->type);
3001 st_dst_reg mat_column = st_dst_reg(mat);
3002
3003 for (i = 0; i < ir->type->matrix_columns; i++) {
3004 switch (ir->type->base_type) {
3005 case GLSL_TYPE_FLOAT:
3006 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
3007
3008 src = st_src_reg(file, -1, ir->type->base_type);
3009 src.index = add_constant(file,
3010 values,
3011 ir->type->vector_elements,
3012 GL_FLOAT,
3013 &src.swizzle);
3014 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3015 break;
3016 case GLSL_TYPE_DOUBLE:
3017 values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
3018 src = st_src_reg(file, -1, ir->type->base_type);
3019 src.index = add_constant(file,
3020 values,
3021 ir->type->vector_elements,
3022 GL_DOUBLE,
3023 &src.swizzle);
3024 if (ir->type->vector_elements >= 2) {
3025 mat_column.writemask = WRITEMASK_XY;
3026 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3027 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3028 } else {
3029 mat_column.writemask = WRITEMASK_X;
3030 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
3031 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3032 }
3033 src.index++;
3034 if (ir->type->vector_elements > 2) {
3035 if (ir->type->vector_elements == 4) {
3036 mat_column.writemask = WRITEMASK_ZW;
3037 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3038 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3039 } else {
3040 mat_column.writemask = WRITEMASK_Z;
3041 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
3042 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3043 mat_column.writemask = WRITEMASK_XYZW;
3044 src.swizzle = SWIZZLE_XYZW;
3045 }
3046 mat_column.index++;
3047 }
3048 break;
3049 default:
3050 unreachable("Illegal matrix constant type.\n");
3051 break;
3052 }
3053 mat_column.index++;
3054 }
3055 this->result = mat;
3056 return;
3057 }
3058
3059 switch (ir->type->base_type) {
3060 case GLSL_TYPE_FLOAT:
3061 gl_type = GL_FLOAT;
3062 for (i = 0; i < ir->type->vector_elements; i++) {
3063 values[i].f = ir->value.f[i];
3064 }
3065 break;
3066 case GLSL_TYPE_DOUBLE:
3067 gl_type = GL_DOUBLE;
3068 for (i = 0; i < ir->type->vector_elements; i++) {
3069 values[i * 2].i = *(uint32_t *)&ir->value.d[i];
3070 values[i * 2 + 1].i = *(((uint32_t *)&ir->value.d[i]) + 1);
3071 }
3072 break;
3073 case GLSL_TYPE_UINT:
3074 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3075 for (i = 0; i < ir->type->vector_elements; i++) {
3076 if (native_integers)
3077 values[i].u = ir->value.u[i];
3078 else
3079 values[i].f = ir->value.u[i];
3080 }
3081 break;
3082 case GLSL_TYPE_INT:
3083 gl_type = native_integers ? GL_INT : GL_FLOAT;
3084 for (i = 0; i < ir->type->vector_elements; i++) {
3085 if (native_integers)
3086 values[i].i = ir->value.i[i];
3087 else
3088 values[i].f = ir->value.i[i];
3089 }
3090 break;
3091 case GLSL_TYPE_BOOL:
3092 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3093 for (i = 0; i < ir->type->vector_elements; i++) {
3094 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3095 }
3096 break;
3097 default:
3098 assert(!"Non-float/uint/int/bool constant");
3099 }
3100
3101 this->result = st_src_reg(file, -1, ir->type);
3102 this->result.index = add_constant(file,
3103 values,
3104 ir->type->vector_elements,
3105 gl_type,
3106 &this->result.swizzle);
3107 }
3108
3109 function_entry *
3110 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
3111 {
3112 foreach_in_list_use_after(function_entry, entry, &this->function_signatures) {
3113 if (entry->sig == sig)
3114 return entry;
3115 }
3116
3117 entry = ralloc(mem_ctx, function_entry);
3118 entry->sig = sig;
3119 entry->sig_id = this->next_signature_id++;
3120 entry->bgn_inst = NULL;
3121
3122 /* Allocate storage for all the parameters. */
3123 foreach_in_list(ir_variable, param, &sig->parameters) {
3124 variable_storage *storage;
3125
3126 storage = find_variable_storage(param);
3127 assert(!storage);
3128
3129 st_src_reg src = get_temp(param->type);
3130
3131 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
3132 this->variables.push_tail(storage);
3133 }
3134
3135 if (!sig->return_type->is_void()) {
3136 entry->return_reg = get_temp(sig->return_type);
3137 } else {
3138 entry->return_reg = undef_src;
3139 }
3140
3141 this->function_signatures.push_tail(entry);
3142 return entry;
3143 }
3144
3145 void
3146 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3147 {
3148 const char *callee = ir->callee->function_name();
3149 exec_node *param = ir->actual_parameters.get_head();
3150 ir_dereference *deref = static_cast<ir_dereference *>(param);
3151 ir_variable *location = deref->variable_referenced();
3152
3153 st_src_reg buffer(
3154 PROGRAM_BUFFER, location->data.binding, GLSL_TYPE_ATOMIC_UINT);
3155
3156 /* Calculate the surface offset */
3157 st_src_reg offset;
3158 unsigned array_size = 0, base = 0, index = 0;
3159
3160 get_deref_offsets(deref, &array_size, &base, &index, &offset);
3161
3162 if (offset.file != PROGRAM_UNDEFINED) {
3163 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
3164 offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
3165 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
3166 offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
3167 } else {
3168 offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
3169 }
3170
3171 ir->return_deref->accept(this);
3172 st_dst_reg dst(this->result);
3173 dst.writemask = WRITEMASK_X;
3174
3175 glsl_to_tgsi_instruction *inst;
3176
3177 if (!strcmp("__intrinsic_atomic_read", callee)) {
3178 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
3179 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
3180 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3181 st_src_reg_for_int(1));
3182 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
3183 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3184 st_src_reg_for_int(-1));
3185 emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
3186 } else {
3187 param = param->get_next();
3188 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3189 val->accept(this);
3190
3191 st_src_reg data = this->result, data2 = undef_src;
3192 unsigned opcode;
3193 if (!strcmp("__intrinsic_atomic_add", callee))
3194 opcode = TGSI_OPCODE_ATOMUADD;
3195 else if (!strcmp("__intrinsic_atomic_min", callee))
3196 opcode = TGSI_OPCODE_ATOMIMIN;
3197 else if (!strcmp("__intrinsic_atomic_max", callee))
3198 opcode = TGSI_OPCODE_ATOMIMAX;
3199 else if (!strcmp("__intrinsic_atomic_and", callee))
3200 opcode = TGSI_OPCODE_ATOMAND;
3201 else if (!strcmp("__intrinsic_atomic_or", callee))
3202 opcode = TGSI_OPCODE_ATOMOR;
3203 else if (!strcmp("__intrinsic_atomic_xor", callee))
3204 opcode = TGSI_OPCODE_ATOMXOR;
3205 else if (!strcmp("__intrinsic_atomic_exchange", callee))
3206 opcode = TGSI_OPCODE_ATOMXCHG;
3207 else if (!strcmp("__intrinsic_atomic_comp_swap", callee)) {
3208 opcode = TGSI_OPCODE_ATOMCAS;
3209 param = param->get_next();
3210 val = ((ir_instruction *)param)->as_rvalue();
3211 val->accept(this);
3212 data2 = this->result;
3213 } else if (!strcmp("__intrinsic_atomic_sub", callee)) {
3214 opcode = TGSI_OPCODE_ATOMUADD;
3215 st_src_reg res = get_temp(glsl_type::uvec4_type);
3216 st_dst_reg dstres = st_dst_reg(res);
3217 dstres.writemask = dst.writemask;
3218 emit_asm(ir, TGSI_OPCODE_INEG, dstres, data);
3219 data = res;
3220 } else {
3221 assert(!"Unexpected intrinsic");
3222 return;
3223 }
3224
3225 inst = emit_asm(ir, opcode, dst, offset, data, data2);
3226 }
3227
3228 inst->buffer = buffer;
3229 }
3230
3231 void
3232 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
3233 {
3234 const char *callee = ir->callee->function_name();
3235 exec_node *param = ir->actual_parameters.get_head();
3236
3237 ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
3238
3239 param = param->get_next();
3240 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3241
3242 ir_constant *const_block = block->as_constant();
3243
3244 st_src_reg buffer(
3245 PROGRAM_BUFFER,
3246 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
3247 (const_block ? const_block->value.u[0] : 0),
3248 GLSL_TYPE_UINT);
3249
3250 if (!const_block) {
3251 block->accept(this);
3252 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3253 *buffer.reladdr = this->result;
3254 emit_arl(ir, sampler_reladdr, this->result);
3255 }
3256
3257 /* Calculate the surface offset */
3258 offset->accept(this);
3259 st_src_reg off = this->result;
3260
3261 st_dst_reg dst = undef_dst;
3262 if (ir->return_deref) {
3263 ir->return_deref->accept(this);
3264 dst = st_dst_reg(this->result);
3265 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3266 }
3267
3268 glsl_to_tgsi_instruction *inst;
3269
3270 if (!strcmp("__intrinsic_load_ssbo", callee)) {
3271 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3272 if (dst.type == GLSL_TYPE_BOOL)
3273 emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst), st_src_reg_for_int(0));
3274 } else if (!strcmp("__intrinsic_store_ssbo", callee)) {
3275 param = param->get_next();
3276 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3277 val->accept(this);
3278
3279 param = param->get_next();
3280 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3281 assert(write_mask);
3282 dst.writemask = write_mask->value.u[0];
3283
3284 dst.type = this->result.type;
3285 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3286 } else {
3287 param = param->get_next();
3288 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3289 val->accept(this);
3290
3291 st_src_reg data = this->result, data2 = undef_src;
3292 unsigned opcode;
3293 if (!strcmp("__intrinsic_atomic_add_ssbo", callee))
3294 opcode = TGSI_OPCODE_ATOMUADD;
3295 else if (!strcmp("__intrinsic_atomic_min_ssbo", callee))
3296 opcode = TGSI_OPCODE_ATOMIMIN;
3297 else if (!strcmp("__intrinsic_atomic_max_ssbo", callee))
3298 opcode = TGSI_OPCODE_ATOMIMAX;
3299 else if (!strcmp("__intrinsic_atomic_and_ssbo", callee))
3300 opcode = TGSI_OPCODE_ATOMAND;
3301 else if (!strcmp("__intrinsic_atomic_or_ssbo", callee))
3302 opcode = TGSI_OPCODE_ATOMOR;
3303 else if (!strcmp("__intrinsic_atomic_xor_ssbo", callee))
3304 opcode = TGSI_OPCODE_ATOMXOR;
3305 else if (!strcmp("__intrinsic_atomic_exchange_ssbo", callee))
3306 opcode = TGSI_OPCODE_ATOMXCHG;
3307 else if (!strcmp("__intrinsic_atomic_comp_swap_ssbo", callee)) {
3308 opcode = TGSI_OPCODE_ATOMCAS;
3309 param = param->get_next();
3310 val = ((ir_instruction *)param)->as_rvalue();
3311 val->accept(this);
3312 data2 = this->result;
3313 } else {
3314 assert(!"Unexpected intrinsic");
3315 return;
3316 }
3317
3318 inst = emit_asm(ir, opcode, dst, off, data, data2);
3319 }
3320
3321 param = param->get_next();
3322 ir_constant *access = NULL;
3323 if (!param->is_tail_sentinel()) {
3324 access = ((ir_instruction *)param)->as_constant();
3325 assert(access);
3326 }
3327
3328 /* The emit_asm() might have actually split the op into pieces, e.g. for
3329 * double stores. We have to go back and fix up all the generated ops.
3330 */
3331 unsigned op = inst->op;
3332 do {
3333 inst->buffer = buffer;
3334 if (access)
3335 inst->buffer_access = access->value.u[0];
3336 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3337 if (inst->op == TGSI_OPCODE_UADD)
3338 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3339 } while (inst && inst->op == op && inst->buffer.file == PROGRAM_UNDEFINED);
3340 }
3341
3342 void
3343 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
3344 {
3345 const char *callee = ir->callee->function_name();
3346
3347 if (!strcmp("__intrinsic_memory_barrier", callee))
3348 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3349 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3350 TGSI_MEMBAR_ATOMIC_BUFFER |
3351 TGSI_MEMBAR_SHADER_IMAGE |
3352 TGSI_MEMBAR_SHARED));
3353 else if (!strcmp("__intrinsic_memory_barrier_atomic_counter", callee))
3354 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3355 st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
3356 else if (!strcmp("__intrinsic_memory_barrier_buffer", callee))
3357 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3358 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
3359 else if (!strcmp("__intrinsic_memory_barrier_image", callee))
3360 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3361 st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
3362 else if (!strcmp("__intrinsic_memory_barrier_shared", callee))
3363 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3364 st_src_reg_for_int(TGSI_MEMBAR_SHARED));
3365 else if (!strcmp("__intrinsic_group_memory_barrier", callee))
3366 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3367 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3368 TGSI_MEMBAR_ATOMIC_BUFFER |
3369 TGSI_MEMBAR_SHADER_IMAGE |
3370 TGSI_MEMBAR_SHARED |
3371 TGSI_MEMBAR_THREAD_GROUP));
3372 else
3373 assert(!"Unexpected memory barrier intrinsic");
3374 }
3375
3376 void
3377 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
3378 {
3379 const char *callee = ir->callee->function_name();
3380 exec_node *param = ir->actual_parameters.get_head();
3381
3382 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3383
3384 st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
3385
3386 /* Calculate the surface offset */
3387 offset->accept(this);
3388 st_src_reg off = this->result;
3389
3390 st_dst_reg dst = undef_dst;
3391 if (ir->return_deref) {
3392 ir->return_deref->accept(this);
3393 dst = st_dst_reg(this->result);
3394 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3395 }
3396
3397 glsl_to_tgsi_instruction *inst;
3398
3399 if (!strcmp("__intrinsic_load_shared", callee)) {
3400 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3401 inst->buffer = buffer;
3402 } else if (!strcmp("__intrinsic_store_shared", callee)) {
3403 param = param->get_next();
3404 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3405 val->accept(this);
3406
3407 param = param->get_next();
3408 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3409 assert(write_mask);
3410 dst.writemask = write_mask->value.u[0];
3411
3412 dst.type = this->result.type;
3413 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3414 inst->buffer = buffer;
3415 } else {
3416 param = param->get_next();
3417 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3418 val->accept(this);
3419
3420 st_src_reg data = this->result, data2 = undef_src;
3421 unsigned opcode;
3422 if (!strcmp("__intrinsic_atomic_add_shared", callee))
3423 opcode = TGSI_OPCODE_ATOMUADD;
3424 else if (!strcmp("__intrinsic_atomic_min_shared", callee))
3425 opcode = TGSI_OPCODE_ATOMIMIN;
3426 else if (!strcmp("__intrinsic_atomic_max_shared", callee))
3427 opcode = TGSI_OPCODE_ATOMIMAX;
3428 else if (!strcmp("__intrinsic_atomic_and_shared", callee))
3429 opcode = TGSI_OPCODE_ATOMAND;
3430 else if (!strcmp("__intrinsic_atomic_or_shared", callee))
3431 opcode = TGSI_OPCODE_ATOMOR;
3432 else if (!strcmp("__intrinsic_atomic_xor_shared", callee))
3433 opcode = TGSI_OPCODE_ATOMXOR;
3434 else if (!strcmp("__intrinsic_atomic_exchange_shared", callee))
3435 opcode = TGSI_OPCODE_ATOMXCHG;
3436 else if (!strcmp("__intrinsic_atomic_comp_swap_shared", callee)) {
3437 opcode = TGSI_OPCODE_ATOMCAS;
3438 param = param->get_next();
3439 val = ((ir_instruction *)param)->as_rvalue();
3440 val->accept(this);
3441 data2 = this->result;
3442 } else {
3443 assert(!"Unexpected intrinsic");
3444 return;
3445 }
3446
3447 inst = emit_asm(ir, opcode, dst, off, data, data2);
3448 inst->buffer = buffer;
3449 }
3450 }
3451
3452 void
3453 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
3454 {
3455 const char *callee = ir->callee->function_name();
3456 exec_node *param = ir->actual_parameters.get_head();
3457
3458 ir_dereference *img = (ir_dereference *)param;
3459 const ir_variable *imgvar = img->variable_referenced();
3460 const glsl_type *type = imgvar->type->without_array();
3461 unsigned sampler_array_size = 1, sampler_base = 0;
3462
3463 st_src_reg reladdr;
3464 st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
3465
3466 get_deref_offsets(img, &sampler_array_size, &sampler_base,
3467 (unsigned int *)&image.index, &reladdr);
3468 if (reladdr.file != PROGRAM_UNDEFINED) {
3469 image.reladdr = ralloc(mem_ctx, st_src_reg);
3470 *image.reladdr = reladdr;
3471 emit_arl(ir, sampler_reladdr, reladdr);
3472 }
3473
3474 st_dst_reg dst = undef_dst;
3475 if (ir->return_deref) {
3476 ir->return_deref->accept(this);
3477 dst = st_dst_reg(this->result);
3478 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3479 }
3480
3481 glsl_to_tgsi_instruction *inst;
3482
3483 if (!strcmp("__intrinsic_image_size", callee)) {
3484 dst.writemask = WRITEMASK_XYZ;
3485 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
3486 } else if (!strcmp("__intrinsic_image_samples", callee)) {
3487 st_src_reg res = get_temp(glsl_type::ivec4_type);
3488 st_dst_reg dstres = st_dst_reg(res);
3489 dstres.writemask = WRITEMASK_W;
3490 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
3491 res.swizzle = SWIZZLE_WWWW;
3492 emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
3493 } else {
3494 st_src_reg arg1 = undef_src, arg2 = undef_src;
3495 st_src_reg coord;
3496 st_dst_reg coord_dst;
3497 coord = get_temp(glsl_type::ivec4_type);
3498 coord_dst = st_dst_reg(coord);
3499 coord_dst.writemask = (1 << type->coordinate_components()) - 1;
3500 param = param->get_next();
3501 ((ir_dereference *)param)->accept(this);
3502 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3503 coord.swizzle = SWIZZLE_XXXX;
3504 switch (type->coordinate_components()) {
3505 case 4: assert(!"unexpected coord count");
3506 /* fallthrough */
3507 case 3: coord.swizzle |= SWIZZLE_Z << 6;
3508 /* fallthrough */
3509 case 2: coord.swizzle |= SWIZZLE_Y << 3;
3510 }
3511
3512 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
3513 param = param->get_next();
3514 ((ir_dereference *)param)->accept(this);
3515 st_src_reg sample = this->result;
3516 sample.swizzle = SWIZZLE_XXXX;
3517 coord_dst.writemask = WRITEMASK_W;
3518 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
3519 coord.swizzle |= SWIZZLE_W << 9;
3520 }
3521
3522 param = param->get_next();
3523 if (!param->is_tail_sentinel()) {
3524 ((ir_dereference *)param)->accept(this);
3525 arg1 = this->result;
3526 param = param->get_next();
3527 }
3528
3529 if (!param->is_tail_sentinel()) {
3530 ((ir_dereference *)param)->accept(this);
3531 arg2 = this->result;
3532 param = param->get_next();
3533 }
3534
3535 assert(param->is_tail_sentinel());
3536
3537 unsigned opcode;
3538 if (!strcmp("__intrinsic_image_load", callee))
3539 opcode = TGSI_OPCODE_LOAD;
3540 else if (!strcmp("__intrinsic_image_store", callee))
3541 opcode = TGSI_OPCODE_STORE;
3542 else if (!strcmp("__intrinsic_image_atomic_add", callee))
3543 opcode = TGSI_OPCODE_ATOMUADD;
3544 else if (!strcmp("__intrinsic_image_atomic_min", callee))
3545 opcode = TGSI_OPCODE_ATOMIMIN;
3546 else if (!strcmp("__intrinsic_image_atomic_max", callee))
3547 opcode = TGSI_OPCODE_ATOMIMAX;
3548 else if (!strcmp("__intrinsic_image_atomic_and", callee))
3549 opcode = TGSI_OPCODE_ATOMAND;
3550 else if (!strcmp("__intrinsic_image_atomic_or", callee))
3551 opcode = TGSI_OPCODE_ATOMOR;
3552 else if (!strcmp("__intrinsic_image_atomic_xor", callee))
3553 opcode = TGSI_OPCODE_ATOMXOR;
3554 else if (!strcmp("__intrinsic_image_atomic_exchange", callee))
3555 opcode = TGSI_OPCODE_ATOMXCHG;
3556 else if (!strcmp("__intrinsic_image_atomic_comp_swap", callee))
3557 opcode = TGSI_OPCODE_ATOMCAS;
3558 else {
3559 assert(!"Unexpected intrinsic");
3560 return;
3561 }
3562
3563 inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
3564 if (opcode == TGSI_OPCODE_STORE)
3565 inst->dst[0].writemask = WRITEMASK_XYZW;
3566 }
3567
3568 inst->buffer = image;
3569 inst->sampler_array_size = sampler_array_size;
3570 inst->sampler_base = sampler_base;
3571
3572 switch (type->sampler_dimensionality) {
3573 case GLSL_SAMPLER_DIM_1D:
3574 inst->tex_target = (type->sampler_array)
3575 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
3576 break;
3577 case GLSL_SAMPLER_DIM_2D:
3578 inst->tex_target = (type->sampler_array)
3579 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
3580 break;
3581 case GLSL_SAMPLER_DIM_3D:
3582 inst->tex_target = TEXTURE_3D_INDEX;
3583 break;
3584 case GLSL_SAMPLER_DIM_CUBE:
3585 inst->tex_target = (type->sampler_array)
3586 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
3587 break;
3588 case GLSL_SAMPLER_DIM_RECT:
3589 inst->tex_target = TEXTURE_RECT_INDEX;
3590 break;
3591 case GLSL_SAMPLER_DIM_BUF:
3592 inst->tex_target = TEXTURE_BUFFER_INDEX;
3593 break;
3594 case GLSL_SAMPLER_DIM_EXTERNAL:
3595 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3596 break;
3597 case GLSL_SAMPLER_DIM_MS:
3598 inst->tex_target = (type->sampler_array)
3599 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3600 break;
3601 default:
3602 assert(!"Should not get here.");
3603 }
3604
3605 inst->image_format = st_mesa_format_to_pipe_format(st_context(ctx),
3606 _mesa_get_shader_image_format(imgvar->data.image_format));
3607
3608 if (imgvar->data.image_coherent)
3609 inst->buffer_access |= TGSI_MEMORY_COHERENT;
3610 if (imgvar->data.image_restrict)
3611 inst->buffer_access |= TGSI_MEMORY_RESTRICT;
3612 if (imgvar->data.image_volatile)
3613 inst->buffer_access |= TGSI_MEMORY_VOLATILE;
3614 }
3615
3616 void
3617 glsl_to_tgsi_visitor::visit(ir_call *ir)
3618 {
3619 glsl_to_tgsi_instruction *call_inst;
3620 ir_function_signature *sig = ir->callee;
3621 const char *callee = sig->function_name();
3622 function_entry *entry;
3623 int i;
3624
3625 /* Filter out intrinsics */
3626 if (!strcmp("__intrinsic_atomic_read", callee) ||
3627 !strcmp("__intrinsic_atomic_increment", callee) ||
3628 !strcmp("__intrinsic_atomic_predecrement", callee) ||
3629 !strcmp("__intrinsic_atomic_add", callee) ||
3630 !strcmp("__intrinsic_atomic_sub", callee) ||
3631 !strcmp("__intrinsic_atomic_min", callee) ||
3632 !strcmp("__intrinsic_atomic_max", callee) ||
3633 !strcmp("__intrinsic_atomic_and", callee) ||
3634 !strcmp("__intrinsic_atomic_or", callee) ||
3635 !strcmp("__intrinsic_atomic_xor", callee) ||
3636 !strcmp("__intrinsic_atomic_exchange", callee) ||
3637 !strcmp("__intrinsic_atomic_comp_swap", callee)) {
3638 visit_atomic_counter_intrinsic(ir);
3639 return;
3640 }
3641
3642 if (!strcmp("__intrinsic_load_ssbo", callee) ||
3643 !strcmp("__intrinsic_store_ssbo", callee) ||
3644 !strcmp("__intrinsic_atomic_add_ssbo", callee) ||
3645 !strcmp("__intrinsic_atomic_min_ssbo", callee) ||
3646 !strcmp("__intrinsic_atomic_max_ssbo", callee) ||
3647 !strcmp("__intrinsic_atomic_and_ssbo", callee) ||
3648 !strcmp("__intrinsic_atomic_or_ssbo", callee) ||
3649 !strcmp("__intrinsic_atomic_xor_ssbo", callee) ||
3650 !strcmp("__intrinsic_atomic_exchange_ssbo", callee) ||
3651 !strcmp("__intrinsic_atomic_comp_swap_ssbo", callee)) {
3652 visit_ssbo_intrinsic(ir);
3653 return;
3654 }
3655
3656 if (!strcmp("__intrinsic_memory_barrier", callee) ||
3657 !strcmp("__intrinsic_memory_barrier_atomic_counter", callee) ||
3658 !strcmp("__intrinsic_memory_barrier_buffer", callee) ||
3659 !strcmp("__intrinsic_memory_barrier_image", callee) ||
3660 !strcmp("__intrinsic_memory_barrier_shared", callee) ||
3661 !strcmp("__intrinsic_group_memory_barrier", callee)) {
3662 visit_membar_intrinsic(ir);
3663 return;
3664 }
3665
3666 if (!strcmp("__intrinsic_load_shared", callee) ||
3667 !strcmp("__intrinsic_store_shared", callee) ||
3668 !strcmp("__intrinsic_atomic_add_shared", callee) ||
3669 !strcmp("__intrinsic_atomic_min_shared", callee) ||
3670 !strcmp("__intrinsic_atomic_max_shared", callee) ||
3671 !strcmp("__intrinsic_atomic_and_shared", callee) ||
3672 !strcmp("__intrinsic_atomic_or_shared", callee) ||
3673 !strcmp("__intrinsic_atomic_xor_shared", callee) ||
3674 !strcmp("__intrinsic_atomic_exchange_shared", callee) ||
3675 !strcmp("__intrinsic_atomic_comp_swap_shared", callee)) {
3676 visit_shared_intrinsic(ir);
3677 return;
3678 }
3679
3680 if (!strcmp("__intrinsic_image_load", callee) ||
3681 !strcmp("__intrinsic_image_store", callee) ||
3682 !strcmp("__intrinsic_image_atomic_add", callee) ||
3683 !strcmp("__intrinsic_image_atomic_min", callee) ||
3684 !strcmp("__intrinsic_image_atomic_max", callee) ||
3685 !strcmp("__intrinsic_image_atomic_and", callee) ||
3686 !strcmp("__intrinsic_image_atomic_or", callee) ||
3687 !strcmp("__intrinsic_image_atomic_xor", callee) ||
3688 !strcmp("__intrinsic_image_atomic_exchange", callee) ||
3689 !strcmp("__intrinsic_image_atomic_comp_swap", callee) ||
3690 !strcmp("__intrinsic_image_size", callee) ||
3691 !strcmp("__intrinsic_image_samples", callee)) {
3692 visit_image_intrinsic(ir);
3693 return;
3694 }
3695
3696 entry = get_function_signature(sig);
3697 /* Process in parameters. */
3698 foreach_two_lists(formal_node, &sig->parameters,
3699 actual_node, &ir->actual_parameters) {
3700 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
3701 ir_variable *param = (ir_variable *) formal_node;
3702
3703 if (param->data.mode == ir_var_function_in ||
3704 param->data.mode == ir_var_function_inout) {
3705 variable_storage *storage = find_variable_storage(param);
3706 assert(storage);
3707
3708 param_rval->accept(this);
3709 st_src_reg r = this->result;
3710
3711 st_dst_reg l;
3712 l.file = storage->file;
3713 l.index = storage->index;
3714 l.reladdr = NULL;
3715 l.writemask = WRITEMASK_XYZW;
3716
3717 for (i = 0; i < type_size(param->type); i++) {
3718 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3719 l.index++;
3720 r.index++;
3721 }
3722 }
3723 }
3724
3725 /* Emit call instruction */
3726 call_inst = emit_asm(ir, TGSI_OPCODE_CAL);
3727 call_inst->function = entry;
3728
3729 /* Process out parameters. */
3730 foreach_two_lists(formal_node, &sig->parameters,
3731 actual_node, &ir->actual_parameters) {
3732 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
3733 ir_variable *param = (ir_variable *) formal_node;
3734
3735 if (param->data.mode == ir_var_function_out ||
3736 param->data.mode == ir_var_function_inout) {
3737 variable_storage *storage = find_variable_storage(param);
3738 assert(storage);
3739
3740 st_src_reg r;
3741 r.file = storage->file;
3742 r.index = storage->index;
3743 r.reladdr = NULL;
3744 r.swizzle = SWIZZLE_NOOP;
3745 r.negate = 0;
3746
3747 param_rval->accept(this);
3748 st_dst_reg l = st_dst_reg(this->result);
3749
3750 for (i = 0; i < type_size(param->type); i++) {
3751 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3752 l.index++;
3753 r.index++;
3754 }
3755 }
3756 }
3757
3758 /* Process return value. */
3759 this->result = entry->return_reg;
3760 }
3761
3762 void
3763 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *head,
3764 ir_dereference *tail,
3765 unsigned *array_elements,
3766 unsigned *base,
3767 unsigned *index,
3768 st_src_reg *indirect,
3769 unsigned *location)
3770 {
3771 switch (tail->ir_type) {
3772 case ir_type_dereference_record: {
3773 ir_dereference_record *deref_record = tail->as_dereference_record();
3774 const glsl_type *struct_type = deref_record->record->type;
3775 int field_index = deref_record->record->type->field_index(deref_record->field);
3776
3777 calc_deref_offsets(head, deref_record->record->as_dereference(), array_elements, base, index, indirect, location);
3778
3779 assert(field_index >= 0);
3780 *location += struct_type->record_location_offset(field_index);
3781 break;
3782 }
3783
3784 case ir_type_dereference_array: {
3785 ir_dereference_array *deref_arr = tail->as_dereference_array();
3786 ir_constant *array_index = deref_arr->array_index->constant_expression_value();
3787
3788 if (!array_index) {
3789 st_src_reg temp_reg;
3790 st_dst_reg temp_dst;
3791
3792 temp_reg = get_temp(glsl_type::uint_type);
3793 temp_dst = st_dst_reg(temp_reg);
3794 temp_dst.writemask = 1;
3795
3796 deref_arr->array_index->accept(this);
3797 if (*array_elements != 1)
3798 emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
3799 else
3800 emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
3801
3802 if (indirect->file == PROGRAM_UNDEFINED)
3803 *indirect = temp_reg;
3804 else {
3805 temp_dst = st_dst_reg(*indirect);
3806 temp_dst.writemask = 1;
3807 emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
3808 }
3809 } else
3810 *index += array_index->value.u[0] * *array_elements;
3811
3812 *array_elements *= deref_arr->array->type->length;
3813
3814 calc_deref_offsets(head, deref_arr->array->as_dereference(), array_elements, base, index, indirect, location);
3815 break;
3816 }
3817 default:
3818 break;
3819 }
3820 }
3821
3822 void
3823 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
3824 unsigned *array_size,
3825 unsigned *base,
3826 unsigned *index,
3827 st_src_reg *reladdr)
3828 {
3829 GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
3830 unsigned location = 0;
3831 ir_variable *var = ir->variable_referenced();
3832
3833 memset(reladdr, 0, sizeof(*reladdr));
3834 reladdr->file = PROGRAM_UNDEFINED;
3835
3836 *base = 0;
3837 *array_size = 1;
3838
3839 assert(var);
3840 location = var->data.location;
3841 calc_deref_offsets(ir, ir, array_size, base, index, reladdr, &location);
3842
3843 /*
3844 * If we end up with no indirect then adjust the base to the index,
3845 * and set the array size to 1.
3846 */
3847 if (reladdr->file == PROGRAM_UNDEFINED) {
3848 *base = *index;
3849 *array_size = 1;
3850 }
3851
3852 if (location != 0xffffffff) {
3853 *base += this->shader_program->UniformStorage[location].opaque[shader].index;
3854 *index += this->shader_program->UniformStorage[location].opaque[shader].index;
3855 }
3856 }
3857
3858 void
3859 glsl_to_tgsi_visitor::visit(ir_texture *ir)
3860 {
3861 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
3862 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
3863 st_src_reg levels_src, reladdr;
3864 st_dst_reg result_dst, coord_dst, cube_sc_dst;
3865 glsl_to_tgsi_instruction *inst = NULL;
3866 unsigned opcode = TGSI_OPCODE_NOP;
3867 const glsl_type *sampler_type = ir->sampler->type;
3868 unsigned sampler_array_size = 1, sampler_index = 0, sampler_base = 0;
3869 bool is_cube_array = false;
3870 unsigned i;
3871
3872 /* if we are a cube array sampler */
3873 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3874 sampler_type->sampler_array)) {
3875 is_cube_array = true;
3876 }
3877
3878 if (ir->coordinate) {
3879 ir->coordinate->accept(this);
3880
3881 /* Put our coords in a temp. We'll need to modify them for shadow,
3882 * projection, or LOD, so the only case we'd use it as-is is if
3883 * we're doing plain old texturing. The optimization passes on
3884 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
3885 */
3886 coord = get_temp(glsl_type::vec4_type);
3887 coord_dst = st_dst_reg(coord);
3888 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
3889 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3890 }
3891
3892 if (ir->projector) {
3893 ir->projector->accept(this);
3894 projector = this->result;
3895 }
3896
3897 /* Storage for our result. Ideally for an assignment we'd be using
3898 * the actual storage for the result here, instead.
3899 */
3900 result_src = get_temp(ir->type);
3901 result_dst = st_dst_reg(result_src);
3902
3903 switch (ir->op) {
3904 case ir_tex:
3905 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
3906 if (ir->offset) {
3907 ir->offset->accept(this);
3908 offset[0] = this->result;
3909 }
3910 break;
3911 case ir_txb:
3912 if (is_cube_array ||
3913 sampler_type == glsl_type::samplerCubeShadow_type) {
3914 opcode = TGSI_OPCODE_TXB2;
3915 }
3916 else {
3917 opcode = TGSI_OPCODE_TXB;
3918 }
3919 ir->lod_info.bias->accept(this);
3920 lod_info = this->result;
3921 if (ir->offset) {
3922 ir->offset->accept(this);
3923 offset[0] = this->result;
3924 }
3925 break;
3926 case ir_txl:
3927 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
3928 ir->lod_info.lod->accept(this);
3929 lod_info = this->result;
3930 if (ir->offset) {
3931 ir->offset->accept(this);
3932 offset[0] = this->result;
3933 }
3934 break;
3935 case ir_txd:
3936 opcode = TGSI_OPCODE_TXD;
3937 ir->lod_info.grad.dPdx->accept(this);
3938 dx = this->result;
3939 ir->lod_info.grad.dPdy->accept(this);
3940 dy = this->result;
3941 if (ir->offset) {
3942 ir->offset->accept(this);
3943 offset[0] = this->result;
3944 }
3945 break;
3946 case ir_txs:
3947 opcode = TGSI_OPCODE_TXQ;
3948 ir->lod_info.lod->accept(this);
3949 lod_info = this->result;
3950 break;
3951 case ir_query_levels:
3952 opcode = TGSI_OPCODE_TXQ;
3953 lod_info = undef_src;
3954 levels_src = get_temp(ir->type);
3955 break;
3956 case ir_txf:
3957 opcode = TGSI_OPCODE_TXF;
3958 ir->lod_info.lod->accept(this);
3959 lod_info = this->result;
3960 if (ir->offset) {
3961 ir->offset->accept(this);
3962 offset[0] = this->result;
3963 }
3964 break;
3965 case ir_txf_ms:
3966 opcode = TGSI_OPCODE_TXF;
3967 ir->lod_info.sample_index->accept(this);
3968 sample_index = this->result;
3969 break;
3970 case ir_tg4:
3971 opcode = TGSI_OPCODE_TG4;
3972 ir->lod_info.component->accept(this);
3973 component = this->result;
3974 if (ir->offset) {
3975 ir->offset->accept(this);
3976 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
3977 const glsl_type *elt_type = ir->offset->type->fields.array;
3978 for (i = 0; i < ir->offset->type->length; i++) {
3979 offset[i] = this->result;
3980 offset[i].index += i * type_size(elt_type);
3981 offset[i].type = elt_type->base_type;
3982 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
3983 }
3984 } else {
3985 offset[0] = this->result;
3986 }
3987 }
3988 break;
3989 case ir_lod:
3990 opcode = TGSI_OPCODE_LODQ;
3991 break;
3992 case ir_texture_samples:
3993 opcode = TGSI_OPCODE_TXQS;
3994 break;
3995 case ir_samples_identical:
3996 unreachable("Unexpected ir_samples_identical opcode");
3997 }
3998
3999 if (ir->projector) {
4000 if (opcode == TGSI_OPCODE_TEX) {
4001 /* Slot the projector in as the last component of the coord. */
4002 coord_dst.writemask = WRITEMASK_W;
4003 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
4004 coord_dst.writemask = WRITEMASK_XYZW;
4005 opcode = TGSI_OPCODE_TXP;
4006 } else {
4007 st_src_reg coord_w = coord;
4008 coord_w.swizzle = SWIZZLE_WWWW;
4009
4010 /* For the other TEX opcodes there's no projective version
4011 * since the last slot is taken up by LOD info. Do the
4012 * projective divide now.
4013 */
4014 coord_dst.writemask = WRITEMASK_W;
4015 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
4016
4017 /* In the case where we have to project the coordinates "by hand,"
4018 * the shadow comparator value must also be projected.
4019 */
4020 st_src_reg tmp_src = coord;
4021 if (ir->shadow_comparitor) {
4022 /* Slot the shadow value in as the second to last component of the
4023 * coord.
4024 */
4025 ir->shadow_comparitor->accept(this);
4026
4027 tmp_src = get_temp(glsl_type::vec4_type);
4028 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
4029
4030 /* Projective division not allowed for array samplers. */
4031 assert(!sampler_type->sampler_array);
4032
4033 tmp_dst.writemask = WRITEMASK_Z;
4034 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
4035
4036 tmp_dst.writemask = WRITEMASK_XY;
4037 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
4038 }
4039
4040 coord_dst.writemask = WRITEMASK_XYZ;
4041 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
4042
4043 coord_dst.writemask = WRITEMASK_XYZW;
4044 coord.swizzle = SWIZZLE_XYZW;
4045 }
4046 }
4047
4048 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
4049 * comparator was put in the correct place (and projected) by the code,
4050 * above, that handles by-hand projection.
4051 */
4052 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
4053 /* Slot the shadow value in as the second to last component of the
4054 * coord.
4055 */
4056 ir->shadow_comparitor->accept(this);
4057
4058 if (is_cube_array) {
4059 cube_sc = get_temp(glsl_type::float_type);
4060 cube_sc_dst = st_dst_reg(cube_sc);
4061 cube_sc_dst.writemask = WRITEMASK_X;
4062 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
4063 cube_sc_dst.writemask = WRITEMASK_X;
4064 }
4065 else {
4066 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
4067 sampler_type->sampler_array) ||
4068 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4069 coord_dst.writemask = WRITEMASK_W;
4070 } else {
4071 coord_dst.writemask = WRITEMASK_Z;
4072 }
4073 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4074 coord_dst.writemask = WRITEMASK_XYZW;
4075 }
4076 }
4077
4078 if (ir->op == ir_txf_ms) {
4079 coord_dst.writemask = WRITEMASK_W;
4080 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
4081 coord_dst.writemask = WRITEMASK_XYZW;
4082 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
4083 opcode == TGSI_OPCODE_TXF) {
4084 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
4085 coord_dst.writemask = WRITEMASK_W;
4086 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
4087 coord_dst.writemask = WRITEMASK_XYZW;
4088 }
4089
4090 get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
4091 &sampler_index, &reladdr);
4092 if (reladdr.file != PROGRAM_UNDEFINED)
4093 emit_arl(ir, sampler_reladdr, reladdr);
4094
4095 if (opcode == TGSI_OPCODE_TXD)
4096 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
4097 else if (opcode == TGSI_OPCODE_TXQ) {
4098 if (ir->op == ir_query_levels) {
4099 /* the level is stored in W */
4100 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
4101 result_dst.writemask = WRITEMASK_X;
4102 levels_src.swizzle = SWIZZLE_WWWW;
4103 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
4104 } else
4105 inst = emit_asm(ir, opcode, result_dst, lod_info);
4106 } else if (opcode == TGSI_OPCODE_TXQS) {
4107 inst = emit_asm(ir, opcode, result_dst);
4108 } else if (opcode == TGSI_OPCODE_TXF) {
4109 inst = emit_asm(ir, opcode, result_dst, coord);
4110 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
4111 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
4112 } else if (opcode == TGSI_OPCODE_TEX2) {
4113 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4114 } else if (opcode == TGSI_OPCODE_TG4) {
4115 if (is_cube_array && ir->shadow_comparitor) {
4116 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4117 } else {
4118 inst = emit_asm(ir, opcode, result_dst, coord, component);
4119 }
4120 } else
4121 inst = emit_asm(ir, opcode, result_dst, coord);
4122
4123 if (ir->shadow_comparitor)
4124 inst->tex_shadow = GL_TRUE;
4125
4126 inst->sampler.index = sampler_index;
4127 inst->sampler_array_size = sampler_array_size;
4128 inst->sampler_base = sampler_base;
4129
4130 if (reladdr.file != PROGRAM_UNDEFINED) {
4131 inst->sampler.reladdr = ralloc(mem_ctx, st_src_reg);
4132 memcpy(inst->sampler.reladdr, &reladdr, sizeof(reladdr));
4133 }
4134
4135 if (ir->offset) {
4136 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
4137 inst->tex_offsets[i] = offset[i];
4138 inst->tex_offset_num_offset = i;
4139 }
4140
4141 switch (sampler_type->sampler_dimensionality) {
4142 case GLSL_SAMPLER_DIM_1D:
4143 inst->tex_target = (sampler_type->sampler_array)
4144 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
4145 break;
4146 case GLSL_SAMPLER_DIM_2D:
4147 inst->tex_target = (sampler_type->sampler_array)
4148 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
4149 break;
4150 case GLSL_SAMPLER_DIM_3D:
4151 inst->tex_target = TEXTURE_3D_INDEX;
4152 break;
4153 case GLSL_SAMPLER_DIM_CUBE:
4154 inst->tex_target = (sampler_type->sampler_array)
4155 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
4156 break;
4157 case GLSL_SAMPLER_DIM_RECT:
4158 inst->tex_target = TEXTURE_RECT_INDEX;
4159 break;
4160 case GLSL_SAMPLER_DIM_BUF:
4161 inst->tex_target = TEXTURE_BUFFER_INDEX;
4162 break;
4163 case GLSL_SAMPLER_DIM_EXTERNAL:
4164 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
4165 break;
4166 case GLSL_SAMPLER_DIM_MS:
4167 inst->tex_target = (sampler_type->sampler_array)
4168 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
4169 break;
4170 default:
4171 assert(!"Should not get here.");
4172 }
4173
4174 inst->tex_type = ir->type->base_type;
4175
4176 this->result = result_src;
4177 }
4178
4179 void
4180 glsl_to_tgsi_visitor::visit(ir_return *ir)
4181 {
4182 if (ir->get_value()) {
4183 st_dst_reg l;
4184 int i;
4185
4186 assert(current_function);
4187
4188 ir->get_value()->accept(this);
4189 st_src_reg r = this->result;
4190
4191 l = st_dst_reg(current_function->return_reg);
4192
4193 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
4194 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
4195 l.index++;
4196 r.index++;
4197 }
4198 }
4199
4200 emit_asm(ir, TGSI_OPCODE_RET);
4201 }
4202
4203 void
4204 glsl_to_tgsi_visitor::visit(ir_discard *ir)
4205 {
4206 if (ir->condition) {
4207 ir->condition->accept(this);
4208 st_src_reg condition = this->result;
4209
4210 /* Convert the bool condition to a float so we can negate. */
4211 if (native_integers) {
4212 st_src_reg temp = get_temp(ir->condition->type);
4213 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
4214 condition, st_src_reg_for_float(1.0));
4215 condition = temp;
4216 }
4217
4218 condition.negate = ~condition.negate;
4219 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
4220 } else {
4221 /* unconditional kil */
4222 emit_asm(ir, TGSI_OPCODE_KILL);
4223 }
4224 }
4225
4226 void
4227 glsl_to_tgsi_visitor::visit(ir_if *ir)
4228 {
4229 unsigned if_opcode;
4230 glsl_to_tgsi_instruction *if_inst;
4231
4232 ir->condition->accept(this);
4233 assert(this->result.file != PROGRAM_UNDEFINED);
4234
4235 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
4236
4237 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
4238
4239 this->instructions.push_tail(if_inst);
4240
4241 visit_exec_list(&ir->then_instructions, this);
4242
4243 if (!ir->else_instructions.is_empty()) {
4244 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
4245 visit_exec_list(&ir->else_instructions, this);
4246 }
4247
4248 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
4249 }
4250
4251
4252 void
4253 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
4254 {
4255 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4256
4257 ir->stream->accept(this);
4258 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
4259 }
4260
4261 void
4262 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
4263 {
4264 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4265
4266 ir->stream->accept(this);
4267 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
4268 }
4269
4270 void
4271 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
4272 {
4273 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
4274 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
4275
4276 emit_asm(ir, TGSI_OPCODE_BARRIER);
4277 }
4278
4279 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
4280 {
4281 STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
4282
4283 result.file = PROGRAM_UNDEFINED;
4284 next_temp = 1;
4285 array_sizes = NULL;
4286 max_num_arrays = 0;
4287 next_array = 0;
4288 num_input_arrays = 0;
4289 num_output_arrays = 0;
4290 next_signature_id = 1;
4291 num_immediates = 0;
4292 current_function = NULL;
4293 num_address_regs = 0;
4294 samplers_used = 0;
4295 buffers_used = 0;
4296 images_used = 0;
4297 indirect_addr_consts = false;
4298 wpos_transform_const = -1;
4299 glsl_version = 0;
4300 native_integers = false;
4301 mem_ctx = ralloc_context(NULL);
4302 ctx = NULL;
4303 prog = NULL;
4304 shader_program = NULL;
4305 shader = NULL;
4306 options = NULL;
4307 have_sqrt = false;
4308 have_fma = false;
4309 use_shared_memory = false;
4310 }
4311
4312 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
4313 {
4314 free(array_sizes);
4315 ralloc_free(mem_ctx);
4316 }
4317
4318 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
4319 {
4320 delete v;
4321 }
4322
4323
4324 /**
4325 * Count resources used by the given gpu program (number of texture
4326 * samplers, etc).
4327 */
4328 static void
4329 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
4330 {
4331 v->samplers_used = 0;
4332 v->buffers_used = 0;
4333 v->images_used = 0;
4334
4335 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
4336 if (inst->info->is_tex) {
4337 for (int i = 0; i < inst->sampler_array_size; i++) {
4338 unsigned idx = inst->sampler_base + i;
4339 v->samplers_used |= 1u << idx;
4340
4341 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
4342 v->sampler_types[idx] = inst->tex_type;
4343 v->sampler_targets[idx] =
4344 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4345
4346 if (inst->tex_shadow) {
4347 prog->ShadowSamplers |= 1 << (inst->sampler.index + i);
4348 }
4349 }
4350 }
4351 if (inst->buffer.file != PROGRAM_UNDEFINED && (
4352 is_resource_instruction(inst->op) ||
4353 inst->op == TGSI_OPCODE_STORE)) {
4354 if (inst->buffer.file == PROGRAM_BUFFER) {
4355 v->buffers_used |= 1 << inst->buffer.index;
4356 } else if (inst->buffer.file == PROGRAM_MEMORY) {
4357 v->use_shared_memory = true;
4358 } else {
4359 assert(inst->buffer.file == PROGRAM_IMAGE);
4360 for (int i = 0; i < inst->sampler_array_size; i++) {
4361 unsigned idx = inst->sampler_base + i;
4362 v->images_used |= 1 << idx;
4363 v->image_targets[idx] =
4364 st_translate_texture_target(inst->tex_target, false);
4365 v->image_formats[idx] = inst->image_format;
4366 }
4367 }
4368 }
4369 }
4370 prog->SamplersUsed = v->samplers_used;
4371
4372 if (v->shader_program != NULL)
4373 _mesa_update_shader_textures_used(v->shader_program, prog);
4374 }
4375
4376 /**
4377 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
4378 * are read from the given src in this instruction
4379 */
4380 static int
4381 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
4382 {
4383 int read_mask = 0, comp;
4384
4385 /* Now, given the src swizzle and the written channels, find which
4386 * components are actually read
4387 */
4388 for (comp = 0; comp < 4; ++comp) {
4389 const unsigned coord = GET_SWZ(src.swizzle, comp);
4390 assert(coord < 4);
4391 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
4392 read_mask |= 1 << coord;
4393 }
4394
4395 return read_mask;
4396 }
4397
4398 /**
4399 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
4400 * instruction is the first instruction to write to register T0. There are
4401 * several lowering passes done in GLSL IR (e.g. branches and
4402 * relative addressing) that create a large number of conditional assignments
4403 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
4404 *
4405 * Here is why this conversion is safe:
4406 * CMP T0, T1 T2 T0 can be expanded to:
4407 * if (T1 < 0.0)
4408 * MOV T0, T2;
4409 * else
4410 * MOV T0, T0;
4411 *
4412 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
4413 * as the original program. If (T1 < 0.0) evaluates to false, executing
4414 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
4415 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
4416 * because any instruction that was going to read from T0 after this was going
4417 * to read a garbage value anyway.
4418 */
4419 void
4420 glsl_to_tgsi_visitor::simplify_cmp(void)
4421 {
4422 int tempWritesSize = 0;
4423 unsigned *tempWrites = NULL;
4424 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
4425
4426 memset(outputWrites, 0, sizeof(outputWrites));
4427
4428 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4429 unsigned prevWriteMask = 0;
4430
4431 /* Give up if we encounter relative addressing or flow control. */
4432 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
4433 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
4434 tgsi_get_opcode_info(inst->op)->is_branch ||
4435 inst->op == TGSI_OPCODE_BGNSUB ||
4436 inst->op == TGSI_OPCODE_CONT ||
4437 inst->op == TGSI_OPCODE_END ||
4438 inst->op == TGSI_OPCODE_ENDSUB ||
4439 inst->op == TGSI_OPCODE_RET) {
4440 break;
4441 }
4442
4443 if (inst->dst[0].file == PROGRAM_OUTPUT) {
4444 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
4445 prevWriteMask = outputWrites[inst->dst[0].index];
4446 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4447 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
4448 if (inst->dst[0].index >= tempWritesSize) {
4449 const int inc = 4096;
4450
4451 tempWrites = (unsigned*)
4452 realloc(tempWrites,
4453 (tempWritesSize + inc) * sizeof(unsigned));
4454 if (!tempWrites)
4455 return;
4456
4457 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
4458 tempWritesSize += inc;
4459 }
4460
4461 prevWriteMask = tempWrites[inst->dst[0].index];
4462 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4463 } else
4464 continue;
4465
4466 /* For a CMP to be considered a conditional write, the destination
4467 * register and source register two must be the same. */
4468 if (inst->op == TGSI_OPCODE_CMP
4469 && !(inst->dst[0].writemask & prevWriteMask)
4470 && inst->src[2].file == inst->dst[0].file
4471 && inst->src[2].index == inst->dst[0].index
4472 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
4473
4474 inst->op = TGSI_OPCODE_MOV;
4475 inst->info = tgsi_get_opcode_info(inst->op);
4476 inst->src[0] = inst->src[1];
4477 }
4478 }
4479
4480 free(tempWrites);
4481 }
4482
4483 /* Replaces all references to a temporary register index with another index. */
4484 void
4485 glsl_to_tgsi_visitor::rename_temp_registers(int num_renames, struct rename_reg_pair *renames)
4486 {
4487 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4488 unsigned j;
4489 int k;
4490 for (j = 0; j < num_inst_src_regs(inst); j++) {
4491 if (inst->src[j].file == PROGRAM_TEMPORARY)
4492 for (k = 0; k < num_renames; k++)
4493 if (inst->src[j].index == renames[k].old_reg)
4494 inst->src[j].index = renames[k].new_reg;
4495 }
4496
4497 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4498 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4499 for (k = 0; k < num_renames; k++)
4500 if (inst->tex_offsets[j].index == renames[k].old_reg)
4501 inst->tex_offsets[j].index = renames[k].new_reg;
4502 }
4503
4504 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4505 if (inst->dst[j].file == PROGRAM_TEMPORARY)
4506 for (k = 0; k < num_renames; k++)
4507 if (inst->dst[j].index == renames[k].old_reg)
4508 inst->dst[j].index = renames[k].new_reg;
4509 }
4510 }
4511 }
4512
4513 void
4514 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
4515 {
4516 int depth = 0; /* loop depth */
4517 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4518 unsigned i = 0, j;
4519
4520 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4521 for (j = 0; j < num_inst_src_regs(inst); j++) {
4522 if (inst->src[j].file == PROGRAM_TEMPORARY) {
4523 if (first_reads[inst->src[j].index] == -1)
4524 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
4525 }
4526 }
4527 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4528 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
4529 if (first_reads[inst->tex_offsets[j].index] == -1)
4530 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
4531 }
4532 }
4533 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4534 if(depth++ == 0)
4535 loop_start = i;
4536 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4537 if (--depth == 0)
4538 loop_start = -1;
4539 }
4540 assert(depth >= 0);
4541 i++;
4542 }
4543 }
4544
4545 void
4546 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
4547 {
4548 int depth = 0; /* loop depth */
4549 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4550 unsigned i = 0, j;
4551 int k;
4552 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4553 for (j = 0; j < num_inst_src_regs(inst); j++) {
4554 if (inst->src[j].file == PROGRAM_TEMPORARY)
4555 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
4556 }
4557 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4558 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4559 if (first_writes[inst->dst[j].index] == -1)
4560 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4561 last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
4562 }
4563 }
4564 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4565 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4566 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
4567 }
4568 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4569 if(depth++ == 0)
4570 loop_start = i;
4571 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4572 if (--depth == 0) {
4573 loop_start = -1;
4574 for (k = 0; k < this->next_temp; k++) {
4575 if (last_reads[k] == -2) {
4576 last_reads[k] = i;
4577 }
4578 }
4579 }
4580 }
4581 assert(depth >= 0);
4582 i++;
4583 }
4584 }
4585
4586 void
4587 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
4588 {
4589 int depth = 0; /* loop depth */
4590 int i = 0, k;
4591 unsigned j;
4592
4593 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4594 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4595 if (inst->dst[j].file == PROGRAM_TEMPORARY)
4596 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
4597 }
4598
4599 if (inst->op == TGSI_OPCODE_BGNLOOP)
4600 depth++;
4601 else if (inst->op == TGSI_OPCODE_ENDLOOP)
4602 if (--depth == 0) {
4603 for (k = 0; k < this->next_temp; k++) {
4604 if (last_writes[k] == -2) {
4605 last_writes[k] = i;
4606 }
4607 }
4608 }
4609 assert(depth >= 0);
4610 i++;
4611 }
4612 }
4613
4614 /*
4615 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
4616 * channels for copy propagation and updates following instructions to
4617 * use the original versions.
4618 *
4619 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4620 * will occur. As an example, a TXP production before this pass:
4621 *
4622 * 0: MOV TEMP[1], INPUT[4].xyyy;
4623 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4624 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
4625 *
4626 * and after:
4627 *
4628 * 0: MOV TEMP[1], INPUT[4].xyyy;
4629 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4630 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4631 *
4632 * which allows for dead code elimination on TEMP[1]'s writes.
4633 */
4634 void
4635 glsl_to_tgsi_visitor::copy_propagate(void)
4636 {
4637 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
4638 glsl_to_tgsi_instruction *,
4639 this->next_temp * 4);
4640 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4641 int level = 0;
4642
4643 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4644 assert(inst->dst[0].file != PROGRAM_TEMPORARY
4645 || inst->dst[0].index < this->next_temp);
4646
4647 /* First, do any copy propagation possible into the src regs. */
4648 for (int r = 0; r < 3; r++) {
4649 glsl_to_tgsi_instruction *first = NULL;
4650 bool good = true;
4651 int acp_base = inst->src[r].index * 4;
4652
4653 if (inst->src[r].file != PROGRAM_TEMPORARY ||
4654 inst->src[r].reladdr ||
4655 inst->src[r].reladdr2)
4656 continue;
4657
4658 /* See if we can find entries in the ACP consisting of MOVs
4659 * from the same src register for all the swizzled channels
4660 * of this src register reference.
4661 */
4662 for (int i = 0; i < 4; i++) {
4663 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4664 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
4665
4666 if (!copy_chan) {
4667 good = false;
4668 break;
4669 }
4670
4671 assert(acp_level[acp_base + src_chan] <= level);
4672
4673 if (!first) {
4674 first = copy_chan;
4675 } else {
4676 if (first->src[0].file != copy_chan->src[0].file ||
4677 first->src[0].index != copy_chan->src[0].index ||
4678 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
4679 first->src[0].index2D != copy_chan->src[0].index2D) {
4680 good = false;
4681 break;
4682 }
4683 }
4684 }
4685
4686 if (good) {
4687 /* We've now validated that we can copy-propagate to
4688 * replace this src register reference. Do it.
4689 */
4690 inst->src[r].file = first->src[0].file;
4691 inst->src[r].index = first->src[0].index;
4692 inst->src[r].index2D = first->src[0].index2D;
4693 inst->src[r].has_index2 = first->src[0].has_index2;
4694 inst->src[r].double_reg2 = first->src[0].double_reg2;
4695 inst->src[r].array_id = first->src[0].array_id;
4696
4697 int swizzle = 0;
4698 for (int i = 0; i < 4; i++) {
4699 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4700 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
4701 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
4702 }
4703 inst->src[r].swizzle = swizzle;
4704 }
4705 }
4706
4707 switch (inst->op) {
4708 case TGSI_OPCODE_BGNLOOP:
4709 case TGSI_OPCODE_ENDLOOP:
4710 /* End of a basic block, clear the ACP entirely. */
4711 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4712 break;
4713
4714 case TGSI_OPCODE_IF:
4715 case TGSI_OPCODE_UIF:
4716 ++level;
4717 break;
4718
4719 case TGSI_OPCODE_ENDIF:
4720 case TGSI_OPCODE_ELSE:
4721 /* Clear all channels written inside the block from the ACP, but
4722 * leaving those that were not touched.
4723 */
4724 for (int r = 0; r < this->next_temp; r++) {
4725 for (int c = 0; c < 4; c++) {
4726 if (!acp[4 * r + c])
4727 continue;
4728
4729 if (acp_level[4 * r + c] >= level)
4730 acp[4 * r + c] = NULL;
4731 }
4732 }
4733 if (inst->op == TGSI_OPCODE_ENDIF)
4734 --level;
4735 break;
4736
4737 default:
4738 /* Continuing the block, clear any written channels from
4739 * the ACP.
4740 */
4741 for (int d = 0; d < 2; d++) {
4742 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
4743 /* Any temporary might be written, so no copy propagation
4744 * across this instruction.
4745 */
4746 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4747 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
4748 inst->dst[d].reladdr) {
4749 /* Any output might be written, so no copy propagation
4750 * from outputs across this instruction.
4751 */
4752 for (int r = 0; r < this->next_temp; r++) {
4753 for (int c = 0; c < 4; c++) {
4754 if (!acp[4 * r + c])
4755 continue;
4756
4757 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
4758 acp[4 * r + c] = NULL;
4759 }
4760 }
4761 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
4762 inst->dst[d].file == PROGRAM_OUTPUT) {
4763 /* Clear where it's used as dst. */
4764 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
4765 for (int c = 0; c < 4; c++) {
4766 if (inst->dst[d].writemask & (1 << c))
4767 acp[4 * inst->dst[d].index + c] = NULL;
4768 }
4769 }
4770
4771 /* Clear where it's used as src. */
4772 for (int r = 0; r < this->next_temp; r++) {
4773 for (int c = 0; c < 4; c++) {
4774 if (!acp[4 * r + c])
4775 continue;
4776
4777 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
4778
4779 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
4780 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
4781 inst->dst[d].writemask & (1 << src_chan)) {
4782 acp[4 * r + c] = NULL;
4783 }
4784 }
4785 }
4786 }
4787 }
4788 break;
4789 }
4790
4791 /* If this is a copy, add it to the ACP. */
4792 if (inst->op == TGSI_OPCODE_MOV &&
4793 inst->dst[0].file == PROGRAM_TEMPORARY &&
4794 !(inst->dst[0].file == inst->src[0].file &&
4795 inst->dst[0].index == inst->src[0].index) &&
4796 !inst->dst[0].reladdr &&
4797 !inst->dst[0].reladdr2 &&
4798 !inst->saturate &&
4799 inst->src[0].file != PROGRAM_ARRAY &&
4800 !inst->src[0].reladdr &&
4801 !inst->src[0].reladdr2 &&
4802 !inst->src[0].negate) {
4803 for (int i = 0; i < 4; i++) {
4804 if (inst->dst[0].writemask & (1 << i)) {
4805 acp[4 * inst->dst[0].index + i] = inst;
4806 acp_level[4 * inst->dst[0].index + i] = level;
4807 }
4808 }
4809 }
4810 }
4811
4812 ralloc_free(acp_level);
4813 ralloc_free(acp);
4814 }
4815
4816 /*
4817 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
4818 * code elimination.
4819 *
4820 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4821 * will occur. As an example, a TXP production after copy propagation but
4822 * before this pass:
4823 *
4824 * 0: MOV TEMP[1], INPUT[4].xyyy;
4825 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4826 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4827 *
4828 * and after this pass:
4829 *
4830 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4831 */
4832 int
4833 glsl_to_tgsi_visitor::eliminate_dead_code(void)
4834 {
4835 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
4836 glsl_to_tgsi_instruction *,
4837 this->next_temp * 4);
4838 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4839 int level = 0;
4840 int removed = 0;
4841
4842 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4843 assert(inst->dst[0].file != PROGRAM_TEMPORARY
4844 || inst->dst[0].index < this->next_temp);
4845
4846 switch (inst->op) {
4847 case TGSI_OPCODE_BGNLOOP:
4848 case TGSI_OPCODE_ENDLOOP:
4849 case TGSI_OPCODE_CONT:
4850 case TGSI_OPCODE_BRK:
4851 /* End of a basic block, clear the write array entirely.
4852 *
4853 * This keeps us from killing dead code when the writes are
4854 * on either side of a loop, even when the register isn't touched
4855 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
4856 * dead code of this type, so it shouldn't make a difference as long as
4857 * the dead code elimination pass in the GLSL compiler does its job.
4858 */
4859 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4860 break;
4861
4862 case TGSI_OPCODE_ENDIF:
4863 case TGSI_OPCODE_ELSE:
4864 /* Promote the recorded level of all channels written inside the
4865 * preceding if or else block to the level above the if/else block.
4866 */
4867 for (int r = 0; r < this->next_temp; r++) {
4868 for (int c = 0; c < 4; c++) {
4869 if (!writes[4 * r + c])
4870 continue;
4871
4872 if (write_level[4 * r + c] == level)
4873 write_level[4 * r + c] = level-1;
4874 }
4875 }
4876 if(inst->op == TGSI_OPCODE_ENDIF)
4877 --level;
4878 break;
4879
4880 case TGSI_OPCODE_IF:
4881 case TGSI_OPCODE_UIF:
4882 ++level;
4883 /* fallthrough to default case to mark the condition as read */
4884 default:
4885 /* Continuing the block, clear any channels from the write array that
4886 * are read by this instruction.
4887 */
4888 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
4889 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
4890 /* Any temporary might be read, so no dead code elimination
4891 * across this instruction.
4892 */
4893 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4894 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
4895 /* Clear where it's used as src. */
4896 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
4897 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
4898 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
4899 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
4900
4901 for (int c = 0; c < 4; c++) {
4902 if (src_chans & (1 << c))
4903 writes[4 * inst->src[i].index + c] = NULL;
4904 }
4905 }
4906 }
4907 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
4908 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
4909 /* Any temporary might be read, so no dead code elimination
4910 * across this instruction.
4911 */
4912 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4913 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
4914 /* Clear where it's used as src. */
4915 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
4916 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
4917 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
4918 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
4919
4920 for (int c = 0; c < 4; c++) {
4921 if (src_chans & (1 << c))
4922 writes[4 * inst->tex_offsets[i].index + c] = NULL;
4923 }
4924 }
4925 }
4926 break;
4927 }
4928
4929 /* If this instruction writes to a temporary, add it to the write array.
4930 * If there is already an instruction in the write array for one or more
4931 * of the channels, flag that channel write as dead.
4932 */
4933 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
4934 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
4935 !inst->dst[i].reladdr) {
4936 for (int c = 0; c < 4; c++) {
4937 if (inst->dst[i].writemask & (1 << c)) {
4938 if (writes[4 * inst->dst[i].index + c]) {
4939 if (write_level[4 * inst->dst[i].index + c] < level)
4940 continue;
4941 else
4942 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
4943 }
4944 writes[4 * inst->dst[i].index + c] = inst;
4945 write_level[4 * inst->dst[i].index + c] = level;
4946 }
4947 }
4948 }
4949 }
4950 }
4951
4952 /* Anything still in the write array at this point is dead code. */
4953 for (int r = 0; r < this->next_temp; r++) {
4954 for (int c = 0; c < 4; c++) {
4955 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
4956 if (inst)
4957 inst->dead_mask |= (1 << c);
4958 }
4959 }
4960
4961 /* Now actually remove the instructions that are completely dead and update
4962 * the writemask of other instructions with dead channels.
4963 */
4964 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4965 if (!inst->dead_mask || !inst->dst[0].writemask)
4966 continue;
4967 /* No amount of dead masks should remove memory stores */
4968 if (inst->info->is_store)
4969 continue;
4970
4971 if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
4972 inst->remove();
4973 delete inst;
4974 removed++;
4975 } else {
4976 if (glsl_base_type_is_64bit(inst->dst[0].type)) {
4977 if (inst->dead_mask == WRITEMASK_XY ||
4978 inst->dead_mask == WRITEMASK_ZW)
4979 inst->dst[0].writemask &= ~(inst->dead_mask);
4980 } else
4981 inst->dst[0].writemask &= ~(inst->dead_mask);
4982 }
4983 }
4984
4985 ralloc_free(write_level);
4986 ralloc_free(writes);
4987
4988 return removed;
4989 }
4990
4991 /* merge DFRACEXP instructions into one. */
4992 void
4993 glsl_to_tgsi_visitor::merge_two_dsts(void)
4994 {
4995 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4996 glsl_to_tgsi_instruction *inst2;
4997 bool merged;
4998 if (num_inst_dst_regs(inst) != 2)
4999 continue;
5000
5001 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
5002 inst->dst[1].file != PROGRAM_UNDEFINED)
5003 continue;
5004
5005 inst2 = (glsl_to_tgsi_instruction *) inst->next;
5006 do {
5007
5008 if (inst->src[0].file == inst2->src[0].file &&
5009 inst->src[0].index == inst2->src[0].index &&
5010 inst->src[0].type == inst2->src[0].type &&
5011 inst->src[0].swizzle == inst2->src[0].swizzle)
5012 break;
5013 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
5014 } while (inst2);
5015
5016 if (!inst2)
5017 continue;
5018 merged = false;
5019 if (inst->dst[0].file == PROGRAM_UNDEFINED) {
5020 merged = true;
5021 inst->dst[0] = inst2->dst[0];
5022 } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
5023 inst->dst[1] = inst2->dst[1];
5024 merged = true;
5025 }
5026
5027 if (merged) {
5028 inst2->remove();
5029 delete inst2;
5030 }
5031 }
5032 }
5033
5034 /* Merges temporary registers together where possible to reduce the number of
5035 * registers needed to run a program.
5036 *
5037 * Produces optimal code only after copy propagation and dead code elimination
5038 * have been run. */
5039 void
5040 glsl_to_tgsi_visitor::merge_registers(void)
5041 {
5042 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
5043 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
5044 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5045 int i, j;
5046 int num_renames = 0;
5047
5048 /* Read the indices of the last read and first write to each temp register
5049 * into an array so that we don't have to traverse the instruction list as
5050 * much. */
5051 for (i = 0; i < this->next_temp; i++) {
5052 last_reads[i] = -1;
5053 first_writes[i] = -1;
5054 }
5055 get_last_temp_read_first_temp_write(last_reads, first_writes);
5056
5057 /* Start looking for registers with non-overlapping usages that can be
5058 * merged together. */
5059 for (i = 0; i < this->next_temp; i++) {
5060 /* Don't touch unused registers. */
5061 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
5062
5063 for (j = 0; j < this->next_temp; j++) {
5064 /* Don't touch unused registers. */
5065 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
5066
5067 /* We can merge the two registers if the first write to j is after or
5068 * in the same instruction as the last read from i. Note that the
5069 * register at index i will always be used earlier or at the same time
5070 * as the register at index j. */
5071 if (first_writes[i] <= first_writes[j] &&
5072 last_reads[i] <= first_writes[j]) {
5073 renames[num_renames].old_reg = j;
5074 renames[num_renames].new_reg = i;
5075 num_renames++;
5076
5077 /* Update the first_writes and last_reads arrays with the new
5078 * values for the merged register index, and mark the newly unused
5079 * register index as such. */
5080 assert(last_reads[j] >= last_reads[i]);
5081 last_reads[i] = last_reads[j];
5082 first_writes[j] = -1;
5083 last_reads[j] = -1;
5084 }
5085 }
5086 }
5087
5088 rename_temp_registers(num_renames, renames);
5089 ralloc_free(renames);
5090 ralloc_free(last_reads);
5091 ralloc_free(first_writes);
5092 }
5093
5094 /* Reassign indices to temporary registers by reusing unused indices created
5095 * by optimization passes. */
5096 void
5097 glsl_to_tgsi_visitor::renumber_registers(void)
5098 {
5099 int i = 0;
5100 int new_index = 0;
5101 int *first_reads = rzalloc_array(mem_ctx, int, this->next_temp);
5102 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5103 int num_renames = 0;
5104 for (i = 0; i < this->next_temp; i++) {
5105 first_reads[i] = -1;
5106 }
5107 get_first_temp_read(first_reads);
5108
5109 for (i = 0; i < this->next_temp; i++) {
5110 if (first_reads[i] < 0) continue;
5111 if (i != new_index) {
5112 renames[num_renames].old_reg = i;
5113 renames[num_renames].new_reg = new_index;
5114 num_renames++;
5115 }
5116 new_index++;
5117 }
5118
5119 rename_temp_registers(num_renames, renames);
5120 this->next_temp = new_index;
5121 ralloc_free(renames);
5122 ralloc_free(first_reads);
5123 }
5124
5125 /* ------------------------- TGSI conversion stuff -------------------------- */
5126 struct label {
5127 unsigned branch_target;
5128 unsigned token;
5129 };
5130
5131 /**
5132 * Intermediate state used during shader translation.
5133 */
5134 struct st_translate {
5135 struct ureg_program *ureg;
5136
5137 unsigned temps_size;
5138 struct ureg_dst *temps;
5139
5140 struct ureg_dst *arrays;
5141 unsigned num_temp_arrays;
5142 struct ureg_src *constants;
5143 int num_constants;
5144 struct ureg_src *immediates;
5145 int num_immediates;
5146 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
5147 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
5148 struct ureg_dst address[3];
5149 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
5150 struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
5151 struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
5152 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
5153 struct ureg_src shared_memory;
5154 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
5155 unsigned *array_sizes;
5156 struct array_decl *input_arrays;
5157 struct array_decl *output_arrays;
5158
5159 const GLuint *inputMapping;
5160 const GLuint *outputMapping;
5161
5162 /* For every instruction that contains a label (eg CALL), keep
5163 * details so that we can go back afterwards and emit the correct
5164 * tgsi instruction number for each label.
5165 */
5166 struct label *labels;
5167 unsigned labels_size;
5168 unsigned labels_count;
5169
5170 /* Keep a record of the tgsi instruction number that each mesa
5171 * instruction starts at, will be used to fix up labels after
5172 * translation.
5173 */
5174 unsigned *insn;
5175 unsigned insn_size;
5176 unsigned insn_count;
5177
5178 unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
5179
5180 boolean error;
5181 };
5182
5183 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
5184 unsigned
5185 _mesa_sysval_to_semantic(unsigned sysval)
5186 {
5187 switch (sysval) {
5188 /* Vertex shader */
5189 case SYSTEM_VALUE_VERTEX_ID:
5190 return TGSI_SEMANTIC_VERTEXID;
5191 case SYSTEM_VALUE_INSTANCE_ID:
5192 return TGSI_SEMANTIC_INSTANCEID;
5193 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
5194 return TGSI_SEMANTIC_VERTEXID_NOBASE;
5195 case SYSTEM_VALUE_BASE_VERTEX:
5196 return TGSI_SEMANTIC_BASEVERTEX;
5197 case SYSTEM_VALUE_BASE_INSTANCE:
5198 return TGSI_SEMANTIC_BASEINSTANCE;
5199 case SYSTEM_VALUE_DRAW_ID:
5200 return TGSI_SEMANTIC_DRAWID;
5201
5202 /* Geometry shader */
5203 case SYSTEM_VALUE_INVOCATION_ID:
5204 return TGSI_SEMANTIC_INVOCATIONID;
5205
5206 /* Fragment shader */
5207 case SYSTEM_VALUE_FRAG_COORD:
5208 return TGSI_SEMANTIC_POSITION;
5209 case SYSTEM_VALUE_FRONT_FACE:
5210 return TGSI_SEMANTIC_FACE;
5211 case SYSTEM_VALUE_SAMPLE_ID:
5212 return TGSI_SEMANTIC_SAMPLEID;
5213 case SYSTEM_VALUE_SAMPLE_POS:
5214 return TGSI_SEMANTIC_SAMPLEPOS;
5215 case SYSTEM_VALUE_SAMPLE_MASK_IN:
5216 return TGSI_SEMANTIC_SAMPLEMASK;
5217 case SYSTEM_VALUE_HELPER_INVOCATION:
5218 return TGSI_SEMANTIC_HELPER_INVOCATION;
5219
5220 /* Tessellation shader */
5221 case SYSTEM_VALUE_TESS_COORD:
5222 return TGSI_SEMANTIC_TESSCOORD;
5223 case SYSTEM_VALUE_VERTICES_IN:
5224 return TGSI_SEMANTIC_VERTICESIN;
5225 case SYSTEM_VALUE_PRIMITIVE_ID:
5226 return TGSI_SEMANTIC_PRIMID;
5227 case SYSTEM_VALUE_TESS_LEVEL_OUTER:
5228 return TGSI_SEMANTIC_TESSOUTER;
5229 case SYSTEM_VALUE_TESS_LEVEL_INNER:
5230 return TGSI_SEMANTIC_TESSINNER;
5231
5232 /* Compute shader */
5233 case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
5234 return TGSI_SEMANTIC_THREAD_ID;
5235 case SYSTEM_VALUE_WORK_GROUP_ID:
5236 return TGSI_SEMANTIC_BLOCK_ID;
5237 case SYSTEM_VALUE_NUM_WORK_GROUPS:
5238 return TGSI_SEMANTIC_GRID_SIZE;
5239
5240 /* Unhandled */
5241 case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
5242 case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
5243 case SYSTEM_VALUE_VERTEX_CNT:
5244 default:
5245 assert(!"Unexpected SYSTEM_VALUE_ enum");
5246 return TGSI_SEMANTIC_COUNT;
5247 }
5248 }
5249
5250
5251 /**
5252 * Make note of a branch to a label in the TGSI code.
5253 * After we've emitted all instructions, we'll go over the list
5254 * of labels built here and patch the TGSI code with the actual
5255 * location of each label.
5256 */
5257 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
5258 {
5259 unsigned i;
5260
5261 if (t->labels_count + 1 >= t->labels_size) {
5262 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
5263 t->labels = (struct label *)realloc(t->labels,
5264 t->labels_size * sizeof(struct label));
5265 if (t->labels == NULL) {
5266 static unsigned dummy;
5267 t->error = TRUE;
5268 return &dummy;
5269 }
5270 }
5271
5272 i = t->labels_count++;
5273 t->labels[i].branch_target = branch_target;
5274 return &t->labels[i].token;
5275 }
5276
5277 /**
5278 * Called prior to emitting the TGSI code for each instruction.
5279 * Allocate additional space for instructions if needed.
5280 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
5281 * the next TGSI instruction.
5282 */
5283 static void set_insn_start(struct st_translate *t, unsigned start)
5284 {
5285 if (t->insn_count + 1 >= t->insn_size) {
5286 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
5287 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
5288 if (t->insn == NULL) {
5289 t->error = TRUE;
5290 return;
5291 }
5292 }
5293
5294 t->insn[t->insn_count++] = start;
5295 }
5296
5297 /**
5298 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
5299 */
5300 static struct ureg_src
5301 emit_immediate(struct st_translate *t,
5302 gl_constant_value values[4],
5303 int type, int size)
5304 {
5305 struct ureg_program *ureg = t->ureg;
5306
5307 switch(type)
5308 {
5309 case GL_FLOAT:
5310 return ureg_DECL_immediate(ureg, &values[0].f, size);
5311 case GL_DOUBLE:
5312 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
5313 case GL_INT:
5314 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
5315 case GL_UNSIGNED_INT:
5316 case GL_BOOL:
5317 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
5318 default:
5319 assert(!"should not get here - type must be float, int, uint, or bool");
5320 return ureg_src_undef();
5321 }
5322 }
5323
5324 /**
5325 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
5326 */
5327 static struct ureg_dst
5328 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
5329 unsigned array_id)
5330 {
5331 unsigned array;
5332
5333 switch(file) {
5334 case PROGRAM_UNDEFINED:
5335 return ureg_dst_undef();
5336
5337 case PROGRAM_TEMPORARY:
5338 /* Allocate space for temporaries on demand. */
5339 if (index >= t->temps_size) {
5340 const int inc = align(index - t->temps_size + 1, 4096);
5341
5342 t->temps = (struct ureg_dst*)
5343 realloc(t->temps,
5344 (t->temps_size + inc) * sizeof(struct ureg_dst));
5345 if (!t->temps)
5346 return ureg_dst_undef();
5347
5348 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
5349 t->temps_size += inc;
5350 }
5351
5352 if (ureg_dst_is_undef(t->temps[index]))
5353 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
5354
5355 return t->temps[index];
5356
5357 case PROGRAM_ARRAY:
5358 array = index >> 16;
5359
5360 assert(array < t->num_temp_arrays);
5361
5362 if (ureg_dst_is_undef(t->arrays[array]))
5363 t->arrays[array] = ureg_DECL_array_temporary(
5364 t->ureg, t->array_sizes[array], TRUE);
5365
5366 return ureg_dst_array_offset(t->arrays[array],
5367 (int)(index & 0xFFFF) - 0x8000);
5368
5369 case PROGRAM_OUTPUT:
5370 if (!array_id) {
5371 if (t->procType == PIPE_SHADER_FRAGMENT)
5372 assert(index < FRAG_RESULT_MAX);
5373 else if (t->procType == PIPE_SHADER_TESS_CTRL ||
5374 t->procType == PIPE_SHADER_TESS_EVAL)
5375 assert(index < VARYING_SLOT_TESS_MAX);
5376 else
5377 assert(index < VARYING_SLOT_MAX);
5378
5379 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
5380 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
5381 return t->outputs[t->outputMapping[index]];
5382 }
5383 else {
5384 struct array_decl *decl = &t->output_arrays[array_id-1];
5385 unsigned mesa_index = decl->mesa_index;
5386 int slot = t->outputMapping[mesa_index];
5387
5388 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
5389 assert(t->outputs[slot].ArrayID == array_id);
5390 return ureg_dst_array_offset(t->outputs[slot], index - mesa_index);
5391 }
5392
5393 case PROGRAM_ADDRESS:
5394 return t->address[index];
5395
5396 default:
5397 assert(!"unknown dst register file");
5398 return ureg_dst_undef();
5399 }
5400 }
5401
5402 /**
5403 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
5404 */
5405 static struct ureg_src
5406 src_register(struct st_translate *t, const st_src_reg *reg)
5407 {
5408 int index = reg->index;
5409 int double_reg2 = reg->double_reg2 ? 1 : 0;
5410
5411 switch(reg->file) {
5412 case PROGRAM_UNDEFINED:
5413 return ureg_imm4f(t->ureg, 0, 0, 0, 0);
5414
5415 case PROGRAM_TEMPORARY:
5416 case PROGRAM_ARRAY:
5417 case PROGRAM_OUTPUT:
5418 return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
5419
5420 case PROGRAM_UNIFORM:
5421 assert(reg->index >= 0);
5422 return reg->index < t->num_constants ?
5423 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5424 case PROGRAM_STATE_VAR:
5425 case PROGRAM_CONSTANT: /* ie, immediate */
5426 if (reg->has_index2)
5427 return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
5428 else
5429 return reg->index >= 0 && reg->index < t->num_constants ?
5430 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5431
5432 case PROGRAM_IMMEDIATE:
5433 assert(reg->index >= 0 && reg->index < t->num_immediates);
5434 return t->immediates[reg->index];
5435
5436 case PROGRAM_INPUT:
5437 /* GLSL inputs are 64-bit containers, so we have to
5438 * map back to the original index and add the offset after
5439 * mapping. */
5440 index -= double_reg2;
5441 if (!reg->array_id) {
5442 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
5443 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
5444 return t->inputs[t->inputMapping[index] + double_reg2];
5445 }
5446 else {
5447 struct array_decl *decl = &t->input_arrays[reg->array_id-1];
5448 unsigned mesa_index = decl->mesa_index;
5449 int slot = t->inputMapping[mesa_index];
5450
5451 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
5452 assert(t->inputs[slot].ArrayID == reg->array_id);
5453 return ureg_src_array_offset(t->inputs[slot], index + double_reg2 - mesa_index);
5454 }
5455
5456 case PROGRAM_ADDRESS:
5457 return ureg_src(t->address[reg->index]);
5458
5459 case PROGRAM_SYSTEM_VALUE:
5460 assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
5461 return t->systemValues[reg->index];
5462
5463 default:
5464 assert(!"unknown src register file");
5465 return ureg_src_undef();
5466 }
5467 }
5468
5469 /**
5470 * Create a TGSI ureg_dst register from an st_dst_reg.
5471 */
5472 static struct ureg_dst
5473 translate_dst(struct st_translate *t,
5474 const st_dst_reg *dst_reg,
5475 bool saturate)
5476 {
5477 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
5478 dst_reg->array_id);
5479
5480 if (dst.File == TGSI_FILE_NULL)
5481 return dst;
5482
5483 dst = ureg_writemask(dst, dst_reg->writemask);
5484
5485 if (saturate)
5486 dst = ureg_saturate(dst);
5487
5488 if (dst_reg->reladdr != NULL) {
5489 assert(dst_reg->file != PROGRAM_TEMPORARY);
5490 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
5491 }
5492
5493 if (dst_reg->has_index2) {
5494 if (dst_reg->reladdr2)
5495 dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
5496 dst_reg->index2D);
5497 else
5498 dst = ureg_dst_dimension(dst, dst_reg->index2D);
5499 }
5500
5501 return dst;
5502 }
5503
5504 /**
5505 * Create a TGSI ureg_src register from an st_src_reg.
5506 */
5507 static struct ureg_src
5508 translate_src(struct st_translate *t, const st_src_reg *src_reg)
5509 {
5510 struct ureg_src src = src_register(t, src_reg);
5511
5512 if (src_reg->has_index2) {
5513 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
5514 * and UBO constant buffers (buffer, position).
5515 */
5516 if (src_reg->reladdr2)
5517 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
5518 src_reg->index2D);
5519 else
5520 src = ureg_src_dimension(src, src_reg->index2D);
5521 }
5522
5523 src = ureg_swizzle(src,
5524 GET_SWZ(src_reg->swizzle, 0) & 0x3,
5525 GET_SWZ(src_reg->swizzle, 1) & 0x3,
5526 GET_SWZ(src_reg->swizzle, 2) & 0x3,
5527 GET_SWZ(src_reg->swizzle, 3) & 0x3);
5528
5529 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
5530 src = ureg_negate(src);
5531
5532 if (src_reg->reladdr != NULL) {
5533 assert(src_reg->file != PROGRAM_TEMPORARY);
5534 src = ureg_src_indirect(src, ureg_src(t->address[0]));
5535 }
5536
5537 return src;
5538 }
5539
5540 static struct tgsi_texture_offset
5541 translate_tex_offset(struct st_translate *t,
5542 const st_src_reg *in_offset, int idx)
5543 {
5544 struct tgsi_texture_offset offset;
5545 struct ureg_src imm_src;
5546 struct ureg_dst dst;
5547 int array;
5548
5549 switch (in_offset->file) {
5550 case PROGRAM_IMMEDIATE:
5551 assert(in_offset->index >= 0 && in_offset->index < t->num_immediates);
5552 imm_src = t->immediates[in_offset->index];
5553
5554 offset.File = imm_src.File;
5555 offset.Index = imm_src.Index;
5556 offset.SwizzleX = imm_src.SwizzleX;
5557 offset.SwizzleY = imm_src.SwizzleY;
5558 offset.SwizzleZ = imm_src.SwizzleZ;
5559 offset.Padding = 0;
5560 break;
5561 case PROGRAM_INPUT:
5562 imm_src = t->inputs[t->inputMapping[in_offset->index]];
5563 offset.File = imm_src.File;
5564 offset.Index = imm_src.Index;
5565 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
5566 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
5567 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
5568 offset.Padding = 0;
5569 break;
5570 case PROGRAM_TEMPORARY:
5571 imm_src = ureg_src(t->temps[in_offset->index]);
5572 offset.File = imm_src.File;
5573 offset.Index = imm_src.Index;
5574 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
5575 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
5576 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
5577 offset.Padding = 0;
5578 break;
5579 case PROGRAM_ARRAY:
5580 array = in_offset->index >> 16;
5581
5582 assert(array >= 0);
5583 assert(array < (int)t->num_temp_arrays);
5584
5585 dst = t->arrays[array];
5586 offset.File = dst.File;
5587 offset.Index = dst.Index + (in_offset->index & 0xFFFF) - 0x8000;
5588 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
5589 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
5590 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
5591 offset.Padding = 0;
5592 break;
5593 default:
5594 break;
5595 }
5596 return offset;
5597 }
5598
5599 static void
5600 compile_tgsi_instruction(struct st_translate *t,
5601 const glsl_to_tgsi_instruction *inst)
5602 {
5603 struct ureg_program *ureg = t->ureg;
5604 int i;
5605 struct ureg_dst dst[2];
5606 struct ureg_src src[4];
5607 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
5608
5609 int num_dst;
5610 int num_src;
5611 unsigned tex_target = 0;
5612
5613 num_dst = num_inst_dst_regs(inst);
5614 num_src = num_inst_src_regs(inst);
5615
5616 for (i = 0; i < num_dst; i++)
5617 dst[i] = translate_dst(t,
5618 &inst->dst[i],
5619 inst->saturate);
5620
5621 for (i = 0; i < num_src; i++)
5622 src[i] = translate_src(t, &inst->src[i]);
5623
5624 switch(inst->op) {
5625 case TGSI_OPCODE_BGNLOOP:
5626 case TGSI_OPCODE_CAL:
5627 case TGSI_OPCODE_ELSE:
5628 case TGSI_OPCODE_ENDLOOP:
5629 case TGSI_OPCODE_IF:
5630 case TGSI_OPCODE_UIF:
5631 assert(num_dst == 0);
5632 ureg_label_insn(ureg,
5633 inst->op,
5634 src, num_src,
5635 get_label(t,
5636 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
5637 return;
5638
5639 case TGSI_OPCODE_TEX:
5640 case TGSI_OPCODE_TXB:
5641 case TGSI_OPCODE_TXD:
5642 case TGSI_OPCODE_TXL:
5643 case TGSI_OPCODE_TXP:
5644 case TGSI_OPCODE_TXQ:
5645 case TGSI_OPCODE_TXQS:
5646 case TGSI_OPCODE_TXF:
5647 case TGSI_OPCODE_TEX2:
5648 case TGSI_OPCODE_TXB2:
5649 case TGSI_OPCODE_TXL2:
5650 case TGSI_OPCODE_TG4:
5651 case TGSI_OPCODE_LODQ:
5652 src[num_src] = t->samplers[inst->sampler.index];
5653 assert(src[num_src].File != TGSI_FILE_NULL);
5654 if (inst->sampler.reladdr)
5655 src[num_src] =
5656 ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
5657 num_src++;
5658 for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
5659 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i], i);
5660 }
5661 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5662
5663 ureg_tex_insn(ureg,
5664 inst->op,
5665 dst, num_dst,
5666 tex_target,
5667 texoffsets, inst->tex_offset_num_offset,
5668 src, num_src);
5669 return;
5670
5671 case TGSI_OPCODE_RESQ:
5672 case TGSI_OPCODE_LOAD:
5673 case TGSI_OPCODE_ATOMUADD:
5674 case TGSI_OPCODE_ATOMXCHG:
5675 case TGSI_OPCODE_ATOMCAS:
5676 case TGSI_OPCODE_ATOMAND:
5677 case TGSI_OPCODE_ATOMOR:
5678 case TGSI_OPCODE_ATOMXOR:
5679 case TGSI_OPCODE_ATOMUMIN:
5680 case TGSI_OPCODE_ATOMUMAX:
5681 case TGSI_OPCODE_ATOMIMIN:
5682 case TGSI_OPCODE_ATOMIMAX:
5683 for (i = num_src - 1; i >= 0; i--)
5684 src[i + 1] = src[i];
5685 num_src++;
5686 if (inst->buffer.file == PROGRAM_MEMORY) {
5687 src[0] = t->shared_memory;
5688 } else if (inst->buffer.file == PROGRAM_BUFFER) {
5689 src[0] = t->buffers[inst->buffer.index];
5690 } else {
5691 src[0] = t->images[inst->buffer.index];
5692 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5693 }
5694 if (inst->buffer.reladdr)
5695 src[0] = ureg_src_indirect(src[0], ureg_src(t->address[2]));
5696 assert(src[0].File != TGSI_FILE_NULL);
5697 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5698 inst->buffer_access,
5699 tex_target, inst->image_format);
5700 break;
5701
5702 case TGSI_OPCODE_STORE:
5703 if (inst->buffer.file == PROGRAM_MEMORY) {
5704 dst[0] = ureg_dst(t->shared_memory);
5705 } else if (inst->buffer.file == PROGRAM_BUFFER) {
5706 dst[0] = ureg_dst(t->buffers[inst->buffer.index]);
5707 } else {
5708 dst[0] = ureg_dst(t->images[inst->buffer.index]);
5709 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5710 }
5711 dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
5712 if (inst->buffer.reladdr)
5713 dst[0] = ureg_dst_indirect(dst[0], ureg_src(t->address[2]));
5714 assert(dst[0].File != TGSI_FILE_NULL);
5715 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5716 inst->buffer_access,
5717 tex_target, inst->image_format);
5718 break;
5719
5720 case TGSI_OPCODE_SCS:
5721 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
5722 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
5723 break;
5724
5725 default:
5726 ureg_insn(ureg,
5727 inst->op,
5728 dst, num_dst,
5729 src, num_src);
5730 break;
5731 }
5732 }
5733
5734 /**
5735 * Emit the TGSI instructions for inverting and adjusting WPOS.
5736 * This code is unavoidable because it also depends on whether
5737 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
5738 */
5739 static void
5740 emit_wpos_adjustment(struct gl_context *ctx,
5741 struct st_translate *t,
5742 int wpos_transform_const,
5743 boolean invert,
5744 GLfloat adjX, GLfloat adjY[2])
5745 {
5746 struct ureg_program *ureg = t->ureg;
5747
5748 assert(wpos_transform_const >= 0);
5749
5750 /* Fragment program uses fragment position input.
5751 * Need to replace instances of INPUT[WPOS] with temp T
5752 * where T = INPUT[WPOS] is inverted by Y.
5753 */
5754 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
5755 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
5756 struct ureg_src *wpos =
5757 ctx->Const.GLSLFragCoordIsSysVal ?
5758 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
5759 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
5760 struct ureg_src wpos_input = *wpos;
5761
5762 /* First, apply the coordinate shift: */
5763 if (adjX || adjY[0] || adjY[1]) {
5764 if (adjY[0] != adjY[1]) {
5765 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
5766 * depending on whether inversion is actually going to be applied
5767 * or not, which is determined by testing against the inversion
5768 * state variable used below, which will be either +1 or -1.
5769 */
5770 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
5771
5772 ureg_CMP(ureg, adj_temp,
5773 ureg_scalar(wpostrans, invert ? 2 : 0),
5774 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
5775 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
5776 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
5777 } else {
5778 ureg_ADD(ureg, wpos_temp, wpos_input,
5779 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
5780 }
5781 wpos_input = ureg_src(wpos_temp);
5782 } else {
5783 /* MOV wpos_temp, input[wpos]
5784 */
5785 ureg_MOV( ureg, wpos_temp, wpos_input );
5786 }
5787
5788 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
5789 * inversion/identity, or the other way around if we're drawing to an FBO.
5790 */
5791 if (invert) {
5792 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
5793 */
5794 ureg_MAD( ureg,
5795 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5796 wpos_input,
5797 ureg_scalar(wpostrans, 0),
5798 ureg_scalar(wpostrans, 1));
5799 } else {
5800 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
5801 */
5802 ureg_MAD( ureg,
5803 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5804 wpos_input,
5805 ureg_scalar(wpostrans, 2),
5806 ureg_scalar(wpostrans, 3));
5807 }
5808
5809 /* Use wpos_temp as position input from here on:
5810 */
5811 *wpos = ureg_src(wpos_temp);
5812 }
5813
5814
5815 /**
5816 * Emit fragment position/ooordinate code.
5817 */
5818 static void
5819 emit_wpos(struct st_context *st,
5820 struct st_translate *t,
5821 const struct gl_program *program,
5822 struct ureg_program *ureg,
5823 int wpos_transform_const)
5824 {
5825 const struct gl_fragment_program *fp =
5826 (const struct gl_fragment_program *) program;
5827 struct pipe_screen *pscreen = st->pipe->screen;
5828 GLfloat adjX = 0.0f;
5829 GLfloat adjY[2] = { 0.0f, 0.0f };
5830 boolean invert = FALSE;
5831
5832 /* Query the pixel center conventions supported by the pipe driver and set
5833 * adjX, adjY to help out if it cannot handle the requested one internally.
5834 *
5835 * The bias of the y-coordinate depends on whether y-inversion takes place
5836 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
5837 * drawing to an FBO (causes additional inversion), and whether the pipe
5838 * driver origin and the requested origin differ (the latter condition is
5839 * stored in the 'invert' variable).
5840 *
5841 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
5842 *
5843 * center shift only:
5844 * i -> h: +0.5
5845 * h -> i: -0.5
5846 *
5847 * inversion only:
5848 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
5849 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
5850 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
5851 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
5852 *
5853 * inversion and center shift:
5854 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
5855 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
5856 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
5857 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
5858 */
5859 if (fp->OriginUpperLeft) {
5860 /* Fragment shader wants origin in upper-left */
5861 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
5862 /* the driver supports upper-left origin */
5863 }
5864 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
5865 /* the driver supports lower-left origin, need to invert Y */
5866 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
5867 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
5868 invert = TRUE;
5869 }
5870 else
5871 assert(0);
5872 }
5873 else {
5874 /* Fragment shader wants origin in lower-left */
5875 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
5876 /* the driver supports lower-left origin */
5877 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
5878 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
5879 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
5880 /* the driver supports upper-left origin, need to invert Y */
5881 invert = TRUE;
5882 else
5883 assert(0);
5884 }
5885
5886 if (fp->PixelCenterInteger) {
5887 /* Fragment shader wants pixel center integer */
5888 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
5889 /* the driver supports pixel center integer */
5890 adjY[1] = 1.0f;
5891 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
5892 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5893 }
5894 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5895 /* the driver supports pixel center half integer, need to bias X,Y */
5896 adjX = -0.5f;
5897 adjY[0] = -0.5f;
5898 adjY[1] = 0.5f;
5899 }
5900 else
5901 assert(0);
5902 }
5903 else {
5904 /* Fragment shader wants pixel center half integer */
5905 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5906 /* the driver supports pixel center half integer */
5907 }
5908 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
5909 /* the driver supports pixel center integer, need to bias X,Y */
5910 adjX = adjY[0] = adjY[1] = 0.5f;
5911 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
5912 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5913 }
5914 else
5915 assert(0);
5916 }
5917
5918 /* we invert after adjustment so that we avoid the MOV to temporary,
5919 * and reuse the adjustment ADD instead */
5920 emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
5921 }
5922
5923 /**
5924 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
5925 * TGSI uses +1 for front, -1 for back.
5926 * This function converts the TGSI value to the GL value. Simply clamping/
5927 * saturating the value to [0,1] does the job.
5928 */
5929 static void
5930 emit_face_var(struct gl_context *ctx, struct st_translate *t)
5931 {
5932 struct ureg_program *ureg = t->ureg;
5933 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
5934 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
5935
5936 if (ctx->Const.NativeIntegers) {
5937 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
5938 }
5939 else {
5940 /* MOV_SAT face_temp, input[face] */
5941 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
5942 }
5943
5944 /* Use face_temp as face input from here on: */
5945 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
5946 }
5947
5948 static bool
5949 find_array(unsigned attr, struct array_decl *arrays, unsigned count,
5950 unsigned *array_id, unsigned *array_size)
5951 {
5952 unsigned i;
5953
5954 for (i = 0; i < count; i++) {
5955 struct array_decl *decl = &arrays[i];
5956
5957 if (attr == decl->mesa_index) {
5958 *array_id = decl->array_id;
5959 *array_size = decl->array_size;
5960 assert(*array_size);
5961 return true;
5962 }
5963 }
5964 return false;
5965 }
5966
5967 static void
5968 emit_compute_block_size(const struct gl_program *program,
5969 struct ureg_program *ureg) {
5970 const struct gl_compute_program *cp =
5971 (const struct gl_compute_program *)program;
5972
5973 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
5974 cp->LocalSize[0]);
5975 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
5976 cp->LocalSize[1]);
5977 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
5978 cp->LocalSize[2]);
5979 }
5980
5981 /**
5982 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
5983 * \param program the program to translate
5984 * \param numInputs number of input registers used
5985 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
5986 * input indexes
5987 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
5988 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
5989 * each input
5990 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
5991 * \param interpLocation the TGSI_INTERPOLATE_LOC_* location for each input
5992 * \param numOutputs number of output registers used
5993 * \param outputMapping maps Mesa fragment program outputs to TGSI
5994 * generic outputs
5995 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
5996 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
5997 * each output
5998 *
5999 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
6000 */
6001 extern "C" enum pipe_error
6002 st_translate_program(
6003 struct gl_context *ctx,
6004 uint procType,
6005 struct ureg_program *ureg,
6006 glsl_to_tgsi_visitor *program,
6007 const struct gl_program *proginfo,
6008 GLuint numInputs,
6009 const GLuint inputMapping[],
6010 const GLuint inputSlotToAttr[],
6011 const ubyte inputSemanticName[],
6012 const ubyte inputSemanticIndex[],
6013 const GLuint interpMode[],
6014 const GLuint interpLocation[],
6015 GLuint numOutputs,
6016 const GLuint outputMapping[],
6017 const GLuint outputSlotToAttr[],
6018 const ubyte outputSemanticName[],
6019 const ubyte outputSemanticIndex[])
6020 {
6021 struct st_translate *t;
6022 unsigned i;
6023 struct gl_program_constants *frag_const =
6024 &ctx->Const.Program[MESA_SHADER_FRAGMENT];
6025 enum pipe_error ret = PIPE_OK;
6026
6027 assert(numInputs <= ARRAY_SIZE(t->inputs));
6028 assert(numOutputs <= ARRAY_SIZE(t->outputs));
6029
6030 t = CALLOC_STRUCT(st_translate);
6031 if (!t) {
6032 ret = PIPE_ERROR_OUT_OF_MEMORY;
6033 goto out;
6034 }
6035
6036 t->procType = procType;
6037 t->inputMapping = inputMapping;
6038 t->outputMapping = outputMapping;
6039 t->ureg = ureg;
6040 t->num_temp_arrays = program->next_array;
6041 if (t->num_temp_arrays)
6042 t->arrays = (struct ureg_dst*)
6043 calloc(1, sizeof(t->arrays[0]) * t->num_temp_arrays);
6044
6045 /*
6046 * Declare input attributes.
6047 */
6048 switch (procType) {
6049 case PIPE_SHADER_FRAGMENT:
6050 for (i = 0; i < numInputs; i++) {
6051 unsigned array_id = 0;
6052 unsigned array_size;
6053
6054 if (find_array(inputSlotToAttr[i], program->input_arrays,
6055 program->num_input_arrays, &array_id, &array_size)) {
6056 /* We've found an array. Declare it so. */
6057 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
6058 inputSemanticName[i], inputSemanticIndex[i],
6059 interpMode[i], 0, interpLocation[i],
6060 array_id, array_size);
6061
6062 GLuint base_attr = inputSlotToAttr[i];
6063 while (i + 1 < numInputs &&
6064 inputSlotToAttr[i + 1] < base_attr + array_size)
6065 ++i;
6066 }
6067 else {
6068 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
6069 inputSemanticName[i], inputSemanticIndex[i],
6070 interpMode[i], 0, interpLocation[i], 0, 1);
6071 }
6072 }
6073 break;
6074 case PIPE_SHADER_GEOMETRY:
6075 case PIPE_SHADER_TESS_EVAL:
6076 case PIPE_SHADER_TESS_CTRL:
6077 for (i = 0; i < numInputs; i++) {
6078 unsigned array_id = 0;
6079 unsigned array_size;
6080
6081 if (find_array(inputSlotToAttr[i], program->input_arrays,
6082 program->num_input_arrays, &array_id, &array_size)) {
6083 /* We've found an array. Declare it so. */
6084 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
6085 inputSemanticIndex[i],
6086 array_id, array_size);
6087 i += array_size - 1;
6088 }
6089 else {
6090 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
6091 inputSemanticIndex[i], 0, 1);
6092 }
6093 }
6094 break;
6095 case PIPE_SHADER_VERTEX:
6096 for (i = 0; i < numInputs; i++) {
6097 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
6098 }
6099 break;
6100 case PIPE_SHADER_COMPUTE:
6101 break;
6102 default:
6103 assert(0);
6104 }
6105
6106 /*
6107 * Declare output attributes.
6108 */
6109 switch (procType) {
6110 case PIPE_SHADER_FRAGMENT:
6111 case PIPE_SHADER_COMPUTE:
6112 break;
6113 case PIPE_SHADER_GEOMETRY:
6114 case PIPE_SHADER_TESS_EVAL:
6115 case PIPE_SHADER_TESS_CTRL:
6116 case PIPE_SHADER_VERTEX:
6117 for (i = 0; i < numOutputs; i++) {
6118 unsigned array_id = 0;
6119 unsigned array_size;
6120
6121 if (find_array(outputSlotToAttr[i], program->output_arrays,
6122 program->num_output_arrays, &array_id, &array_size)) {
6123 /* We've found an array. Declare it so. */
6124 t->outputs[i] = ureg_DECL_output_array(ureg,
6125 outputSemanticName[i],
6126 outputSemanticIndex[i],
6127 array_id, array_size);
6128 i += array_size - 1;
6129 }
6130 else {
6131 t->outputs[i] = ureg_DECL_output(ureg,
6132 outputSemanticName[i],
6133 outputSemanticIndex[i]);
6134 }
6135 }
6136 break;
6137 default:
6138 assert(0);
6139 }
6140
6141 if (procType == PIPE_SHADER_FRAGMENT) {
6142 if (program->shader->info.EarlyFragmentTests)
6143 ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
6144
6145 if (proginfo->InputsRead & VARYING_BIT_POS) {
6146 /* Must do this after setting up t->inputs. */
6147 emit_wpos(st_context(ctx), t, proginfo, ureg,
6148 program->wpos_transform_const);
6149 }
6150
6151 if (proginfo->InputsRead & VARYING_BIT_FACE)
6152 emit_face_var(ctx, t);
6153
6154 for (i = 0; i < numOutputs; i++) {
6155 switch (outputSemanticName[i]) {
6156 case TGSI_SEMANTIC_POSITION:
6157 t->outputs[i] = ureg_DECL_output(ureg,
6158 TGSI_SEMANTIC_POSITION, /* Z/Depth */
6159 outputSemanticIndex[i]);
6160 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
6161 break;
6162 case TGSI_SEMANTIC_STENCIL:
6163 t->outputs[i] = ureg_DECL_output(ureg,
6164 TGSI_SEMANTIC_STENCIL, /* Stencil */
6165 outputSemanticIndex[i]);
6166 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
6167 break;
6168 case TGSI_SEMANTIC_COLOR:
6169 t->outputs[i] = ureg_DECL_output(ureg,
6170 TGSI_SEMANTIC_COLOR,
6171 outputSemanticIndex[i]);
6172 break;
6173 case TGSI_SEMANTIC_SAMPLEMASK:
6174 t->outputs[i] = ureg_DECL_output(ureg,
6175 TGSI_SEMANTIC_SAMPLEMASK,
6176 outputSemanticIndex[i]);
6177 /* TODO: If we ever support more than 32 samples, this will have
6178 * to become an array.
6179 */
6180 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6181 break;
6182 default:
6183 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
6184 ret = PIPE_ERROR_BAD_INPUT;
6185 goto out;
6186 }
6187 }
6188 }
6189 else if (procType == PIPE_SHADER_VERTEX) {
6190 for (i = 0; i < numOutputs; i++) {
6191 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
6192 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
6193 ureg_MOV(ureg,
6194 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
6195 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
6196 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6197 }
6198 }
6199 }
6200
6201 if (procType == PIPE_SHADER_COMPUTE) {
6202 emit_compute_block_size(proginfo, ureg);
6203 }
6204
6205 /* Declare address register.
6206 */
6207 if (program->num_address_regs > 0) {
6208 assert(program->num_address_regs <= 3);
6209 for (int i = 0; i < program->num_address_regs; i++)
6210 t->address[i] = ureg_DECL_address(ureg);
6211 }
6212
6213 /* Declare misc input registers
6214 */
6215 {
6216 GLbitfield sysInputs = proginfo->SystemValuesRead;
6217
6218 for (i = 0; sysInputs; i++) {
6219 if (sysInputs & (1 << i)) {
6220 unsigned semName = _mesa_sysval_to_semantic(i);
6221
6222 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
6223
6224 if (semName == TGSI_SEMANTIC_INSTANCEID ||
6225 semName == TGSI_SEMANTIC_VERTEXID) {
6226 /* From Gallium perspective, these system values are always
6227 * integer, and require native integer support. However, if
6228 * native integer is supported on the vertex stage but not the
6229 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
6230 * assumes these system values are floats. To resolve the
6231 * inconsistency, we insert a U2F.
6232 */
6233 struct st_context *st = st_context(ctx);
6234 struct pipe_screen *pscreen = st->pipe->screen;
6235 assert(procType == PIPE_SHADER_VERTEX);
6236 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
6237 (void) pscreen;
6238 if (!ctx->Const.NativeIntegers) {
6239 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
6240 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
6241 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
6242 }
6243 }
6244
6245 if (procType == PIPE_SHADER_FRAGMENT &&
6246 semName == TGSI_SEMANTIC_POSITION)
6247 emit_wpos(st_context(ctx), t, proginfo, ureg,
6248 program->wpos_transform_const);
6249
6250 sysInputs &= ~(1 << i);
6251 }
6252 }
6253 }
6254
6255 t->array_sizes = program->array_sizes;
6256 t->input_arrays = program->input_arrays;
6257 t->output_arrays = program->output_arrays;
6258
6259 /* Emit constants and uniforms. TGSI uses a single index space for these,
6260 * so we put all the translated regs in t->constants.
6261 */
6262 if (proginfo->Parameters) {
6263 t->constants = (struct ureg_src *)
6264 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
6265 if (t->constants == NULL) {
6266 ret = PIPE_ERROR_OUT_OF_MEMORY;
6267 goto out;
6268 }
6269 t->num_constants = proginfo->Parameters->NumParameters;
6270
6271 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
6272 switch (proginfo->Parameters->Parameters[i].Type) {
6273 case PROGRAM_STATE_VAR:
6274 case PROGRAM_UNIFORM:
6275 t->constants[i] = ureg_DECL_constant(ureg, i);
6276 break;
6277
6278 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
6279 * addressing of the const buffer.
6280 * FIXME: Be smarter and recognize param arrays:
6281 * indirect addressing is only valid within the referenced
6282 * array.
6283 */
6284 case PROGRAM_CONSTANT:
6285 if (program->indirect_addr_consts)
6286 t->constants[i] = ureg_DECL_constant(ureg, i);
6287 else
6288 t->constants[i] = emit_immediate(t,
6289 proginfo->Parameters->ParameterValues[i],
6290 proginfo->Parameters->Parameters[i].DataType,
6291 4);
6292 break;
6293 default:
6294 break;
6295 }
6296 }
6297 }
6298
6299 if (program->shader) {
6300 unsigned num_ubos = program->shader->NumUniformBlocks;
6301
6302 for (i = 0; i < num_ubos; i++) {
6303 unsigned size = program->shader->UniformBlocks[i]->UniformBufferSize;
6304 unsigned num_const_vecs = (size + 15) / 16;
6305 unsigned first, last;
6306 assert(num_const_vecs > 0);
6307 first = 0;
6308 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
6309 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
6310 }
6311 }
6312
6313 /* Emit immediate values.
6314 */
6315 t->immediates = (struct ureg_src *)
6316 calloc(program->num_immediates, sizeof(struct ureg_src));
6317 if (t->immediates == NULL) {
6318 ret = PIPE_ERROR_OUT_OF_MEMORY;
6319 goto out;
6320 }
6321 t->num_immediates = program->num_immediates;
6322
6323 i = 0;
6324 foreach_in_list(immediate_storage, imm, &program->immediates) {
6325 assert(i < program->num_immediates);
6326 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
6327 }
6328 assert(i == program->num_immediates);
6329
6330 /* texture samplers */
6331 for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
6332 if (program->samplers_used & (1u << i)) {
6333 unsigned type;
6334
6335 t->samplers[i] = ureg_DECL_sampler(ureg, i);
6336
6337 switch (program->sampler_types[i]) {
6338 case GLSL_TYPE_INT:
6339 type = TGSI_RETURN_TYPE_SINT;
6340 break;
6341 case GLSL_TYPE_UINT:
6342 type = TGSI_RETURN_TYPE_UINT;
6343 break;
6344 case GLSL_TYPE_FLOAT:
6345 type = TGSI_RETURN_TYPE_FLOAT;
6346 break;
6347 default:
6348 unreachable("not reached");
6349 }
6350
6351 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
6352 type, type, type, type );
6353 }
6354 }
6355
6356 for (i = 0; i < frag_const->MaxAtomicBuffers; i++) {
6357 if (program->buffers_used & (1 << i)) {
6358 t->buffers[i] = ureg_DECL_buffer(ureg, i, true);
6359 }
6360 }
6361
6362 for (; i < frag_const->MaxAtomicBuffers + frag_const->MaxShaderStorageBlocks;
6363 i++) {
6364 if (program->buffers_used & (1 << i)) {
6365 t->buffers[i] = ureg_DECL_buffer(ureg, i, false);
6366 }
6367 }
6368
6369 if (program->use_shared_memory)
6370 t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
6371
6372 for (i = 0; i < program->shader->NumImages; i++) {
6373 if (program->images_used & (1 << i)) {
6374 t->images[i] = ureg_DECL_image(ureg, i,
6375 program->image_targets[i],
6376 program->image_formats[i],
6377 true, false);
6378 }
6379 }
6380
6381 /* Emit each instruction in turn:
6382 */
6383 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions) {
6384 set_insn_start(t, ureg_get_instruction_number(ureg));
6385 compile_tgsi_instruction(t, inst);
6386 }
6387
6388 /* Fix up all emitted labels:
6389 */
6390 for (i = 0; i < t->labels_count; i++) {
6391 ureg_fixup_label(ureg, t->labels[i].token,
6392 t->insn[t->labels[i].branch_target]);
6393 }
6394
6395 /* Set the next shader stage hint for VS and TES. */
6396 switch (procType) {
6397 case PIPE_SHADER_VERTEX:
6398 case PIPE_SHADER_TESS_EVAL:
6399 if (program->shader_program->SeparateShader)
6400 break;
6401
6402 for (i = program->shader->Stage+1; i <= MESA_SHADER_FRAGMENT; i++) {
6403 if (program->shader_program->_LinkedShaders[i]) {
6404 unsigned next;
6405
6406 switch (i) {
6407 case MESA_SHADER_TESS_CTRL:
6408 next = PIPE_SHADER_TESS_CTRL;
6409 break;
6410 case MESA_SHADER_TESS_EVAL:
6411 next = PIPE_SHADER_TESS_EVAL;
6412 break;
6413 case MESA_SHADER_GEOMETRY:
6414 next = PIPE_SHADER_GEOMETRY;
6415 break;
6416 case MESA_SHADER_FRAGMENT:
6417 next = PIPE_SHADER_FRAGMENT;
6418 break;
6419 default:
6420 assert(0);
6421 continue;
6422 }
6423
6424 ureg_set_next_shader_processor(ureg, next);
6425 break;
6426 }
6427 }
6428 break;
6429 }
6430
6431 out:
6432 if (t) {
6433 free(t->arrays);
6434 free(t->temps);
6435 free(t->insn);
6436 free(t->labels);
6437 free(t->constants);
6438 t->num_constants = 0;
6439 free(t->immediates);
6440 t->num_immediates = 0;
6441
6442 if (t->error) {
6443 debug_printf("%s: translate error flag set\n", __func__);
6444 }
6445
6446 FREE(t);
6447 }
6448
6449 return ret;
6450 }
6451 /* ----------------------------- End TGSI code ------------------------------ */
6452
6453
6454 /**
6455 * Convert a shader's GLSL IR into a Mesa gl_program, although without
6456 * generating Mesa IR.
6457 */
6458 static struct gl_program *
6459 get_mesa_program_tgsi(struct gl_context *ctx,
6460 struct gl_shader_program *shader_program,
6461 struct gl_linked_shader *shader)
6462 {
6463 glsl_to_tgsi_visitor* v;
6464 struct gl_program *prog;
6465 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
6466 bool progress;
6467 struct gl_shader_compiler_options *options =
6468 &ctx->Const.ShaderCompilerOptions[shader->Stage];
6469 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6470 unsigned ptarget = st_shader_stage_to_ptarget(shader->Stage);
6471
6472 validate_ir_tree(shader->ir);
6473
6474 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
6475 if (!prog)
6476 return NULL;
6477 prog->Parameters = _mesa_new_parameter_list();
6478 v = new glsl_to_tgsi_visitor();
6479 v->ctx = ctx;
6480 v->prog = prog;
6481 v->shader_program = shader_program;
6482 v->shader = shader;
6483 v->options = options;
6484 v->glsl_version = ctx->Const.GLSLVersion;
6485 v->native_integers = ctx->Const.NativeIntegers;
6486
6487 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
6488 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
6489 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
6490 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
6491
6492 _mesa_copy_linked_program_data(shader->Stage, shader_program, prog);
6493 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
6494 prog->Parameters);
6495
6496 /* Remove reads from output registers. */
6497 lower_output_reads(shader->Stage, shader->ir);
6498
6499 /* Emit intermediate IR for main(). */
6500 visit_exec_list(shader->ir, v);
6501
6502 /* Now emit bodies for any functions that were used. */
6503 do {
6504 progress = GL_FALSE;
6505
6506 foreach_in_list(function_entry, entry, &v->function_signatures) {
6507 if (!entry->bgn_inst) {
6508 v->current_function = entry;
6509
6510 entry->bgn_inst = v->emit_asm(NULL, TGSI_OPCODE_BGNSUB);
6511 entry->bgn_inst->function = entry;
6512
6513 visit_exec_list(&entry->sig->body, v);
6514
6515 glsl_to_tgsi_instruction *last;
6516 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
6517 if (last->op != TGSI_OPCODE_RET)
6518 v->emit_asm(NULL, TGSI_OPCODE_RET);
6519
6520 glsl_to_tgsi_instruction *end;
6521 end = v->emit_asm(NULL, TGSI_OPCODE_ENDSUB);
6522 end->function = entry;
6523
6524 progress = GL_TRUE;
6525 }
6526 }
6527 } while (progress);
6528
6529 #if 0
6530 /* Print out some information (for debugging purposes) used by the
6531 * optimization passes. */
6532 {
6533 int i;
6534 int *first_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
6535 int *first_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
6536 int *last_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
6537 int *last_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
6538
6539 for (i = 0; i < v->next_temp; i++) {
6540 first_writes[i] = -1;
6541 first_reads[i] = -1;
6542 last_writes[i] = -1;
6543 last_reads[i] = -1;
6544 }
6545 v->get_first_temp_read(first_reads);
6546 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
6547 v->get_last_temp_write(last_writes);
6548 for (i = 0; i < v->next_temp; i++)
6549 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
6550 first_writes[i],
6551 last_reads[i],
6552 last_writes[i]);
6553 ralloc_free(first_writes);
6554 ralloc_free(first_reads);
6555 ralloc_free(last_writes);
6556 ralloc_free(last_reads);
6557 }
6558 #endif
6559
6560 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
6561 v->simplify_cmp();
6562
6563 if (shader->Stage != MESA_SHADER_TESS_CTRL &&
6564 shader->Stage != MESA_SHADER_TESS_EVAL)
6565 v->copy_propagate();
6566
6567 while (v->eliminate_dead_code());
6568
6569 v->merge_two_dsts();
6570 v->merge_registers();
6571 v->renumber_registers();
6572
6573 /* Write the END instruction. */
6574 v->emit_asm(NULL, TGSI_OPCODE_END);
6575
6576 if (ctx->_Shader->Flags & GLSL_DUMP) {
6577 _mesa_log("\n");
6578 _mesa_log("GLSL IR for linked %s program %d:\n",
6579 _mesa_shader_stage_to_string(shader->Stage),
6580 shader_program->Name);
6581 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
6582 _mesa_log("\n\n");
6583 }
6584
6585 prog->Instructions = NULL;
6586 prog->NumInstructions = 0;
6587
6588 do_set_program_inouts(shader->ir, prog, shader->Stage);
6589 shrink_array_declarations(v->input_arrays, v->num_input_arrays,
6590 prog->InputsRead, prog->DoubleInputsRead, prog->PatchInputsRead);
6591 shrink_array_declarations(v->output_arrays, v->num_output_arrays,
6592 prog->OutputsWritten, 0ULL, prog->PatchOutputsWritten);
6593 count_resources(v, prog);
6594
6595 /* The GLSL IR won't be needed anymore. */
6596 ralloc_free(shader->ir);
6597 shader->ir = NULL;
6598
6599 /* This must be done before the uniform storage is associated. */
6600 if (shader->Stage == MESA_SHADER_FRAGMENT &&
6601 (prog->InputsRead & VARYING_BIT_POS ||
6602 prog->SystemValuesRead & (1 << SYSTEM_VALUE_FRAG_COORD))) {
6603 static const gl_state_index wposTransformState[STATE_LENGTH] = {
6604 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
6605 };
6606
6607 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
6608 wposTransformState);
6609 }
6610
6611 _mesa_reference_program(ctx, &shader->Program, prog);
6612
6613 /* Avoid reallocation of the program parameter list, because the uniform
6614 * storage is only associated with the original parameter list.
6615 * This should be enough for Bitmap and DrawPixels constants.
6616 */
6617 _mesa_reserve_parameter_storage(prog->Parameters, 8);
6618
6619 /* This has to be done last. Any operation the can cause
6620 * prog->ParameterValues to get reallocated (e.g., anything that adds a
6621 * program constant) has to happen before creating this linkage.
6622 */
6623 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
6624 if (!shader_program->LinkStatus) {
6625 free_glsl_to_tgsi_visitor(v);
6626 return NULL;
6627 }
6628
6629 struct st_vertex_program *stvp;
6630 struct st_fragment_program *stfp;
6631 struct st_geometry_program *stgp;
6632 struct st_tessctrl_program *sttcp;
6633 struct st_tesseval_program *sttep;
6634 struct st_compute_program *stcp;
6635
6636 switch (shader->Stage) {
6637 case MESA_SHADER_VERTEX:
6638 stvp = (struct st_vertex_program *)prog;
6639 stvp->glsl_to_tgsi = v;
6640 break;
6641 case MESA_SHADER_FRAGMENT:
6642 stfp = (struct st_fragment_program *)prog;
6643 stfp->glsl_to_tgsi = v;
6644 break;
6645 case MESA_SHADER_GEOMETRY:
6646 stgp = (struct st_geometry_program *)prog;
6647 stgp->glsl_to_tgsi = v;
6648 break;
6649 case MESA_SHADER_TESS_CTRL:
6650 sttcp = (struct st_tessctrl_program *)prog;
6651 sttcp->glsl_to_tgsi = v;
6652 break;
6653 case MESA_SHADER_TESS_EVAL:
6654 sttep = (struct st_tesseval_program *)prog;
6655 sttep->glsl_to_tgsi = v;
6656 break;
6657 case MESA_SHADER_COMPUTE:
6658 stcp = (struct st_compute_program *)prog;
6659 stcp->glsl_to_tgsi = v;
6660 break;
6661 default:
6662 assert(!"should not be reached");
6663 return NULL;
6664 }
6665
6666 return prog;
6667 }
6668
6669 static struct gl_program *
6670 get_mesa_program(struct gl_context *ctx,
6671 struct gl_shader_program *shader_program,
6672 struct gl_linked_shader *shader)
6673 {
6674 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6675 unsigned ptarget = st_shader_stage_to_ptarget(shader->Stage);
6676 enum pipe_shader_ir preferred_ir = (enum pipe_shader_ir)
6677 pscreen->get_shader_param(pscreen, ptarget, PIPE_SHADER_CAP_PREFERRED_IR);
6678 if (preferred_ir == PIPE_SHADER_IR_NIR) {
6679 /* TODO only for GLSL VS/FS for now: */
6680 switch (shader->Stage) {
6681 case MESA_SHADER_VERTEX:
6682 case MESA_SHADER_FRAGMENT:
6683 return st_nir_get_mesa_program(ctx, shader_program, shader);
6684 default:
6685 break;
6686 }
6687 }
6688 return get_mesa_program_tgsi(ctx, shader_program, shader);
6689 }
6690
6691
6692 extern "C" {
6693
6694 /**
6695 * Link a shader.
6696 * Called via ctx->Driver.LinkShader()
6697 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
6698 * with code lowering and other optimizations.
6699 */
6700 GLboolean
6701 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
6702 {
6703 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6704 assert(prog->LinkStatus);
6705
6706 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6707 if (prog->_LinkedShaders[i] == NULL)
6708 continue;
6709
6710 bool progress;
6711 exec_list *ir = prog->_LinkedShaders[i]->ir;
6712 gl_shader_stage stage = prog->_LinkedShaders[i]->Stage;
6713 const struct gl_shader_compiler_options *options =
6714 &ctx->Const.ShaderCompilerOptions[stage];
6715 unsigned ptarget = st_shader_stage_to_ptarget(stage);
6716 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
6717 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
6718 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
6719 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
6720
6721 /* If there are forms of indirect addressing that the driver
6722 * cannot handle, perform the lowering pass.
6723 */
6724 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
6725 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
6726 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
6727 options->EmitNoIndirectInput,
6728 options->EmitNoIndirectOutput,
6729 options->EmitNoIndirectTemp,
6730 options->EmitNoIndirectUniform);
6731 }
6732
6733 if (ctx->Extensions.ARB_shading_language_packing) {
6734 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
6735 LOWER_UNPACK_SNORM_2x16 |
6736 LOWER_PACK_UNORM_2x16 |
6737 LOWER_UNPACK_UNORM_2x16 |
6738 LOWER_PACK_SNORM_4x8 |
6739 LOWER_UNPACK_SNORM_4x8 |
6740 LOWER_UNPACK_UNORM_4x8 |
6741 LOWER_PACK_UNORM_4x8;
6742
6743 if (ctx->Extensions.ARB_gpu_shader5)
6744 lower_inst |= LOWER_PACK_USE_BFI |
6745 LOWER_PACK_USE_BFE;
6746 if (!ctx->st->has_half_float_packing)
6747 lower_inst |= LOWER_PACK_HALF_2x16 |
6748 LOWER_UNPACK_HALF_2x16;
6749
6750 lower_packing_builtins(ir, lower_inst);
6751 }
6752
6753 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
6754 lower_offset_arrays(ir);
6755 do_mat_op_to_vec(ir);
6756 lower_instructions(ir,
6757 MOD_TO_FLOOR |
6758 DIV_TO_MUL_RCP |
6759 EXP_TO_EXP2 |
6760 LOG_TO_LOG2 |
6761 LDEXP_TO_ARITH |
6762 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
6763 CARRY_TO_ARITH |
6764 BORROW_TO_ARITH |
6765 (have_dround ? 0 : DOPS_TO_DFRAC) |
6766 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
6767 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
6768 (options->EmitNoSat ? SAT_TO_CLAMP : 0) |
6769 /* Assume that if ARB_gpu_shader5 is not supported
6770 * then all of the extended integer functions need
6771 * lowering. It may be necessary to add some caps
6772 * for individual instructions.
6773 */
6774 (!ctx->Extensions.ARB_gpu_shader5
6775 ? BIT_COUNT_TO_MATH |
6776 EXTRACT_TO_SHIFTS |
6777 INSERT_TO_SHIFTS |
6778 REVERSE_TO_SHIFTS |
6779 FIND_LSB_TO_FLOAT_CAST |
6780 FIND_MSB_TO_FLOAT_CAST |
6781 IMUL_HIGH_TO_MUL
6782 : 0));
6783
6784 do_vec_index_to_cond_assign(ir);
6785 lower_vector_insert(ir, true);
6786 lower_quadop_vector(ir, false);
6787 lower_noise(ir);
6788 if (options->MaxIfDepth == 0) {
6789 lower_discard(ir);
6790 }
6791
6792 do {
6793 progress = false;
6794
6795 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
6796
6797 progress = do_common_optimization(ir, true, true, options,
6798 ctx->Const.NativeIntegers)
6799 || progress;
6800
6801 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
6802
6803 } while (progress);
6804
6805 validate_ir_tree(ir);
6806 }
6807
6808 build_program_resource_list(ctx, prog);
6809
6810 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6811 struct gl_program *linked_prog;
6812
6813 if (prog->_LinkedShaders[i] == NULL)
6814 continue;
6815
6816 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
6817
6818 if (linked_prog) {
6819 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
6820 linked_prog);
6821 if (!ctx->Driver.ProgramStringNotify(ctx,
6822 _mesa_shader_stage_to_program(i),
6823 linked_prog)) {
6824 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
6825 NULL);
6826 _mesa_reference_program(ctx, &linked_prog, NULL);
6827 return GL_FALSE;
6828 }
6829 }
6830
6831 _mesa_reference_program(ctx, &linked_prog, NULL);
6832 }
6833
6834 return GL_TRUE;
6835 }
6836
6837 void
6838 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
6839 const GLuint outputMapping[],
6840 struct pipe_stream_output_info *so)
6841 {
6842 struct gl_transform_feedback_info *info =
6843 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
6844 st_translate_stream_output_info2(info, outputMapping, so);
6845 }
6846
6847 void
6848 st_translate_stream_output_info2(struct gl_transform_feedback_info *info,
6849 const GLuint outputMapping[],
6850 struct pipe_stream_output_info *so)
6851 {
6852 unsigned i;
6853
6854 for (i = 0; i < info->NumOutputs; i++) {
6855 so->output[i].register_index =
6856 outputMapping[info->Outputs[i].OutputRegister];
6857 so->output[i].start_component = info->Outputs[i].ComponentOffset;
6858 so->output[i].num_components = info->Outputs[i].NumComponents;
6859 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
6860 so->output[i].dst_offset = info->Outputs[i].DstOffset;
6861 so->output[i].stream = info->Outputs[i].StreamId;
6862 }
6863
6864 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
6865 so->stride[i] = info->Buffers[i].Stride;
6866 }
6867 so->num_outputs = info->NumOutputs;
6868 }
6869
6870 } /* extern "C" */