glsl_to_tgsi: fix texture offset translation
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_print_visitor.h"
38 #include "ir_expression_flattening.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderobj.h"
47 #include "program/hash_table.h"
48
49 extern "C" {
50 #include "main/shaderapi.h"
51 #include "main/uniforms.h"
52 #include "program/prog_instruction.h"
53 #include "program/prog_optimize.h"
54 #include "program/prog_print.h"
55 #include "program/program.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58
59 #include "pipe/p_compiler.h"
60 #include "pipe/p_context.h"
61 #include "pipe/p_screen.h"
62 #include "pipe/p_shader_tokens.h"
63 #include "pipe/p_state.h"
64 #include "util/u_math.h"
65 #include "tgsi/tgsi_ureg.h"
66 #include "tgsi/tgsi_info.h"
67 #include "st_context.h"
68 #include "st_program.h"
69 #include "st_glsl_to_tgsi.h"
70 #include "st_mesa_to_tgsi.h"
71 }
72
73 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
75 (1 << PROGRAM_ENV_PARAM) | \
76 (1 << PROGRAM_STATE_VAR) | \
77 (1 << PROGRAM_CONSTANT) | \
78 (1 << PROGRAM_UNIFORM))
79
80 /**
81 * Maximum number of temporary registers.
82 *
83 * It is too big for stack allocated arrays -- it will cause stack overflow on
84 * Windows and likely Mac OS X.
85 */
86 #define MAX_TEMPS 4096
87
88 /* will be 4 for GLSL 4.00 */
89 #define MAX_GLSL_TEXTURE_OFFSET 1
90
91 class st_src_reg;
92 class st_dst_reg;
93
94 static int swizzle_for_size(int size);
95
96 /**
97 * This struct is a corresponding struct to TGSI ureg_src.
98 */
99 class st_src_reg {
100 public:
101 st_src_reg(gl_register_file file, int index, const glsl_type *type)
102 {
103 this->file = file;
104 this->index = index;
105 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
106 this->swizzle = swizzle_for_size(type->vector_elements);
107 else
108 this->swizzle = SWIZZLE_XYZW;
109 this->negate = 0;
110 this->index2D = 0;
111 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
112 this->reladdr = NULL;
113 }
114
115 st_src_reg(gl_register_file file, int index, int type)
116 {
117 this->type = type;
118 this->file = file;
119 this->index = index;
120 this->index2D = 0;
121 this->swizzle = SWIZZLE_XYZW;
122 this->negate = 0;
123 this->reladdr = NULL;
124 }
125
126 st_src_reg(gl_register_file file, int index, int type, int index2D)
127 {
128 this->type = type;
129 this->file = file;
130 this->index = index;
131 this->index2D = index2D;
132 this->swizzle = SWIZZLE_XYZW;
133 this->negate = 0;
134 this->reladdr = NULL;
135 }
136
137 st_src_reg()
138 {
139 this->type = GLSL_TYPE_ERROR;
140 this->file = PROGRAM_UNDEFINED;
141 this->index = 0;
142 this->index2D = 0;
143 this->swizzle = 0;
144 this->negate = 0;
145 this->reladdr = NULL;
146 }
147
148 explicit st_src_reg(st_dst_reg reg);
149
150 gl_register_file file; /**< PROGRAM_* from Mesa */
151 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
152 int index2D;
153 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
154 int negate; /**< NEGATE_XYZW mask from mesa */
155 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
156 /** Register index should be offset by the integer in this reg. */
157 st_src_reg *reladdr;
158 };
159
160 class st_dst_reg {
161 public:
162 st_dst_reg(gl_register_file file, int writemask, int type)
163 {
164 this->file = file;
165 this->index = 0;
166 this->writemask = writemask;
167 this->cond_mask = COND_TR;
168 this->reladdr = NULL;
169 this->type = type;
170 }
171
172 st_dst_reg()
173 {
174 this->type = GLSL_TYPE_ERROR;
175 this->file = PROGRAM_UNDEFINED;
176 this->index = 0;
177 this->writemask = 0;
178 this->cond_mask = COND_TR;
179 this->reladdr = NULL;
180 }
181
182 explicit st_dst_reg(st_src_reg reg);
183
184 gl_register_file file; /**< PROGRAM_* from Mesa */
185 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
186 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
187 GLuint cond_mask:4;
188 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
189 /** Register index should be offset by the integer in this reg. */
190 st_src_reg *reladdr;
191 };
192
193 st_src_reg::st_src_reg(st_dst_reg reg)
194 {
195 this->type = reg.type;
196 this->file = reg.file;
197 this->index = reg.index;
198 this->swizzle = SWIZZLE_XYZW;
199 this->negate = 0;
200 this->reladdr = reg.reladdr;
201 this->index2D = 0;
202 }
203
204 st_dst_reg::st_dst_reg(st_src_reg reg)
205 {
206 this->type = reg.type;
207 this->file = reg.file;
208 this->index = reg.index;
209 this->writemask = WRITEMASK_XYZW;
210 this->cond_mask = COND_TR;
211 this->reladdr = reg.reladdr;
212 }
213
214 class glsl_to_tgsi_instruction : public exec_node {
215 public:
216 /* Callers of this ralloc-based new need not call delete. It's
217 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
218 static void* operator new(size_t size, void *ctx)
219 {
220 void *node;
221
222 node = rzalloc_size(ctx, size);
223 assert(node != NULL);
224
225 return node;
226 }
227
228 unsigned op;
229 st_dst_reg dst;
230 st_src_reg src[3];
231 /** Pointer to the ir source this tree came from for debugging */
232 ir_instruction *ir;
233 GLboolean cond_update;
234 bool saturate;
235 int sampler; /**< sampler index */
236 int tex_target; /**< One of TEXTURE_*_INDEX */
237 GLboolean tex_shadow;
238 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
239 unsigned tex_offset_num_offset;
240 int dead_mask; /**< Used in dead code elimination */
241
242 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
243 };
244
245 class variable_storage : public exec_node {
246 public:
247 variable_storage(ir_variable *var, gl_register_file file, int index)
248 : file(file), index(index), var(var)
249 {
250 /* empty */
251 }
252
253 gl_register_file file;
254 int index;
255 ir_variable *var; /* variable that maps to this, if any */
256 };
257
258 class immediate_storage : public exec_node {
259 public:
260 immediate_storage(gl_constant_value *values, int size, int type)
261 {
262 memcpy(this->values, values, size * sizeof(gl_constant_value));
263 this->size = size;
264 this->type = type;
265 }
266
267 gl_constant_value values[4];
268 int size; /**< Number of components (1-4) */
269 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
270 };
271
272 class function_entry : public exec_node {
273 public:
274 ir_function_signature *sig;
275
276 /**
277 * identifier of this function signature used by the program.
278 *
279 * At the point that TGSI instructions for function calls are
280 * generated, we don't know the address of the first instruction of
281 * the function body. So we make the BranchTarget that is called a
282 * small integer and rewrite them during set_branchtargets().
283 */
284 int sig_id;
285
286 /**
287 * Pointer to first instruction of the function body.
288 *
289 * Set during function body emits after main() is processed.
290 */
291 glsl_to_tgsi_instruction *bgn_inst;
292
293 /**
294 * Index of the first instruction of the function body in actual TGSI.
295 *
296 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
297 */
298 int inst;
299
300 /** Storage for the return value. */
301 st_src_reg return_reg;
302 };
303
304 struct glsl_to_tgsi_visitor : public ir_visitor {
305 public:
306 glsl_to_tgsi_visitor();
307 ~glsl_to_tgsi_visitor();
308
309 function_entry *current_function;
310
311 struct gl_context *ctx;
312 struct gl_program *prog;
313 struct gl_shader_program *shader_program;
314 struct gl_shader_compiler_options *options;
315
316 int next_temp;
317
318 int num_address_regs;
319 int samplers_used;
320 bool indirect_addr_temps;
321 bool indirect_addr_consts;
322
323 int glsl_version;
324 bool native_integers;
325
326 variable_storage *find_variable_storage(ir_variable *var);
327
328 int add_constant(gl_register_file file, gl_constant_value values[4],
329 int size, int datatype, GLuint *swizzle_out);
330
331 function_entry *get_function_signature(ir_function_signature *sig);
332
333 st_src_reg get_temp(const glsl_type *type);
334 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
335
336 st_src_reg st_src_reg_for_float(float val);
337 st_src_reg st_src_reg_for_int(int val);
338 st_src_reg st_src_reg_for_type(int type, int val);
339
340 /**
341 * \name Visit methods
342 *
343 * As typical for the visitor pattern, there must be one \c visit method for
344 * each concrete subclass of \c ir_instruction. Virtual base classes within
345 * the hierarchy should not have \c visit methods.
346 */
347 /*@{*/
348 virtual void visit(ir_variable *);
349 virtual void visit(ir_loop *);
350 virtual void visit(ir_loop_jump *);
351 virtual void visit(ir_function_signature *);
352 virtual void visit(ir_function *);
353 virtual void visit(ir_expression *);
354 virtual void visit(ir_swizzle *);
355 virtual void visit(ir_dereference_variable *);
356 virtual void visit(ir_dereference_array *);
357 virtual void visit(ir_dereference_record *);
358 virtual void visit(ir_assignment *);
359 virtual void visit(ir_constant *);
360 virtual void visit(ir_call *);
361 virtual void visit(ir_return *);
362 virtual void visit(ir_discard *);
363 virtual void visit(ir_texture *);
364 virtual void visit(ir_if *);
365 /*@}*/
366
367 st_src_reg result;
368
369 /** List of variable_storage */
370 exec_list variables;
371
372 /** List of immediate_storage */
373 exec_list immediates;
374 unsigned num_immediates;
375
376 /** List of function_entry */
377 exec_list function_signatures;
378 int next_signature_id;
379
380 /** List of glsl_to_tgsi_instruction */
381 exec_list instructions;
382
383 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
384
385 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
386 st_dst_reg dst, st_src_reg src0);
387
388 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
389 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
390
391 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
392 st_dst_reg dst,
393 st_src_reg src0, st_src_reg src1, st_src_reg src2);
394
395 unsigned get_opcode(ir_instruction *ir, unsigned op,
396 st_dst_reg dst,
397 st_src_reg src0, st_src_reg src1);
398
399 /**
400 * Emit the correct dot-product instruction for the type of arguments
401 */
402 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
403 st_dst_reg dst,
404 st_src_reg src0,
405 st_src_reg src1,
406 unsigned elements);
407
408 void emit_scalar(ir_instruction *ir, unsigned op,
409 st_dst_reg dst, st_src_reg src0);
410
411 void emit_scalar(ir_instruction *ir, unsigned op,
412 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
413
414 void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
415
416 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
417
418 void emit_scs(ir_instruction *ir, unsigned op,
419 st_dst_reg dst, const st_src_reg &src);
420
421 bool try_emit_mad(ir_expression *ir,
422 int mul_operand);
423 bool try_emit_mad_for_and_not(ir_expression *ir,
424 int mul_operand);
425 bool try_emit_sat(ir_expression *ir);
426
427 void emit_swz(ir_expression *ir);
428
429 bool process_move_condition(ir_rvalue *ir);
430
431 void simplify_cmp(void);
432
433 void rename_temp_register(int index, int new_index);
434 int get_first_temp_read(int index);
435 int get_first_temp_write(int index);
436 int get_last_temp_read(int index);
437 int get_last_temp_write(int index);
438
439 void copy_propagate(void);
440 void eliminate_dead_code(void);
441 int eliminate_dead_code_advanced(void);
442 void merge_registers(void);
443 void renumber_registers(void);
444
445 void *mem_ctx;
446 };
447
448 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
449
450 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
451
452 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
453
454 static void
455 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
456
457 static void
458 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
459 {
460 va_list args;
461 va_start(args, fmt);
462 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
463 va_end(args);
464
465 prog->LinkStatus = GL_FALSE;
466 }
467
468 static int
469 swizzle_for_size(int size)
470 {
471 int size_swizzles[4] = {
472 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
473 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
474 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
475 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
476 };
477
478 assert((size >= 1) && (size <= 4));
479 return size_swizzles[size - 1];
480 }
481
482 static bool
483 is_tex_instruction(unsigned opcode)
484 {
485 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
486 return info->is_tex;
487 }
488
489 static unsigned
490 num_inst_dst_regs(unsigned opcode)
491 {
492 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
493 return info->num_dst;
494 }
495
496 static unsigned
497 num_inst_src_regs(unsigned opcode)
498 {
499 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
500 return info->is_tex ? info->num_src - 1 : info->num_src;
501 }
502
503 glsl_to_tgsi_instruction *
504 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
505 st_dst_reg dst,
506 st_src_reg src0, st_src_reg src1, st_src_reg src2)
507 {
508 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
509 int num_reladdr = 0, i;
510
511 op = get_opcode(ir, op, dst, src0, src1);
512
513 /* If we have to do relative addressing, we want to load the ARL
514 * reg directly for one of the regs, and preload the other reladdr
515 * sources into temps.
516 */
517 num_reladdr += dst.reladdr != NULL;
518 num_reladdr += src0.reladdr != NULL;
519 num_reladdr += src1.reladdr != NULL;
520 num_reladdr += src2.reladdr != NULL;
521
522 reladdr_to_temp(ir, &src2, &num_reladdr);
523 reladdr_to_temp(ir, &src1, &num_reladdr);
524 reladdr_to_temp(ir, &src0, &num_reladdr);
525
526 if (dst.reladdr) {
527 emit_arl(ir, address_reg, *dst.reladdr);
528 num_reladdr--;
529 }
530 assert(num_reladdr == 0);
531
532 inst->op = op;
533 inst->dst = dst;
534 inst->src[0] = src0;
535 inst->src[1] = src1;
536 inst->src[2] = src2;
537 inst->ir = ir;
538 inst->dead_mask = 0;
539
540 inst->function = NULL;
541
542 if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
543 this->num_address_regs = 1;
544
545 /* Update indirect addressing status used by TGSI */
546 if (dst.reladdr) {
547 switch(dst.file) {
548 case PROGRAM_TEMPORARY:
549 this->indirect_addr_temps = true;
550 break;
551 case PROGRAM_LOCAL_PARAM:
552 case PROGRAM_ENV_PARAM:
553 case PROGRAM_STATE_VAR:
554 case PROGRAM_CONSTANT:
555 case PROGRAM_UNIFORM:
556 this->indirect_addr_consts = true;
557 break;
558 case PROGRAM_IMMEDIATE:
559 assert(!"immediates should not have indirect addressing");
560 break;
561 default:
562 break;
563 }
564 }
565 else {
566 for (i=0; i<3; i++) {
567 if(inst->src[i].reladdr) {
568 switch(inst->src[i].file) {
569 case PROGRAM_TEMPORARY:
570 this->indirect_addr_temps = true;
571 break;
572 case PROGRAM_LOCAL_PARAM:
573 case PROGRAM_ENV_PARAM:
574 case PROGRAM_STATE_VAR:
575 case PROGRAM_CONSTANT:
576 case PROGRAM_UNIFORM:
577 this->indirect_addr_consts = true;
578 break;
579 case PROGRAM_IMMEDIATE:
580 assert(!"immediates should not have indirect addressing");
581 break;
582 default:
583 break;
584 }
585 }
586 }
587 }
588
589 this->instructions.push_tail(inst);
590
591 if (native_integers)
592 try_emit_float_set(ir, op, dst);
593
594 return inst;
595 }
596
597
598 glsl_to_tgsi_instruction *
599 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
600 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
601 {
602 return emit(ir, op, dst, src0, src1, undef_src);
603 }
604
605 glsl_to_tgsi_instruction *
606 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
607 st_dst_reg dst, st_src_reg src0)
608 {
609 assert(dst.writemask != 0);
610 return emit(ir, op, dst, src0, undef_src, undef_src);
611 }
612
613 glsl_to_tgsi_instruction *
614 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
615 {
616 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
617 }
618
619 /**
620 * Emits the code to convert the result of float SET instructions to integers.
621 */
622 void
623 glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
624 st_dst_reg dst)
625 {
626 if ((op == TGSI_OPCODE_SEQ ||
627 op == TGSI_OPCODE_SNE ||
628 op == TGSI_OPCODE_SGE ||
629 op == TGSI_OPCODE_SLT))
630 {
631 st_src_reg src = st_src_reg(dst);
632 src.negate = ~src.negate;
633 dst.type = GLSL_TYPE_FLOAT;
634 emit(ir, TGSI_OPCODE_F2I, dst, src);
635 }
636 }
637
638 /**
639 * Determines whether to use an integer, unsigned integer, or float opcode
640 * based on the operands and input opcode, then emits the result.
641 */
642 unsigned
643 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
644 st_dst_reg dst,
645 st_src_reg src0, st_src_reg src1)
646 {
647 int type = GLSL_TYPE_FLOAT;
648
649 assert(src0.type != GLSL_TYPE_ARRAY);
650 assert(src0.type != GLSL_TYPE_STRUCT);
651 assert(src1.type != GLSL_TYPE_ARRAY);
652 assert(src1.type != GLSL_TYPE_STRUCT);
653
654 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
655 type = GLSL_TYPE_FLOAT;
656 else if (native_integers)
657 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
658
659 #define case4(c, f, i, u) \
660 case TGSI_OPCODE_##c: \
661 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
662 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
663 else op = TGSI_OPCODE_##f; \
664 break;
665 #define case3(f, i, u) case4(f, f, i, u)
666 #define case2fi(f, i) case4(f, f, i, i)
667 #define case2iu(i, u) case4(i, LAST, i, u)
668
669 switch(op) {
670 case2fi(ADD, UADD);
671 case2fi(MUL, UMUL);
672 case2fi(MAD, UMAD);
673 case3(DIV, IDIV, UDIV);
674 case3(MAX, IMAX, UMAX);
675 case3(MIN, IMIN, UMIN);
676 case2iu(MOD, UMOD);
677
678 case2fi(SEQ, USEQ);
679 case2fi(SNE, USNE);
680 case3(SGE, ISGE, USGE);
681 case3(SLT, ISLT, USLT);
682
683 case2iu(ISHR, USHR);
684
685 case2fi(SSG, ISSG);
686 case3(ABS, IABS, IABS);
687
688 default: break;
689 }
690
691 assert(op != TGSI_OPCODE_LAST);
692 return op;
693 }
694
695 glsl_to_tgsi_instruction *
696 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
697 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
698 unsigned elements)
699 {
700 static const unsigned dot_opcodes[] = {
701 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
702 };
703
704 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
705 }
706
707 /**
708 * Emits TGSI scalar opcodes to produce unique answers across channels.
709 *
710 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
711 * channel determines the result across all channels. So to do a vec4
712 * of this operation, we want to emit a scalar per source channel used
713 * to produce dest channels.
714 */
715 void
716 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
717 st_dst_reg dst,
718 st_src_reg orig_src0, st_src_reg orig_src1)
719 {
720 int i, j;
721 int done_mask = ~dst.writemask;
722
723 /* TGSI RCP is a scalar operation splatting results to all channels,
724 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
725 * dst channels.
726 */
727 for (i = 0; i < 4; i++) {
728 GLuint this_mask = (1 << i);
729 glsl_to_tgsi_instruction *inst;
730 st_src_reg src0 = orig_src0;
731 st_src_reg src1 = orig_src1;
732
733 if (done_mask & this_mask)
734 continue;
735
736 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
737 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
738 for (j = i + 1; j < 4; j++) {
739 /* If there is another enabled component in the destination that is
740 * derived from the same inputs, generate its value on this pass as
741 * well.
742 */
743 if (!(done_mask & (1 << j)) &&
744 GET_SWZ(src0.swizzle, j) == src0_swiz &&
745 GET_SWZ(src1.swizzle, j) == src1_swiz) {
746 this_mask |= (1 << j);
747 }
748 }
749 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
750 src0_swiz, src0_swiz);
751 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
752 src1_swiz, src1_swiz);
753
754 inst = emit(ir, op, dst, src0, src1);
755 inst->dst.writemask = this_mask;
756 done_mask |= this_mask;
757 }
758 }
759
760 void
761 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
762 st_dst_reg dst, st_src_reg src0)
763 {
764 st_src_reg undef = undef_src;
765
766 undef.swizzle = SWIZZLE_XXXX;
767
768 emit_scalar(ir, op, dst, src0, undef);
769 }
770
771 void
772 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
773 st_dst_reg dst, st_src_reg src0)
774 {
775 int op = TGSI_OPCODE_ARL;
776
777 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
778 op = TGSI_OPCODE_UARL;
779
780 emit(NULL, op, dst, src0);
781 }
782
783 /**
784 * Emit an TGSI_OPCODE_SCS instruction
785 *
786 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
787 * Instead of splatting its result across all four components of the
788 * destination, it writes one value to the \c x component and another value to
789 * the \c y component.
790 *
791 * \param ir IR instruction being processed
792 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
793 * on which value is desired.
794 * \param dst Destination register
795 * \param src Source register
796 */
797 void
798 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
799 st_dst_reg dst,
800 const st_src_reg &src)
801 {
802 /* Vertex programs cannot use the SCS opcode.
803 */
804 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
805 emit_scalar(ir, op, dst, src);
806 return;
807 }
808
809 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
810 const unsigned scs_mask = (1U << component);
811 int done_mask = ~dst.writemask;
812 st_src_reg tmp;
813
814 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
815
816 /* If there are compnents in the destination that differ from the component
817 * that will be written by the SCS instrution, we'll need a temporary.
818 */
819 if (scs_mask != unsigned(dst.writemask)) {
820 tmp = get_temp(glsl_type::vec4_type);
821 }
822
823 for (unsigned i = 0; i < 4; i++) {
824 unsigned this_mask = (1U << i);
825 st_src_reg src0 = src;
826
827 if ((done_mask & this_mask) != 0)
828 continue;
829
830 /* The source swizzle specified which component of the source generates
831 * sine / cosine for the current component in the destination. The SCS
832 * instruction requires that this value be swizzle to the X component.
833 * Replace the current swizzle with a swizzle that puts the source in
834 * the X component.
835 */
836 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
837
838 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
839 src0_swiz, src0_swiz);
840 for (unsigned j = i + 1; j < 4; j++) {
841 /* If there is another enabled component in the destination that is
842 * derived from the same inputs, generate its value on this pass as
843 * well.
844 */
845 if (!(done_mask & (1 << j)) &&
846 GET_SWZ(src0.swizzle, j) == src0_swiz) {
847 this_mask |= (1 << j);
848 }
849 }
850
851 if (this_mask != scs_mask) {
852 glsl_to_tgsi_instruction *inst;
853 st_dst_reg tmp_dst = st_dst_reg(tmp);
854
855 /* Emit the SCS instruction.
856 */
857 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
858 inst->dst.writemask = scs_mask;
859
860 /* Move the result of the SCS instruction to the desired location in
861 * the destination.
862 */
863 tmp.swizzle = MAKE_SWIZZLE4(component, component,
864 component, component);
865 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
866 inst->dst.writemask = this_mask;
867 } else {
868 /* Emit the SCS instruction to write directly to the destination.
869 */
870 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
871 inst->dst.writemask = scs_mask;
872 }
873
874 done_mask |= this_mask;
875 }
876 }
877
878 int
879 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
880 gl_constant_value values[4], int size, int datatype,
881 GLuint *swizzle_out)
882 {
883 if (file == PROGRAM_CONSTANT) {
884 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
885 size, datatype, swizzle_out);
886 } else {
887 int index = 0;
888 immediate_storage *entry;
889 assert(file == PROGRAM_IMMEDIATE);
890
891 /* Search immediate storage to see if we already have an identical
892 * immediate that we can use instead of adding a duplicate entry.
893 */
894 foreach_iter(exec_list_iterator, iter, this->immediates) {
895 entry = (immediate_storage *)iter.get();
896
897 if (entry->size == size &&
898 entry->type == datatype &&
899 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
900 return index;
901 }
902 index++;
903 }
904
905 /* Add this immediate to the list. */
906 entry = new(mem_ctx) immediate_storage(values, size, datatype);
907 this->immediates.push_tail(entry);
908 this->num_immediates++;
909 return index;
910 }
911 }
912
913 st_src_reg
914 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
915 {
916 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
917 union gl_constant_value uval;
918
919 uval.f = val;
920 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
921
922 return src;
923 }
924
925 st_src_reg
926 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
927 {
928 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
929 union gl_constant_value uval;
930
931 assert(native_integers);
932
933 uval.i = val;
934 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
935
936 return src;
937 }
938
939 st_src_reg
940 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
941 {
942 if (native_integers)
943 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
944 st_src_reg_for_int(val);
945 else
946 return st_src_reg_for_float(val);
947 }
948
949 static int
950 type_size(const struct glsl_type *type)
951 {
952 unsigned int i;
953 int size;
954
955 switch (type->base_type) {
956 case GLSL_TYPE_UINT:
957 case GLSL_TYPE_INT:
958 case GLSL_TYPE_FLOAT:
959 case GLSL_TYPE_BOOL:
960 if (type->is_matrix()) {
961 return type->matrix_columns;
962 } else {
963 /* Regardless of size of vector, it gets a vec4. This is bad
964 * packing for things like floats, but otherwise arrays become a
965 * mess. Hopefully a later pass over the code can pack scalars
966 * down if appropriate.
967 */
968 return 1;
969 }
970 case GLSL_TYPE_ARRAY:
971 assert(type->length > 0);
972 return type_size(type->fields.array) * type->length;
973 case GLSL_TYPE_STRUCT:
974 size = 0;
975 for (i = 0; i < type->length; i++) {
976 size += type_size(type->fields.structure[i].type);
977 }
978 return size;
979 case GLSL_TYPE_SAMPLER:
980 /* Samplers take up one slot in UNIFORMS[], but they're baked in
981 * at link time.
982 */
983 return 1;
984 default:
985 assert(0);
986 return 0;
987 }
988 }
989
990 /**
991 * In the initial pass of codegen, we assign temporary numbers to
992 * intermediate results. (not SSA -- variable assignments will reuse
993 * storage).
994 */
995 st_src_reg
996 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
997 {
998 st_src_reg src;
999
1000 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1001 src.file = PROGRAM_TEMPORARY;
1002 src.index = next_temp;
1003 src.reladdr = NULL;
1004 next_temp += type_size(type);
1005
1006 if (type->is_array() || type->is_record()) {
1007 src.swizzle = SWIZZLE_NOOP;
1008 } else {
1009 src.swizzle = swizzle_for_size(type->vector_elements);
1010 }
1011 src.negate = 0;
1012
1013 return src;
1014 }
1015
1016 variable_storage *
1017 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1018 {
1019
1020 variable_storage *entry;
1021
1022 foreach_iter(exec_list_iterator, iter, this->variables) {
1023 entry = (variable_storage *)iter.get();
1024
1025 if (entry->var == var)
1026 return entry;
1027 }
1028
1029 return NULL;
1030 }
1031
1032 void
1033 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1034 {
1035 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1036 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1037
1038 fp->OriginUpperLeft = ir->origin_upper_left;
1039 fp->PixelCenterInteger = ir->pixel_center_integer;
1040 }
1041
1042 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1043 unsigned int i;
1044 const ir_state_slot *const slots = ir->state_slots;
1045 assert(ir->state_slots != NULL);
1046
1047 /* Check if this statevar's setup in the STATE file exactly
1048 * matches how we'll want to reference it as a
1049 * struct/array/whatever. If not, then we need to move it into
1050 * temporary storage and hope that it'll get copy-propagated
1051 * out.
1052 */
1053 for (i = 0; i < ir->num_state_slots; i++) {
1054 if (slots[i].swizzle != SWIZZLE_XYZW) {
1055 break;
1056 }
1057 }
1058
1059 variable_storage *storage;
1060 st_dst_reg dst;
1061 if (i == ir->num_state_slots) {
1062 /* We'll set the index later. */
1063 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1064 this->variables.push_tail(storage);
1065
1066 dst = undef_dst;
1067 } else {
1068 /* The variable_storage constructor allocates slots based on the size
1069 * of the type. However, this had better match the number of state
1070 * elements that we're going to copy into the new temporary.
1071 */
1072 assert((int) ir->num_state_slots == type_size(ir->type));
1073
1074 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1075 this->next_temp);
1076 this->variables.push_tail(storage);
1077 this->next_temp += type_size(ir->type);
1078
1079 dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1080 native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1081 }
1082
1083
1084 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1085 int index = _mesa_add_state_reference(this->prog->Parameters,
1086 (gl_state_index *)slots[i].tokens);
1087
1088 if (storage->file == PROGRAM_STATE_VAR) {
1089 if (storage->index == -1) {
1090 storage->index = index;
1091 } else {
1092 assert(index == storage->index + (int)i);
1093 }
1094 } else {
1095 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1096 * the data being moved since MOV does not care about the type of
1097 * data it is moving, and we don't want to declare registers with
1098 * array or struct types.
1099 */
1100 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1101 src.swizzle = slots[i].swizzle;
1102 emit(ir, TGSI_OPCODE_MOV, dst, src);
1103 /* even a float takes up a whole vec4 reg in a struct/array. */
1104 dst.index++;
1105 }
1106 }
1107
1108 if (storage->file == PROGRAM_TEMPORARY &&
1109 dst.index != storage->index + (int) ir->num_state_slots) {
1110 fail_link(this->shader_program,
1111 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1112 ir->name, dst.index - storage->index,
1113 type_size(ir->type));
1114 }
1115 }
1116 }
1117
1118 void
1119 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1120 {
1121 ir_dereference_variable *counter = NULL;
1122
1123 if (ir->counter != NULL)
1124 counter = new(ir) ir_dereference_variable(ir->counter);
1125
1126 if (ir->from != NULL) {
1127 assert(ir->counter != NULL);
1128
1129 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1130
1131 a->accept(this);
1132 delete a;
1133 }
1134
1135 emit(NULL, TGSI_OPCODE_BGNLOOP);
1136
1137 if (ir->to) {
1138 ir_expression *e =
1139 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1140 counter, ir->to);
1141 ir_if *if_stmt = new(ir) ir_if(e);
1142
1143 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1144
1145 if_stmt->then_instructions.push_tail(brk);
1146
1147 if_stmt->accept(this);
1148
1149 delete if_stmt;
1150 delete e;
1151 delete brk;
1152 }
1153
1154 visit_exec_list(&ir->body_instructions, this);
1155
1156 if (ir->increment) {
1157 ir_expression *e =
1158 new(ir) ir_expression(ir_binop_add, counter->type,
1159 counter, ir->increment);
1160
1161 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1162
1163 a->accept(this);
1164 delete a;
1165 delete e;
1166 }
1167
1168 emit(NULL, TGSI_OPCODE_ENDLOOP);
1169 }
1170
1171 void
1172 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1173 {
1174 switch (ir->mode) {
1175 case ir_loop_jump::jump_break:
1176 emit(NULL, TGSI_OPCODE_BRK);
1177 break;
1178 case ir_loop_jump::jump_continue:
1179 emit(NULL, TGSI_OPCODE_CONT);
1180 break;
1181 }
1182 }
1183
1184
1185 void
1186 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1187 {
1188 assert(0);
1189 (void)ir;
1190 }
1191
1192 void
1193 glsl_to_tgsi_visitor::visit(ir_function *ir)
1194 {
1195 /* Ignore function bodies other than main() -- we shouldn't see calls to
1196 * them since they should all be inlined before we get to glsl_to_tgsi.
1197 */
1198 if (strcmp(ir->name, "main") == 0) {
1199 const ir_function_signature *sig;
1200 exec_list empty;
1201
1202 sig = ir->matching_signature(&empty);
1203
1204 assert(sig);
1205
1206 foreach_iter(exec_list_iterator, iter, sig->body) {
1207 ir_instruction *ir = (ir_instruction *)iter.get();
1208
1209 ir->accept(this);
1210 }
1211 }
1212 }
1213
1214 bool
1215 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1216 {
1217 int nonmul_operand = 1 - mul_operand;
1218 st_src_reg a, b, c;
1219 st_dst_reg result_dst;
1220
1221 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1222 if (!expr || expr->operation != ir_binop_mul)
1223 return false;
1224
1225 expr->operands[0]->accept(this);
1226 a = this->result;
1227 expr->operands[1]->accept(this);
1228 b = this->result;
1229 ir->operands[nonmul_operand]->accept(this);
1230 c = this->result;
1231
1232 this->result = get_temp(ir->type);
1233 result_dst = st_dst_reg(this->result);
1234 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1235 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1236
1237 return true;
1238 }
1239
1240 /**
1241 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1242 *
1243 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1244 * implemented using multiplication, and logical-or is implemented using
1245 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1246 * As result, the logical expression (a & !b) can be rewritten as:
1247 *
1248 * - a * !b
1249 * - a * (1 - b)
1250 * - (a * 1) - (a * b)
1251 * - a + -(a * b)
1252 * - a + (a * -b)
1253 *
1254 * This final expression can be implemented as a single MAD(a, -b, a)
1255 * instruction.
1256 */
1257 bool
1258 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1259 {
1260 const int other_operand = 1 - try_operand;
1261 st_src_reg a, b;
1262
1263 ir_expression *expr = ir->operands[try_operand]->as_expression();
1264 if (!expr || expr->operation != ir_unop_logic_not)
1265 return false;
1266
1267 ir->operands[other_operand]->accept(this);
1268 a = this->result;
1269 expr->operands[0]->accept(this);
1270 b = this->result;
1271
1272 b.negate = ~b.negate;
1273
1274 this->result = get_temp(ir->type);
1275 emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1276
1277 return true;
1278 }
1279
1280 bool
1281 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1282 {
1283 /* Saturates were only introduced to vertex programs in
1284 * NV_vertex_program3, so don't give them to drivers in the VP.
1285 */
1286 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1287 return false;
1288
1289 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1290 if (!sat_src)
1291 return false;
1292
1293 sat_src->accept(this);
1294 st_src_reg src = this->result;
1295
1296 /* If we generated an expression instruction into a temporary in
1297 * processing the saturate's operand, apply the saturate to that
1298 * instruction. Otherwise, generate a MOV to do the saturate.
1299 *
1300 * Note that we have to be careful to only do this optimization if
1301 * the instruction in question was what generated src->result. For
1302 * example, ir_dereference_array might generate a MUL instruction
1303 * to create the reladdr, and return us a src reg using that
1304 * reladdr. That MUL result is not the value we're trying to
1305 * saturate.
1306 */
1307 ir_expression *sat_src_expr = sat_src->as_expression();
1308 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1309 sat_src_expr->operation == ir_binop_add ||
1310 sat_src_expr->operation == ir_binop_dot)) {
1311 glsl_to_tgsi_instruction *new_inst;
1312 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1313 new_inst->saturate = true;
1314 } else {
1315 this->result = get_temp(ir->type);
1316 st_dst_reg result_dst = st_dst_reg(this->result);
1317 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1318 glsl_to_tgsi_instruction *inst;
1319 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1320 inst->saturate = true;
1321 }
1322
1323 return true;
1324 }
1325
1326 void
1327 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1328 st_src_reg *reg, int *num_reladdr)
1329 {
1330 if (!reg->reladdr)
1331 return;
1332
1333 emit_arl(ir, address_reg, *reg->reladdr);
1334
1335 if (*num_reladdr != 1) {
1336 st_src_reg temp = get_temp(glsl_type::vec4_type);
1337
1338 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1339 *reg = temp;
1340 }
1341
1342 (*num_reladdr)--;
1343 }
1344
1345 void
1346 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1347 {
1348 unsigned int operand;
1349 st_src_reg op[Elements(ir->operands)];
1350 st_src_reg result_src;
1351 st_dst_reg result_dst;
1352
1353 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1354 */
1355 if (ir->operation == ir_binop_add) {
1356 if (try_emit_mad(ir, 1))
1357 return;
1358 if (try_emit_mad(ir, 0))
1359 return;
1360 }
1361
1362 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1363 */
1364 if (ir->operation == ir_binop_logic_and) {
1365 if (try_emit_mad_for_and_not(ir, 1))
1366 return;
1367 if (try_emit_mad_for_and_not(ir, 0))
1368 return;
1369 }
1370
1371 if (try_emit_sat(ir))
1372 return;
1373
1374 if (ir->operation == ir_quadop_vector)
1375 assert(!"ir_quadop_vector should have been lowered");
1376
1377 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1378 this->result.file = PROGRAM_UNDEFINED;
1379 ir->operands[operand]->accept(this);
1380 if (this->result.file == PROGRAM_UNDEFINED) {
1381 ir_print_visitor v;
1382 printf("Failed to get tree for expression operand:\n");
1383 ir->operands[operand]->accept(&v);
1384 exit(1);
1385 }
1386 op[operand] = this->result;
1387
1388 /* Matrix expression operands should have been broken down to vector
1389 * operations already.
1390 */
1391 assert(!ir->operands[operand]->type->is_matrix());
1392 }
1393
1394 int vector_elements = ir->operands[0]->type->vector_elements;
1395 if (ir->operands[1]) {
1396 vector_elements = MAX2(vector_elements,
1397 ir->operands[1]->type->vector_elements);
1398 }
1399
1400 this->result.file = PROGRAM_UNDEFINED;
1401
1402 /* Storage for our result. Ideally for an assignment we'd be using
1403 * the actual storage for the result here, instead.
1404 */
1405 result_src = get_temp(ir->type);
1406 /* convenience for the emit functions below. */
1407 result_dst = st_dst_reg(result_src);
1408 /* Limit writes to the channels that will be used by result_src later.
1409 * This does limit this temp's use as a temporary for multi-instruction
1410 * sequences.
1411 */
1412 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1413
1414 switch (ir->operation) {
1415 case ir_unop_logic_not:
1416 if (result_dst.type != GLSL_TYPE_FLOAT)
1417 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1418 else {
1419 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1420 * older GPUs implement SEQ using multiple instructions (i915 uses two
1421 * SGE instructions and a MUL instruction). Since our logic values are
1422 * 0.0 and 1.0, 1-x also implements !x.
1423 */
1424 op[0].negate = ~op[0].negate;
1425 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1426 }
1427 break;
1428 case ir_unop_neg:
1429 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1430 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1431 else {
1432 op[0].negate = ~op[0].negate;
1433 result_src = op[0];
1434 }
1435 break;
1436 case ir_unop_abs:
1437 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1438 break;
1439 case ir_unop_sign:
1440 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1441 break;
1442 case ir_unop_rcp:
1443 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1444 break;
1445
1446 case ir_unop_exp2:
1447 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1448 break;
1449 case ir_unop_exp:
1450 case ir_unop_log:
1451 assert(!"not reached: should be handled by ir_explog_to_explog2");
1452 break;
1453 case ir_unop_log2:
1454 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1455 break;
1456 case ir_unop_sin:
1457 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1458 break;
1459 case ir_unop_cos:
1460 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1461 break;
1462 case ir_unop_sin_reduced:
1463 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1464 break;
1465 case ir_unop_cos_reduced:
1466 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1467 break;
1468
1469 case ir_unop_dFdx:
1470 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1471 break;
1472 case ir_unop_dFdy:
1473 {
1474 /* The X component contains 1 or -1 depending on whether the framebuffer
1475 * is a FBO or the window system buffer, respectively.
1476 * It is then multiplied with the source operand of DDY.
1477 */
1478 static const gl_state_index transform_y_state[STATE_LENGTH]
1479 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1480
1481 unsigned transform_y_index =
1482 _mesa_add_state_reference(this->prog->Parameters,
1483 transform_y_state);
1484
1485 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1486 transform_y_index,
1487 glsl_type::vec4_type);
1488 transform_y.swizzle = SWIZZLE_XXXX;
1489
1490 st_src_reg temp = get_temp(glsl_type::vec4_type);
1491
1492 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1493 emit(ir, TGSI_OPCODE_DDY, result_dst, temp);
1494 break;
1495 }
1496
1497 case ir_unop_noise: {
1498 /* At some point, a motivated person could add a better
1499 * implementation of noise. Currently not even the nvidia
1500 * binary drivers do anything more than this. In any case, the
1501 * place to do this is in the GL state tracker, not the poor
1502 * driver.
1503 */
1504 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1505 break;
1506 }
1507
1508 case ir_binop_add:
1509 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1510 break;
1511 case ir_binop_sub:
1512 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1513 break;
1514
1515 case ir_binop_mul:
1516 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1517 break;
1518 case ir_binop_div:
1519 if (result_dst.type == GLSL_TYPE_FLOAT)
1520 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1521 else
1522 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1523 break;
1524 case ir_binop_mod:
1525 if (result_dst.type == GLSL_TYPE_FLOAT)
1526 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1527 else
1528 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1529 break;
1530
1531 case ir_binop_less:
1532 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1533 break;
1534 case ir_binop_greater:
1535 emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1536 break;
1537 case ir_binop_lequal:
1538 emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1539 break;
1540 case ir_binop_gequal:
1541 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1542 break;
1543 case ir_binop_equal:
1544 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1545 break;
1546 case ir_binop_nequal:
1547 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1548 break;
1549 case ir_binop_all_equal:
1550 /* "==" operator producing a scalar boolean. */
1551 if (ir->operands[0]->type->is_vector() ||
1552 ir->operands[1]->type->is_vector()) {
1553 st_src_reg temp = get_temp(native_integers ?
1554 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1555 glsl_type::vec4_type);
1556
1557 if (native_integers) {
1558 st_dst_reg temp_dst = st_dst_reg(temp);
1559 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1560
1561 emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1562
1563 /* Emit 1-3 AND operations to combine the SEQ results. */
1564 switch (ir->operands[0]->type->vector_elements) {
1565 case 2:
1566 break;
1567 case 3:
1568 temp_dst.writemask = WRITEMASK_Y;
1569 temp1.swizzle = SWIZZLE_YYYY;
1570 temp2.swizzle = SWIZZLE_ZZZZ;
1571 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1572 break;
1573 case 4:
1574 temp_dst.writemask = WRITEMASK_X;
1575 temp1.swizzle = SWIZZLE_XXXX;
1576 temp2.swizzle = SWIZZLE_YYYY;
1577 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1578 temp_dst.writemask = WRITEMASK_Y;
1579 temp1.swizzle = SWIZZLE_ZZZZ;
1580 temp2.swizzle = SWIZZLE_WWWW;
1581 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1582 }
1583
1584 temp1.swizzle = SWIZZLE_XXXX;
1585 temp2.swizzle = SWIZZLE_YYYY;
1586 emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1587 } else {
1588 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1589
1590 /* After the dot-product, the value will be an integer on the
1591 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1592 */
1593 emit_dp(ir, result_dst, temp, temp, vector_elements);
1594
1595 /* Negating the result of the dot-product gives values on the range
1596 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1597 * This is achieved using SGE.
1598 */
1599 st_src_reg sge_src = result_src;
1600 sge_src.negate = ~sge_src.negate;
1601 emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1602 }
1603 } else {
1604 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1605 }
1606 break;
1607 case ir_binop_any_nequal:
1608 /* "!=" operator producing a scalar boolean. */
1609 if (ir->operands[0]->type->is_vector() ||
1610 ir->operands[1]->type->is_vector()) {
1611 st_src_reg temp = get_temp(native_integers ?
1612 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1613 glsl_type::vec4_type);
1614 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1615
1616 if (native_integers) {
1617 st_dst_reg temp_dst = st_dst_reg(temp);
1618 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1619
1620 /* Emit 1-3 OR operations to combine the SNE results. */
1621 switch (ir->operands[0]->type->vector_elements) {
1622 case 2:
1623 break;
1624 case 3:
1625 temp_dst.writemask = WRITEMASK_Y;
1626 temp1.swizzle = SWIZZLE_YYYY;
1627 temp2.swizzle = SWIZZLE_ZZZZ;
1628 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1629 break;
1630 case 4:
1631 temp_dst.writemask = WRITEMASK_X;
1632 temp1.swizzle = SWIZZLE_XXXX;
1633 temp2.swizzle = SWIZZLE_YYYY;
1634 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1635 temp_dst.writemask = WRITEMASK_Y;
1636 temp1.swizzle = SWIZZLE_ZZZZ;
1637 temp2.swizzle = SWIZZLE_WWWW;
1638 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1639 }
1640
1641 temp1.swizzle = SWIZZLE_XXXX;
1642 temp2.swizzle = SWIZZLE_YYYY;
1643 emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1644 } else {
1645 /* After the dot-product, the value will be an integer on the
1646 * range [0,4]. Zero stays zero, and positive values become 1.0.
1647 */
1648 glsl_to_tgsi_instruction *const dp =
1649 emit_dp(ir, result_dst, temp, temp, vector_elements);
1650 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1651 /* The clamping to [0,1] can be done for free in the fragment
1652 * shader with a saturate.
1653 */
1654 dp->saturate = true;
1655 } else {
1656 /* Negating the result of the dot-product gives values on the range
1657 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1658 * achieved using SLT.
1659 */
1660 st_src_reg slt_src = result_src;
1661 slt_src.negate = ~slt_src.negate;
1662 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1663 }
1664 }
1665 } else {
1666 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1667 }
1668 break;
1669
1670 case ir_unop_any: {
1671 assert(ir->operands[0]->type->is_vector());
1672
1673 /* After the dot-product, the value will be an integer on the
1674 * range [0,4]. Zero stays zero, and positive values become 1.0.
1675 */
1676 glsl_to_tgsi_instruction *const dp =
1677 emit_dp(ir, result_dst, op[0], op[0],
1678 ir->operands[0]->type->vector_elements);
1679 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1680 result_dst.type == GLSL_TYPE_FLOAT) {
1681 /* The clamping to [0,1] can be done for free in the fragment
1682 * shader with a saturate.
1683 */
1684 dp->saturate = true;
1685 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1686 /* Negating the result of the dot-product gives values on the range
1687 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1688 * is achieved using SLT.
1689 */
1690 st_src_reg slt_src = result_src;
1691 slt_src.negate = ~slt_src.negate;
1692 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1693 }
1694 else {
1695 /* Use SNE 0 if integers are being used as boolean values. */
1696 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1697 }
1698 break;
1699 }
1700
1701 case ir_binop_logic_xor:
1702 if (native_integers)
1703 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1704 else
1705 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1706 break;
1707
1708 case ir_binop_logic_or: {
1709 if (native_integers) {
1710 /* If integers are used as booleans, we can use an actual "or"
1711 * instruction.
1712 */
1713 assert(native_integers);
1714 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1715 } else {
1716 /* After the addition, the value will be an integer on the
1717 * range [0,2]. Zero stays zero, and positive values become 1.0.
1718 */
1719 glsl_to_tgsi_instruction *add =
1720 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1721 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1722 /* The clamping to [0,1] can be done for free in the fragment
1723 * shader with a saturate if floats are being used as boolean values.
1724 */
1725 add->saturate = true;
1726 } else {
1727 /* Negating the result of the addition gives values on the range
1728 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1729 * is achieved using SLT.
1730 */
1731 st_src_reg slt_src = result_src;
1732 slt_src.negate = ~slt_src.negate;
1733 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1734 }
1735 }
1736 break;
1737 }
1738
1739 case ir_binop_logic_and:
1740 /* If native integers are disabled, the bool args are stored as float 0.0
1741 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1742 * actual AND opcode.
1743 */
1744 if (native_integers)
1745 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1746 else
1747 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1748 break;
1749
1750 case ir_binop_dot:
1751 assert(ir->operands[0]->type->is_vector());
1752 assert(ir->operands[0]->type == ir->operands[1]->type);
1753 emit_dp(ir, result_dst, op[0], op[1],
1754 ir->operands[0]->type->vector_elements);
1755 break;
1756
1757 case ir_unop_sqrt:
1758 /* sqrt(x) = x * rsq(x). */
1759 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1760 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1761 /* For incoming channels <= 0, set the result to 0. */
1762 op[0].negate = ~op[0].negate;
1763 emit(ir, TGSI_OPCODE_CMP, result_dst,
1764 op[0], result_src, st_src_reg_for_float(0.0));
1765 break;
1766 case ir_unop_rsq:
1767 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1768 break;
1769 case ir_unop_i2f:
1770 if (native_integers) {
1771 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1772 break;
1773 }
1774 /* fallthrough to next case otherwise */
1775 case ir_unop_b2f:
1776 if (native_integers) {
1777 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1778 break;
1779 }
1780 /* fallthrough to next case otherwise */
1781 case ir_unop_i2u:
1782 case ir_unop_u2i:
1783 /* Converting between signed and unsigned integers is a no-op. */
1784 result_src = op[0];
1785 break;
1786 case ir_unop_b2i:
1787 if (native_integers) {
1788 /* Booleans are stored as integers using ~0 for true and 0 for false.
1789 * GLSL requires that int(bool) return 1 for true and 0 for false.
1790 * This conversion is done with AND, but it could be done with NEG.
1791 */
1792 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1793 } else {
1794 /* Booleans and integers are both stored as floats when native
1795 * integers are disabled.
1796 */
1797 result_src = op[0];
1798 }
1799 break;
1800 case ir_unop_f2i:
1801 if (native_integers)
1802 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1803 else
1804 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1805 break;
1806 case ir_unop_f2u:
1807 if (native_integers)
1808 emit(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1809 else
1810 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1811 break;
1812 case ir_unop_bitcast_f2i:
1813 case ir_unop_bitcast_f2u:
1814 case ir_unop_bitcast_i2f:
1815 case ir_unop_bitcast_u2f:
1816 result_src = op[0];
1817 break;
1818 case ir_unop_f2b:
1819 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1820 break;
1821 case ir_unop_i2b:
1822 if (native_integers)
1823 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1824 else
1825 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1826 break;
1827 case ir_unop_trunc:
1828 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1829 break;
1830 case ir_unop_ceil:
1831 emit(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1832 break;
1833 case ir_unop_floor:
1834 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1835 break;
1836 case ir_unop_round_even:
1837 emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1838 break;
1839 case ir_unop_fract:
1840 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1841 break;
1842
1843 case ir_binop_min:
1844 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1845 break;
1846 case ir_binop_max:
1847 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1848 break;
1849 case ir_binop_pow:
1850 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1851 break;
1852
1853 case ir_unop_bit_not:
1854 if (native_integers) {
1855 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1856 break;
1857 }
1858 case ir_unop_u2f:
1859 if (native_integers) {
1860 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1861 break;
1862 }
1863 case ir_binop_lshift:
1864 if (native_integers) {
1865 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1866 break;
1867 }
1868 case ir_binop_rshift:
1869 if (native_integers) {
1870 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1871 break;
1872 }
1873 case ir_binop_bit_and:
1874 if (native_integers) {
1875 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1876 break;
1877 }
1878 case ir_binop_bit_xor:
1879 if (native_integers) {
1880 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1881 break;
1882 }
1883 case ir_binop_bit_or:
1884 if (native_integers) {
1885 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1886 break;
1887 }
1888
1889 assert(!"GLSL 1.30 features unsupported");
1890 break;
1891
1892 case ir_binop_ubo_load: {
1893 ir_constant *uniform_block = ir->operands[0]->as_constant();
1894 st_src_reg index_reg = get_temp(glsl_type::uint_type);
1895 st_src_reg cbuf;
1896
1897 cbuf.type = glsl_type::vec4_type->base_type;
1898 cbuf.file = PROGRAM_CONSTANT;
1899 cbuf.index = 0;
1900 cbuf.index2D = uniform_block->value.u[0] + 1;
1901 cbuf.reladdr = NULL;
1902 cbuf.negate = 0;
1903
1904 assert(ir->type->is_vector() || ir->type->is_scalar());
1905
1906 emit(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1], st_src_reg_for_int(4));
1907
1908 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
1909 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1910 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
1911
1912 emit(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
1913 break;
1914 }
1915 case ir_quadop_vector:
1916 /* This operation should have already been handled.
1917 */
1918 assert(!"Should not get here.");
1919 break;
1920 }
1921
1922 this->result = result_src;
1923 }
1924
1925
1926 void
1927 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1928 {
1929 st_src_reg src;
1930 int i;
1931 int swizzle[4];
1932
1933 /* Note that this is only swizzles in expressions, not those on the left
1934 * hand side of an assignment, which do write masking. See ir_assignment
1935 * for that.
1936 */
1937
1938 ir->val->accept(this);
1939 src = this->result;
1940 assert(src.file != PROGRAM_UNDEFINED);
1941
1942 for (i = 0; i < 4; i++) {
1943 if (i < ir->type->vector_elements) {
1944 switch (i) {
1945 case 0:
1946 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1947 break;
1948 case 1:
1949 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1950 break;
1951 case 2:
1952 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1953 break;
1954 case 3:
1955 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1956 break;
1957 }
1958 } else {
1959 /* If the type is smaller than a vec4, replicate the last
1960 * channel out.
1961 */
1962 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1963 }
1964 }
1965
1966 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1967
1968 this->result = src;
1969 }
1970
1971 void
1972 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1973 {
1974 variable_storage *entry = find_variable_storage(ir->var);
1975 ir_variable *var = ir->var;
1976
1977 if (!entry) {
1978 switch (var->mode) {
1979 case ir_var_uniform:
1980 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1981 var->location);
1982 this->variables.push_tail(entry);
1983 break;
1984 case ir_var_in:
1985 case ir_var_inout:
1986 /* The linker assigns locations for varyings and attributes,
1987 * including deprecated builtins (like gl_Color), user-assign
1988 * generic attributes (glBindVertexLocation), and
1989 * user-defined varyings.
1990 *
1991 * FINISHME: We would hit this path for function arguments. Fix!
1992 */
1993 assert(var->location != -1);
1994 entry = new(mem_ctx) variable_storage(var,
1995 PROGRAM_INPUT,
1996 var->location);
1997 break;
1998 case ir_var_out:
1999 assert(var->location != -1);
2000 entry = new(mem_ctx) variable_storage(var,
2001 PROGRAM_OUTPUT,
2002 var->location + var->index);
2003 break;
2004 case ir_var_system_value:
2005 entry = new(mem_ctx) variable_storage(var,
2006 PROGRAM_SYSTEM_VALUE,
2007 var->location);
2008 break;
2009 case ir_var_auto:
2010 case ir_var_temporary:
2011 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
2012 this->next_temp);
2013 this->variables.push_tail(entry);
2014
2015 next_temp += type_size(var->type);
2016 break;
2017 }
2018
2019 if (!entry) {
2020 printf("Failed to make storage for %s\n", var->name);
2021 exit(1);
2022 }
2023 }
2024
2025 this->result = st_src_reg(entry->file, entry->index, var->type);
2026 if (!native_integers)
2027 this->result.type = GLSL_TYPE_FLOAT;
2028 }
2029
2030 void
2031 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2032 {
2033 ir_constant *index;
2034 st_src_reg src;
2035 int element_size = type_size(ir->type);
2036
2037 index = ir->array_index->constant_expression_value();
2038
2039 ir->array->accept(this);
2040 src = this->result;
2041
2042 if (index) {
2043 src.index += index->value.i[0] * element_size;
2044 } else {
2045 /* Variable index array dereference. It eats the "vec4" of the
2046 * base of the array and an index that offsets the TGSI register
2047 * index.
2048 */
2049 ir->array_index->accept(this);
2050
2051 st_src_reg index_reg;
2052
2053 if (element_size == 1) {
2054 index_reg = this->result;
2055 } else {
2056 index_reg = get_temp(native_integers ?
2057 glsl_type::int_type : glsl_type::float_type);
2058
2059 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2060 this->result, st_src_reg_for_type(index_reg.type, element_size));
2061 }
2062
2063 /* If there was already a relative address register involved, add the
2064 * new and the old together to get the new offset.
2065 */
2066 if (src.reladdr != NULL) {
2067 st_src_reg accum_reg = get_temp(native_integers ?
2068 glsl_type::int_type : glsl_type::float_type);
2069
2070 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2071 index_reg, *src.reladdr);
2072
2073 index_reg = accum_reg;
2074 }
2075
2076 src.reladdr = ralloc(mem_ctx, st_src_reg);
2077 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2078 }
2079
2080 /* If the type is smaller than a vec4, replicate the last channel out. */
2081 if (ir->type->is_scalar() || ir->type->is_vector())
2082 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2083 else
2084 src.swizzle = SWIZZLE_NOOP;
2085
2086 /* Change the register type to the element type of the array. */
2087 src.type = ir->type->base_type;
2088
2089 this->result = src;
2090 }
2091
2092 void
2093 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2094 {
2095 unsigned int i;
2096 const glsl_type *struct_type = ir->record->type;
2097 int offset = 0;
2098
2099 ir->record->accept(this);
2100
2101 for (i = 0; i < struct_type->length; i++) {
2102 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2103 break;
2104 offset += type_size(struct_type->fields.structure[i].type);
2105 }
2106
2107 /* If the type is smaller than a vec4, replicate the last channel out. */
2108 if (ir->type->is_scalar() || ir->type->is_vector())
2109 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2110 else
2111 this->result.swizzle = SWIZZLE_NOOP;
2112
2113 this->result.index += offset;
2114 this->result.type = ir->type->base_type;
2115 }
2116
2117 /**
2118 * We want to be careful in assignment setup to hit the actual storage
2119 * instead of potentially using a temporary like we might with the
2120 * ir_dereference handler.
2121 */
2122 static st_dst_reg
2123 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2124 {
2125 /* The LHS must be a dereference. If the LHS is a variable indexed array
2126 * access of a vector, it must be separated into a series conditional moves
2127 * before reaching this point (see ir_vec_index_to_cond_assign).
2128 */
2129 assert(ir->as_dereference());
2130 ir_dereference_array *deref_array = ir->as_dereference_array();
2131 if (deref_array) {
2132 assert(!deref_array->array->type->is_vector());
2133 }
2134
2135 /* Use the rvalue deref handler for the most part. We'll ignore
2136 * swizzles in it and write swizzles using writemask, though.
2137 */
2138 ir->accept(v);
2139 return st_dst_reg(v->result);
2140 }
2141
2142 /**
2143 * Process the condition of a conditional assignment
2144 *
2145 * Examines the condition of a conditional assignment to generate the optimal
2146 * first operand of a \c CMP instruction. If the condition is a relational
2147 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2148 * used as the source for the \c CMP instruction. Otherwise the comparison
2149 * is processed to a boolean result, and the boolean result is used as the
2150 * operand to the CMP instruction.
2151 */
2152 bool
2153 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2154 {
2155 ir_rvalue *src_ir = ir;
2156 bool negate = true;
2157 bool switch_order = false;
2158
2159 ir_expression *const expr = ir->as_expression();
2160 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2161 bool zero_on_left = false;
2162
2163 if (expr->operands[0]->is_zero()) {
2164 src_ir = expr->operands[1];
2165 zero_on_left = true;
2166 } else if (expr->operands[1]->is_zero()) {
2167 src_ir = expr->operands[0];
2168 zero_on_left = false;
2169 }
2170
2171 /* a is - 0 + - 0 +
2172 * (a < 0) T F F ( a < 0) T F F
2173 * (0 < a) F F T (-a < 0) F F T
2174 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2175 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2176 * (a > 0) F F T (-a < 0) F F T
2177 * (0 > a) T F F ( a < 0) T F F
2178 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2179 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2180 *
2181 * Note that exchanging the order of 0 and 'a' in the comparison simply
2182 * means that the value of 'a' should be negated.
2183 */
2184 if (src_ir != ir) {
2185 switch (expr->operation) {
2186 case ir_binop_less:
2187 switch_order = false;
2188 negate = zero_on_left;
2189 break;
2190
2191 case ir_binop_greater:
2192 switch_order = false;
2193 negate = !zero_on_left;
2194 break;
2195
2196 case ir_binop_lequal:
2197 switch_order = true;
2198 negate = !zero_on_left;
2199 break;
2200
2201 case ir_binop_gequal:
2202 switch_order = true;
2203 negate = zero_on_left;
2204 break;
2205
2206 default:
2207 /* This isn't the right kind of comparison afterall, so make sure
2208 * the whole condition is visited.
2209 */
2210 src_ir = ir;
2211 break;
2212 }
2213 }
2214 }
2215
2216 src_ir->accept(this);
2217
2218 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2219 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2220 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2221 * computing the condition.
2222 */
2223 if (negate)
2224 this->result.negate = ~this->result.negate;
2225
2226 return switch_order;
2227 }
2228
2229 void
2230 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2231 {
2232 st_dst_reg l;
2233 st_src_reg r;
2234 int i;
2235
2236 ir->rhs->accept(this);
2237 r = this->result;
2238
2239 l = get_assignment_lhs(ir->lhs, this);
2240
2241 /* FINISHME: This should really set to the correct maximal writemask for each
2242 * FINISHME: component written (in the loops below). This case can only
2243 * FINISHME: occur for matrices, arrays, and structures.
2244 */
2245 if (ir->write_mask == 0) {
2246 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2247 l.writemask = WRITEMASK_XYZW;
2248 } else if (ir->lhs->type->is_scalar() &&
2249 ir->lhs->variable_referenced()->mode == ir_var_out) {
2250 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2251 * FINISHME: W component of fragment shader output zero, work correctly.
2252 */
2253 l.writemask = WRITEMASK_XYZW;
2254 } else {
2255 int swizzles[4];
2256 int first_enabled_chan = 0;
2257 int rhs_chan = 0;
2258
2259 l.writemask = ir->write_mask;
2260
2261 for (int i = 0; i < 4; i++) {
2262 if (l.writemask & (1 << i)) {
2263 first_enabled_chan = GET_SWZ(r.swizzle, i);
2264 break;
2265 }
2266 }
2267
2268 /* Swizzle a small RHS vector into the channels being written.
2269 *
2270 * glsl ir treats write_mask as dictating how many channels are
2271 * present on the RHS while TGSI treats write_mask as just
2272 * showing which channels of the vec4 RHS get written.
2273 */
2274 for (int i = 0; i < 4; i++) {
2275 if (l.writemask & (1 << i))
2276 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2277 else
2278 swizzles[i] = first_enabled_chan;
2279 }
2280 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2281 swizzles[2], swizzles[3]);
2282 }
2283
2284 assert(l.file != PROGRAM_UNDEFINED);
2285 assert(r.file != PROGRAM_UNDEFINED);
2286
2287 if (ir->condition) {
2288 const bool switch_order = this->process_move_condition(ir->condition);
2289 st_src_reg condition = this->result;
2290
2291 for (i = 0; i < type_size(ir->lhs->type); i++) {
2292 st_src_reg l_src = st_src_reg(l);
2293 st_src_reg condition_temp = condition;
2294 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2295
2296 if (native_integers) {
2297 /* This is necessary because TGSI's CMP instruction expects the
2298 * condition to be a float, and we store booleans as integers.
2299 * If TGSI had a UCMP instruction or similar, this extra
2300 * instruction would not be necessary.
2301 */
2302 condition_temp = get_temp(glsl_type::vec4_type);
2303 condition.negate = 0;
2304 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2305 condition_temp.swizzle = condition.swizzle;
2306 }
2307
2308 if (switch_order) {
2309 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2310 } else {
2311 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2312 }
2313
2314 l.index++;
2315 r.index++;
2316 }
2317 } else if (ir->rhs->as_expression() &&
2318 this->instructions.get_tail() &&
2319 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2320 type_size(ir->lhs->type) == 1 &&
2321 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2322 /* To avoid emitting an extra MOV when assigning an expression to a
2323 * variable, emit the last instruction of the expression again, but
2324 * replace the destination register with the target of the assignment.
2325 * Dead code elimination will remove the original instruction.
2326 */
2327 glsl_to_tgsi_instruction *inst, *new_inst;
2328 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2329 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2330 new_inst->saturate = inst->saturate;
2331 inst->dead_mask = inst->dst.writemask;
2332 } else {
2333 for (i = 0; i < type_size(ir->lhs->type); i++) {
2334 if (ir->rhs->type->is_array())
2335 r.type = ir->rhs->type->element_type()->base_type;
2336 else if (ir->rhs->type->is_record())
2337 r.type = ir->rhs->type->fields.structure[i].type->base_type;
2338 emit(ir, TGSI_OPCODE_MOV, l, r);
2339 l.index++;
2340 r.index++;
2341 }
2342 }
2343 }
2344
2345
2346 void
2347 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2348 {
2349 st_src_reg src;
2350 GLfloat stack_vals[4] = { 0 };
2351 gl_constant_value *values = (gl_constant_value *) stack_vals;
2352 GLenum gl_type = GL_NONE;
2353 unsigned int i;
2354 static int in_array = 0;
2355 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2356
2357 /* Unfortunately, 4 floats is all we can get into
2358 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2359 * aggregate constant and move each constant value into it. If we
2360 * get lucky, copy propagation will eliminate the extra moves.
2361 */
2362 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2363 st_src_reg temp_base = get_temp(ir->type);
2364 st_dst_reg temp = st_dst_reg(temp_base);
2365
2366 foreach_iter(exec_list_iterator, iter, ir->components) {
2367 ir_constant *field_value = (ir_constant *)iter.get();
2368 int size = type_size(field_value->type);
2369
2370 assert(size > 0);
2371
2372 field_value->accept(this);
2373 src = this->result;
2374
2375 for (i = 0; i < (unsigned int)size; i++) {
2376 emit(ir, TGSI_OPCODE_MOV, temp, src);
2377
2378 src.index++;
2379 temp.index++;
2380 }
2381 }
2382 this->result = temp_base;
2383 return;
2384 }
2385
2386 if (ir->type->is_array()) {
2387 st_src_reg temp_base = get_temp(ir->type);
2388 st_dst_reg temp = st_dst_reg(temp_base);
2389 int size = type_size(ir->type->fields.array);
2390
2391 assert(size > 0);
2392 in_array++;
2393
2394 for (i = 0; i < ir->type->length; i++) {
2395 ir->array_elements[i]->accept(this);
2396 src = this->result;
2397 for (int j = 0; j < size; j++) {
2398 emit(ir, TGSI_OPCODE_MOV, temp, src);
2399
2400 src.index++;
2401 temp.index++;
2402 }
2403 }
2404 this->result = temp_base;
2405 in_array--;
2406 return;
2407 }
2408
2409 if (ir->type->is_matrix()) {
2410 st_src_reg mat = get_temp(ir->type);
2411 st_dst_reg mat_column = st_dst_reg(mat);
2412
2413 for (i = 0; i < ir->type->matrix_columns; i++) {
2414 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2415 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2416
2417 src = st_src_reg(file, -1, ir->type->base_type);
2418 src.index = add_constant(file,
2419 values,
2420 ir->type->vector_elements,
2421 GL_FLOAT,
2422 &src.swizzle);
2423 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2424
2425 mat_column.index++;
2426 }
2427
2428 this->result = mat;
2429 return;
2430 }
2431
2432 switch (ir->type->base_type) {
2433 case GLSL_TYPE_FLOAT:
2434 gl_type = GL_FLOAT;
2435 for (i = 0; i < ir->type->vector_elements; i++) {
2436 values[i].f = ir->value.f[i];
2437 }
2438 break;
2439 case GLSL_TYPE_UINT:
2440 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2441 for (i = 0; i < ir->type->vector_elements; i++) {
2442 if (native_integers)
2443 values[i].u = ir->value.u[i];
2444 else
2445 values[i].f = ir->value.u[i];
2446 }
2447 break;
2448 case GLSL_TYPE_INT:
2449 gl_type = native_integers ? GL_INT : GL_FLOAT;
2450 for (i = 0; i < ir->type->vector_elements; i++) {
2451 if (native_integers)
2452 values[i].i = ir->value.i[i];
2453 else
2454 values[i].f = ir->value.i[i];
2455 }
2456 break;
2457 case GLSL_TYPE_BOOL:
2458 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2459 for (i = 0; i < ir->type->vector_elements; i++) {
2460 if (native_integers)
2461 values[i].u = ir->value.b[i] ? ~0 : 0;
2462 else
2463 values[i].f = ir->value.b[i];
2464 }
2465 break;
2466 default:
2467 assert(!"Non-float/uint/int/bool constant");
2468 }
2469
2470 this->result = st_src_reg(file, -1, ir->type);
2471 this->result.index = add_constant(file,
2472 values,
2473 ir->type->vector_elements,
2474 gl_type,
2475 &this->result.swizzle);
2476 }
2477
2478 function_entry *
2479 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2480 {
2481 function_entry *entry;
2482
2483 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2484 entry = (function_entry *)iter.get();
2485
2486 if (entry->sig == sig)
2487 return entry;
2488 }
2489
2490 entry = ralloc(mem_ctx, function_entry);
2491 entry->sig = sig;
2492 entry->sig_id = this->next_signature_id++;
2493 entry->bgn_inst = NULL;
2494
2495 /* Allocate storage for all the parameters. */
2496 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2497 ir_variable *param = (ir_variable *)iter.get();
2498 variable_storage *storage;
2499
2500 storage = find_variable_storage(param);
2501 assert(!storage);
2502
2503 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2504 this->next_temp);
2505 this->variables.push_tail(storage);
2506
2507 this->next_temp += type_size(param->type);
2508 }
2509
2510 if (!sig->return_type->is_void()) {
2511 entry->return_reg = get_temp(sig->return_type);
2512 } else {
2513 entry->return_reg = undef_src;
2514 }
2515
2516 this->function_signatures.push_tail(entry);
2517 return entry;
2518 }
2519
2520 void
2521 glsl_to_tgsi_visitor::visit(ir_call *ir)
2522 {
2523 glsl_to_tgsi_instruction *call_inst;
2524 ir_function_signature *sig = ir->callee;
2525 function_entry *entry = get_function_signature(sig);
2526 int i;
2527
2528 /* Process in parameters. */
2529 exec_list_iterator sig_iter = sig->parameters.iterator();
2530 foreach_iter(exec_list_iterator, iter, *ir) {
2531 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2532 ir_variable *param = (ir_variable *)sig_iter.get();
2533
2534 if (param->mode == ir_var_in ||
2535 param->mode == ir_var_inout) {
2536 variable_storage *storage = find_variable_storage(param);
2537 assert(storage);
2538
2539 param_rval->accept(this);
2540 st_src_reg r = this->result;
2541
2542 st_dst_reg l;
2543 l.file = storage->file;
2544 l.index = storage->index;
2545 l.reladdr = NULL;
2546 l.writemask = WRITEMASK_XYZW;
2547 l.cond_mask = COND_TR;
2548
2549 for (i = 0; i < type_size(param->type); i++) {
2550 emit(ir, TGSI_OPCODE_MOV, l, r);
2551 l.index++;
2552 r.index++;
2553 }
2554 }
2555
2556 sig_iter.next();
2557 }
2558 assert(!sig_iter.has_next());
2559
2560 /* Emit call instruction */
2561 call_inst = emit(ir, TGSI_OPCODE_CAL);
2562 call_inst->function = entry;
2563
2564 /* Process out parameters. */
2565 sig_iter = sig->parameters.iterator();
2566 foreach_iter(exec_list_iterator, iter, *ir) {
2567 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2568 ir_variable *param = (ir_variable *)sig_iter.get();
2569
2570 if (param->mode == ir_var_out ||
2571 param->mode == ir_var_inout) {
2572 variable_storage *storage = find_variable_storage(param);
2573 assert(storage);
2574
2575 st_src_reg r;
2576 r.file = storage->file;
2577 r.index = storage->index;
2578 r.reladdr = NULL;
2579 r.swizzle = SWIZZLE_NOOP;
2580 r.negate = 0;
2581
2582 param_rval->accept(this);
2583 st_dst_reg l = st_dst_reg(this->result);
2584
2585 for (i = 0; i < type_size(param->type); i++) {
2586 emit(ir, TGSI_OPCODE_MOV, l, r);
2587 l.index++;
2588 r.index++;
2589 }
2590 }
2591
2592 sig_iter.next();
2593 }
2594 assert(!sig_iter.has_next());
2595
2596 /* Process return value. */
2597 this->result = entry->return_reg;
2598 }
2599
2600 void
2601 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2602 {
2603 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy, offset;
2604 st_dst_reg result_dst, coord_dst, cube_sc_dst;
2605 glsl_to_tgsi_instruction *inst = NULL;
2606 unsigned opcode = TGSI_OPCODE_NOP;
2607 const glsl_type *sampler_type = ir->sampler->type;
2608 bool is_cube_array = false;
2609
2610 /* if we are a cube array sampler */
2611 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2612 sampler_type->sampler_array)) {
2613 is_cube_array = true;
2614 }
2615
2616 if (ir->coordinate) {
2617 ir->coordinate->accept(this);
2618
2619 /* Put our coords in a temp. We'll need to modify them for shadow,
2620 * projection, or LOD, so the only case we'd use it as is is if
2621 * we're doing plain old texturing. The optimization passes on
2622 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2623 */
2624 coord = get_temp(glsl_type::vec4_type);
2625 coord_dst = st_dst_reg(coord);
2626 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2627 }
2628
2629 if (ir->projector) {
2630 ir->projector->accept(this);
2631 projector = this->result;
2632 }
2633
2634 /* Storage for our result. Ideally for an assignment we'd be using
2635 * the actual storage for the result here, instead.
2636 */
2637 result_src = get_temp(ir->type);
2638 result_dst = st_dst_reg(result_src);
2639
2640 switch (ir->op) {
2641 case ir_tex:
2642 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
2643 break;
2644 case ir_txb:
2645 opcode = is_cube_array ? TGSI_OPCODE_TXB2 : TGSI_OPCODE_TXB;
2646 ir->lod_info.bias->accept(this);
2647 lod_info = this->result;
2648 break;
2649 case ir_txl:
2650 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
2651 ir->lod_info.lod->accept(this);
2652 lod_info = this->result;
2653 break;
2654 case ir_txd:
2655 opcode = TGSI_OPCODE_TXD;
2656 ir->lod_info.grad.dPdx->accept(this);
2657 dx = this->result;
2658 ir->lod_info.grad.dPdy->accept(this);
2659 dy = this->result;
2660 break;
2661 case ir_txs:
2662 opcode = TGSI_OPCODE_TXQ;
2663 ir->lod_info.lod->accept(this);
2664 lod_info = this->result;
2665 break;
2666 case ir_txf:
2667 opcode = TGSI_OPCODE_TXF;
2668 ir->lod_info.lod->accept(this);
2669 lod_info = this->result;
2670 if (ir->offset) {
2671 ir->offset->accept(this);
2672 offset = this->result;
2673 }
2674 break;
2675 }
2676
2677 if (ir->projector) {
2678 if (opcode == TGSI_OPCODE_TEX) {
2679 /* Slot the projector in as the last component of the coord. */
2680 coord_dst.writemask = WRITEMASK_W;
2681 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2682 coord_dst.writemask = WRITEMASK_XYZW;
2683 opcode = TGSI_OPCODE_TXP;
2684 } else {
2685 st_src_reg coord_w = coord;
2686 coord_w.swizzle = SWIZZLE_WWWW;
2687
2688 /* For the other TEX opcodes there's no projective version
2689 * since the last slot is taken up by LOD info. Do the
2690 * projective divide now.
2691 */
2692 coord_dst.writemask = WRITEMASK_W;
2693 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2694
2695 /* In the case where we have to project the coordinates "by hand,"
2696 * the shadow comparator value must also be projected.
2697 */
2698 st_src_reg tmp_src = coord;
2699 if (ir->shadow_comparitor) {
2700 /* Slot the shadow value in as the second to last component of the
2701 * coord.
2702 */
2703 ir->shadow_comparitor->accept(this);
2704
2705 tmp_src = get_temp(glsl_type::vec4_type);
2706 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2707
2708 /* Projective division not allowed for array samplers. */
2709 assert(!sampler_type->sampler_array);
2710
2711 tmp_dst.writemask = WRITEMASK_Z;
2712 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2713
2714 tmp_dst.writemask = WRITEMASK_XY;
2715 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2716 }
2717
2718 coord_dst.writemask = WRITEMASK_XYZ;
2719 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2720
2721 coord_dst.writemask = WRITEMASK_XYZW;
2722 coord.swizzle = SWIZZLE_XYZW;
2723 }
2724 }
2725
2726 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2727 * comparator was put in the correct place (and projected) by the code,
2728 * above, that handles by-hand projection.
2729 */
2730 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2731 /* Slot the shadow value in as the second to last component of the
2732 * coord.
2733 */
2734 ir->shadow_comparitor->accept(this);
2735
2736 if (is_cube_array) {
2737 cube_sc = get_temp(glsl_type::float_type);
2738 cube_sc_dst = st_dst_reg(cube_sc);
2739 cube_sc_dst.writemask = WRITEMASK_X;
2740 emit(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
2741 cube_sc_dst.writemask = WRITEMASK_X;
2742 }
2743 else {
2744 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2745 sampler_type->sampler_array) ||
2746 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
2747 coord_dst.writemask = WRITEMASK_W;
2748 } else {
2749 coord_dst.writemask = WRITEMASK_Z;
2750 }
2751
2752 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2753 coord_dst.writemask = WRITEMASK_XYZW;
2754 }
2755 }
2756
2757 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2758 opcode == TGSI_OPCODE_TXF) {
2759 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2760 coord_dst.writemask = WRITEMASK_W;
2761 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2762 coord_dst.writemask = WRITEMASK_XYZW;
2763 }
2764
2765 if (opcode == TGSI_OPCODE_TXD)
2766 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2767 else if (opcode == TGSI_OPCODE_TXQ)
2768 inst = emit(ir, opcode, result_dst, lod_info);
2769 else if (opcode == TGSI_OPCODE_TXF) {
2770 inst = emit(ir, opcode, result_dst, coord);
2771 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
2772 inst = emit(ir, opcode, result_dst, coord, lod_info);
2773 } else if (opcode == TGSI_OPCODE_TEX2) {
2774 inst = emit(ir, opcode, result_dst, coord, cube_sc);
2775 } else
2776 inst = emit(ir, opcode, result_dst, coord);
2777
2778 if (ir->shadow_comparitor)
2779 inst->tex_shadow = GL_TRUE;
2780
2781 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2782 this->shader_program,
2783 this->prog);
2784
2785 if (ir->offset) {
2786 inst->tex_offset_num_offset = 1;
2787 inst->tex_offsets[0].Index = offset.index;
2788 inst->tex_offsets[0].File = offset.file;
2789 inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2790 inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2791 inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2792 }
2793
2794 switch (sampler_type->sampler_dimensionality) {
2795 case GLSL_SAMPLER_DIM_1D:
2796 inst->tex_target = (sampler_type->sampler_array)
2797 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2798 break;
2799 case GLSL_SAMPLER_DIM_2D:
2800 inst->tex_target = (sampler_type->sampler_array)
2801 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2802 break;
2803 case GLSL_SAMPLER_DIM_3D:
2804 inst->tex_target = TEXTURE_3D_INDEX;
2805 break;
2806 case GLSL_SAMPLER_DIM_CUBE:
2807 inst->tex_target = (sampler_type->sampler_array)
2808 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
2809 break;
2810 case GLSL_SAMPLER_DIM_RECT:
2811 inst->tex_target = TEXTURE_RECT_INDEX;
2812 break;
2813 case GLSL_SAMPLER_DIM_BUF:
2814 inst->tex_target = TEXTURE_BUFFER_INDEX;
2815 break;
2816 case GLSL_SAMPLER_DIM_EXTERNAL:
2817 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2818 break;
2819 default:
2820 assert(!"Should not get here.");
2821 }
2822
2823 this->result = result_src;
2824 }
2825
2826 void
2827 glsl_to_tgsi_visitor::visit(ir_return *ir)
2828 {
2829 if (ir->get_value()) {
2830 st_dst_reg l;
2831 int i;
2832
2833 assert(current_function);
2834
2835 ir->get_value()->accept(this);
2836 st_src_reg r = this->result;
2837
2838 l = st_dst_reg(current_function->return_reg);
2839
2840 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2841 emit(ir, TGSI_OPCODE_MOV, l, r);
2842 l.index++;
2843 r.index++;
2844 }
2845 }
2846
2847 emit(ir, TGSI_OPCODE_RET);
2848 }
2849
2850 void
2851 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2852 {
2853 if (ir->condition) {
2854 ir->condition->accept(this);
2855 this->result.negate = ~this->result.negate;
2856 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2857 } else {
2858 emit(ir, TGSI_OPCODE_KILP);
2859 }
2860 }
2861
2862 void
2863 glsl_to_tgsi_visitor::visit(ir_if *ir)
2864 {
2865 glsl_to_tgsi_instruction *cond_inst, *if_inst;
2866 glsl_to_tgsi_instruction *prev_inst;
2867
2868 prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2869
2870 ir->condition->accept(this);
2871 assert(this->result.file != PROGRAM_UNDEFINED);
2872
2873 if (this->options->EmitCondCodes) {
2874 cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2875
2876 /* See if we actually generated any instruction for generating
2877 * the condition. If not, then cook up a move to a temp so we
2878 * have something to set cond_update on.
2879 */
2880 if (cond_inst == prev_inst) {
2881 st_src_reg temp = get_temp(glsl_type::bool_type);
2882 cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2883 }
2884 cond_inst->cond_update = GL_TRUE;
2885
2886 if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2887 if_inst->dst.cond_mask = COND_NE;
2888 } else {
2889 if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2890 }
2891
2892 this->instructions.push_tail(if_inst);
2893
2894 visit_exec_list(&ir->then_instructions, this);
2895
2896 if (!ir->else_instructions.is_empty()) {
2897 emit(ir->condition, TGSI_OPCODE_ELSE);
2898 visit_exec_list(&ir->else_instructions, this);
2899 }
2900
2901 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2902 }
2903
2904 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2905 {
2906 result.file = PROGRAM_UNDEFINED;
2907 next_temp = 1;
2908 next_signature_id = 1;
2909 num_immediates = 0;
2910 current_function = NULL;
2911 num_address_regs = 0;
2912 samplers_used = 0;
2913 indirect_addr_temps = false;
2914 indirect_addr_consts = false;
2915 glsl_version = 0;
2916 native_integers = false;
2917 mem_ctx = ralloc_context(NULL);
2918 ctx = NULL;
2919 prog = NULL;
2920 shader_program = NULL;
2921 options = NULL;
2922 }
2923
2924 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2925 {
2926 ralloc_free(mem_ctx);
2927 }
2928
2929 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2930 {
2931 delete v;
2932 }
2933
2934
2935 /**
2936 * Count resources used by the given gpu program (number of texture
2937 * samplers, etc).
2938 */
2939 static void
2940 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2941 {
2942 v->samplers_used = 0;
2943
2944 foreach_iter(exec_list_iterator, iter, v->instructions) {
2945 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2946
2947 if (is_tex_instruction(inst->op)) {
2948 v->samplers_used |= 1 << inst->sampler;
2949
2950 if (inst->tex_shadow) {
2951 prog->ShadowSamplers |= 1 << inst->sampler;
2952 }
2953 }
2954 }
2955
2956 prog->SamplersUsed = v->samplers_used;
2957
2958 if (v->shader_program != NULL)
2959 _mesa_update_shader_textures_used(v->shader_program, prog);
2960 }
2961
2962 static void
2963 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2964 struct gl_shader_program *shader_program,
2965 const char *name, const glsl_type *type,
2966 ir_constant *val)
2967 {
2968 if (type->is_record()) {
2969 ir_constant *field_constant;
2970
2971 field_constant = (ir_constant *)val->components.get_head();
2972
2973 for (unsigned int i = 0; i < type->length; i++) {
2974 const glsl_type *field_type = type->fields.structure[i].type;
2975 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2976 type->fields.structure[i].name);
2977 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2978 field_type, field_constant);
2979 field_constant = (ir_constant *)field_constant->next;
2980 }
2981 return;
2982 }
2983
2984 unsigned offset;
2985 unsigned index = _mesa_get_uniform_location(ctx, shader_program, name,
2986 &offset);
2987 if (offset == GL_INVALID_INDEX) {
2988 fail_link(shader_program,
2989 "Couldn't find uniform for initializer %s\n", name);
2990 return;
2991 }
2992 int loc = _mesa_uniform_merge_location_offset(index, offset);
2993
2994 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2995 ir_constant *element;
2996 const glsl_type *element_type;
2997 if (type->is_array()) {
2998 element = val->array_elements[i];
2999 element_type = type->fields.array;
3000 } else {
3001 element = val;
3002 element_type = type;
3003 }
3004
3005 void *values;
3006
3007 if (element_type->base_type == GLSL_TYPE_BOOL) {
3008 int *conv = ralloc_array(mem_ctx, int, element_type->components());
3009 for (unsigned int j = 0; j < element_type->components(); j++) {
3010 conv[j] = element->value.b[j];
3011 }
3012 values = (void *)conv;
3013 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
3014 element_type->vector_elements,
3015 1);
3016 } else {
3017 values = &element->value;
3018 }
3019
3020 if (element_type->is_matrix()) {
3021 _mesa_uniform_matrix(ctx, shader_program,
3022 element_type->matrix_columns,
3023 element_type->vector_elements,
3024 loc, 1, GL_FALSE, (GLfloat *)values);
3025 } else {
3026 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
3027 values, element_type->gl_type);
3028 }
3029
3030 loc++;
3031 }
3032 }
3033
3034 /**
3035 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3036 * are read from the given src in this instruction
3037 */
3038 static int
3039 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3040 {
3041 int read_mask = 0, comp;
3042
3043 /* Now, given the src swizzle and the written channels, find which
3044 * components are actually read
3045 */
3046 for (comp = 0; comp < 4; ++comp) {
3047 const unsigned coord = GET_SWZ(src.swizzle, comp);
3048 ASSERT(coord < 4);
3049 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3050 read_mask |= 1 << coord;
3051 }
3052
3053 return read_mask;
3054 }
3055
3056 /**
3057 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3058 * instruction is the first instruction to write to register T0. There are
3059 * several lowering passes done in GLSL IR (e.g. branches and
3060 * relative addressing) that create a large number of conditional assignments
3061 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3062 *
3063 * Here is why this conversion is safe:
3064 * CMP T0, T1 T2 T0 can be expanded to:
3065 * if (T1 < 0.0)
3066 * MOV T0, T2;
3067 * else
3068 * MOV T0, T0;
3069 *
3070 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3071 * as the original program. If (T1 < 0.0) evaluates to false, executing
3072 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3073 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3074 * because any instruction that was going to read from T0 after this was going
3075 * to read a garbage value anyway.
3076 */
3077 void
3078 glsl_to_tgsi_visitor::simplify_cmp(void)
3079 {
3080 unsigned *tempWrites;
3081 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3082
3083 tempWrites = new unsigned[MAX_TEMPS];
3084 if (!tempWrites) {
3085 return;
3086 }
3087 memset(tempWrites, 0, sizeof(unsigned) * MAX_TEMPS);
3088 memset(outputWrites, 0, sizeof(outputWrites));
3089
3090 foreach_iter(exec_list_iterator, iter, this->instructions) {
3091 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3092 unsigned prevWriteMask = 0;
3093
3094 /* Give up if we encounter relative addressing or flow control. */
3095 if (inst->dst.reladdr ||
3096 tgsi_get_opcode_info(inst->op)->is_branch ||
3097 inst->op == TGSI_OPCODE_BGNSUB ||
3098 inst->op == TGSI_OPCODE_CONT ||
3099 inst->op == TGSI_OPCODE_END ||
3100 inst->op == TGSI_OPCODE_ENDSUB ||
3101 inst->op == TGSI_OPCODE_RET) {
3102 break;
3103 }
3104
3105 if (inst->dst.file == PROGRAM_OUTPUT) {
3106 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3107 prevWriteMask = outputWrites[inst->dst.index];
3108 outputWrites[inst->dst.index] |= inst->dst.writemask;
3109 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3110 assert(inst->dst.index < MAX_TEMPS);
3111 prevWriteMask = tempWrites[inst->dst.index];
3112 tempWrites[inst->dst.index] |= inst->dst.writemask;
3113 }
3114
3115 /* For a CMP to be considered a conditional write, the destination
3116 * register and source register two must be the same. */
3117 if (inst->op == TGSI_OPCODE_CMP
3118 && !(inst->dst.writemask & prevWriteMask)
3119 && inst->src[2].file == inst->dst.file
3120 && inst->src[2].index == inst->dst.index
3121 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3122
3123 inst->op = TGSI_OPCODE_MOV;
3124 inst->src[0] = inst->src[1];
3125 }
3126 }
3127
3128 delete [] tempWrites;
3129 }
3130
3131 /* Replaces all references to a temporary register index with another index. */
3132 void
3133 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3134 {
3135 foreach_iter(exec_list_iterator, iter, this->instructions) {
3136 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3137 unsigned j;
3138
3139 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3140 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3141 inst->src[j].index == index) {
3142 inst->src[j].index = new_index;
3143 }
3144 }
3145
3146 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3147 inst->dst.index = new_index;
3148 }
3149 }
3150 }
3151
3152 int
3153 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3154 {
3155 int depth = 0; /* loop depth */
3156 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3157 unsigned i = 0, j;
3158
3159 foreach_iter(exec_list_iterator, iter, this->instructions) {
3160 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3161
3162 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3163 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3164 inst->src[j].index == index) {
3165 return (depth == 0) ? i : loop_start;
3166 }
3167 }
3168
3169 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3170 if(depth++ == 0)
3171 loop_start = i;
3172 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3173 if (--depth == 0)
3174 loop_start = -1;
3175 }
3176 assert(depth >= 0);
3177
3178 i++;
3179 }
3180
3181 return -1;
3182 }
3183
3184 int
3185 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3186 {
3187 int depth = 0; /* loop depth */
3188 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3189 int i = 0;
3190
3191 foreach_iter(exec_list_iterator, iter, this->instructions) {
3192 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3193
3194 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3195 return (depth == 0) ? i : loop_start;
3196 }
3197
3198 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3199 if(depth++ == 0)
3200 loop_start = i;
3201 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3202 if (--depth == 0)
3203 loop_start = -1;
3204 }
3205 assert(depth >= 0);
3206
3207 i++;
3208 }
3209
3210 return -1;
3211 }
3212
3213 int
3214 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3215 {
3216 int depth = 0; /* loop depth */
3217 int last = -1; /* index of last instruction that reads the temporary */
3218 unsigned i = 0, j;
3219
3220 foreach_iter(exec_list_iterator, iter, this->instructions) {
3221 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3222
3223 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3224 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3225 inst->src[j].index == index) {
3226 last = (depth == 0) ? i : -2;
3227 }
3228 }
3229
3230 if (inst->op == TGSI_OPCODE_BGNLOOP)
3231 depth++;
3232 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3233 if (--depth == 0 && last == -2)
3234 last = i;
3235 assert(depth >= 0);
3236
3237 i++;
3238 }
3239
3240 assert(last >= -1);
3241 return last;
3242 }
3243
3244 int
3245 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3246 {
3247 int depth = 0; /* loop depth */
3248 int last = -1; /* index of last instruction that writes to the temporary */
3249 int i = 0;
3250
3251 foreach_iter(exec_list_iterator, iter, this->instructions) {
3252 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3253
3254 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3255 last = (depth == 0) ? i : -2;
3256
3257 if (inst->op == TGSI_OPCODE_BGNLOOP)
3258 depth++;
3259 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3260 if (--depth == 0 && last == -2)
3261 last = i;
3262 assert(depth >= 0);
3263
3264 i++;
3265 }
3266
3267 assert(last >= -1);
3268 return last;
3269 }
3270
3271 /*
3272 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3273 * channels for copy propagation and updates following instructions to
3274 * use the original versions.
3275 *
3276 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3277 * will occur. As an example, a TXP production before this pass:
3278 *
3279 * 0: MOV TEMP[1], INPUT[4].xyyy;
3280 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3281 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3282 *
3283 * and after:
3284 *
3285 * 0: MOV TEMP[1], INPUT[4].xyyy;
3286 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3287 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3288 *
3289 * which allows for dead code elimination on TEMP[1]'s writes.
3290 */
3291 void
3292 glsl_to_tgsi_visitor::copy_propagate(void)
3293 {
3294 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3295 glsl_to_tgsi_instruction *,
3296 this->next_temp * 4);
3297 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3298 int level = 0;
3299
3300 foreach_iter(exec_list_iterator, iter, this->instructions) {
3301 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3302
3303 assert(inst->dst.file != PROGRAM_TEMPORARY
3304 || inst->dst.index < this->next_temp);
3305
3306 /* First, do any copy propagation possible into the src regs. */
3307 for (int r = 0; r < 3; r++) {
3308 glsl_to_tgsi_instruction *first = NULL;
3309 bool good = true;
3310 int acp_base = inst->src[r].index * 4;
3311
3312 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3313 inst->src[r].reladdr)
3314 continue;
3315
3316 /* See if we can find entries in the ACP consisting of MOVs
3317 * from the same src register for all the swizzled channels
3318 * of this src register reference.
3319 */
3320 for (int i = 0; i < 4; i++) {
3321 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3322 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3323
3324 if (!copy_chan) {
3325 good = false;
3326 break;
3327 }
3328
3329 assert(acp_level[acp_base + src_chan] <= level);
3330
3331 if (!first) {
3332 first = copy_chan;
3333 } else {
3334 if (first->src[0].file != copy_chan->src[0].file ||
3335 first->src[0].index != copy_chan->src[0].index) {
3336 good = false;
3337 break;
3338 }
3339 }
3340 }
3341
3342 if (good) {
3343 /* We've now validated that we can copy-propagate to
3344 * replace this src register reference. Do it.
3345 */
3346 inst->src[r].file = first->src[0].file;
3347 inst->src[r].index = first->src[0].index;
3348
3349 int swizzle = 0;
3350 for (int i = 0; i < 4; i++) {
3351 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3352 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3353 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3354 (3 * i));
3355 }
3356 inst->src[r].swizzle = swizzle;
3357 }
3358 }
3359
3360 switch (inst->op) {
3361 case TGSI_OPCODE_BGNLOOP:
3362 case TGSI_OPCODE_ENDLOOP:
3363 /* End of a basic block, clear the ACP entirely. */
3364 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3365 break;
3366
3367 case TGSI_OPCODE_IF:
3368 ++level;
3369 break;
3370
3371 case TGSI_OPCODE_ENDIF:
3372 case TGSI_OPCODE_ELSE:
3373 /* Clear all channels written inside the block from the ACP, but
3374 * leaving those that were not touched.
3375 */
3376 for (int r = 0; r < this->next_temp; r++) {
3377 for (int c = 0; c < 4; c++) {
3378 if (!acp[4 * r + c])
3379 continue;
3380
3381 if (acp_level[4 * r + c] >= level)
3382 acp[4 * r + c] = NULL;
3383 }
3384 }
3385 if (inst->op == TGSI_OPCODE_ENDIF)
3386 --level;
3387 break;
3388
3389 default:
3390 /* Continuing the block, clear any written channels from
3391 * the ACP.
3392 */
3393 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3394 /* Any temporary might be written, so no copy propagation
3395 * across this instruction.
3396 */
3397 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3398 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3399 inst->dst.reladdr) {
3400 /* Any output might be written, so no copy propagation
3401 * from outputs across this instruction.
3402 */
3403 for (int r = 0; r < this->next_temp; r++) {
3404 for (int c = 0; c < 4; c++) {
3405 if (!acp[4 * r + c])
3406 continue;
3407
3408 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3409 acp[4 * r + c] = NULL;
3410 }
3411 }
3412 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3413 inst->dst.file == PROGRAM_OUTPUT) {
3414 /* Clear where it's used as dst. */
3415 if (inst->dst.file == PROGRAM_TEMPORARY) {
3416 for (int c = 0; c < 4; c++) {
3417 if (inst->dst.writemask & (1 << c)) {
3418 acp[4 * inst->dst.index + c] = NULL;
3419 }
3420 }
3421 }
3422
3423 /* Clear where it's used as src. */
3424 for (int r = 0; r < this->next_temp; r++) {
3425 for (int c = 0; c < 4; c++) {
3426 if (!acp[4 * r + c])
3427 continue;
3428
3429 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3430
3431 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3432 acp[4 * r + c]->src[0].index == inst->dst.index &&
3433 inst->dst.writemask & (1 << src_chan))
3434 {
3435 acp[4 * r + c] = NULL;
3436 }
3437 }
3438 }
3439 }
3440 break;
3441 }
3442
3443 /* If this is a copy, add it to the ACP. */
3444 if (inst->op == TGSI_OPCODE_MOV &&
3445 inst->dst.file == PROGRAM_TEMPORARY &&
3446 !inst->dst.reladdr &&
3447 !inst->saturate &&
3448 !inst->src[0].reladdr &&
3449 !inst->src[0].negate) {
3450 for (int i = 0; i < 4; i++) {
3451 if (inst->dst.writemask & (1 << i)) {
3452 acp[4 * inst->dst.index + i] = inst;
3453 acp_level[4 * inst->dst.index + i] = level;
3454 }
3455 }
3456 }
3457 }
3458
3459 ralloc_free(acp_level);
3460 ralloc_free(acp);
3461 }
3462
3463 /*
3464 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3465 *
3466 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3467 * will occur. As an example, a TXP production after copy propagation but
3468 * before this pass:
3469 *
3470 * 0: MOV TEMP[1], INPUT[4].xyyy;
3471 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3472 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3473 *
3474 * and after this pass:
3475 *
3476 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3477 *
3478 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3479 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3480 */
3481 void
3482 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3483 {
3484 int i;
3485
3486 for (i=0; i < this->next_temp; i++) {
3487 int last_read = get_last_temp_read(i);
3488 int j = 0;
3489
3490 foreach_iter(exec_list_iterator, iter, this->instructions) {
3491 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3492
3493 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3494 j > last_read)
3495 {
3496 iter.remove();
3497 delete inst;
3498 }
3499
3500 j++;
3501 }
3502 }
3503 }
3504
3505 /*
3506 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3507 * code elimination. This is less primitive than eliminate_dead_code(), as it
3508 * is per-channel and can detect consecutive writes without a read between them
3509 * as dead code. However, there is some dead code that can be eliminated by
3510 * eliminate_dead_code() but not this function - for example, this function
3511 * cannot eliminate an instruction writing to a register that is never read and
3512 * is the only instruction writing to that register.
3513 *
3514 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3515 * will occur.
3516 */
3517 int
3518 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3519 {
3520 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3521 glsl_to_tgsi_instruction *,
3522 this->next_temp * 4);
3523 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3524 int level = 0;
3525 int removed = 0;
3526
3527 foreach_iter(exec_list_iterator, iter, this->instructions) {
3528 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3529
3530 assert(inst->dst.file != PROGRAM_TEMPORARY
3531 || inst->dst.index < this->next_temp);
3532
3533 switch (inst->op) {
3534 case TGSI_OPCODE_BGNLOOP:
3535 case TGSI_OPCODE_ENDLOOP:
3536 case TGSI_OPCODE_CONT:
3537 case TGSI_OPCODE_BRK:
3538 /* End of a basic block, clear the write array entirely.
3539 *
3540 * This keeps us from killing dead code when the writes are
3541 * on either side of a loop, even when the register isn't touched
3542 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
3543 * dead code of this type, so it shouldn't make a difference as long as
3544 * the dead code elimination pass in the GLSL compiler does its job.
3545 */
3546 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3547 break;
3548
3549 case TGSI_OPCODE_ENDIF:
3550 case TGSI_OPCODE_ELSE:
3551 /* Promote the recorded level of all channels written inside the
3552 * preceding if or else block to the level above the if/else block.
3553 */
3554 for (int r = 0; r < this->next_temp; r++) {
3555 for (int c = 0; c < 4; c++) {
3556 if (!writes[4 * r + c])
3557 continue;
3558
3559 if (write_level[4 * r + c] == level)
3560 write_level[4 * r + c] = level-1;
3561 }
3562 }
3563
3564 if(inst->op == TGSI_OPCODE_ENDIF)
3565 --level;
3566
3567 break;
3568
3569 case TGSI_OPCODE_IF:
3570 ++level;
3571 /* fallthrough to default case to mark the condition as read */
3572
3573 default:
3574 /* Continuing the block, clear any channels from the write array that
3575 * are read by this instruction.
3576 */
3577 for (unsigned i = 0; i < Elements(inst->src); i++) {
3578 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3579 /* Any temporary might be read, so no dead code elimination
3580 * across this instruction.
3581 */
3582 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3583 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3584 /* Clear where it's used as src. */
3585 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3586 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3587 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3588 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3589
3590 for (int c = 0; c < 4; c++) {
3591 if (src_chans & (1 << c)) {
3592 writes[4 * inst->src[i].index + c] = NULL;
3593 }
3594 }
3595 }
3596 }
3597 break;
3598 }
3599
3600 /* If this instruction writes to a temporary, add it to the write array.
3601 * If there is already an instruction in the write array for one or more
3602 * of the channels, flag that channel write as dead.
3603 */
3604 if (inst->dst.file == PROGRAM_TEMPORARY &&
3605 !inst->dst.reladdr &&
3606 !inst->saturate) {
3607 for (int c = 0; c < 4; c++) {
3608 if (inst->dst.writemask & (1 << c)) {
3609 if (writes[4 * inst->dst.index + c]) {
3610 if (write_level[4 * inst->dst.index + c] < level)
3611 continue;
3612 else
3613 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3614 }
3615 writes[4 * inst->dst.index + c] = inst;
3616 write_level[4 * inst->dst.index + c] = level;
3617 }
3618 }
3619 }
3620 }
3621
3622 /* Anything still in the write array at this point is dead code. */
3623 for (int r = 0; r < this->next_temp; r++) {
3624 for (int c = 0; c < 4; c++) {
3625 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3626 if (inst)
3627 inst->dead_mask |= (1 << c);
3628 }
3629 }
3630
3631 /* Now actually remove the instructions that are completely dead and update
3632 * the writemask of other instructions with dead channels.
3633 */
3634 foreach_iter(exec_list_iterator, iter, this->instructions) {
3635 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3636
3637 if (!inst->dead_mask || !inst->dst.writemask)
3638 continue;
3639 else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3640 iter.remove();
3641 delete inst;
3642 removed++;
3643 } else
3644 inst->dst.writemask &= ~(inst->dead_mask);
3645 }
3646
3647 ralloc_free(write_level);
3648 ralloc_free(writes);
3649
3650 return removed;
3651 }
3652
3653 /* Merges temporary registers together where possible to reduce the number of
3654 * registers needed to run a program.
3655 *
3656 * Produces optimal code only after copy propagation and dead code elimination
3657 * have been run. */
3658 void
3659 glsl_to_tgsi_visitor::merge_registers(void)
3660 {
3661 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3662 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3663 int i, j;
3664
3665 /* Read the indices of the last read and first write to each temp register
3666 * into an array so that we don't have to traverse the instruction list as
3667 * much. */
3668 for (i=0; i < this->next_temp; i++) {
3669 last_reads[i] = get_last_temp_read(i);
3670 first_writes[i] = get_first_temp_write(i);
3671 }
3672
3673 /* Start looking for registers with non-overlapping usages that can be
3674 * merged together. */
3675 for (i=0; i < this->next_temp; i++) {
3676 /* Don't touch unused registers. */
3677 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3678
3679 for (j=0; j < this->next_temp; j++) {
3680 /* Don't touch unused registers. */
3681 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3682
3683 /* We can merge the two registers if the first write to j is after or
3684 * in the same instruction as the last read from i. Note that the
3685 * register at index i will always be used earlier or at the same time
3686 * as the register at index j. */
3687 if (first_writes[i] <= first_writes[j] &&
3688 last_reads[i] <= first_writes[j])
3689 {
3690 rename_temp_register(j, i); /* Replace all references to j with i.*/
3691
3692 /* Update the first_writes and last_reads arrays with the new
3693 * values for the merged register index, and mark the newly unused
3694 * register index as such. */
3695 last_reads[i] = last_reads[j];
3696 first_writes[j] = -1;
3697 last_reads[j] = -1;
3698 }
3699 }
3700 }
3701
3702 ralloc_free(last_reads);
3703 ralloc_free(first_writes);
3704 }
3705
3706 /* Reassign indices to temporary registers by reusing unused indices created
3707 * by optimization passes. */
3708 void
3709 glsl_to_tgsi_visitor::renumber_registers(void)
3710 {
3711 int i = 0;
3712 int new_index = 0;
3713
3714 for (i=0; i < this->next_temp; i++) {
3715 if (get_first_temp_read(i) < 0) continue;
3716 if (i != new_index)
3717 rename_temp_register(i, new_index);
3718 new_index++;
3719 }
3720
3721 this->next_temp = new_index;
3722 }
3723
3724 /**
3725 * Returns a fragment program which implements the current pixel transfer ops.
3726 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3727 */
3728 extern "C" void
3729 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3730 glsl_to_tgsi_visitor *original,
3731 int scale_and_bias, int pixel_maps)
3732 {
3733 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3734 struct st_context *st = st_context(original->ctx);
3735 struct gl_program *prog = &fp->Base.Base;
3736 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3737 st_src_reg coord, src0;
3738 st_dst_reg dst0;
3739 glsl_to_tgsi_instruction *inst;
3740
3741 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3742 v->ctx = original->ctx;
3743 v->prog = prog;
3744 v->shader_program = NULL;
3745 v->glsl_version = original->glsl_version;
3746 v->native_integers = original->native_integers;
3747 v->options = original->options;
3748 v->next_temp = original->next_temp;
3749 v->num_address_regs = original->num_address_regs;
3750 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3751 v->indirect_addr_temps = original->indirect_addr_temps;
3752 v->indirect_addr_consts = original->indirect_addr_consts;
3753 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3754 v->num_immediates = original->num_immediates;
3755
3756 /*
3757 * Get initial pixel color from the texture.
3758 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3759 */
3760 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3761 src0 = v->get_temp(glsl_type::vec4_type);
3762 dst0 = st_dst_reg(src0);
3763 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3764 inst->sampler = 0;
3765 inst->tex_target = TEXTURE_2D_INDEX;
3766
3767 prog->InputsRead |= FRAG_BIT_TEX0;
3768 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3769 v->samplers_used |= (1 << 0);
3770
3771 if (scale_and_bias) {
3772 static const gl_state_index scale_state[STATE_LENGTH] =
3773 { STATE_INTERNAL, STATE_PT_SCALE,
3774 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3775 static const gl_state_index bias_state[STATE_LENGTH] =
3776 { STATE_INTERNAL, STATE_PT_BIAS,
3777 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3778 GLint scale_p, bias_p;
3779 st_src_reg scale, bias;
3780
3781 scale_p = _mesa_add_state_reference(params, scale_state);
3782 bias_p = _mesa_add_state_reference(params, bias_state);
3783
3784 /* MAD colorTemp, colorTemp, scale, bias; */
3785 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3786 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3787 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3788 }
3789
3790 if (pixel_maps) {
3791 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3792 st_dst_reg temp_dst = st_dst_reg(temp);
3793
3794 assert(st->pixel_xfer.pixelmap_texture);
3795
3796 /* With a little effort, we can do four pixel map look-ups with
3797 * two TEX instructions:
3798 */
3799
3800 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3801 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3802 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3803 inst->sampler = 1;
3804 inst->tex_target = TEXTURE_2D_INDEX;
3805
3806 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3807 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3808 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3809 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3810 inst->sampler = 1;
3811 inst->tex_target = TEXTURE_2D_INDEX;
3812
3813 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3814 v->samplers_used |= (1 << 1);
3815
3816 /* MOV colorTemp, temp; */
3817 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3818 }
3819
3820 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3821 * new visitor. */
3822 foreach_iter(exec_list_iterator, iter, original->instructions) {
3823 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3824 glsl_to_tgsi_instruction *newinst;
3825 st_src_reg src_regs[3];
3826
3827 if (inst->dst.file == PROGRAM_OUTPUT)
3828 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3829
3830 for (int i=0; i<3; i++) {
3831 src_regs[i] = inst->src[i];
3832 if (src_regs[i].file == PROGRAM_INPUT &&
3833 src_regs[i].index == FRAG_ATTRIB_COL0)
3834 {
3835 src_regs[i].file = PROGRAM_TEMPORARY;
3836 src_regs[i].index = src0.index;
3837 }
3838 else if (src_regs[i].file == PROGRAM_INPUT)
3839 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3840 }
3841
3842 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3843 newinst->tex_target = inst->tex_target;
3844 }
3845
3846 /* Make modifications to fragment program info. */
3847 prog->Parameters = _mesa_combine_parameter_lists(params,
3848 original->prog->Parameters);
3849 _mesa_free_parameter_list(params);
3850 count_resources(v, prog);
3851 fp->glsl_to_tgsi = v;
3852 }
3853
3854 /**
3855 * Make fragment program for glBitmap:
3856 * Sample the texture and kill the fragment if the bit is 0.
3857 * This program will be combined with the user's fragment program.
3858 *
3859 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3860 */
3861 extern "C" void
3862 get_bitmap_visitor(struct st_fragment_program *fp,
3863 glsl_to_tgsi_visitor *original, int samplerIndex)
3864 {
3865 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3866 struct st_context *st = st_context(original->ctx);
3867 struct gl_program *prog = &fp->Base.Base;
3868 st_src_reg coord, src0;
3869 st_dst_reg dst0;
3870 glsl_to_tgsi_instruction *inst;
3871
3872 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3873 v->ctx = original->ctx;
3874 v->prog = prog;
3875 v->shader_program = NULL;
3876 v->glsl_version = original->glsl_version;
3877 v->native_integers = original->native_integers;
3878 v->options = original->options;
3879 v->next_temp = original->next_temp;
3880 v->num_address_regs = original->num_address_regs;
3881 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3882 v->indirect_addr_temps = original->indirect_addr_temps;
3883 v->indirect_addr_consts = original->indirect_addr_consts;
3884 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3885 v->num_immediates = original->num_immediates;
3886
3887 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3888 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3889 src0 = v->get_temp(glsl_type::vec4_type);
3890 dst0 = st_dst_reg(src0);
3891 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3892 inst->sampler = samplerIndex;
3893 inst->tex_target = TEXTURE_2D_INDEX;
3894
3895 prog->InputsRead |= FRAG_BIT_TEX0;
3896 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3897 v->samplers_used |= (1 << samplerIndex);
3898
3899 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3900 src0.negate = NEGATE_XYZW;
3901 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3902 src0.swizzle = SWIZZLE_XXXX;
3903 inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3904
3905 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3906 * new visitor. */
3907 foreach_iter(exec_list_iterator, iter, original->instructions) {
3908 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3909 glsl_to_tgsi_instruction *newinst;
3910 st_src_reg src_regs[3];
3911
3912 if (inst->dst.file == PROGRAM_OUTPUT)
3913 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3914
3915 for (int i=0; i<3; i++) {
3916 src_regs[i] = inst->src[i];
3917 if (src_regs[i].file == PROGRAM_INPUT)
3918 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3919 }
3920
3921 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3922 newinst->tex_target = inst->tex_target;
3923 }
3924
3925 /* Make modifications to fragment program info. */
3926 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3927 count_resources(v, prog);
3928 fp->glsl_to_tgsi = v;
3929 }
3930
3931 /* ------------------------- TGSI conversion stuff -------------------------- */
3932 struct label {
3933 unsigned branch_target;
3934 unsigned token;
3935 };
3936
3937 /**
3938 * Intermediate state used during shader translation.
3939 */
3940 struct st_translate {
3941 struct ureg_program *ureg;
3942
3943 struct ureg_dst temps[MAX_TEMPS];
3944 struct ureg_src *constants;
3945 struct ureg_src *immediates;
3946 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3947 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3948 struct ureg_dst address[1];
3949 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3950 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3951
3952 const GLuint *inputMapping;
3953 const GLuint *outputMapping;
3954
3955 /* For every instruction that contains a label (eg CALL), keep
3956 * details so that we can go back afterwards and emit the correct
3957 * tgsi instruction number for each label.
3958 */
3959 struct label *labels;
3960 unsigned labels_size;
3961 unsigned labels_count;
3962
3963 /* Keep a record of the tgsi instruction number that each mesa
3964 * instruction starts at, will be used to fix up labels after
3965 * translation.
3966 */
3967 unsigned *insn;
3968 unsigned insn_size;
3969 unsigned insn_count;
3970
3971 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3972
3973 boolean error;
3974 };
3975
3976 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3977 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3978 TGSI_SEMANTIC_FACE,
3979 TGSI_SEMANTIC_VERTEXID,
3980 TGSI_SEMANTIC_INSTANCEID
3981 };
3982
3983 /**
3984 * Make note of a branch to a label in the TGSI code.
3985 * After we've emitted all instructions, we'll go over the list
3986 * of labels built here and patch the TGSI code with the actual
3987 * location of each label.
3988 */
3989 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3990 {
3991 unsigned i;
3992
3993 if (t->labels_count + 1 >= t->labels_size) {
3994 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3995 t->labels = (struct label *)realloc(t->labels,
3996 t->labels_size * sizeof(struct label));
3997 if (t->labels == NULL) {
3998 static unsigned dummy;
3999 t->error = TRUE;
4000 return &dummy;
4001 }
4002 }
4003
4004 i = t->labels_count++;
4005 t->labels[i].branch_target = branch_target;
4006 return &t->labels[i].token;
4007 }
4008
4009 /**
4010 * Called prior to emitting the TGSI code for each instruction.
4011 * Allocate additional space for instructions if needed.
4012 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4013 * the next TGSI instruction.
4014 */
4015 static void set_insn_start(struct st_translate *t, unsigned start)
4016 {
4017 if (t->insn_count + 1 >= t->insn_size) {
4018 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4019 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4020 if (t->insn == NULL) {
4021 t->error = TRUE;
4022 return;
4023 }
4024 }
4025
4026 t->insn[t->insn_count++] = start;
4027 }
4028
4029 /**
4030 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4031 */
4032 static struct ureg_src
4033 emit_immediate(struct st_translate *t,
4034 gl_constant_value values[4],
4035 int type, int size)
4036 {
4037 struct ureg_program *ureg = t->ureg;
4038
4039 switch(type)
4040 {
4041 case GL_FLOAT:
4042 return ureg_DECL_immediate(ureg, &values[0].f, size);
4043 case GL_INT:
4044 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4045 case GL_UNSIGNED_INT:
4046 case GL_BOOL:
4047 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4048 default:
4049 assert(!"should not get here - type must be float, int, uint, or bool");
4050 return ureg_src_undef();
4051 }
4052 }
4053
4054 /**
4055 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4056 */
4057 static struct ureg_dst
4058 dst_register(struct st_translate *t,
4059 gl_register_file file,
4060 GLuint index)
4061 {
4062 switch(file) {
4063 case PROGRAM_UNDEFINED:
4064 return ureg_dst_undef();
4065
4066 case PROGRAM_TEMPORARY:
4067 if (ureg_dst_is_undef(t->temps[index]))
4068 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4069
4070 return t->temps[index];
4071
4072 case PROGRAM_OUTPUT:
4073 if (t->procType == TGSI_PROCESSOR_VERTEX)
4074 assert(index < VERT_RESULT_MAX);
4075 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4076 assert(index < FRAG_RESULT_MAX);
4077 else
4078 assert(index < GEOM_RESULT_MAX);
4079
4080 assert(t->outputMapping[index] < Elements(t->outputs));
4081
4082 return t->outputs[t->outputMapping[index]];
4083
4084 case PROGRAM_ADDRESS:
4085 return t->address[index];
4086
4087 default:
4088 assert(!"unknown dst register file");
4089 return ureg_dst_undef();
4090 }
4091 }
4092
4093 /**
4094 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4095 */
4096 static struct ureg_src
4097 src_register(struct st_translate *t,
4098 gl_register_file file,
4099 GLint index, GLint index2D)
4100 {
4101 switch(file) {
4102 case PROGRAM_UNDEFINED:
4103 return ureg_src_undef();
4104
4105 case PROGRAM_TEMPORARY:
4106 assert(index >= 0);
4107 assert(index < (int) Elements(t->temps));
4108 if (ureg_dst_is_undef(t->temps[index]))
4109 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4110 return ureg_src(t->temps[index]);
4111
4112 case PROGRAM_ENV_PARAM:
4113 case PROGRAM_LOCAL_PARAM:
4114 case PROGRAM_UNIFORM:
4115 assert(index >= 0);
4116 return t->constants[index];
4117 case PROGRAM_STATE_VAR:
4118 case PROGRAM_CONSTANT: /* ie, immediate */
4119 if (index2D) {
4120 struct ureg_src src;
4121 src = ureg_src_register(TGSI_FILE_CONSTANT, 0);
4122 src.Dimension = 1;
4123 src.DimensionIndex = index2D;
4124 return src;
4125 } else if (index < 0)
4126 return ureg_DECL_constant(t->ureg, 0);
4127 else
4128 return t->constants[index];
4129
4130 case PROGRAM_IMMEDIATE:
4131 return t->immediates[index];
4132
4133 case PROGRAM_INPUT:
4134 assert(t->inputMapping[index] < Elements(t->inputs));
4135 return t->inputs[t->inputMapping[index]];
4136
4137 case PROGRAM_OUTPUT:
4138 assert(t->outputMapping[index] < Elements(t->outputs));
4139 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4140
4141 case PROGRAM_ADDRESS:
4142 return ureg_src(t->address[index]);
4143
4144 case PROGRAM_SYSTEM_VALUE:
4145 assert(index < (int) Elements(t->systemValues));
4146 return t->systemValues[index];
4147
4148 default:
4149 assert(!"unknown src register file");
4150 return ureg_src_undef();
4151 }
4152 }
4153
4154 /**
4155 * Create a TGSI ureg_dst register from an st_dst_reg.
4156 */
4157 static struct ureg_dst
4158 translate_dst(struct st_translate *t,
4159 const st_dst_reg *dst_reg,
4160 bool saturate, bool clamp_color)
4161 {
4162 struct ureg_dst dst = dst_register(t,
4163 dst_reg->file,
4164 dst_reg->index);
4165
4166 dst = ureg_writemask(dst, dst_reg->writemask);
4167
4168 if (saturate)
4169 dst = ureg_saturate(dst);
4170 else if (clamp_color && dst_reg->file == PROGRAM_OUTPUT) {
4171 /* Clamp colors for ARB_color_buffer_float. */
4172 switch (t->procType) {
4173 case TGSI_PROCESSOR_VERTEX:
4174 /* XXX if the geometry shader is present, this must be done there
4175 * instead of here. */
4176 if (dst_reg->index == VERT_RESULT_COL0 ||
4177 dst_reg->index == VERT_RESULT_COL1 ||
4178 dst_reg->index == VERT_RESULT_BFC0 ||
4179 dst_reg->index == VERT_RESULT_BFC1) {
4180 dst = ureg_saturate(dst);
4181 }
4182 break;
4183
4184 case TGSI_PROCESSOR_FRAGMENT:
4185 if (dst_reg->index >= FRAG_RESULT_COLOR) {
4186 dst = ureg_saturate(dst);
4187 }
4188 break;
4189 }
4190 }
4191
4192 if (dst_reg->reladdr != NULL)
4193 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4194
4195 return dst;
4196 }
4197
4198 /**
4199 * Create a TGSI ureg_src register from an st_src_reg.
4200 */
4201 static struct ureg_src
4202 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4203 {
4204 struct ureg_src src = src_register(t, src_reg->file, src_reg->index, src_reg->index2D);
4205
4206 src = ureg_swizzle(src,
4207 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4208 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4209 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4210 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4211
4212 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4213 src = ureg_negate(src);
4214
4215 if (src_reg->reladdr != NULL) {
4216 /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4217 * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4218 * set the bit for src.Negate. So we have to do the operation manually
4219 * here to work around the compiler's problems. */
4220 /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4221 struct ureg_src addr = ureg_src(t->address[0]);
4222 src.Indirect = 1;
4223 src.IndirectFile = addr.File;
4224 src.IndirectIndex = addr.Index;
4225 src.IndirectSwizzle = addr.SwizzleX;
4226
4227 if (src_reg->file != PROGRAM_INPUT &&
4228 src_reg->file != PROGRAM_OUTPUT) {
4229 /* If src_reg->index was negative, it was set to zero in
4230 * src_register(). Reassign it now. But don't do this
4231 * for input/output regs since they get remapped while
4232 * const buffers don't.
4233 */
4234 src.Index = src_reg->index;
4235 }
4236 }
4237
4238 return src;
4239 }
4240
4241 static struct tgsi_texture_offset
4242 translate_tex_offset(struct st_translate *t,
4243 const struct tgsi_texture_offset *in_offset)
4244 {
4245 struct tgsi_texture_offset offset;
4246 struct ureg_src imm_src;
4247
4248 assert(in_offset->File == PROGRAM_IMMEDIATE);
4249 imm_src = t->immediates[in_offset->Index];
4250
4251 offset.File = imm_src.File;
4252 offset.Index = imm_src.Index;
4253 offset.SwizzleX = imm_src.SwizzleX;
4254 offset.SwizzleY = imm_src.SwizzleY;
4255 offset.SwizzleZ = imm_src.SwizzleZ;
4256 offset.File = TGSI_FILE_IMMEDIATE;
4257 offset.Padding = 0;
4258
4259 return offset;
4260 }
4261
4262 static void
4263 compile_tgsi_instruction(struct st_translate *t,
4264 const glsl_to_tgsi_instruction *inst,
4265 bool clamp_dst_color_output)
4266 {
4267 struct ureg_program *ureg = t->ureg;
4268 GLuint i;
4269 struct ureg_dst dst[1];
4270 struct ureg_src src[4];
4271 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4272
4273 unsigned num_dst;
4274 unsigned num_src;
4275 unsigned tex_target;
4276
4277 num_dst = num_inst_dst_regs(inst->op);
4278 num_src = num_inst_src_regs(inst->op);
4279
4280 if (num_dst)
4281 dst[0] = translate_dst(t,
4282 &inst->dst,
4283 inst->saturate,
4284 clamp_dst_color_output);
4285
4286 for (i = 0; i < num_src; i++)
4287 src[i] = translate_src(t, &inst->src[i]);
4288
4289 switch(inst->op) {
4290 case TGSI_OPCODE_BGNLOOP:
4291 case TGSI_OPCODE_CAL:
4292 case TGSI_OPCODE_ELSE:
4293 case TGSI_OPCODE_ENDLOOP:
4294 case TGSI_OPCODE_IF:
4295 assert(num_dst == 0);
4296 ureg_label_insn(ureg,
4297 inst->op,
4298 src, num_src,
4299 get_label(t,
4300 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4301 return;
4302
4303 case TGSI_OPCODE_TEX:
4304 case TGSI_OPCODE_TXB:
4305 case TGSI_OPCODE_TXD:
4306 case TGSI_OPCODE_TXL:
4307 case TGSI_OPCODE_TXP:
4308 case TGSI_OPCODE_TXQ:
4309 case TGSI_OPCODE_TXF:
4310 case TGSI_OPCODE_TEX2:
4311 case TGSI_OPCODE_TXB2:
4312 case TGSI_OPCODE_TXL2:
4313 src[num_src++] = t->samplers[inst->sampler];
4314 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4315 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4316 }
4317 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4318
4319 ureg_tex_insn(ureg,
4320 inst->op,
4321 dst, num_dst,
4322 tex_target,
4323 texoffsets, inst->tex_offset_num_offset,
4324 src, num_src);
4325 return;
4326
4327 case TGSI_OPCODE_SCS:
4328 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4329 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4330 break;
4331
4332 default:
4333 ureg_insn(ureg,
4334 inst->op,
4335 dst, num_dst,
4336 src, num_src);
4337 break;
4338 }
4339 }
4340
4341 /**
4342 * Emit the TGSI instructions for inverting and adjusting WPOS.
4343 * This code is unavoidable because it also depends on whether
4344 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4345 */
4346 static void
4347 emit_wpos_adjustment( struct st_translate *t,
4348 const struct gl_program *program,
4349 boolean invert,
4350 GLfloat adjX, GLfloat adjY[2])
4351 {
4352 struct ureg_program *ureg = t->ureg;
4353
4354 /* Fragment program uses fragment position input.
4355 * Need to replace instances of INPUT[WPOS] with temp T
4356 * where T = INPUT[WPOS] by y is inverted.
4357 */
4358 static const gl_state_index wposTransformState[STATE_LENGTH]
4359 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4360 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4361
4362 /* XXX: note we are modifying the incoming shader here! Need to
4363 * do this before emitting the constant decls below, or this
4364 * will be missed:
4365 */
4366 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4367 wposTransformState);
4368
4369 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4370 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4371 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4372
4373 /* First, apply the coordinate shift: */
4374 if (adjX || adjY[0] || adjY[1]) {
4375 if (adjY[0] != adjY[1]) {
4376 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4377 * depending on whether inversion is actually going to be applied
4378 * or not, which is determined by testing against the inversion
4379 * state variable used below, which will be either +1 or -1.
4380 */
4381 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4382
4383 ureg_CMP(ureg, adj_temp,
4384 ureg_scalar(wpostrans, invert ? 2 : 0),
4385 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4386 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4387 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4388 } else {
4389 ureg_ADD(ureg, wpos_temp, wpos_input,
4390 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4391 }
4392 wpos_input = ureg_src(wpos_temp);
4393 } else {
4394 /* MOV wpos_temp, input[wpos]
4395 */
4396 ureg_MOV( ureg, wpos_temp, wpos_input );
4397 }
4398
4399 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4400 * inversion/identity, or the other way around if we're drawing to an FBO.
4401 */
4402 if (invert) {
4403 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4404 */
4405 ureg_MAD( ureg,
4406 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4407 wpos_input,
4408 ureg_scalar(wpostrans, 0),
4409 ureg_scalar(wpostrans, 1));
4410 } else {
4411 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4412 */
4413 ureg_MAD( ureg,
4414 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4415 wpos_input,
4416 ureg_scalar(wpostrans, 2),
4417 ureg_scalar(wpostrans, 3));
4418 }
4419
4420 /* Use wpos_temp as position input from here on:
4421 */
4422 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4423 }
4424
4425
4426 /**
4427 * Emit fragment position/ooordinate code.
4428 */
4429 static void
4430 emit_wpos(struct st_context *st,
4431 struct st_translate *t,
4432 const struct gl_program *program,
4433 struct ureg_program *ureg)
4434 {
4435 const struct gl_fragment_program *fp =
4436 (const struct gl_fragment_program *) program;
4437 struct pipe_screen *pscreen = st->pipe->screen;
4438 GLfloat adjX = 0.0f;
4439 GLfloat adjY[2] = { 0.0f, 0.0f };
4440 boolean invert = FALSE;
4441
4442 /* Query the pixel center conventions supported by the pipe driver and set
4443 * adjX, adjY to help out if it cannot handle the requested one internally.
4444 *
4445 * The bias of the y-coordinate depends on whether y-inversion takes place
4446 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4447 * drawing to an FBO (causes additional inversion), and whether the the pipe
4448 * driver origin and the requested origin differ (the latter condition is
4449 * stored in the 'invert' variable).
4450 *
4451 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4452 *
4453 * center shift only:
4454 * i -> h: +0.5
4455 * h -> i: -0.5
4456 *
4457 * inversion only:
4458 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4459 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4460 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4461 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4462 *
4463 * inversion and center shift:
4464 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4465 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4466 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4467 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4468 */
4469 if (fp->OriginUpperLeft) {
4470 /* Fragment shader wants origin in upper-left */
4471 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4472 /* the driver supports upper-left origin */
4473 }
4474 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4475 /* the driver supports lower-left origin, need to invert Y */
4476 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4477 invert = TRUE;
4478 }
4479 else
4480 assert(0);
4481 }
4482 else {
4483 /* Fragment shader wants origin in lower-left */
4484 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4485 /* the driver supports lower-left origin */
4486 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4487 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4488 /* the driver supports upper-left origin, need to invert Y */
4489 invert = TRUE;
4490 else
4491 assert(0);
4492 }
4493
4494 if (fp->PixelCenterInteger) {
4495 /* Fragment shader wants pixel center integer */
4496 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4497 /* the driver supports pixel center integer */
4498 adjY[1] = 1.0f;
4499 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4500 }
4501 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4502 /* the driver supports pixel center half integer, need to bias X,Y */
4503 adjX = -0.5f;
4504 adjY[0] = -0.5f;
4505 adjY[1] = 0.5f;
4506 }
4507 else
4508 assert(0);
4509 }
4510 else {
4511 /* Fragment shader wants pixel center half integer */
4512 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4513 /* the driver supports pixel center half integer */
4514 }
4515 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4516 /* the driver supports pixel center integer, need to bias X,Y */
4517 adjX = adjY[0] = adjY[1] = 0.5f;
4518 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4519 }
4520 else
4521 assert(0);
4522 }
4523
4524 /* we invert after adjustment so that we avoid the MOV to temporary,
4525 * and reuse the adjustment ADD instead */
4526 emit_wpos_adjustment(t, program, invert, adjX, adjY);
4527 }
4528
4529 /**
4530 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4531 * TGSI uses +1 for front, -1 for back.
4532 * This function converts the TGSI value to the GL value. Simply clamping/
4533 * saturating the value to [0,1] does the job.
4534 */
4535 static void
4536 emit_face_var(struct st_translate *t)
4537 {
4538 struct ureg_program *ureg = t->ureg;
4539 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4540 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4541
4542 /* MOV_SAT face_temp, input[face] */
4543 face_temp = ureg_saturate(face_temp);
4544 ureg_MOV(ureg, face_temp, face_input);
4545
4546 /* Use face_temp as face input from here on: */
4547 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4548 }
4549
4550 static void
4551 emit_edgeflags(struct st_translate *t)
4552 {
4553 struct ureg_program *ureg = t->ureg;
4554 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4555 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4556
4557 ureg_MOV(ureg, edge_dst, edge_src);
4558 }
4559
4560 /**
4561 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4562 * \param program the program to translate
4563 * \param numInputs number of input registers used
4564 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4565 * input indexes
4566 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4567 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4568 * each input
4569 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4570 * \param numOutputs number of output registers used
4571 * \param outputMapping maps Mesa fragment program outputs to TGSI
4572 * generic outputs
4573 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4574 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4575 * each output
4576 *
4577 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4578 */
4579 extern "C" enum pipe_error
4580 st_translate_program(
4581 struct gl_context *ctx,
4582 uint procType,
4583 struct ureg_program *ureg,
4584 glsl_to_tgsi_visitor *program,
4585 const struct gl_program *proginfo,
4586 GLuint numInputs,
4587 const GLuint inputMapping[],
4588 const ubyte inputSemanticName[],
4589 const ubyte inputSemanticIndex[],
4590 const GLuint interpMode[],
4591 const GLboolean is_centroid[],
4592 GLuint numOutputs,
4593 const GLuint outputMapping[],
4594 const ubyte outputSemanticName[],
4595 const ubyte outputSemanticIndex[],
4596 boolean passthrough_edgeflags,
4597 boolean clamp_color)
4598 {
4599 struct st_translate *t;
4600 unsigned i;
4601 enum pipe_error ret = PIPE_OK;
4602
4603 assert(numInputs <= Elements(t->inputs));
4604 assert(numOutputs <= Elements(t->outputs));
4605
4606 t = CALLOC_STRUCT(st_translate);
4607 if (!t) {
4608 ret = PIPE_ERROR_OUT_OF_MEMORY;
4609 goto out;
4610 }
4611
4612 memset(t, 0, sizeof *t);
4613
4614 t->procType = procType;
4615 t->inputMapping = inputMapping;
4616 t->outputMapping = outputMapping;
4617 t->ureg = ureg;
4618
4619 if (program->shader_program) {
4620 for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4621 struct gl_uniform_storage *const storage =
4622 &program->shader_program->UniformStorage[i];
4623
4624 _mesa_uniform_detach_all_driver_storage(storage);
4625 }
4626 }
4627
4628 /*
4629 * Declare input attributes.
4630 */
4631 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4632 for (i = 0; i < numInputs; i++) {
4633 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
4634 inputSemanticName[i],
4635 inputSemanticIndex[i],
4636 interpMode[i], 0,
4637 is_centroid[i]);
4638 }
4639
4640 if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4641 /* Must do this after setting up t->inputs, and before
4642 * emitting constant references, below:
4643 */
4644 emit_wpos(st_context(ctx), t, proginfo, ureg);
4645 }
4646
4647 if (proginfo->InputsRead & FRAG_BIT_FACE)
4648 emit_face_var(t);
4649
4650 /*
4651 * Declare output attributes.
4652 */
4653 for (i = 0; i < numOutputs; i++) {
4654 switch (outputSemanticName[i]) {
4655 case TGSI_SEMANTIC_POSITION:
4656 t->outputs[i] = ureg_DECL_output(ureg,
4657 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4658 outputSemanticIndex[i]);
4659 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4660 break;
4661 case TGSI_SEMANTIC_STENCIL:
4662 t->outputs[i] = ureg_DECL_output(ureg,
4663 TGSI_SEMANTIC_STENCIL, /* Stencil */
4664 outputSemanticIndex[i]);
4665 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4666 break;
4667 case TGSI_SEMANTIC_COLOR:
4668 t->outputs[i] = ureg_DECL_output(ureg,
4669 TGSI_SEMANTIC_COLOR,
4670 outputSemanticIndex[i]);
4671 break;
4672 default:
4673 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4674 ret = PIPE_ERROR_BAD_INPUT;
4675 goto out;
4676 }
4677 }
4678 }
4679 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4680 for (i = 0; i < numInputs; i++) {
4681 t->inputs[i] = ureg_DECL_gs_input(ureg,
4682 i,
4683 inputSemanticName[i],
4684 inputSemanticIndex[i]);
4685 }
4686
4687 for (i = 0; i < numOutputs; i++) {
4688 t->outputs[i] = ureg_DECL_output(ureg,
4689 outputSemanticName[i],
4690 outputSemanticIndex[i]);
4691 }
4692 }
4693 else {
4694 assert(procType == TGSI_PROCESSOR_VERTEX);
4695
4696 for (i = 0; i < numInputs; i++) {
4697 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4698 }
4699
4700 for (i = 0; i < numOutputs; i++) {
4701 t->outputs[i] = ureg_DECL_output(ureg,
4702 outputSemanticName[i],
4703 outputSemanticIndex[i]);
4704 }
4705 if (passthrough_edgeflags)
4706 emit_edgeflags(t);
4707 }
4708
4709 /* Declare address register.
4710 */
4711 if (program->num_address_regs > 0) {
4712 assert(program->num_address_regs == 1);
4713 t->address[0] = ureg_DECL_address(ureg);
4714 }
4715
4716 /* Declare misc input registers
4717 */
4718 {
4719 GLbitfield sysInputs = proginfo->SystemValuesRead;
4720 unsigned numSys = 0;
4721 for (i = 0; sysInputs; i++) {
4722 if (sysInputs & (1 << i)) {
4723 unsigned semName = mesa_sysval_to_semantic[i];
4724 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4725 if (semName == TGSI_SEMANTIC_INSTANCEID ||
4726 semName == TGSI_SEMANTIC_VERTEXID) {
4727 /* From Gallium perspective, these system values are always
4728 * integer, and require native integer support. However, if
4729 * native integer is supported on the vertex stage but not the
4730 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
4731 * assumes these system values are floats. To resolve the
4732 * inconsistency, we insert a U2F.
4733 */
4734 struct st_context *st = st_context(ctx);
4735 struct pipe_screen *pscreen = st->pipe->screen;
4736 assert(procType == TGSI_PROCESSOR_VERTEX);
4737 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
4738 if (!ctx->Const.NativeIntegers) {
4739 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
4740 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
4741 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
4742 }
4743 }
4744 numSys++;
4745 sysInputs &= ~(1 << i);
4746 }
4747 }
4748 }
4749
4750 if (program->indirect_addr_temps) {
4751 /* If temps are accessed with indirect addressing, declare temporaries
4752 * in sequential order. Else, we declare them on demand elsewhere.
4753 * (Note: the number of temporaries is equal to program->next_temp)
4754 */
4755 for (i = 0; i < (unsigned)program->next_temp; i++) {
4756 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4757 t->temps[i] = ureg_DECL_local_temporary(t->ureg);
4758 }
4759 }
4760
4761 /* Emit constants and uniforms. TGSI uses a single index space for these,
4762 * so we put all the translated regs in t->constants.
4763 */
4764 if (proginfo->Parameters) {
4765 t->constants = (struct ureg_src *)
4766 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
4767 if (t->constants == NULL) {
4768 ret = PIPE_ERROR_OUT_OF_MEMORY;
4769 goto out;
4770 }
4771
4772 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4773 switch (proginfo->Parameters->Parameters[i].Type) {
4774 case PROGRAM_ENV_PARAM:
4775 case PROGRAM_LOCAL_PARAM:
4776 case PROGRAM_STATE_VAR:
4777 case PROGRAM_UNIFORM:
4778 t->constants[i] = ureg_DECL_constant(ureg, i);
4779 break;
4780
4781 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4782 * addressing of the const buffer.
4783 * FIXME: Be smarter and recognize param arrays:
4784 * indirect addressing is only valid within the referenced
4785 * array.
4786 */
4787 case PROGRAM_CONSTANT:
4788 if (program->indirect_addr_consts)
4789 t->constants[i] = ureg_DECL_constant(ureg, i);
4790 else
4791 t->constants[i] = emit_immediate(t,
4792 proginfo->Parameters->ParameterValues[i],
4793 proginfo->Parameters->Parameters[i].DataType,
4794 4);
4795 break;
4796 default:
4797 break;
4798 }
4799 }
4800 }
4801
4802 if (program->shader_program) {
4803 unsigned num_ubos = program->shader_program->NumUniformBlocks;
4804
4805 for (i = 0; i < num_ubos; i++) {
4806 ureg_DECL_constant2D(t->ureg, 0, program->shader_program->UniformBlocks[i].UniformBufferSize / 4, i + 1);
4807 }
4808 }
4809
4810 /* Emit immediate values.
4811 */
4812 t->immediates = (struct ureg_src *)
4813 calloc(program->num_immediates, sizeof(struct ureg_src));
4814 if (t->immediates == NULL) {
4815 ret = PIPE_ERROR_OUT_OF_MEMORY;
4816 goto out;
4817 }
4818 i = 0;
4819 foreach_iter(exec_list_iterator, iter, program->immediates) {
4820 immediate_storage *imm = (immediate_storage *)iter.get();
4821 assert(i < program->num_immediates);
4822 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4823 }
4824 assert(i == program->num_immediates);
4825
4826 /* texture samplers */
4827 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4828 if (program->samplers_used & (1 << i)) {
4829 t->samplers[i] = ureg_DECL_sampler(ureg, i);
4830 }
4831 }
4832
4833 /* Emit each instruction in turn:
4834 */
4835 foreach_iter(exec_list_iterator, iter, program->instructions) {
4836 set_insn_start(t, ureg_get_instruction_number(ureg));
4837 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get(),
4838 clamp_color);
4839 }
4840
4841 /* Fix up all emitted labels:
4842 */
4843 for (i = 0; i < t->labels_count; i++) {
4844 ureg_fixup_label(ureg, t->labels[i].token,
4845 t->insn[t->labels[i].branch_target]);
4846 }
4847
4848 if (program->shader_program) {
4849 /* This has to be done last. Any operation the can cause
4850 * prog->ParameterValues to get reallocated (e.g., anything that adds a
4851 * program constant) has to happen before creating this linkage.
4852 */
4853 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4854 if (program->shader_program->_LinkedShaders[i] == NULL)
4855 continue;
4856
4857 _mesa_associate_uniform_storage(ctx, program->shader_program,
4858 program->shader_program->_LinkedShaders[i]->Program->Parameters);
4859 }
4860 }
4861
4862 out:
4863 if (t) {
4864 free(t->insn);
4865 free(t->labels);
4866 free(t->constants);
4867 free(t->immediates);
4868
4869 if (t->error) {
4870 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4871 }
4872
4873 free(t);
4874 }
4875
4876 return ret;
4877 }
4878 /* ----------------------------- End TGSI code ------------------------------ */
4879
4880 /**
4881 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4882 * generating Mesa IR.
4883 */
4884 static struct gl_program *
4885 get_mesa_program(struct gl_context *ctx,
4886 struct gl_shader_program *shader_program,
4887 struct gl_shader *shader)
4888 {
4889 glsl_to_tgsi_visitor* v;
4890 struct gl_program *prog;
4891 GLenum target;
4892 const char *target_string;
4893 bool progress;
4894 struct gl_shader_compiler_options *options =
4895 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4896
4897 switch (shader->Type) {
4898 case GL_VERTEX_SHADER:
4899 target = GL_VERTEX_PROGRAM_ARB;
4900 target_string = "vertex";
4901 break;
4902 case GL_FRAGMENT_SHADER:
4903 target = GL_FRAGMENT_PROGRAM_ARB;
4904 target_string = "fragment";
4905 break;
4906 case GL_GEOMETRY_SHADER:
4907 target = GL_GEOMETRY_PROGRAM_NV;
4908 target_string = "geometry";
4909 break;
4910 default:
4911 assert(!"should not be reached");
4912 return NULL;
4913 }
4914
4915 validate_ir_tree(shader->ir);
4916
4917 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4918 if (!prog)
4919 return NULL;
4920 prog->Parameters = _mesa_new_parameter_list();
4921 v = new glsl_to_tgsi_visitor();
4922 v->ctx = ctx;
4923 v->prog = prog;
4924 v->shader_program = shader_program;
4925 v->options = options;
4926 v->glsl_version = ctx->Const.GLSLVersion;
4927 v->native_integers = ctx->Const.NativeIntegers;
4928
4929 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
4930 prog->Parameters);
4931
4932 /* Remove reads from output registers. */
4933 lower_output_reads(shader->ir);
4934
4935 /* Emit intermediate IR for main(). */
4936 visit_exec_list(shader->ir, v);
4937
4938 /* Now emit bodies for any functions that were used. */
4939 do {
4940 progress = GL_FALSE;
4941
4942 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4943 function_entry *entry = (function_entry *)iter.get();
4944
4945 if (!entry->bgn_inst) {
4946 v->current_function = entry;
4947
4948 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4949 entry->bgn_inst->function = entry;
4950
4951 visit_exec_list(&entry->sig->body, v);
4952
4953 glsl_to_tgsi_instruction *last;
4954 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4955 if (last->op != TGSI_OPCODE_RET)
4956 v->emit(NULL, TGSI_OPCODE_RET);
4957
4958 glsl_to_tgsi_instruction *end;
4959 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4960 end->function = entry;
4961
4962 progress = GL_TRUE;
4963 }
4964 }
4965 } while (progress);
4966
4967 #if 0
4968 /* Print out some information (for debugging purposes) used by the
4969 * optimization passes. */
4970 for (i=0; i < v->next_temp; i++) {
4971 int fr = v->get_first_temp_read(i);
4972 int fw = v->get_first_temp_write(i);
4973 int lr = v->get_last_temp_read(i);
4974 int lw = v->get_last_temp_write(i);
4975
4976 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4977 assert(fw <= fr);
4978 }
4979 #endif
4980
4981 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4982 v->simplify_cmp();
4983 v->copy_propagate();
4984 while (v->eliminate_dead_code_advanced());
4985
4986 /* FIXME: These passes to optimize temporary registers don't work when there
4987 * is indirect addressing of the temporary register space. We need proper
4988 * array support so that we don't have to give up these passes in every
4989 * shader that uses arrays.
4990 */
4991 if (!v->indirect_addr_temps) {
4992 v->eliminate_dead_code();
4993 v->merge_registers();
4994 v->renumber_registers();
4995 }
4996
4997 /* Write the END instruction. */
4998 v->emit(NULL, TGSI_OPCODE_END);
4999
5000 if (ctx->Shader.Flags & GLSL_DUMP) {
5001 printf("\n");
5002 printf("GLSL IR for linked %s program %d:\n", target_string,
5003 shader_program->Name);
5004 _mesa_print_ir(shader->ir, NULL);
5005 printf("\n");
5006 printf("\n");
5007 fflush(stdout);
5008 }
5009
5010 prog->Instructions = NULL;
5011 prog->NumInstructions = 0;
5012
5013 do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
5014 count_resources(v, prog);
5015
5016 _mesa_reference_program(ctx, &shader->Program, prog);
5017
5018 /* This has to be done last. Any operation the can cause
5019 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5020 * program constant) has to happen before creating this linkage.
5021 */
5022 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5023 if (!shader_program->LinkStatus) {
5024 return NULL;
5025 }
5026
5027 struct st_vertex_program *stvp;
5028 struct st_fragment_program *stfp;
5029 struct st_geometry_program *stgp;
5030
5031 switch (shader->Type) {
5032 case GL_VERTEX_SHADER:
5033 stvp = (struct st_vertex_program *)prog;
5034 stvp->glsl_to_tgsi = v;
5035 break;
5036 case GL_FRAGMENT_SHADER:
5037 stfp = (struct st_fragment_program *)prog;
5038 stfp->glsl_to_tgsi = v;
5039 break;
5040 case GL_GEOMETRY_SHADER:
5041 stgp = (struct st_geometry_program *)prog;
5042 stgp->glsl_to_tgsi = v;
5043 break;
5044 default:
5045 assert(!"should not be reached");
5046 return NULL;
5047 }
5048
5049 return prog;
5050 }
5051
5052 extern "C" {
5053
5054 struct gl_shader *
5055 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
5056 {
5057 struct gl_shader *shader;
5058 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
5059 type == GL_GEOMETRY_SHADER_ARB);
5060 shader = rzalloc(NULL, struct gl_shader);
5061 if (shader) {
5062 shader->Type = type;
5063 shader->Name = name;
5064 _mesa_init_shader(ctx, shader);
5065 }
5066 return shader;
5067 }
5068
5069 struct gl_shader_program *
5070 st_new_shader_program(struct gl_context *ctx, GLuint name)
5071 {
5072 struct gl_shader_program *shProg;
5073 shProg = rzalloc(NULL, struct gl_shader_program);
5074 if (shProg) {
5075 shProg->Name = name;
5076 _mesa_init_shader_program(ctx, shProg);
5077 }
5078 return shProg;
5079 }
5080
5081 /**
5082 * Link a shader.
5083 * Called via ctx->Driver.LinkShader()
5084 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5085 * with code lowering and other optimizations.
5086 */
5087 GLboolean
5088 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5089 {
5090 assert(prog->LinkStatus);
5091
5092 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5093 if (prog->_LinkedShaders[i] == NULL)
5094 continue;
5095
5096 bool progress;
5097 exec_list *ir = prog->_LinkedShaders[i]->ir;
5098 const struct gl_shader_compiler_options *options =
5099 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
5100
5101 do {
5102 unsigned what_to_lower = MOD_TO_FRACT | DIV_TO_MUL_RCP |
5103 EXP_TO_EXP2 | LOG_TO_LOG2;
5104 if (options->EmitNoPow)
5105 what_to_lower |= POW_TO_EXP2;
5106 if (!ctx->Const.NativeIntegers)
5107 what_to_lower |= INT_DIV_TO_MUL_RCP;
5108
5109 progress = false;
5110
5111 /* Lowering */
5112 do_mat_op_to_vec(ir);
5113 lower_instructions(ir, what_to_lower);
5114
5115 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5116
5117 progress = do_common_optimization(ir, true, true,
5118 options->MaxUnrollIterations)
5119 || progress;
5120
5121 progress = lower_quadop_vector(ir, false) || progress;
5122
5123 if (options->MaxIfDepth == 0)
5124 progress = lower_discard(ir) || progress;
5125
5126 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5127
5128 if (options->EmitNoNoise)
5129 progress = lower_noise(ir) || progress;
5130
5131 /* If there are forms of indirect addressing that the driver
5132 * cannot handle, perform the lowering pass.
5133 */
5134 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
5135 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
5136 progress =
5137 lower_variable_index_to_cond_assign(ir,
5138 options->EmitNoIndirectInput,
5139 options->EmitNoIndirectOutput,
5140 options->EmitNoIndirectTemp,
5141 options->EmitNoIndirectUniform)
5142 || progress;
5143
5144 progress = do_vec_index_to_cond_assign(ir) || progress;
5145
5146 lower_ubo_reference(prog->_LinkedShaders[i], ir);
5147 } while (progress);
5148
5149 validate_ir_tree(ir);
5150 }
5151
5152 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5153 struct gl_program *linked_prog;
5154
5155 if (prog->_LinkedShaders[i] == NULL)
5156 continue;
5157
5158 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5159
5160 if (linked_prog) {
5161 static const GLenum targets[] = {
5162 GL_VERTEX_PROGRAM_ARB,
5163 GL_FRAGMENT_PROGRAM_ARB,
5164 GL_GEOMETRY_PROGRAM_NV
5165 };
5166
5167 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5168 linked_prog);
5169 if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
5170 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5171 NULL);
5172 _mesa_reference_program(ctx, &linked_prog, NULL);
5173 return GL_FALSE;
5174 }
5175 }
5176
5177 _mesa_reference_program(ctx, &linked_prog, NULL);
5178 }
5179
5180 return GL_TRUE;
5181 }
5182
5183 void
5184 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5185 const GLuint outputMapping[],
5186 struct pipe_stream_output_info *so)
5187 {
5188 unsigned i;
5189 struct gl_transform_feedback_info *info =
5190 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5191
5192 for (i = 0; i < info->NumOutputs; i++) {
5193 so->output[i].register_index =
5194 outputMapping[info->Outputs[i].OutputRegister];
5195 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5196 so->output[i].num_components = info->Outputs[i].NumComponents;
5197 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5198 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5199 }
5200
5201 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5202 so->stride[i] = info->BufferStride[i];
5203 }
5204 so->num_outputs = info->NumOutputs;
5205 }
5206
5207 } /* extern "C" */