glsl_to_tgsi: remove debugging printf
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_print_visitor.h"
38 #include "ir_expression_flattening.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44
45 extern "C" {
46 #include "main/mtypes.h"
47 #include "main/shaderapi.h"
48 #include "main/shaderobj.h"
49 #include "main/uniforms.h"
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_uniform.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58
59 #include "pipe/p_compiler.h"
60 #include "pipe/p_context.h"
61 #include "pipe/p_screen.h"
62 #include "pipe/p_shader_tokens.h"
63 #include "pipe/p_state.h"
64 #include "util/u_math.h"
65 #include "tgsi/tgsi_ureg.h"
66 #include "tgsi/tgsi_info.h"
67 #include "st_context.h"
68 #include "st_program.h"
69 #include "st_glsl_to_tgsi.h"
70 #include "st_mesa_to_tgsi.h"
71 }
72
73 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
75 (1 << PROGRAM_ENV_PARAM) | \
76 (1 << PROGRAM_STATE_VAR) | \
77 (1 << PROGRAM_NAMED_PARAM) | \
78 (1 << PROGRAM_CONSTANT) | \
79 (1 << PROGRAM_UNIFORM))
80
81 #define MAX_TEMPS 4096
82
83 class st_src_reg;
84 class st_dst_reg;
85
86 static int swizzle_for_size(int size);
87
88 /**
89 * This struct is a corresponding struct to TGSI ureg_src.
90 */
91 class st_src_reg {
92 public:
93 st_src_reg(gl_register_file file, int index, const glsl_type *type)
94 {
95 this->file = file;
96 this->index = index;
97 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
98 this->swizzle = swizzle_for_size(type->vector_elements);
99 else
100 this->swizzle = SWIZZLE_XYZW;
101 this->negate = 0;
102 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
103 this->reladdr = NULL;
104 }
105
106 st_src_reg(gl_register_file file, int index, int type)
107 {
108 this->type = type;
109 this->file = file;
110 this->index = index;
111 this->swizzle = SWIZZLE_XYZW;
112 this->negate = 0;
113 this->reladdr = NULL;
114 }
115
116 st_src_reg()
117 {
118 this->type = GLSL_TYPE_ERROR;
119 this->file = PROGRAM_UNDEFINED;
120 this->index = 0;
121 this->swizzle = 0;
122 this->negate = 0;
123 this->reladdr = NULL;
124 }
125
126 explicit st_src_reg(st_dst_reg reg);
127
128 gl_register_file file; /**< PROGRAM_* from Mesa */
129 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
130 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
131 int negate; /**< NEGATE_XYZW mask from mesa */
132 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
133 /** Register index should be offset by the integer in this reg. */
134 st_src_reg *reladdr;
135 };
136
137 class st_dst_reg {
138 public:
139 st_dst_reg(gl_register_file file, int writemask, int type)
140 {
141 this->file = file;
142 this->index = 0;
143 this->writemask = writemask;
144 this->cond_mask = COND_TR;
145 this->reladdr = NULL;
146 this->type = type;
147 }
148
149 st_dst_reg()
150 {
151 this->type = GLSL_TYPE_ERROR;
152 this->file = PROGRAM_UNDEFINED;
153 this->index = 0;
154 this->writemask = 0;
155 this->cond_mask = COND_TR;
156 this->reladdr = NULL;
157 }
158
159 explicit st_dst_reg(st_src_reg reg);
160
161 gl_register_file file; /**< PROGRAM_* from Mesa */
162 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
163 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
164 GLuint cond_mask:4;
165 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
166 /** Register index should be offset by the integer in this reg. */
167 st_src_reg *reladdr;
168 };
169
170 st_src_reg::st_src_reg(st_dst_reg reg)
171 {
172 this->type = reg.type;
173 this->file = reg.file;
174 this->index = reg.index;
175 this->swizzle = SWIZZLE_XYZW;
176 this->negate = 0;
177 this->reladdr = reg.reladdr;
178 }
179
180 st_dst_reg::st_dst_reg(st_src_reg reg)
181 {
182 this->type = reg.type;
183 this->file = reg.file;
184 this->index = reg.index;
185 this->writemask = WRITEMASK_XYZW;
186 this->cond_mask = COND_TR;
187 this->reladdr = reg.reladdr;
188 }
189
190 class glsl_to_tgsi_instruction : public exec_node {
191 public:
192 /* Callers of this ralloc-based new need not call delete. It's
193 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
194 static void* operator new(size_t size, void *ctx)
195 {
196 void *node;
197
198 node = rzalloc_size(ctx, size);
199 assert(node != NULL);
200
201 return node;
202 }
203
204 unsigned op;
205 st_dst_reg dst;
206 st_src_reg src[3];
207 /** Pointer to the ir source this tree came from for debugging */
208 ir_instruction *ir;
209 GLboolean cond_update;
210 bool saturate;
211 int sampler; /**< sampler index */
212 int tex_target; /**< One of TEXTURE_*_INDEX */
213 GLboolean tex_shadow;
214 int dead_mask; /**< Used in dead code elimination */
215
216 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
217 };
218
219 class variable_storage : public exec_node {
220 public:
221 variable_storage(ir_variable *var, gl_register_file file, int index)
222 : file(file), index(index), var(var)
223 {
224 /* empty */
225 }
226
227 gl_register_file file;
228 int index;
229 ir_variable *var; /* variable that maps to this, if any */
230 };
231
232 class immediate_storage : public exec_node {
233 public:
234 immediate_storage(gl_constant_value *values, int size, int type)
235 {
236 memcpy(this->values, values, size * sizeof(gl_constant_value));
237 this->size = size;
238 this->type = type;
239 }
240
241 gl_constant_value values[4];
242 int size; /**< Number of components (1-4) */
243 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
244 };
245
246 class function_entry : public exec_node {
247 public:
248 ir_function_signature *sig;
249
250 /**
251 * identifier of this function signature used by the program.
252 *
253 * At the point that TGSI instructions for function calls are
254 * generated, we don't know the address of the first instruction of
255 * the function body. So we make the BranchTarget that is called a
256 * small integer and rewrite them during set_branchtargets().
257 */
258 int sig_id;
259
260 /**
261 * Pointer to first instruction of the function body.
262 *
263 * Set during function body emits after main() is processed.
264 */
265 glsl_to_tgsi_instruction *bgn_inst;
266
267 /**
268 * Index of the first instruction of the function body in actual TGSI.
269 *
270 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
271 */
272 int inst;
273
274 /** Storage for the return value. */
275 st_src_reg return_reg;
276 };
277
278 class glsl_to_tgsi_visitor : public ir_visitor {
279 public:
280 glsl_to_tgsi_visitor();
281 ~glsl_to_tgsi_visitor();
282
283 function_entry *current_function;
284
285 struct gl_context *ctx;
286 struct gl_program *prog;
287 struct gl_shader_program *shader_program;
288 struct gl_shader_compiler_options *options;
289
290 int next_temp;
291
292 int num_address_regs;
293 int samplers_used;
294 bool indirect_addr_temps;
295 bool indirect_addr_consts;
296
297 int glsl_version;
298
299 variable_storage *find_variable_storage(ir_variable *var);
300
301 int add_constant(gl_register_file file, gl_constant_value values[4],
302 int size, int datatype, GLuint *swizzle_out);
303
304 function_entry *get_function_signature(ir_function_signature *sig);
305
306 st_src_reg get_temp(const glsl_type *type);
307 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
308
309 st_src_reg st_src_reg_for_float(float val);
310 st_src_reg st_src_reg_for_int(int val);
311 st_src_reg st_src_reg_for_type(int type, int val);
312
313 /**
314 * \name Visit methods
315 *
316 * As typical for the visitor pattern, there must be one \c visit method for
317 * each concrete subclass of \c ir_instruction. Virtual base classes within
318 * the hierarchy should not have \c visit methods.
319 */
320 /*@{*/
321 virtual void visit(ir_variable *);
322 virtual void visit(ir_loop *);
323 virtual void visit(ir_loop_jump *);
324 virtual void visit(ir_function_signature *);
325 virtual void visit(ir_function *);
326 virtual void visit(ir_expression *);
327 virtual void visit(ir_swizzle *);
328 virtual void visit(ir_dereference_variable *);
329 virtual void visit(ir_dereference_array *);
330 virtual void visit(ir_dereference_record *);
331 virtual void visit(ir_assignment *);
332 virtual void visit(ir_constant *);
333 virtual void visit(ir_call *);
334 virtual void visit(ir_return *);
335 virtual void visit(ir_discard *);
336 virtual void visit(ir_texture *);
337 virtual void visit(ir_if *);
338 /*@}*/
339
340 st_src_reg result;
341
342 /** List of variable_storage */
343 exec_list variables;
344
345 /** List of immediate_storage */
346 exec_list immediates;
347 int num_immediates;
348
349 /** List of function_entry */
350 exec_list function_signatures;
351 int next_signature_id;
352
353 /** List of glsl_to_tgsi_instruction */
354 exec_list instructions;
355
356 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
357
358 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
359 st_dst_reg dst, st_src_reg src0);
360
361 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
362 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
363
364 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
365 st_dst_reg dst,
366 st_src_reg src0, st_src_reg src1, st_src_reg src2);
367
368 unsigned get_opcode(ir_instruction *ir, unsigned op,
369 st_dst_reg dst,
370 st_src_reg src0, st_src_reg src1);
371
372 /**
373 * Emit the correct dot-product instruction for the type of arguments
374 */
375 void emit_dp(ir_instruction *ir,
376 st_dst_reg dst,
377 st_src_reg src0,
378 st_src_reg src1,
379 unsigned elements);
380
381 void emit_scalar(ir_instruction *ir, unsigned op,
382 st_dst_reg dst, st_src_reg src0);
383
384 void emit_scalar(ir_instruction *ir, unsigned op,
385 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
386
387 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
388
389 void emit_scs(ir_instruction *ir, unsigned op,
390 st_dst_reg dst, const st_src_reg &src);
391
392 GLboolean try_emit_mad(ir_expression *ir,
393 int mul_operand);
394 GLboolean try_emit_sat(ir_expression *ir);
395
396 void emit_swz(ir_expression *ir);
397
398 bool process_move_condition(ir_rvalue *ir);
399
400 void remove_output_reads(gl_register_file type);
401 void simplify_cmp(void);
402
403 void rename_temp_register(int index, int new_index);
404 int get_first_temp_read(int index);
405 int get_first_temp_write(int index);
406 int get_last_temp_read(int index);
407 int get_last_temp_write(int index);
408
409 void copy_propagate(void);
410 void eliminate_dead_code(void);
411 int eliminate_dead_code_advanced(void);
412 void merge_registers(void);
413 void renumber_registers(void);
414
415 void *mem_ctx;
416 };
417
418 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
419
420 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
421
422 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
423
424 static void
425 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
426
427 static void
428 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
429 {
430 va_list args;
431 va_start(args, fmt);
432 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
433 va_end(args);
434
435 prog->LinkStatus = GL_FALSE;
436 }
437
438 static int
439 swizzle_for_size(int size)
440 {
441 int size_swizzles[4] = {
442 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
443 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
444 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
445 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
446 };
447
448 assert((size >= 1) && (size <= 4));
449 return size_swizzles[size - 1];
450 }
451
452 static bool
453 is_tex_instruction(unsigned opcode)
454 {
455 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
456 return info->is_tex;
457 }
458
459 static unsigned
460 num_inst_dst_regs(unsigned opcode)
461 {
462 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
463 return info->num_dst;
464 }
465
466 static unsigned
467 num_inst_src_regs(unsigned opcode)
468 {
469 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
470 return info->is_tex ? info->num_src - 1 : info->num_src;
471 }
472
473 glsl_to_tgsi_instruction *
474 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
475 st_dst_reg dst,
476 st_src_reg src0, st_src_reg src1, st_src_reg src2)
477 {
478 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
479 int num_reladdr = 0, i;
480
481 op = get_opcode(ir, op, dst, src0, src1);
482
483 /* If we have to do relative addressing, we want to load the ARL
484 * reg directly for one of the regs, and preload the other reladdr
485 * sources into temps.
486 */
487 num_reladdr += dst.reladdr != NULL;
488 num_reladdr += src0.reladdr != NULL;
489 num_reladdr += src1.reladdr != NULL;
490 num_reladdr += src2.reladdr != NULL;
491
492 reladdr_to_temp(ir, &src2, &num_reladdr);
493 reladdr_to_temp(ir, &src1, &num_reladdr);
494 reladdr_to_temp(ir, &src0, &num_reladdr);
495
496 if (dst.reladdr) {
497 emit_arl(ir, address_reg, *dst.reladdr);
498 num_reladdr--;
499 }
500 assert(num_reladdr == 0);
501
502 inst->op = op;
503 inst->dst = dst;
504 inst->src[0] = src0;
505 inst->src[1] = src1;
506 inst->src[2] = src2;
507 inst->ir = ir;
508 inst->dead_mask = 0;
509
510 inst->function = NULL;
511
512 if (op == TGSI_OPCODE_ARL)
513 this->num_address_regs = 1;
514
515 /* Update indirect addressing status used by TGSI */
516 if (dst.reladdr) {
517 switch(dst.file) {
518 case PROGRAM_TEMPORARY:
519 this->indirect_addr_temps = true;
520 break;
521 case PROGRAM_LOCAL_PARAM:
522 case PROGRAM_ENV_PARAM:
523 case PROGRAM_STATE_VAR:
524 case PROGRAM_NAMED_PARAM:
525 case PROGRAM_CONSTANT:
526 case PROGRAM_UNIFORM:
527 this->indirect_addr_consts = true;
528 break;
529 case PROGRAM_IMMEDIATE:
530 assert(!"immediates should not have indirect addressing");
531 break;
532 default:
533 break;
534 }
535 }
536 else {
537 for (i=0; i<3; i++) {
538 if(inst->src[i].reladdr) {
539 switch(inst->src[i].file) {
540 case PROGRAM_TEMPORARY:
541 this->indirect_addr_temps = true;
542 break;
543 case PROGRAM_LOCAL_PARAM:
544 case PROGRAM_ENV_PARAM:
545 case PROGRAM_STATE_VAR:
546 case PROGRAM_NAMED_PARAM:
547 case PROGRAM_CONSTANT:
548 case PROGRAM_UNIFORM:
549 this->indirect_addr_consts = true;
550 break;
551 case PROGRAM_IMMEDIATE:
552 assert(!"immediates should not have indirect addressing");
553 break;
554 default:
555 break;
556 }
557 }
558 }
559 }
560
561 this->instructions.push_tail(inst);
562
563 return inst;
564 }
565
566
567 glsl_to_tgsi_instruction *
568 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
569 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
570 {
571 return emit(ir, op, dst, src0, src1, undef_src);
572 }
573
574 glsl_to_tgsi_instruction *
575 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
576 st_dst_reg dst, st_src_reg src0)
577 {
578 assert(dst.writemask != 0);
579 return emit(ir, op, dst, src0, undef_src, undef_src);
580 }
581
582 glsl_to_tgsi_instruction *
583 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
584 {
585 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
586 }
587
588 /**
589 * Determines whether to use an integer, unsigned integer, or float opcode
590 * based on the operands and input opcode, then emits the result.
591 *
592 * TODO: type checking for remaining TGSI opcodes
593 */
594 unsigned
595 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
596 st_dst_reg dst,
597 st_src_reg src0, st_src_reg src1)
598 {
599 int type = GLSL_TYPE_FLOAT;
600
601 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
602 type = GLSL_TYPE_FLOAT;
603 else if (glsl_version >= 130)
604 type = src0.type;
605
606 #define case4(c, f, i, u) \
607 case TGSI_OPCODE_##c: \
608 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
609 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
610 else op = TGSI_OPCODE_##f; \
611 break;
612 #define case3(f, i, u) case4(f, f, i, u)
613 #define case2fi(f, i) case4(f, f, i, i)
614 #define case2iu(i, u) case4(i, LAST, i, u)
615
616 switch(op) {
617 case2fi(ADD, UADD);
618 case2fi(MUL, UMUL);
619 case2fi(MAD, UMAD);
620 case3(DIV, IDIV, UDIV);
621 case3(MAX, IMAX, UMAX);
622 case3(MIN, IMIN, UMIN);
623 case2iu(MOD, UMOD);
624
625 case2fi(SEQ, USEQ);
626 case2fi(SNE, USNE);
627 case3(SGE, ISGE, USGE);
628 case3(SLT, ISLT, USLT);
629
630 case2iu(SHL, SHL);
631 case2iu(ISHR, USHR);
632 case2iu(NOT, NOT);
633 case2iu(AND, AND);
634 case2iu(OR, OR);
635 case2iu(XOR, XOR);
636
637 default: break;
638 }
639
640 assert(op != TGSI_OPCODE_LAST);
641 return op;
642 }
643
644 void
645 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
646 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
647 unsigned elements)
648 {
649 static const unsigned dot_opcodes[] = {
650 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
651 };
652
653 emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
654 }
655
656 /**
657 * Emits TGSI scalar opcodes to produce unique answers across channels.
658 *
659 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
660 * channel determines the result across all channels. So to do a vec4
661 * of this operation, we want to emit a scalar per source channel used
662 * to produce dest channels.
663 */
664 void
665 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
666 st_dst_reg dst,
667 st_src_reg orig_src0, st_src_reg orig_src1)
668 {
669 int i, j;
670 int done_mask = ~dst.writemask;
671
672 /* TGSI RCP is a scalar operation splatting results to all channels,
673 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
674 * dst channels.
675 */
676 for (i = 0; i < 4; i++) {
677 GLuint this_mask = (1 << i);
678 glsl_to_tgsi_instruction *inst;
679 st_src_reg src0 = orig_src0;
680 st_src_reg src1 = orig_src1;
681
682 if (done_mask & this_mask)
683 continue;
684
685 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
686 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
687 for (j = i + 1; j < 4; j++) {
688 /* If there is another enabled component in the destination that is
689 * derived from the same inputs, generate its value on this pass as
690 * well.
691 */
692 if (!(done_mask & (1 << j)) &&
693 GET_SWZ(src0.swizzle, j) == src0_swiz &&
694 GET_SWZ(src1.swizzle, j) == src1_swiz) {
695 this_mask |= (1 << j);
696 }
697 }
698 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
699 src0_swiz, src0_swiz);
700 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
701 src1_swiz, src1_swiz);
702
703 inst = emit(ir, op, dst, src0, src1);
704 inst->dst.writemask = this_mask;
705 done_mask |= this_mask;
706 }
707 }
708
709 void
710 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
711 st_dst_reg dst, st_src_reg src0)
712 {
713 st_src_reg undef = undef_src;
714
715 undef.swizzle = SWIZZLE_XXXX;
716
717 emit_scalar(ir, op, dst, src0, undef);
718 }
719
720 void
721 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
722 st_dst_reg dst, st_src_reg src0)
723 {
724 st_src_reg tmp = get_temp(glsl_type::float_type);
725
726 if (src0.type == GLSL_TYPE_INT)
727 emit(NULL, TGSI_OPCODE_I2F, st_dst_reg(tmp), src0);
728 else if (src0.type == GLSL_TYPE_UINT)
729 emit(NULL, TGSI_OPCODE_U2F, st_dst_reg(tmp), src0);
730 else
731 tmp = src0;
732
733 emit(NULL, TGSI_OPCODE_ARL, dst, tmp);
734 }
735
736 /**
737 * Emit an TGSI_OPCODE_SCS instruction
738 *
739 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
740 * Instead of splatting its result across all four components of the
741 * destination, it writes one value to the \c x component and another value to
742 * the \c y component.
743 *
744 * \param ir IR instruction being processed
745 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
746 * on which value is desired.
747 * \param dst Destination register
748 * \param src Source register
749 */
750 void
751 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
752 st_dst_reg dst,
753 const st_src_reg &src)
754 {
755 /* Vertex programs cannot use the SCS opcode.
756 */
757 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
758 emit_scalar(ir, op, dst, src);
759 return;
760 }
761
762 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
763 const unsigned scs_mask = (1U << component);
764 int done_mask = ~dst.writemask;
765 st_src_reg tmp;
766
767 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
768
769 /* If there are compnents in the destination that differ from the component
770 * that will be written by the SCS instrution, we'll need a temporary.
771 */
772 if (scs_mask != unsigned(dst.writemask)) {
773 tmp = get_temp(glsl_type::vec4_type);
774 }
775
776 for (unsigned i = 0; i < 4; i++) {
777 unsigned this_mask = (1U << i);
778 st_src_reg src0 = src;
779
780 if ((done_mask & this_mask) != 0)
781 continue;
782
783 /* The source swizzle specified which component of the source generates
784 * sine / cosine for the current component in the destination. The SCS
785 * instruction requires that this value be swizzle to the X component.
786 * Replace the current swizzle with a swizzle that puts the source in
787 * the X component.
788 */
789 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
790
791 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
792 src0_swiz, src0_swiz);
793 for (unsigned j = i + 1; j < 4; j++) {
794 /* If there is another enabled component in the destination that is
795 * derived from the same inputs, generate its value on this pass as
796 * well.
797 */
798 if (!(done_mask & (1 << j)) &&
799 GET_SWZ(src0.swizzle, j) == src0_swiz) {
800 this_mask |= (1 << j);
801 }
802 }
803
804 if (this_mask != scs_mask) {
805 glsl_to_tgsi_instruction *inst;
806 st_dst_reg tmp_dst = st_dst_reg(tmp);
807
808 /* Emit the SCS instruction.
809 */
810 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
811 inst->dst.writemask = scs_mask;
812
813 /* Move the result of the SCS instruction to the desired location in
814 * the destination.
815 */
816 tmp.swizzle = MAKE_SWIZZLE4(component, component,
817 component, component);
818 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
819 inst->dst.writemask = this_mask;
820 } else {
821 /* Emit the SCS instruction to write directly to the destination.
822 */
823 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
824 inst->dst.writemask = scs_mask;
825 }
826
827 done_mask |= this_mask;
828 }
829 }
830
831 int
832 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
833 gl_constant_value values[4], int size, int datatype,
834 GLuint *swizzle_out)
835 {
836 if (file == PROGRAM_CONSTANT) {
837 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
838 size, datatype, swizzle_out);
839 } else {
840 int index = 0;
841 immediate_storage *entry;
842 assert(file == PROGRAM_IMMEDIATE);
843
844 /* Search immediate storage to see if we already have an identical
845 * immediate that we can use instead of adding a duplicate entry.
846 */
847 foreach_iter(exec_list_iterator, iter, this->immediates) {
848 entry = (immediate_storage *)iter.get();
849
850 if (entry->size == size &&
851 entry->type == datatype &&
852 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
853 return index;
854 }
855 index++;
856 }
857
858 /* Add this immediate to the list. */
859 entry = new(mem_ctx) immediate_storage(values, size, datatype);
860 this->immediates.push_tail(entry);
861 this->num_immediates++;
862 return index;
863 }
864 }
865
866 struct st_src_reg
867 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
868 {
869 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
870 union gl_constant_value uval;
871
872 uval.f = val;
873 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
874
875 return src;
876 }
877
878 struct st_src_reg
879 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
880 {
881 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
882 union gl_constant_value uval;
883
884 assert(glsl_version >= 130);
885
886 uval.i = val;
887 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
888
889 return src;
890 }
891
892 struct st_src_reg
893 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
894 {
895 if (glsl_version >= 130)
896 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
897 st_src_reg_for_int(val);
898 else
899 return st_src_reg_for_float(val);
900 }
901
902 static int
903 type_size(const struct glsl_type *type)
904 {
905 unsigned int i;
906 int size;
907
908 switch (type->base_type) {
909 case GLSL_TYPE_UINT:
910 case GLSL_TYPE_INT:
911 case GLSL_TYPE_FLOAT:
912 case GLSL_TYPE_BOOL:
913 if (type->is_matrix()) {
914 return type->matrix_columns;
915 } else {
916 /* Regardless of size of vector, it gets a vec4. This is bad
917 * packing for things like floats, but otherwise arrays become a
918 * mess. Hopefully a later pass over the code can pack scalars
919 * down if appropriate.
920 */
921 return 1;
922 }
923 case GLSL_TYPE_ARRAY:
924 assert(type->length > 0);
925 return type_size(type->fields.array) * type->length;
926 case GLSL_TYPE_STRUCT:
927 size = 0;
928 for (i = 0; i < type->length; i++) {
929 size += type_size(type->fields.structure[i].type);
930 }
931 return size;
932 case GLSL_TYPE_SAMPLER:
933 /* Samplers take up one slot in UNIFORMS[], but they're baked in
934 * at link time.
935 */
936 return 1;
937 default:
938 assert(0);
939 return 0;
940 }
941 }
942
943 /**
944 * In the initial pass of codegen, we assign temporary numbers to
945 * intermediate results. (not SSA -- variable assignments will reuse
946 * storage).
947 */
948 st_src_reg
949 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
950 {
951 st_src_reg src;
952 int swizzle[4];
953 int i;
954
955 src.type = glsl_version >= 130 ? type->base_type : GLSL_TYPE_FLOAT;
956 src.file = PROGRAM_TEMPORARY;
957 src.index = next_temp;
958 src.reladdr = NULL;
959 next_temp += type_size(type);
960
961 if (type->is_array() || type->is_record()) {
962 src.swizzle = SWIZZLE_NOOP;
963 } else {
964 for (i = 0; i < type->vector_elements; i++)
965 swizzle[i] = i;
966 for (; i < 4; i++)
967 swizzle[i] = type->vector_elements - 1;
968 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
969 swizzle[2], swizzle[3]);
970 }
971 src.negate = 0;
972
973 return src;
974 }
975
976 variable_storage *
977 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
978 {
979
980 variable_storage *entry;
981
982 foreach_iter(exec_list_iterator, iter, this->variables) {
983 entry = (variable_storage *)iter.get();
984
985 if (entry->var == var)
986 return entry;
987 }
988
989 return NULL;
990 }
991
992 void
993 glsl_to_tgsi_visitor::visit(ir_variable *ir)
994 {
995 if (strcmp(ir->name, "gl_FragCoord") == 0) {
996 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
997
998 fp->OriginUpperLeft = ir->origin_upper_left;
999 fp->PixelCenterInteger = ir->pixel_center_integer;
1000
1001 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
1002 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1003 switch (ir->depth_layout) {
1004 case ir_depth_layout_none:
1005 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1006 break;
1007 case ir_depth_layout_any:
1008 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1009 break;
1010 case ir_depth_layout_greater:
1011 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1012 break;
1013 case ir_depth_layout_less:
1014 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1015 break;
1016 case ir_depth_layout_unchanged:
1017 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1018 break;
1019 default:
1020 assert(0);
1021 break;
1022 }
1023 }
1024
1025 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1026 unsigned int i;
1027 const ir_state_slot *const slots = ir->state_slots;
1028 assert(ir->state_slots != NULL);
1029
1030 /* Check if this statevar's setup in the STATE file exactly
1031 * matches how we'll want to reference it as a
1032 * struct/array/whatever. If not, then we need to move it into
1033 * temporary storage and hope that it'll get copy-propagated
1034 * out.
1035 */
1036 for (i = 0; i < ir->num_state_slots; i++) {
1037 if (slots[i].swizzle != SWIZZLE_XYZW) {
1038 break;
1039 }
1040 }
1041
1042 struct variable_storage *storage;
1043 st_dst_reg dst;
1044 if (i == ir->num_state_slots) {
1045 /* We'll set the index later. */
1046 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1047 this->variables.push_tail(storage);
1048
1049 dst = undef_dst;
1050 } else {
1051 /* The variable_storage constructor allocates slots based on the size
1052 * of the type. However, this had better match the number of state
1053 * elements that we're going to copy into the new temporary.
1054 */
1055 assert((int) ir->num_state_slots == type_size(ir->type));
1056
1057 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1058 this->next_temp);
1059 this->variables.push_tail(storage);
1060 this->next_temp += type_size(ir->type);
1061
1062 dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1063 glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT));
1064 }
1065
1066
1067 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1068 int index = _mesa_add_state_reference(this->prog->Parameters,
1069 (gl_state_index *)slots[i].tokens);
1070
1071 if (storage->file == PROGRAM_STATE_VAR) {
1072 if (storage->index == -1) {
1073 storage->index = index;
1074 } else {
1075 assert(index == storage->index + (int)i);
1076 }
1077 } else {
1078 st_src_reg src(PROGRAM_STATE_VAR, index,
1079 glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT);
1080 src.swizzle = slots[i].swizzle;
1081 emit(ir, TGSI_OPCODE_MOV, dst, src);
1082 /* even a float takes up a whole vec4 reg in a struct/array. */
1083 dst.index++;
1084 }
1085 }
1086
1087 if (storage->file == PROGRAM_TEMPORARY &&
1088 dst.index != storage->index + (int) ir->num_state_slots) {
1089 fail_link(this->shader_program,
1090 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1091 ir->name, dst.index - storage->index,
1092 type_size(ir->type));
1093 }
1094 }
1095 }
1096
1097 void
1098 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1099 {
1100 ir_dereference_variable *counter = NULL;
1101
1102 if (ir->counter != NULL)
1103 counter = new(ir) ir_dereference_variable(ir->counter);
1104
1105 if (ir->from != NULL) {
1106 assert(ir->counter != NULL);
1107
1108 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1109
1110 a->accept(this);
1111 delete a;
1112 }
1113
1114 emit(NULL, TGSI_OPCODE_BGNLOOP);
1115
1116 if (ir->to) {
1117 ir_expression *e =
1118 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1119 counter, ir->to);
1120 ir_if *if_stmt = new(ir) ir_if(e);
1121
1122 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1123
1124 if_stmt->then_instructions.push_tail(brk);
1125
1126 if_stmt->accept(this);
1127
1128 delete if_stmt;
1129 delete e;
1130 delete brk;
1131 }
1132
1133 visit_exec_list(&ir->body_instructions, this);
1134
1135 if (ir->increment) {
1136 ir_expression *e =
1137 new(ir) ir_expression(ir_binop_add, counter->type,
1138 counter, ir->increment);
1139
1140 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1141
1142 a->accept(this);
1143 delete a;
1144 delete e;
1145 }
1146
1147 emit(NULL, TGSI_OPCODE_ENDLOOP);
1148 }
1149
1150 void
1151 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1152 {
1153 switch (ir->mode) {
1154 case ir_loop_jump::jump_break:
1155 emit(NULL, TGSI_OPCODE_BRK);
1156 break;
1157 case ir_loop_jump::jump_continue:
1158 emit(NULL, TGSI_OPCODE_CONT);
1159 break;
1160 }
1161 }
1162
1163
1164 void
1165 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1166 {
1167 assert(0);
1168 (void)ir;
1169 }
1170
1171 void
1172 glsl_to_tgsi_visitor::visit(ir_function *ir)
1173 {
1174 /* Ignore function bodies other than main() -- we shouldn't see calls to
1175 * them since they should all be inlined before we get to glsl_to_tgsi.
1176 */
1177 if (strcmp(ir->name, "main") == 0) {
1178 const ir_function_signature *sig;
1179 exec_list empty;
1180
1181 sig = ir->matching_signature(&empty);
1182
1183 assert(sig);
1184
1185 foreach_iter(exec_list_iterator, iter, sig->body) {
1186 ir_instruction *ir = (ir_instruction *)iter.get();
1187
1188 ir->accept(this);
1189 }
1190 }
1191 }
1192
1193 GLboolean
1194 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1195 {
1196 int nonmul_operand = 1 - mul_operand;
1197 st_src_reg a, b, c;
1198 st_dst_reg result_dst;
1199
1200 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1201 if (!expr || expr->operation != ir_binop_mul)
1202 return false;
1203
1204 expr->operands[0]->accept(this);
1205 a = this->result;
1206 expr->operands[1]->accept(this);
1207 b = this->result;
1208 ir->operands[nonmul_operand]->accept(this);
1209 c = this->result;
1210
1211 this->result = get_temp(ir->type);
1212 result_dst = st_dst_reg(this->result);
1213 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1214 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1215
1216 return true;
1217 }
1218
1219 GLboolean
1220 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1221 {
1222 /* Saturates were only introduced to vertex programs in
1223 * NV_vertex_program3, so don't give them to drivers in the VP.
1224 */
1225 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1226 return false;
1227
1228 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1229 if (!sat_src)
1230 return false;
1231
1232 sat_src->accept(this);
1233 st_src_reg src = this->result;
1234
1235 this->result = get_temp(ir->type);
1236 st_dst_reg result_dst = st_dst_reg(this->result);
1237 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1238 glsl_to_tgsi_instruction *inst;
1239 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1240 inst->saturate = true;
1241
1242 return true;
1243 }
1244
1245 void
1246 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1247 st_src_reg *reg, int *num_reladdr)
1248 {
1249 if (!reg->reladdr)
1250 return;
1251
1252 emit_arl(ir, address_reg, *reg->reladdr);
1253
1254 if (*num_reladdr != 1) {
1255 st_src_reg temp = get_temp(glsl_type::vec4_type);
1256
1257 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1258 *reg = temp;
1259 }
1260
1261 (*num_reladdr)--;
1262 }
1263
1264 void
1265 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1266 {
1267 unsigned int operand;
1268 st_src_reg op[Elements(ir->operands)];
1269 st_src_reg result_src;
1270 st_dst_reg result_dst;
1271
1272 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1273 */
1274 if (ir->operation == ir_binop_add) {
1275 if (try_emit_mad(ir, 1))
1276 return;
1277 if (try_emit_mad(ir, 0))
1278 return;
1279 }
1280 if (try_emit_sat(ir))
1281 return;
1282
1283 if (ir->operation == ir_quadop_vector)
1284 assert(!"ir_quadop_vector should have been lowered");
1285
1286 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1287 this->result.file = PROGRAM_UNDEFINED;
1288 ir->operands[operand]->accept(this);
1289 if (this->result.file == PROGRAM_UNDEFINED) {
1290 ir_print_visitor v;
1291 printf("Failed to get tree for expression operand:\n");
1292 ir->operands[operand]->accept(&v);
1293 exit(1);
1294 }
1295 op[operand] = this->result;
1296
1297 /* Matrix expression operands should have been broken down to vector
1298 * operations already.
1299 */
1300 assert(!ir->operands[operand]->type->is_matrix());
1301 }
1302
1303 int vector_elements = ir->operands[0]->type->vector_elements;
1304 if (ir->operands[1]) {
1305 vector_elements = MAX2(vector_elements,
1306 ir->operands[1]->type->vector_elements);
1307 }
1308
1309 this->result.file = PROGRAM_UNDEFINED;
1310
1311 /* Storage for our result. Ideally for an assignment we'd be using
1312 * the actual storage for the result here, instead.
1313 */
1314 result_src = get_temp(ir->type);
1315 /* convenience for the emit functions below. */
1316 result_dst = st_dst_reg(result_src);
1317 /* Limit writes to the channels that will be used by result_src later.
1318 * This does limit this temp's use as a temporary for multi-instruction
1319 * sequences.
1320 */
1321 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1322
1323 switch (ir->operation) {
1324 case ir_unop_logic_not:
1325 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], st_src_reg_for_type(result_dst.type, 0));
1326 break;
1327 case ir_unop_neg:
1328 assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1329 if (result_dst.type == GLSL_TYPE_INT)
1330 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1331 else {
1332 op[0].negate = ~op[0].negate;
1333 result_src = op[0];
1334 }
1335 break;
1336 case ir_unop_abs:
1337 assert(result_dst.type == GLSL_TYPE_FLOAT);
1338 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1339 break;
1340 case ir_unop_sign:
1341 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1342 break;
1343 case ir_unop_rcp:
1344 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1345 break;
1346
1347 case ir_unop_exp2:
1348 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1349 break;
1350 case ir_unop_exp:
1351 case ir_unop_log:
1352 assert(!"not reached: should be handled by ir_explog_to_explog2");
1353 break;
1354 case ir_unop_log2:
1355 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1356 break;
1357 case ir_unop_sin:
1358 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1359 break;
1360 case ir_unop_cos:
1361 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1362 break;
1363 case ir_unop_sin_reduced:
1364 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1365 break;
1366 case ir_unop_cos_reduced:
1367 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1368 break;
1369
1370 case ir_unop_dFdx:
1371 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1372 break;
1373 case ir_unop_dFdy:
1374 op[0].negate = ~op[0].negate;
1375 emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1376 break;
1377
1378 case ir_unop_noise: {
1379 /* At some point, a motivated person could add a better
1380 * implementation of noise. Currently not even the nvidia
1381 * binary drivers do anything more than this. In any case, the
1382 * place to do this is in the GL state tracker, not the poor
1383 * driver.
1384 */
1385 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1386 break;
1387 }
1388
1389 case ir_binop_add:
1390 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1391 break;
1392 case ir_binop_sub:
1393 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1394 break;
1395
1396 case ir_binop_mul:
1397 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1398 break;
1399 case ir_binop_div:
1400 if (result_dst.type == GLSL_TYPE_FLOAT)
1401 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1402 else
1403 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1404 break;
1405 case ir_binop_mod:
1406 if (result_dst.type == GLSL_TYPE_FLOAT)
1407 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1408 else
1409 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1410 break;
1411
1412 case ir_binop_less:
1413 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1414 break;
1415 case ir_binop_greater:
1416 emit(ir, TGSI_OPCODE_SGT, result_dst, op[0], op[1]);
1417 break;
1418 case ir_binop_lequal:
1419 emit(ir, TGSI_OPCODE_SLE, result_dst, op[0], op[1]);
1420 break;
1421 case ir_binop_gequal:
1422 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1423 break;
1424 case ir_binop_equal:
1425 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1426 break;
1427 case ir_binop_nequal:
1428 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1429 break;
1430 case ir_binop_all_equal:
1431 /* "==" operator producing a scalar boolean. */
1432 if (ir->operands[0]->type->is_vector() ||
1433 ir->operands[1]->type->is_vector()) {
1434 st_src_reg temp = get_temp(glsl_version >= 130 ?
1435 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1436 glsl_type::vec4_type);
1437 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1438 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1439 emit_dp(ir, result_dst, temp, temp, vector_elements);
1440 emit(ir, TGSI_OPCODE_SEQ, result_dst, result_src, st_src_reg_for_float(0.0));
1441 } else {
1442 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1443 }
1444 break;
1445 case ir_binop_any_nequal:
1446 /* "!=" operator producing a scalar boolean. */
1447 if (ir->operands[0]->type->is_vector() ||
1448 ir->operands[1]->type->is_vector()) {
1449 st_src_reg temp = get_temp(glsl_version >= 130 ?
1450 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1451 glsl_type::vec4_type);
1452 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1453 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1454 emit_dp(ir, result_dst, temp, temp, vector_elements);
1455 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1456 } else {
1457 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1458 }
1459 break;
1460
1461 case ir_unop_any:
1462 assert(ir->operands[0]->type->is_vector());
1463 emit_dp(ir, result_dst, op[0], op[0],
1464 ir->operands[0]->type->vector_elements);
1465 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1466 break;
1467
1468 case ir_binop_logic_xor:
1469 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1470 break;
1471
1472 case ir_binop_logic_or:
1473 /* This could be a saturated add and skip the SNE. */
1474 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1475 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1476 break;
1477
1478 case ir_binop_logic_and:
1479 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1480 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1481 break;
1482
1483 case ir_binop_dot:
1484 assert(ir->operands[0]->type->is_vector());
1485 assert(ir->operands[0]->type == ir->operands[1]->type);
1486 emit_dp(ir, result_dst, op[0], op[1],
1487 ir->operands[0]->type->vector_elements);
1488 break;
1489
1490 case ir_unop_sqrt:
1491 /* sqrt(x) = x * rsq(x). */
1492 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1493 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1494 /* For incoming channels <= 0, set the result to 0. */
1495 op[0].negate = ~op[0].negate;
1496 emit(ir, TGSI_OPCODE_CMP, result_dst,
1497 op[0], result_src, st_src_reg_for_float(0.0));
1498 break;
1499 case ir_unop_rsq:
1500 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1501 break;
1502 case ir_unop_i2f:
1503 case ir_unop_b2f:
1504 if (glsl_version >= 130) {
1505 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1506 break;
1507 }
1508 case ir_unop_b2i:
1509 /* Booleans are stored as integers (or floats in GLSL 1.20 and lower). */
1510 result_src = op[0];
1511 break;
1512 case ir_unop_f2i:
1513 if (glsl_version >= 130)
1514 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1515 else
1516 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1517 break;
1518 case ir_unop_f2b:
1519 case ir_unop_i2b:
1520 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0],
1521 st_src_reg_for_type(result_dst.type, 0));
1522 break;
1523 case ir_unop_trunc:
1524 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1525 break;
1526 case ir_unop_ceil:
1527 op[0].negate = ~op[0].negate;
1528 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1529 result_src.negate = ~result_src.negate;
1530 break;
1531 case ir_unop_floor:
1532 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1533 break;
1534 case ir_unop_fract:
1535 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1536 break;
1537
1538 case ir_binop_min:
1539 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1540 break;
1541 case ir_binop_max:
1542 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1543 break;
1544 case ir_binop_pow:
1545 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1546 break;
1547
1548 case ir_unop_bit_not:
1549 if (glsl_version >= 130) {
1550 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1551 break;
1552 }
1553 case ir_unop_u2f:
1554 if (glsl_version >= 130) {
1555 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1556 break;
1557 }
1558 case ir_binop_lshift:
1559 if (glsl_version >= 130) {
1560 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0]);
1561 break;
1562 }
1563 case ir_binop_rshift:
1564 if (glsl_version >= 130) {
1565 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0]);
1566 break;
1567 }
1568 case ir_binop_bit_and:
1569 if (glsl_version >= 130) {
1570 emit(ir, TGSI_OPCODE_AND, result_dst, op[0]);
1571 break;
1572 }
1573 case ir_binop_bit_xor:
1574 if (glsl_version >= 130) {
1575 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0]);
1576 break;
1577 }
1578 case ir_binop_bit_or:
1579 if (glsl_version >= 130) {
1580 emit(ir, TGSI_OPCODE_OR, result_dst, op[0]);
1581 break;
1582 }
1583 case ir_unop_round_even:
1584 assert(!"GLSL 1.30 features unsupported");
1585 break;
1586
1587 case ir_quadop_vector:
1588 /* This operation should have already been handled.
1589 */
1590 assert(!"Should not get here.");
1591 break;
1592 }
1593
1594 this->result = result_src;
1595 }
1596
1597
1598 void
1599 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1600 {
1601 st_src_reg src;
1602 int i;
1603 int swizzle[4];
1604
1605 /* Note that this is only swizzles in expressions, not those on the left
1606 * hand side of an assignment, which do write masking. See ir_assignment
1607 * for that.
1608 */
1609
1610 ir->val->accept(this);
1611 src = this->result;
1612 assert(src.file != PROGRAM_UNDEFINED);
1613
1614 for (i = 0; i < 4; i++) {
1615 if (i < ir->type->vector_elements) {
1616 switch (i) {
1617 case 0:
1618 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1619 break;
1620 case 1:
1621 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1622 break;
1623 case 2:
1624 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1625 break;
1626 case 3:
1627 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1628 break;
1629 }
1630 } else {
1631 /* If the type is smaller than a vec4, replicate the last
1632 * channel out.
1633 */
1634 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1635 }
1636 }
1637
1638 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1639
1640 this->result = src;
1641 }
1642
1643 void
1644 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1645 {
1646 variable_storage *entry = find_variable_storage(ir->var);
1647 ir_variable *var = ir->var;
1648
1649 if (!entry) {
1650 switch (var->mode) {
1651 case ir_var_uniform:
1652 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1653 var->location);
1654 this->variables.push_tail(entry);
1655 break;
1656 case ir_var_in:
1657 case ir_var_inout:
1658 /* The linker assigns locations for varyings and attributes,
1659 * including deprecated builtins (like gl_Color), user-assign
1660 * generic attributes (glBindVertexLocation), and
1661 * user-defined varyings.
1662 *
1663 * FINISHME: We would hit this path for function arguments. Fix!
1664 */
1665 assert(var->location != -1);
1666 entry = new(mem_ctx) variable_storage(var,
1667 PROGRAM_INPUT,
1668 var->location);
1669 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1670 var->location >= VERT_ATTRIB_GENERIC0) {
1671 _mesa_add_attribute(this->prog->Attributes,
1672 var->name,
1673 _mesa_sizeof_glsl_type(var->type->gl_type),
1674 var->type->gl_type,
1675 var->location - VERT_ATTRIB_GENERIC0);
1676 }
1677 break;
1678 case ir_var_out:
1679 assert(var->location != -1);
1680 entry = new(mem_ctx) variable_storage(var,
1681 PROGRAM_OUTPUT,
1682 var->location);
1683 break;
1684 case ir_var_system_value:
1685 entry = new(mem_ctx) variable_storage(var,
1686 PROGRAM_SYSTEM_VALUE,
1687 var->location);
1688 break;
1689 case ir_var_auto:
1690 case ir_var_temporary:
1691 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1692 this->next_temp);
1693 this->variables.push_tail(entry);
1694
1695 next_temp += type_size(var->type);
1696 break;
1697 }
1698
1699 if (!entry) {
1700 printf("Failed to make storage for %s\n", var->name);
1701 exit(1);
1702 }
1703 }
1704
1705 this->result = st_src_reg(entry->file, entry->index, var->type);
1706 if (glsl_version <= 120)
1707 this->result.type = GLSL_TYPE_FLOAT;
1708 }
1709
1710 void
1711 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1712 {
1713 ir_constant *index;
1714 st_src_reg src;
1715 int element_size = type_size(ir->type);
1716
1717 index = ir->array_index->constant_expression_value();
1718
1719 ir->array->accept(this);
1720 src = this->result;
1721
1722 if (index) {
1723 src.index += index->value.i[0] * element_size;
1724 } else {
1725 st_src_reg array_base = this->result;
1726 /* Variable index array dereference. It eats the "vec4" of the
1727 * base of the array and an index that offsets the TGSI register
1728 * index.
1729 */
1730 ir->array_index->accept(this);
1731
1732 st_src_reg index_reg;
1733
1734 if (element_size == 1) {
1735 index_reg = this->result;
1736 } else {
1737 index_reg = get_temp(glsl_type::float_type);
1738
1739 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1740 this->result, st_src_reg_for_float(element_size));
1741 }
1742
1743 /* If there was already a relative address register involved, add the
1744 * new and the old together to get the new offset.
1745 */
1746 if (src.reladdr != NULL) {
1747 st_src_reg accum_reg = get_temp(glsl_type::float_type);
1748
1749 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1750 index_reg, *src.reladdr);
1751
1752 index_reg = accum_reg;
1753 }
1754
1755 src.reladdr = ralloc(mem_ctx, st_src_reg);
1756 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1757 }
1758
1759 /* If the type is smaller than a vec4, replicate the last channel out. */
1760 if (ir->type->is_scalar() || ir->type->is_vector())
1761 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1762 else
1763 src.swizzle = SWIZZLE_NOOP;
1764
1765 this->result = src;
1766 }
1767
1768 void
1769 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
1770 {
1771 unsigned int i;
1772 const glsl_type *struct_type = ir->record->type;
1773 int offset = 0;
1774
1775 ir->record->accept(this);
1776
1777 for (i = 0; i < struct_type->length; i++) {
1778 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1779 break;
1780 offset += type_size(struct_type->fields.structure[i].type);
1781 }
1782
1783 /* If the type is smaller than a vec4, replicate the last channel out. */
1784 if (ir->type->is_scalar() || ir->type->is_vector())
1785 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1786 else
1787 this->result.swizzle = SWIZZLE_NOOP;
1788
1789 this->result.index += offset;
1790 }
1791
1792 /**
1793 * We want to be careful in assignment setup to hit the actual storage
1794 * instead of potentially using a temporary like we might with the
1795 * ir_dereference handler.
1796 */
1797 static st_dst_reg
1798 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
1799 {
1800 /* The LHS must be a dereference. If the LHS is a variable indexed array
1801 * access of a vector, it must be separated into a series conditional moves
1802 * before reaching this point (see ir_vec_index_to_cond_assign).
1803 */
1804 assert(ir->as_dereference());
1805 ir_dereference_array *deref_array = ir->as_dereference_array();
1806 if (deref_array) {
1807 assert(!deref_array->array->type->is_vector());
1808 }
1809
1810 /* Use the rvalue deref handler for the most part. We'll ignore
1811 * swizzles in it and write swizzles using writemask, though.
1812 */
1813 ir->accept(v);
1814 return st_dst_reg(v->result);
1815 }
1816
1817 /**
1818 * Process the condition of a conditional assignment
1819 *
1820 * Examines the condition of a conditional assignment to generate the optimal
1821 * first operand of a \c CMP instruction. If the condition is a relational
1822 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1823 * used as the source for the \c CMP instruction. Otherwise the comparison
1824 * is processed to a boolean result, and the boolean result is used as the
1825 * operand to the CMP instruction.
1826 */
1827 bool
1828 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
1829 {
1830 ir_rvalue *src_ir = ir;
1831 bool negate = true;
1832 bool switch_order = false;
1833
1834 ir_expression *const expr = ir->as_expression();
1835 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1836 bool zero_on_left = false;
1837
1838 if (expr->operands[0]->is_zero()) {
1839 src_ir = expr->operands[1];
1840 zero_on_left = true;
1841 } else if (expr->operands[1]->is_zero()) {
1842 src_ir = expr->operands[0];
1843 zero_on_left = false;
1844 }
1845
1846 /* a is - 0 + - 0 +
1847 * (a < 0) T F F ( a < 0) T F F
1848 * (0 < a) F F T (-a < 0) F F T
1849 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1850 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1851 * (a > 0) F F T (-a < 0) F F T
1852 * (0 > a) T F F ( a < 0) T F F
1853 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1854 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1855 *
1856 * Note that exchanging the order of 0 and 'a' in the comparison simply
1857 * means that the value of 'a' should be negated.
1858 */
1859 if (src_ir != ir) {
1860 switch (expr->operation) {
1861 case ir_binop_less:
1862 switch_order = false;
1863 negate = zero_on_left;
1864 break;
1865
1866 case ir_binop_greater:
1867 switch_order = false;
1868 negate = !zero_on_left;
1869 break;
1870
1871 case ir_binop_lequal:
1872 switch_order = true;
1873 negate = !zero_on_left;
1874 break;
1875
1876 case ir_binop_gequal:
1877 switch_order = true;
1878 negate = zero_on_left;
1879 break;
1880
1881 default:
1882 /* This isn't the right kind of comparison afterall, so make sure
1883 * the whole condition is visited.
1884 */
1885 src_ir = ir;
1886 break;
1887 }
1888 }
1889 }
1890
1891 src_ir->accept(this);
1892
1893 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1894 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1895 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
1896 * computing the condition.
1897 */
1898 if (negate)
1899 this->result.negate = ~this->result.negate;
1900
1901 return switch_order;
1902 }
1903
1904 void
1905 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
1906 {
1907 st_dst_reg l;
1908 st_src_reg r;
1909 int i;
1910
1911 ir->rhs->accept(this);
1912 r = this->result;
1913
1914 l = get_assignment_lhs(ir->lhs, this);
1915
1916 /* FINISHME: This should really set to the correct maximal writemask for each
1917 * FINISHME: component written (in the loops below). This case can only
1918 * FINISHME: occur for matrices, arrays, and structures.
1919 */
1920 if (ir->write_mask == 0) {
1921 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1922 l.writemask = WRITEMASK_XYZW;
1923 } else if (ir->lhs->type->is_scalar() &&
1924 ir->lhs->variable_referenced()->mode == ir_var_out) {
1925 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1926 * FINISHME: W component of fragment shader output zero, work correctly.
1927 */
1928 l.writemask = WRITEMASK_XYZW;
1929 } else {
1930 int swizzles[4];
1931 int first_enabled_chan = 0;
1932 int rhs_chan = 0;
1933
1934 l.writemask = ir->write_mask;
1935
1936 for (int i = 0; i < 4; i++) {
1937 if (l.writemask & (1 << i)) {
1938 first_enabled_chan = GET_SWZ(r.swizzle, i);
1939 break;
1940 }
1941 }
1942
1943 /* Swizzle a small RHS vector into the channels being written.
1944 *
1945 * glsl ir treats write_mask as dictating how many channels are
1946 * present on the RHS while TGSI treats write_mask as just
1947 * showing which channels of the vec4 RHS get written.
1948 */
1949 for (int i = 0; i < 4; i++) {
1950 if (l.writemask & (1 << i))
1951 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1952 else
1953 swizzles[i] = first_enabled_chan;
1954 }
1955 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1956 swizzles[2], swizzles[3]);
1957 }
1958
1959 assert(l.file != PROGRAM_UNDEFINED);
1960 assert(r.file != PROGRAM_UNDEFINED);
1961
1962 if (ir->condition) {
1963 const bool switch_order = this->process_move_condition(ir->condition);
1964 st_src_reg condition = this->result;
1965
1966 for (i = 0; i < type_size(ir->lhs->type); i++) {
1967 st_src_reg l_src = st_src_reg(l);
1968 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
1969
1970 if (switch_order) {
1971 emit(ir, TGSI_OPCODE_CMP, l, condition, l_src, r);
1972 } else {
1973 emit(ir, TGSI_OPCODE_CMP, l, condition, r, l_src);
1974 }
1975
1976 l.index++;
1977 r.index++;
1978 }
1979 } else if (ir->rhs->as_expression() &&
1980 this->instructions.get_tail() &&
1981 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
1982 type_size(ir->lhs->type) == 1) {
1983 /* To avoid emitting an extra MOV when assigning an expression to a
1984 * variable, emit the last instruction of the expression again, but
1985 * replace the destination register with the target of the assignment.
1986 * Dead code elimination will remove the original instruction.
1987 */
1988 glsl_to_tgsi_instruction *inst;
1989 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1990 emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
1991 } else {
1992 for (i = 0; i < type_size(ir->lhs->type); i++) {
1993 emit(ir, TGSI_OPCODE_MOV, l, r);
1994 l.index++;
1995 r.index++;
1996 }
1997 }
1998 }
1999
2000
2001 void
2002 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2003 {
2004 st_src_reg src;
2005 GLfloat stack_vals[4] = { 0 };
2006 gl_constant_value *values = (gl_constant_value *) stack_vals;
2007 GLenum gl_type = GL_NONE;
2008 unsigned int i;
2009 static int in_array = 0;
2010 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2011
2012 /* Unfortunately, 4 floats is all we can get into
2013 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2014 * aggregate constant and move each constant value into it. If we
2015 * get lucky, copy propagation will eliminate the extra moves.
2016 */
2017 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2018 st_src_reg temp_base = get_temp(ir->type);
2019 st_dst_reg temp = st_dst_reg(temp_base);
2020
2021 foreach_iter(exec_list_iterator, iter, ir->components) {
2022 ir_constant *field_value = (ir_constant *)iter.get();
2023 int size = type_size(field_value->type);
2024
2025 assert(size > 0);
2026
2027 field_value->accept(this);
2028 src = this->result;
2029
2030 for (i = 0; i < (unsigned int)size; i++) {
2031 emit(ir, TGSI_OPCODE_MOV, temp, src);
2032
2033 src.index++;
2034 temp.index++;
2035 }
2036 }
2037 this->result = temp_base;
2038 return;
2039 }
2040
2041 if (ir->type->is_array()) {
2042 st_src_reg temp_base = get_temp(ir->type);
2043 st_dst_reg temp = st_dst_reg(temp_base);
2044 int size = type_size(ir->type->fields.array);
2045
2046 assert(size > 0);
2047 in_array++;
2048
2049 for (i = 0; i < ir->type->length; i++) {
2050 ir->array_elements[i]->accept(this);
2051 src = this->result;
2052 for (int j = 0; j < size; j++) {
2053 emit(ir, TGSI_OPCODE_MOV, temp, src);
2054
2055 src.index++;
2056 temp.index++;
2057 }
2058 }
2059 this->result = temp_base;
2060 in_array--;
2061 return;
2062 }
2063
2064 if (ir->type->is_matrix()) {
2065 st_src_reg mat = get_temp(ir->type);
2066 st_dst_reg mat_column = st_dst_reg(mat);
2067
2068 for (i = 0; i < ir->type->matrix_columns; i++) {
2069 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2070 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2071
2072 src = st_src_reg(file, -1, ir->type->base_type);
2073 src.index = add_constant(file,
2074 values,
2075 ir->type->vector_elements,
2076 GL_FLOAT,
2077 &src.swizzle);
2078 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2079
2080 mat_column.index++;
2081 }
2082
2083 this->result = mat;
2084 return;
2085 }
2086
2087 switch (ir->type->base_type) {
2088 case GLSL_TYPE_FLOAT:
2089 gl_type = GL_FLOAT;
2090 for (i = 0; i < ir->type->vector_elements; i++) {
2091 values[i].f = ir->value.f[i];
2092 }
2093 break;
2094 case GLSL_TYPE_UINT:
2095 gl_type = glsl_version >= 130 ? GL_UNSIGNED_INT : GL_FLOAT;
2096 for (i = 0; i < ir->type->vector_elements; i++) {
2097 if (glsl_version >= 130)
2098 values[i].u = ir->value.u[i];
2099 else
2100 values[i].f = ir->value.u[i];
2101 }
2102 break;
2103 case GLSL_TYPE_INT:
2104 gl_type = glsl_version >= 130 ? GL_INT : GL_FLOAT;
2105 for (i = 0; i < ir->type->vector_elements; i++) {
2106 if (glsl_version >= 130)
2107 values[i].i = ir->value.i[i];
2108 else
2109 values[i].f = ir->value.i[i];
2110 }
2111 break;
2112 case GLSL_TYPE_BOOL:
2113 gl_type = glsl_version >= 130 ? GL_BOOL : GL_FLOAT;
2114 for (i = 0; i < ir->type->vector_elements; i++) {
2115 if (glsl_version >= 130)
2116 values[i].b = ir->value.b[i];
2117 else
2118 values[i].f = ir->value.b[i];
2119 }
2120 break;
2121 default:
2122 assert(!"Non-float/uint/int/bool constant");
2123 }
2124
2125 this->result = st_src_reg(file, -1, ir->type);
2126 this->result.index = add_constant(file,
2127 values,
2128 ir->type->vector_elements,
2129 gl_type,
2130 &this->result.swizzle);
2131 }
2132
2133 function_entry *
2134 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2135 {
2136 function_entry *entry;
2137
2138 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2139 entry = (function_entry *)iter.get();
2140
2141 if (entry->sig == sig)
2142 return entry;
2143 }
2144
2145 entry = ralloc(mem_ctx, function_entry);
2146 entry->sig = sig;
2147 entry->sig_id = this->next_signature_id++;
2148 entry->bgn_inst = NULL;
2149
2150 /* Allocate storage for all the parameters. */
2151 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2152 ir_variable *param = (ir_variable *)iter.get();
2153 variable_storage *storage;
2154
2155 storage = find_variable_storage(param);
2156 assert(!storage);
2157
2158 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2159 this->next_temp);
2160 this->variables.push_tail(storage);
2161
2162 this->next_temp += type_size(param->type);
2163 }
2164
2165 if (!sig->return_type->is_void()) {
2166 entry->return_reg = get_temp(sig->return_type);
2167 } else {
2168 entry->return_reg = undef_src;
2169 }
2170
2171 this->function_signatures.push_tail(entry);
2172 return entry;
2173 }
2174
2175 void
2176 glsl_to_tgsi_visitor::visit(ir_call *ir)
2177 {
2178 glsl_to_tgsi_instruction *call_inst;
2179 ir_function_signature *sig = ir->get_callee();
2180 function_entry *entry = get_function_signature(sig);
2181 int i;
2182
2183 /* Process in parameters. */
2184 exec_list_iterator sig_iter = sig->parameters.iterator();
2185 foreach_iter(exec_list_iterator, iter, *ir) {
2186 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2187 ir_variable *param = (ir_variable *)sig_iter.get();
2188
2189 if (param->mode == ir_var_in ||
2190 param->mode == ir_var_inout) {
2191 variable_storage *storage = find_variable_storage(param);
2192 assert(storage);
2193
2194 param_rval->accept(this);
2195 st_src_reg r = this->result;
2196
2197 st_dst_reg l;
2198 l.file = storage->file;
2199 l.index = storage->index;
2200 l.reladdr = NULL;
2201 l.writemask = WRITEMASK_XYZW;
2202 l.cond_mask = COND_TR;
2203
2204 for (i = 0; i < type_size(param->type); i++) {
2205 emit(ir, TGSI_OPCODE_MOV, l, r);
2206 l.index++;
2207 r.index++;
2208 }
2209 }
2210
2211 sig_iter.next();
2212 }
2213 assert(!sig_iter.has_next());
2214
2215 /* Emit call instruction */
2216 call_inst = emit(ir, TGSI_OPCODE_CAL);
2217 call_inst->function = entry;
2218
2219 /* Process out parameters. */
2220 sig_iter = sig->parameters.iterator();
2221 foreach_iter(exec_list_iterator, iter, *ir) {
2222 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2223 ir_variable *param = (ir_variable *)sig_iter.get();
2224
2225 if (param->mode == ir_var_out ||
2226 param->mode == ir_var_inout) {
2227 variable_storage *storage = find_variable_storage(param);
2228 assert(storage);
2229
2230 st_src_reg r;
2231 r.file = storage->file;
2232 r.index = storage->index;
2233 r.reladdr = NULL;
2234 r.swizzle = SWIZZLE_NOOP;
2235 r.negate = 0;
2236
2237 param_rval->accept(this);
2238 st_dst_reg l = st_dst_reg(this->result);
2239
2240 for (i = 0; i < type_size(param->type); i++) {
2241 emit(ir, TGSI_OPCODE_MOV, l, r);
2242 l.index++;
2243 r.index++;
2244 }
2245 }
2246
2247 sig_iter.next();
2248 }
2249 assert(!sig_iter.has_next());
2250
2251 /* Process return value. */
2252 this->result = entry->return_reg;
2253 }
2254
2255 void
2256 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2257 {
2258 st_src_reg result_src, coord, lod_info, projector, dx, dy;
2259 st_dst_reg result_dst, coord_dst;
2260 glsl_to_tgsi_instruction *inst = NULL;
2261 unsigned opcode = TGSI_OPCODE_NOP;
2262
2263 ir->coordinate->accept(this);
2264
2265 /* Put our coords in a temp. We'll need to modify them for shadow,
2266 * projection, or LOD, so the only case we'd use it as is is if
2267 * we're doing plain old texturing. The optimization passes on
2268 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2269 */
2270 coord = get_temp(glsl_type::vec4_type);
2271 coord_dst = st_dst_reg(coord);
2272 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2273
2274 if (ir->projector) {
2275 ir->projector->accept(this);
2276 projector = this->result;
2277 }
2278
2279 /* Storage for our result. Ideally for an assignment we'd be using
2280 * the actual storage for the result here, instead.
2281 */
2282 result_src = get_temp(glsl_type::vec4_type);
2283 result_dst = st_dst_reg(result_src);
2284
2285 switch (ir->op) {
2286 case ir_tex:
2287 opcode = TGSI_OPCODE_TEX;
2288 break;
2289 case ir_txb:
2290 opcode = TGSI_OPCODE_TXB;
2291 ir->lod_info.bias->accept(this);
2292 lod_info = this->result;
2293 break;
2294 case ir_txl:
2295 opcode = TGSI_OPCODE_TXL;
2296 ir->lod_info.lod->accept(this);
2297 lod_info = this->result;
2298 break;
2299 case ir_txd:
2300 opcode = TGSI_OPCODE_TXD;
2301 ir->lod_info.grad.dPdx->accept(this);
2302 dx = this->result;
2303 ir->lod_info.grad.dPdy->accept(this);
2304 dy = this->result;
2305 break;
2306 case ir_txf: /* TODO: use TGSI_OPCODE_TXF here */
2307 assert(!"GLSL 1.30 features unsupported");
2308 break;
2309 }
2310
2311 if (ir->projector) {
2312 if (opcode == TGSI_OPCODE_TEX) {
2313 /* Slot the projector in as the last component of the coord. */
2314 coord_dst.writemask = WRITEMASK_W;
2315 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2316 coord_dst.writemask = WRITEMASK_XYZW;
2317 opcode = TGSI_OPCODE_TXP;
2318 } else {
2319 st_src_reg coord_w = coord;
2320 coord_w.swizzle = SWIZZLE_WWWW;
2321
2322 /* For the other TEX opcodes there's no projective version
2323 * since the last slot is taken up by LOD info. Do the
2324 * projective divide now.
2325 */
2326 coord_dst.writemask = WRITEMASK_W;
2327 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2328
2329 /* In the case where we have to project the coordinates "by hand,"
2330 * the shadow comparator value must also be projected.
2331 */
2332 st_src_reg tmp_src = coord;
2333 if (ir->shadow_comparitor) {
2334 /* Slot the shadow value in as the second to last component of the
2335 * coord.
2336 */
2337 ir->shadow_comparitor->accept(this);
2338
2339 tmp_src = get_temp(glsl_type::vec4_type);
2340 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2341
2342 tmp_dst.writemask = WRITEMASK_Z;
2343 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2344
2345 tmp_dst.writemask = WRITEMASK_XY;
2346 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2347 }
2348
2349 coord_dst.writemask = WRITEMASK_XYZ;
2350 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2351
2352 coord_dst.writemask = WRITEMASK_XYZW;
2353 coord.swizzle = SWIZZLE_XYZW;
2354 }
2355 }
2356
2357 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2358 * comparator was put in the correct place (and projected) by the code,
2359 * above, that handles by-hand projection.
2360 */
2361 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2362 /* Slot the shadow value in as the second to last component of the
2363 * coord.
2364 */
2365 ir->shadow_comparitor->accept(this);
2366 coord_dst.writemask = WRITEMASK_Z;
2367 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2368 coord_dst.writemask = WRITEMASK_XYZW;
2369 }
2370
2371 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB) {
2372 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2373 coord_dst.writemask = WRITEMASK_W;
2374 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2375 coord_dst.writemask = WRITEMASK_XYZW;
2376 }
2377
2378 if (opcode == TGSI_OPCODE_TXD)
2379 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2380 else
2381 inst = emit(ir, opcode, result_dst, coord);
2382
2383 if (ir->shadow_comparitor)
2384 inst->tex_shadow = GL_TRUE;
2385
2386 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2387 this->shader_program,
2388 this->prog);
2389
2390 const glsl_type *sampler_type = ir->sampler->type;
2391
2392 switch (sampler_type->sampler_dimensionality) {
2393 case GLSL_SAMPLER_DIM_1D:
2394 inst->tex_target = (sampler_type->sampler_array)
2395 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2396 break;
2397 case GLSL_SAMPLER_DIM_2D:
2398 inst->tex_target = (sampler_type->sampler_array)
2399 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2400 break;
2401 case GLSL_SAMPLER_DIM_3D:
2402 inst->tex_target = TEXTURE_3D_INDEX;
2403 break;
2404 case GLSL_SAMPLER_DIM_CUBE:
2405 inst->tex_target = TEXTURE_CUBE_INDEX;
2406 break;
2407 case GLSL_SAMPLER_DIM_RECT:
2408 inst->tex_target = TEXTURE_RECT_INDEX;
2409 break;
2410 case GLSL_SAMPLER_DIM_BUF:
2411 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2412 break;
2413 default:
2414 assert(!"Should not get here.");
2415 }
2416
2417 this->result = result_src;
2418 }
2419
2420 void
2421 glsl_to_tgsi_visitor::visit(ir_return *ir)
2422 {
2423 if (ir->get_value()) {
2424 st_dst_reg l;
2425 int i;
2426
2427 assert(current_function);
2428
2429 ir->get_value()->accept(this);
2430 st_src_reg r = this->result;
2431
2432 l = st_dst_reg(current_function->return_reg);
2433
2434 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2435 emit(ir, TGSI_OPCODE_MOV, l, r);
2436 l.index++;
2437 r.index++;
2438 }
2439 }
2440
2441 emit(ir, TGSI_OPCODE_RET);
2442 }
2443
2444 void
2445 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2446 {
2447 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2448
2449 if (ir->condition) {
2450 ir->condition->accept(this);
2451 this->result.negate = ~this->result.negate;
2452 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2453 } else {
2454 emit(ir, TGSI_OPCODE_KILP);
2455 }
2456
2457 fp->UsesKill = GL_TRUE;
2458 }
2459
2460 void
2461 glsl_to_tgsi_visitor::visit(ir_if *ir)
2462 {
2463 glsl_to_tgsi_instruction *cond_inst, *if_inst, *else_inst = NULL;
2464 glsl_to_tgsi_instruction *prev_inst;
2465
2466 prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2467
2468 ir->condition->accept(this);
2469 assert(this->result.file != PROGRAM_UNDEFINED);
2470
2471 if (this->options->EmitCondCodes) {
2472 cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2473
2474 /* See if we actually generated any instruction for generating
2475 * the condition. If not, then cook up a move to a temp so we
2476 * have something to set cond_update on.
2477 */
2478 if (cond_inst == prev_inst) {
2479 st_src_reg temp = get_temp(glsl_type::bool_type);
2480 cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2481 }
2482 cond_inst->cond_update = GL_TRUE;
2483
2484 if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2485 if_inst->dst.cond_mask = COND_NE;
2486 } else {
2487 if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2488 }
2489
2490 this->instructions.push_tail(if_inst);
2491
2492 visit_exec_list(&ir->then_instructions, this);
2493
2494 if (!ir->else_instructions.is_empty()) {
2495 else_inst = emit(ir->condition, TGSI_OPCODE_ELSE);
2496 visit_exec_list(&ir->else_instructions, this);
2497 }
2498
2499 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2500 }
2501
2502 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2503 {
2504 result.file = PROGRAM_UNDEFINED;
2505 next_temp = 1;
2506 next_signature_id = 1;
2507 num_immediates = 0;
2508 current_function = NULL;
2509 num_address_regs = 0;
2510 indirect_addr_temps = false;
2511 indirect_addr_consts = false;
2512 mem_ctx = ralloc_context(NULL);
2513 }
2514
2515 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2516 {
2517 ralloc_free(mem_ctx);
2518 }
2519
2520 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2521 {
2522 delete v;
2523 }
2524
2525
2526 /**
2527 * Count resources used by the given gpu program (number of texture
2528 * samplers, etc).
2529 */
2530 static void
2531 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2532 {
2533 v->samplers_used = 0;
2534
2535 foreach_iter(exec_list_iterator, iter, v->instructions) {
2536 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2537
2538 if (is_tex_instruction(inst->op)) {
2539 v->samplers_used |= 1 << inst->sampler;
2540
2541 prog->SamplerTargets[inst->sampler] =
2542 (gl_texture_index)inst->tex_target;
2543 if (inst->tex_shadow) {
2544 prog->ShadowSamplers |= 1 << inst->sampler;
2545 }
2546 }
2547 }
2548
2549 prog->SamplersUsed = v->samplers_used;
2550 _mesa_update_shader_textures_used(prog);
2551 }
2552
2553
2554 /**
2555 * Check if the given vertex/fragment/shader program is within the
2556 * resource limits of the context (number of texture units, etc).
2557 * If any of those checks fail, record a linker error.
2558 *
2559 * XXX more checks are needed...
2560 */
2561 static void
2562 check_resources(const struct gl_context *ctx,
2563 struct gl_shader_program *shader_program,
2564 glsl_to_tgsi_visitor *prog,
2565 struct gl_program *proginfo)
2566 {
2567 switch (proginfo->Target) {
2568 case GL_VERTEX_PROGRAM_ARB:
2569 if (_mesa_bitcount(prog->samplers_used) >
2570 ctx->Const.MaxVertexTextureImageUnits) {
2571 fail_link(shader_program, "Too many vertex shader texture samplers");
2572 }
2573 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2574 fail_link(shader_program, "Too many vertex shader constants");
2575 }
2576 break;
2577 case MESA_GEOMETRY_PROGRAM:
2578 if (_mesa_bitcount(prog->samplers_used) >
2579 ctx->Const.MaxGeometryTextureImageUnits) {
2580 fail_link(shader_program, "Too many geometry shader texture samplers");
2581 }
2582 if (proginfo->Parameters->NumParameters >
2583 MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2584 fail_link(shader_program, "Too many geometry shader constants");
2585 }
2586 break;
2587 case GL_FRAGMENT_PROGRAM_ARB:
2588 if (_mesa_bitcount(prog->samplers_used) >
2589 ctx->Const.MaxTextureImageUnits) {
2590 fail_link(shader_program, "Too many fragment shader texture samplers");
2591 }
2592 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2593 fail_link(shader_program, "Too many fragment shader constants");
2594 }
2595 break;
2596 default:
2597 _mesa_problem(ctx, "unexpected program type in check_resources()");
2598 }
2599 }
2600
2601
2602
2603 struct uniform_sort {
2604 struct gl_uniform *u;
2605 int pos;
2606 };
2607
2608 /* The shader_program->Uniforms list is almost sorted in increasing
2609 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2610 * uniforms shared between targets. We need to add parameters in
2611 * increasing order for the targets.
2612 */
2613 static int
2614 sort_uniforms(const void *a, const void *b)
2615 {
2616 struct uniform_sort *u1 = (struct uniform_sort *)a;
2617 struct uniform_sort *u2 = (struct uniform_sort *)b;
2618
2619 return u1->pos - u2->pos;
2620 }
2621
2622 /* Add the uniforms to the parameters. The linker chose locations
2623 * in our parameters lists (which weren't created yet), which the
2624 * uniforms code will use to poke values into our parameters list
2625 * when uniforms are updated.
2626 */
2627 static void
2628 add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2629 struct gl_shader *shader,
2630 struct gl_program *prog)
2631 {
2632 unsigned int i;
2633 unsigned int next_sampler = 0, num_uniforms = 0;
2634 struct uniform_sort *sorted_uniforms;
2635
2636 sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2637 shader_program->Uniforms->NumUniforms);
2638
2639 for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2640 struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2641 int parameter_index = -1;
2642
2643 switch (shader->Type) {
2644 case GL_VERTEX_SHADER:
2645 parameter_index = uniform->VertPos;
2646 break;
2647 case GL_FRAGMENT_SHADER:
2648 parameter_index = uniform->FragPos;
2649 break;
2650 case GL_GEOMETRY_SHADER:
2651 parameter_index = uniform->GeomPos;
2652 break;
2653 }
2654
2655 /* Only add uniforms used in our target. */
2656 if (parameter_index != -1) {
2657 sorted_uniforms[num_uniforms].pos = parameter_index;
2658 sorted_uniforms[num_uniforms].u = uniform;
2659 num_uniforms++;
2660 }
2661 }
2662
2663 qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2664 sort_uniforms);
2665
2666 for (i = 0; i < num_uniforms; i++) {
2667 struct gl_uniform *uniform = sorted_uniforms[i].u;
2668 int parameter_index = sorted_uniforms[i].pos;
2669 const glsl_type *type = uniform->Type;
2670 unsigned int size;
2671
2672 if (type->is_vector() ||
2673 type->is_scalar()) {
2674 size = type->vector_elements;
2675 } else {
2676 size = type_size(type) * 4;
2677 }
2678
2679 gl_register_file file;
2680 if (type->is_sampler() ||
2681 (type->is_array() && type->fields.array->is_sampler())) {
2682 file = PROGRAM_SAMPLER;
2683 } else {
2684 file = PROGRAM_UNIFORM;
2685 }
2686
2687 GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
2688 uniform->Name);
2689
2690 if (index < 0) {
2691 index = _mesa_add_parameter(prog->Parameters, file,
2692 uniform->Name, size, type->gl_type,
2693 NULL, NULL, 0x0);
2694
2695 /* Sampler uniform values are stored in prog->SamplerUnits,
2696 * and the entry in that array is selected by this index we
2697 * store in ParameterValues[].
2698 */
2699 if (file == PROGRAM_SAMPLER) {
2700 for (unsigned int j = 0; j < size / 4; j++)
2701 prog->Parameters->ParameterValues[index + j][0].f = next_sampler++;
2702 }
2703
2704 /* The location chosen in the Parameters list here (returned
2705 * from _mesa_add_uniform) has to match what the linker chose.
2706 */
2707 if (index != parameter_index) {
2708 fail_link(shader_program, "Allocation of uniform `%s' to target "
2709 "failed (%d vs %d)\n",
2710 uniform->Name, index, parameter_index);
2711 }
2712 }
2713 }
2714
2715 ralloc_free(sorted_uniforms);
2716 }
2717
2718 static void
2719 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2720 struct gl_shader_program *shader_program,
2721 const char *name, const glsl_type *type,
2722 ir_constant *val)
2723 {
2724 if (type->is_record()) {
2725 ir_constant *field_constant;
2726
2727 field_constant = (ir_constant *)val->components.get_head();
2728
2729 for (unsigned int i = 0; i < type->length; i++) {
2730 const glsl_type *field_type = type->fields.structure[i].type;
2731 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2732 type->fields.structure[i].name);
2733 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2734 field_type, field_constant);
2735 field_constant = (ir_constant *)field_constant->next;
2736 }
2737 return;
2738 }
2739
2740 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2741
2742 if (loc == -1) {
2743 fail_link(shader_program,
2744 "Couldn't find uniform for initializer %s\n", name);
2745 return;
2746 }
2747
2748 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2749 ir_constant *element;
2750 const glsl_type *element_type;
2751 if (type->is_array()) {
2752 element = val->array_elements[i];
2753 element_type = type->fields.array;
2754 } else {
2755 element = val;
2756 element_type = type;
2757 }
2758
2759 void *values;
2760
2761 if (element_type->base_type == GLSL_TYPE_BOOL) {
2762 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2763 for (unsigned int j = 0; j < element_type->components(); j++) {
2764 conv[j] = element->value.b[j];
2765 }
2766 values = (void *)conv;
2767 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2768 element_type->vector_elements,
2769 1);
2770 } else {
2771 values = &element->value;
2772 }
2773
2774 if (element_type->is_matrix()) {
2775 _mesa_uniform_matrix(ctx, shader_program,
2776 element_type->matrix_columns,
2777 element_type->vector_elements,
2778 loc, 1, GL_FALSE, (GLfloat *)values);
2779 loc += element_type->matrix_columns;
2780 } else {
2781 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2782 values, element_type->gl_type);
2783 loc += type_size(element_type);
2784 }
2785 }
2786 }
2787
2788 static void
2789 set_uniform_initializers(struct gl_context *ctx,
2790 struct gl_shader_program *shader_program)
2791 {
2792 void *mem_ctx = NULL;
2793
2794 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2795 struct gl_shader *shader = shader_program->_LinkedShaders[i];
2796
2797 if (shader == NULL)
2798 continue;
2799
2800 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2801 ir_instruction *ir = (ir_instruction *)iter.get();
2802 ir_variable *var = ir->as_variable();
2803
2804 if (!var || var->mode != ir_var_uniform || !var->constant_value)
2805 continue;
2806
2807 if (!mem_ctx)
2808 mem_ctx = ralloc_context(NULL);
2809
2810 set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2811 var->type, var->constant_value);
2812 }
2813 }
2814
2815 ralloc_free(mem_ctx);
2816 }
2817
2818 /*
2819 * Scan/rewrite program to remove reads of custom (output) registers.
2820 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
2821 * (for vertex shaders).
2822 * In GLSL shaders, varying vars can be read and written.
2823 * On some hardware, trying to read an output register causes trouble.
2824 * So, rewrite the program to use a temporary register in this case.
2825 *
2826 * Based on _mesa_remove_output_reads from programopt.c.
2827 */
2828 void
2829 glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
2830 {
2831 GLuint i;
2832 GLint outputMap[VERT_RESULT_MAX];
2833 GLint outputTypes[VERT_RESULT_MAX];
2834 GLuint numVaryingReads = 0;
2835 GLboolean usedTemps[MAX_TEMPS];
2836 GLuint firstTemp = 0;
2837
2838 _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
2839 usedTemps, MAX_TEMPS);
2840
2841 assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
2842 assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
2843
2844 for (i = 0; i < VERT_RESULT_MAX; i++)
2845 outputMap[i] = -1;
2846
2847 /* look for instructions which read from varying vars */
2848 foreach_iter(exec_list_iterator, iter, this->instructions) {
2849 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2850 const GLuint numSrc = num_inst_src_regs(inst->op);
2851 GLuint j;
2852 for (j = 0; j < numSrc; j++) {
2853 if (inst->src[j].file == type) {
2854 /* replace the read with a temp reg */
2855 const GLuint var = inst->src[j].index;
2856 if (outputMap[var] == -1) {
2857 numVaryingReads++;
2858 outputMap[var] = _mesa_find_free_register(usedTemps,
2859 MAX_TEMPS,
2860 firstTemp);
2861 outputTypes[var] = inst->src[j].type;
2862 firstTemp = outputMap[var] + 1;
2863 }
2864 inst->src[j].file = PROGRAM_TEMPORARY;
2865 inst->src[j].index = outputMap[var];
2866 }
2867 }
2868 }
2869
2870 if (numVaryingReads == 0)
2871 return; /* nothing to be done */
2872
2873 /* look for instructions which write to the varying vars identified above */
2874 foreach_iter(exec_list_iterator, iter, this->instructions) {
2875 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2876 if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
2877 /* change inst to write to the temp reg, instead of the varying */
2878 inst->dst.file = PROGRAM_TEMPORARY;
2879 inst->dst.index = outputMap[inst->dst.index];
2880 }
2881 }
2882
2883 /* insert new MOV instructions at the end */
2884 for (i = 0; i < VERT_RESULT_MAX; i++) {
2885 if (outputMap[i] >= 0) {
2886 /* MOV VAR[i], TEMP[tmp]; */
2887 st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
2888 st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
2889 dst.index = i;
2890 this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
2891 }
2892 }
2893 }
2894
2895 /**
2896 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
2897 * are read from the given src in this instruction
2898 */
2899 static int
2900 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
2901 {
2902 int read_mask = 0, comp;
2903
2904 /* Now, given the src swizzle and the written channels, find which
2905 * components are actually read
2906 */
2907 for (comp = 0; comp < 4; ++comp) {
2908 const unsigned coord = GET_SWZ(src.swizzle, comp);
2909 ASSERT(coord < 4);
2910 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
2911 read_mask |= 1 << coord;
2912 }
2913
2914 return read_mask;
2915 }
2916
2917 /**
2918 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
2919 * instruction is the first instruction to write to register T0. There are
2920 * several lowering passes done in GLSL IR (e.g. branches and
2921 * relative addressing) that create a large number of conditional assignments
2922 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
2923 *
2924 * Here is why this conversion is safe:
2925 * CMP T0, T1 T2 T0 can be expanded to:
2926 * if (T1 < 0.0)
2927 * MOV T0, T2;
2928 * else
2929 * MOV T0, T0;
2930 *
2931 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
2932 * as the original program. If (T1 < 0.0) evaluates to false, executing
2933 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
2934 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
2935 * because any instruction that was going to read from T0 after this was going
2936 * to read a garbage value anyway.
2937 */
2938 void
2939 glsl_to_tgsi_visitor::simplify_cmp(void)
2940 {
2941 unsigned tempWrites[MAX_TEMPS];
2942 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
2943
2944 memset(tempWrites, 0, sizeof(tempWrites));
2945 memset(outputWrites, 0, sizeof(outputWrites));
2946
2947 foreach_iter(exec_list_iterator, iter, this->instructions) {
2948 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2949 unsigned prevWriteMask = 0;
2950
2951 /* Give up if we encounter relative addressing or flow control. */
2952 if (inst->dst.reladdr ||
2953 tgsi_get_opcode_info(inst->op)->is_branch ||
2954 inst->op == TGSI_OPCODE_BGNSUB ||
2955 inst->op == TGSI_OPCODE_CONT ||
2956 inst->op == TGSI_OPCODE_END ||
2957 inst->op == TGSI_OPCODE_ENDSUB ||
2958 inst->op == TGSI_OPCODE_RET) {
2959 return;
2960 }
2961
2962 if (inst->dst.file == PROGRAM_OUTPUT) {
2963 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
2964 prevWriteMask = outputWrites[inst->dst.index];
2965 outputWrites[inst->dst.index] |= inst->dst.writemask;
2966 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
2967 assert(inst->dst.index < MAX_TEMPS);
2968 prevWriteMask = tempWrites[inst->dst.index];
2969 tempWrites[inst->dst.index] |= inst->dst.writemask;
2970 }
2971
2972 /* For a CMP to be considered a conditional write, the destination
2973 * register and source register two must be the same. */
2974 if (inst->op == TGSI_OPCODE_CMP
2975 && !(inst->dst.writemask & prevWriteMask)
2976 && inst->src[2].file == inst->dst.file
2977 && inst->src[2].index == inst->dst.index
2978 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
2979
2980 inst->op = TGSI_OPCODE_MOV;
2981 inst->src[0] = inst->src[1];
2982 }
2983 }
2984 }
2985
2986 /* Replaces all references to a temporary register index with another index. */
2987 void
2988 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
2989 {
2990 foreach_iter(exec_list_iterator, iter, this->instructions) {
2991 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2992 unsigned j;
2993
2994 for (j=0; j < num_inst_src_regs(inst->op); j++) {
2995 if (inst->src[j].file == PROGRAM_TEMPORARY &&
2996 inst->src[j].index == index) {
2997 inst->src[j].index = new_index;
2998 }
2999 }
3000
3001 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3002 inst->dst.index = new_index;
3003 }
3004 }
3005 }
3006
3007 int
3008 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3009 {
3010 int depth = 0; /* loop depth */
3011 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3012 unsigned i = 0, j;
3013
3014 foreach_iter(exec_list_iterator, iter, this->instructions) {
3015 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3016
3017 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3018 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3019 inst->src[j].index == index) {
3020 return (depth == 0) ? i : loop_start;
3021 }
3022 }
3023
3024 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3025 if(depth++ == 0)
3026 loop_start = i;
3027 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3028 if (--depth == 0)
3029 loop_start = -1;
3030 }
3031 assert(depth >= 0);
3032
3033 i++;
3034 }
3035
3036 return -1;
3037 }
3038
3039 int
3040 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3041 {
3042 int depth = 0; /* loop depth */
3043 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3044 int i = 0;
3045
3046 foreach_iter(exec_list_iterator, iter, this->instructions) {
3047 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3048
3049 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3050 return (depth == 0) ? i : loop_start;
3051 }
3052
3053 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3054 if(depth++ == 0)
3055 loop_start = i;
3056 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3057 if (--depth == 0)
3058 loop_start = -1;
3059 }
3060 assert(depth >= 0);
3061
3062 i++;
3063 }
3064
3065 return -1;
3066 }
3067
3068 int
3069 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3070 {
3071 int depth = 0; /* loop depth */
3072 int last = -1; /* index of last instruction that reads the temporary */
3073 unsigned i = 0, j;
3074
3075 foreach_iter(exec_list_iterator, iter, this->instructions) {
3076 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3077
3078 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3079 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3080 inst->src[j].index == index) {
3081 last = (depth == 0) ? i : -2;
3082 }
3083 }
3084
3085 if (inst->op == TGSI_OPCODE_BGNLOOP)
3086 depth++;
3087 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3088 if (--depth == 0 && last == -2)
3089 last = i;
3090 assert(depth >= 0);
3091
3092 i++;
3093 }
3094
3095 assert(last >= -1);
3096 return last;
3097 }
3098
3099 int
3100 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3101 {
3102 int depth = 0; /* loop depth */
3103 int last = -1; /* index of last instruction that writes to the temporary */
3104 int i = 0;
3105
3106 foreach_iter(exec_list_iterator, iter, this->instructions) {
3107 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3108
3109 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3110 last = (depth == 0) ? i : -2;
3111
3112 if (inst->op == TGSI_OPCODE_BGNLOOP)
3113 depth++;
3114 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3115 if (--depth == 0 && last == -2)
3116 last = i;
3117 assert(depth >= 0);
3118
3119 i++;
3120 }
3121
3122 assert(last >= -1);
3123 return last;
3124 }
3125
3126 /*
3127 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3128 * channels for copy propagation and updates following instructions to
3129 * use the original versions.
3130 *
3131 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3132 * will occur. As an example, a TXP production before this pass:
3133 *
3134 * 0: MOV TEMP[1], INPUT[4].xyyy;
3135 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3136 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3137 *
3138 * and after:
3139 *
3140 * 0: MOV TEMP[1], INPUT[4].xyyy;
3141 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3142 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3143 *
3144 * which allows for dead code elimination on TEMP[1]'s writes.
3145 */
3146 void
3147 glsl_to_tgsi_visitor::copy_propagate(void)
3148 {
3149 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3150 glsl_to_tgsi_instruction *,
3151 this->next_temp * 4);
3152 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3153 int level = 0;
3154
3155 foreach_iter(exec_list_iterator, iter, this->instructions) {
3156 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3157
3158 assert(inst->dst.file != PROGRAM_TEMPORARY
3159 || inst->dst.index < this->next_temp);
3160
3161 /* First, do any copy propagation possible into the src regs. */
3162 for (int r = 0; r < 3; r++) {
3163 glsl_to_tgsi_instruction *first = NULL;
3164 bool good = true;
3165 int acp_base = inst->src[r].index * 4;
3166
3167 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3168 inst->src[r].reladdr)
3169 continue;
3170
3171 /* See if we can find entries in the ACP consisting of MOVs
3172 * from the same src register for all the swizzled channels
3173 * of this src register reference.
3174 */
3175 for (int i = 0; i < 4; i++) {
3176 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3177 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3178
3179 if (!copy_chan) {
3180 good = false;
3181 break;
3182 }
3183
3184 assert(acp_level[acp_base + src_chan] <= level);
3185
3186 if (!first) {
3187 first = copy_chan;
3188 } else {
3189 if (first->src[0].file != copy_chan->src[0].file ||
3190 first->src[0].index != copy_chan->src[0].index) {
3191 good = false;
3192 break;
3193 }
3194 }
3195 }
3196
3197 if (good) {
3198 /* We've now validated that we can copy-propagate to
3199 * replace this src register reference. Do it.
3200 */
3201 inst->src[r].file = first->src[0].file;
3202 inst->src[r].index = first->src[0].index;
3203
3204 int swizzle = 0;
3205 for (int i = 0; i < 4; i++) {
3206 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3207 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3208 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3209 (3 * i));
3210 }
3211 inst->src[r].swizzle = swizzle;
3212 }
3213 }
3214
3215 switch (inst->op) {
3216 case TGSI_OPCODE_BGNLOOP:
3217 case TGSI_OPCODE_ENDLOOP:
3218 /* End of a basic block, clear the ACP entirely. */
3219 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3220 break;
3221
3222 case TGSI_OPCODE_IF:
3223 ++level;
3224 break;
3225
3226 case TGSI_OPCODE_ENDIF:
3227 case TGSI_OPCODE_ELSE:
3228 /* Clear all channels written inside the block from the ACP, but
3229 * leaving those that were not touched.
3230 */
3231 for (int r = 0; r < this->next_temp; r++) {
3232 for (int c = 0; c < 4; c++) {
3233 if (!acp[4 * r + c])
3234 continue;
3235
3236 if (acp_level[4 * r + c] >= level)
3237 acp[4 * r + c] = NULL;
3238 }
3239 }
3240 if (inst->op == TGSI_OPCODE_ENDIF)
3241 --level;
3242 break;
3243
3244 default:
3245 /* Continuing the block, clear any written channels from
3246 * the ACP.
3247 */
3248 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3249 /* Any temporary might be written, so no copy propagation
3250 * across this instruction.
3251 */
3252 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3253 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3254 inst->dst.reladdr) {
3255 /* Any output might be written, so no copy propagation
3256 * from outputs across this instruction.
3257 */
3258 for (int r = 0; r < this->next_temp; r++) {
3259 for (int c = 0; c < 4; c++) {
3260 if (!acp[4 * r + c])
3261 continue;
3262
3263 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3264 acp[4 * r + c] = NULL;
3265 }
3266 }
3267 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3268 inst->dst.file == PROGRAM_OUTPUT) {
3269 /* Clear where it's used as dst. */
3270 if (inst->dst.file == PROGRAM_TEMPORARY) {
3271 for (int c = 0; c < 4; c++) {
3272 if (inst->dst.writemask & (1 << c)) {
3273 acp[4 * inst->dst.index + c] = NULL;
3274 }
3275 }
3276 }
3277
3278 /* Clear where it's used as src. */
3279 for (int r = 0; r < this->next_temp; r++) {
3280 for (int c = 0; c < 4; c++) {
3281 if (!acp[4 * r + c])
3282 continue;
3283
3284 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3285
3286 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3287 acp[4 * r + c]->src[0].index == inst->dst.index &&
3288 inst->dst.writemask & (1 << src_chan))
3289 {
3290 acp[4 * r + c] = NULL;
3291 }
3292 }
3293 }
3294 }
3295 break;
3296 }
3297
3298 /* If this is a copy, add it to the ACP. */
3299 if (inst->op == TGSI_OPCODE_MOV &&
3300 inst->dst.file == PROGRAM_TEMPORARY &&
3301 !inst->dst.reladdr &&
3302 !inst->saturate &&
3303 !inst->src[0].reladdr &&
3304 !inst->src[0].negate) {
3305 for (int i = 0; i < 4; i++) {
3306 if (inst->dst.writemask & (1 << i)) {
3307 acp[4 * inst->dst.index + i] = inst;
3308 acp_level[4 * inst->dst.index + i] = level;
3309 }
3310 }
3311 }
3312 }
3313
3314 ralloc_free(acp_level);
3315 ralloc_free(acp);
3316 }
3317
3318 /*
3319 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3320 *
3321 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3322 * will occur. As an example, a TXP production after copy propagation but
3323 * before this pass:
3324 *
3325 * 0: MOV TEMP[1], INPUT[4].xyyy;
3326 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3327 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3328 *
3329 * and after this pass:
3330 *
3331 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3332 *
3333 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3334 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3335 */
3336 void
3337 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3338 {
3339 int i;
3340
3341 for (i=0; i < this->next_temp; i++) {
3342 int last_read = get_last_temp_read(i);
3343 int j = 0;
3344
3345 foreach_iter(exec_list_iterator, iter, this->instructions) {
3346 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3347
3348 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3349 j > last_read)
3350 {
3351 iter.remove();
3352 delete inst;
3353 }
3354
3355 j++;
3356 }
3357 }
3358 }
3359
3360 /*
3361 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3362 * code elimination. This is less primitive than eliminate_dead_code(), as it
3363 * is per-channel and can detect consecutive writes without a read between them
3364 * as dead code. However, there is some dead code that can be eliminated by
3365 * eliminate_dead_code() but not this function - for example, this function
3366 * cannot eliminate an instruction writing to a register that is never read and
3367 * is the only instruction writing to that register.
3368 *
3369 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3370 * will occur.
3371 */
3372 int
3373 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3374 {
3375 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3376 glsl_to_tgsi_instruction *,
3377 this->next_temp * 4);
3378 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3379 int level = 0;
3380 int removed = 0;
3381
3382 foreach_iter(exec_list_iterator, iter, this->instructions) {
3383 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3384
3385 assert(inst->dst.file != PROGRAM_TEMPORARY
3386 || inst->dst.index < this->next_temp);
3387
3388 switch (inst->op) {
3389 case TGSI_OPCODE_BGNLOOP:
3390 case TGSI_OPCODE_ENDLOOP:
3391 /* End of a basic block, clear the write array entirely.
3392 * FIXME: This keeps us from killing dead code when the writes are
3393 * on either side of a loop, even when the register isn't touched
3394 * inside the loop.
3395 */
3396 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3397 break;
3398
3399 case TGSI_OPCODE_ENDIF:
3400 --level;
3401 break;
3402
3403 case TGSI_OPCODE_ELSE:
3404 /* Clear all channels written inside the preceding if block from the
3405 * write array, but leave those that were not touched.
3406 *
3407 * FIXME: This destroys opportunities to remove dead code inside of
3408 * IF blocks that are followed by an ELSE block.
3409 */
3410 for (int r = 0; r < this->next_temp; r++) {
3411 for (int c = 0; c < 4; c++) {
3412 if (!writes[4 * r + c])
3413 continue;
3414
3415 if (write_level[4 * r + c] >= level)
3416 writes[4 * r + c] = NULL;
3417 }
3418 }
3419 break;
3420
3421 case TGSI_OPCODE_IF:
3422 ++level;
3423 /* fallthrough to default case to mark the condition as read */
3424
3425 default:
3426 /* Continuing the block, clear any channels from the write array that
3427 * are read by this instruction.
3428 */
3429 for (int i = 0; i < 4; i++) {
3430 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3431 /* Any temporary might be read, so no dead code elimination
3432 * across this instruction.
3433 */
3434 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3435 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3436 /* Clear where it's used as src. */
3437 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3438 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3439 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3440 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3441
3442 for (int c = 0; c < 4; c++) {
3443 if (src_chans & (1 << c)) {
3444 writes[4 * inst->src[i].index + c] = NULL;
3445 }
3446 }
3447 }
3448 }
3449 break;
3450 }
3451
3452 /* If this instruction writes to a temporary, add it to the write array.
3453 * If there is already an instruction in the write array for one or more
3454 * of the channels, flag that channel write as dead.
3455 */
3456 if (inst->dst.file == PROGRAM_TEMPORARY &&
3457 !inst->dst.reladdr &&
3458 !inst->saturate) {
3459 for (int c = 0; c < 4; c++) {
3460 if (inst->dst.writemask & (1 << c)) {
3461 if (writes[4 * inst->dst.index + c]) {
3462 if (write_level[4 * inst->dst.index + c] < level)
3463 continue;
3464 else
3465 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3466 }
3467 writes[4 * inst->dst.index + c] = inst;
3468 write_level[4 * inst->dst.index + c] = level;
3469 }
3470 }
3471 }
3472 }
3473
3474 /* Anything still in the write array at this point is dead code. */
3475 for (int r = 0; r < this->next_temp; r++) {
3476 for (int c = 0; c < 4; c++) {
3477 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3478 if (inst)
3479 inst->dead_mask |= (1 << c);
3480 }
3481 }
3482
3483 /* Now actually remove the instructions that are completely dead and update
3484 * the writemask of other instructions with dead channels.
3485 */
3486 foreach_iter(exec_list_iterator, iter, this->instructions) {
3487 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3488
3489 if (!inst->dead_mask || !inst->dst.writemask)
3490 continue;
3491 else if (inst->dead_mask == inst->dst.writemask) {
3492 iter.remove();
3493 delete inst;
3494 removed++;
3495 } else
3496 inst->dst.writemask &= ~(inst->dead_mask);
3497 }
3498
3499 ralloc_free(write_level);
3500 ralloc_free(writes);
3501
3502 return removed;
3503 }
3504
3505 /* Merges temporary registers together where possible to reduce the number of
3506 * registers needed to run a program.
3507 *
3508 * Produces optimal code only after copy propagation and dead code elimination
3509 * have been run. */
3510 void
3511 glsl_to_tgsi_visitor::merge_registers(void)
3512 {
3513 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3514 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3515 int i, j;
3516
3517 /* Read the indices of the last read and first write to each temp register
3518 * into an array so that we don't have to traverse the instruction list as
3519 * much. */
3520 for (i=0; i < this->next_temp; i++) {
3521 last_reads[i] = get_last_temp_read(i);
3522 first_writes[i] = get_first_temp_write(i);
3523 }
3524
3525 /* Start looking for registers with non-overlapping usages that can be
3526 * merged together. */
3527 for (i=0; i < this->next_temp; i++) {
3528 /* Don't touch unused registers. */
3529 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3530
3531 for (j=0; j < this->next_temp; j++) {
3532 /* Don't touch unused registers. */
3533 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3534
3535 /* We can merge the two registers if the first write to j is after or
3536 * in the same instruction as the last read from i. Note that the
3537 * register at index i will always be used earlier or at the same time
3538 * as the register at index j. */
3539 if (first_writes[i] <= first_writes[j] &&
3540 last_reads[i] <= first_writes[j])
3541 {
3542 rename_temp_register(j, i); /* Replace all references to j with i.*/
3543
3544 /* Update the first_writes and last_reads arrays with the new
3545 * values for the merged register index, and mark the newly unused
3546 * register index as such. */
3547 last_reads[i] = last_reads[j];
3548 first_writes[j] = -1;
3549 last_reads[j] = -1;
3550 }
3551 }
3552 }
3553
3554 ralloc_free(last_reads);
3555 ralloc_free(first_writes);
3556 }
3557
3558 /* Reassign indices to temporary registers by reusing unused indices created
3559 * by optimization passes. */
3560 void
3561 glsl_to_tgsi_visitor::renumber_registers(void)
3562 {
3563 int i = 0;
3564 int new_index = 0;
3565
3566 for (i=0; i < this->next_temp; i++) {
3567 if (get_first_temp_read(i) < 0) continue;
3568 if (i != new_index)
3569 rename_temp_register(i, new_index);
3570 new_index++;
3571 }
3572
3573 this->next_temp = new_index;
3574 }
3575
3576 /**
3577 * Returns a fragment program which implements the current pixel transfer ops.
3578 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3579 */
3580 extern "C" void
3581 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3582 glsl_to_tgsi_visitor *original,
3583 int scale_and_bias, int pixel_maps)
3584 {
3585 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3586 struct st_context *st = st_context(original->ctx);
3587 struct gl_program *prog = &fp->Base.Base;
3588 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3589 st_src_reg coord, src0;
3590 st_dst_reg dst0;
3591 glsl_to_tgsi_instruction *inst;
3592
3593 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3594 v->ctx = original->ctx;
3595 v->prog = prog;
3596 v->glsl_version = original->glsl_version;
3597 v->options = original->options;
3598 v->next_temp = original->next_temp;
3599 v->num_address_regs = original->num_address_regs;
3600 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3601 v->indirect_addr_temps = original->indirect_addr_temps;
3602 v->indirect_addr_consts = original->indirect_addr_consts;
3603 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3604
3605 /*
3606 * Get initial pixel color from the texture.
3607 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3608 */
3609 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3610 src0 = v->get_temp(glsl_type::vec4_type);
3611 dst0 = st_dst_reg(src0);
3612 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3613 inst->sampler = 0;
3614 inst->tex_target = TEXTURE_2D_INDEX;
3615
3616 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3617 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3618 v->samplers_used |= (1 << 0);
3619
3620 if (scale_and_bias) {
3621 static const gl_state_index scale_state[STATE_LENGTH] =
3622 { STATE_INTERNAL, STATE_PT_SCALE,
3623 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3624 static const gl_state_index bias_state[STATE_LENGTH] =
3625 { STATE_INTERNAL, STATE_PT_BIAS,
3626 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3627 GLint scale_p, bias_p;
3628 st_src_reg scale, bias;
3629
3630 scale_p = _mesa_add_state_reference(params, scale_state);
3631 bias_p = _mesa_add_state_reference(params, bias_state);
3632
3633 /* MAD colorTemp, colorTemp, scale, bias; */
3634 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3635 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3636 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3637 }
3638
3639 if (pixel_maps) {
3640 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3641 st_dst_reg temp_dst = st_dst_reg(temp);
3642
3643 assert(st->pixel_xfer.pixelmap_texture);
3644
3645 /* With a little effort, we can do four pixel map look-ups with
3646 * two TEX instructions:
3647 */
3648
3649 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3650 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3651 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3652 inst->sampler = 1;
3653 inst->tex_target = TEXTURE_2D_INDEX;
3654
3655 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3656 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3657 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3658 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3659 inst->sampler = 1;
3660 inst->tex_target = TEXTURE_2D_INDEX;
3661
3662 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3663 v->samplers_used |= (1 << 1);
3664
3665 /* MOV colorTemp, temp; */
3666 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3667 }
3668
3669 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3670 * new visitor. */
3671 foreach_iter(exec_list_iterator, iter, original->instructions) {
3672 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3673 st_src_reg src_regs[3];
3674
3675 if (inst->dst.file == PROGRAM_OUTPUT)
3676 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3677
3678 for (int i=0; i<3; i++) {
3679 src_regs[i] = inst->src[i];
3680 if (src_regs[i].file == PROGRAM_INPUT &&
3681 src_regs[i].index == FRAG_ATTRIB_COL0)
3682 {
3683 src_regs[i].file = PROGRAM_TEMPORARY;
3684 src_regs[i].index = src0.index;
3685 }
3686 else if (src_regs[i].file == PROGRAM_INPUT)
3687 prog->InputsRead |= (1 << src_regs[i].index);
3688 }
3689
3690 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3691 }
3692
3693 /* Make modifications to fragment program info. */
3694 prog->Parameters = _mesa_combine_parameter_lists(params,
3695 original->prog->Parameters);
3696 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
3697 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
3698 _mesa_free_parameter_list(params);
3699 count_resources(v, prog);
3700 fp->glsl_to_tgsi = v;
3701 }
3702
3703 /**
3704 * Make fragment program for glBitmap:
3705 * Sample the texture and kill the fragment if the bit is 0.
3706 * This program will be combined with the user's fragment program.
3707 *
3708 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3709 */
3710 extern "C" void
3711 get_bitmap_visitor(struct st_fragment_program *fp,
3712 glsl_to_tgsi_visitor *original, int samplerIndex)
3713 {
3714 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3715 struct st_context *st = st_context(original->ctx);
3716 struct gl_program *prog = &fp->Base.Base;
3717 st_src_reg coord, src0;
3718 st_dst_reg dst0;
3719 glsl_to_tgsi_instruction *inst;
3720
3721 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3722 v->ctx = original->ctx;
3723 v->prog = prog;
3724 v->glsl_version = original->glsl_version;
3725 v->options = original->options;
3726 v->next_temp = original->next_temp;
3727 v->num_address_regs = original->num_address_regs;
3728 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3729 v->indirect_addr_temps = original->indirect_addr_temps;
3730 v->indirect_addr_consts = original->indirect_addr_consts;
3731 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3732
3733 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3734 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3735 src0 = v->get_temp(glsl_type::vec4_type);
3736 dst0 = st_dst_reg(src0);
3737 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3738 inst->sampler = samplerIndex;
3739 inst->tex_target = TEXTURE_2D_INDEX;
3740
3741 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3742 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3743 v->samplers_used |= (1 << samplerIndex);
3744
3745 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3746 src0.negate = NEGATE_XYZW;
3747 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3748 src0.swizzle = SWIZZLE_XXXX;
3749 inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3750
3751 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3752 * new visitor. */
3753 foreach_iter(exec_list_iterator, iter, original->instructions) {
3754 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3755 st_src_reg src_regs[3];
3756
3757 if (inst->dst.file == PROGRAM_OUTPUT)
3758 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3759
3760 for (int i=0; i<3; i++) {
3761 src_regs[i] = inst->src[i];
3762 if (src_regs[i].file == PROGRAM_INPUT)
3763 prog->InputsRead |= (1 << src_regs[i].index);
3764 }
3765
3766 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3767 }
3768
3769 /* Make modifications to fragment program info. */
3770 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3771 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
3772 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
3773 count_resources(v, prog);
3774 fp->glsl_to_tgsi = v;
3775 }
3776
3777 /* ------------------------- TGSI conversion stuff -------------------------- */
3778 struct label {
3779 unsigned branch_target;
3780 unsigned token;
3781 };
3782
3783 /**
3784 * Intermediate state used during shader translation.
3785 */
3786 struct st_translate {
3787 struct ureg_program *ureg;
3788
3789 struct ureg_dst temps[MAX_TEMPS];
3790 struct ureg_src *constants;
3791 struct ureg_src *immediates;
3792 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3793 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3794 struct ureg_dst address[1];
3795 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3796 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3797
3798 /* Extra info for handling point size clamping in vertex shader */
3799 struct ureg_dst pointSizeResult; /**< Actual point size output register */
3800 struct ureg_src pointSizeConst; /**< Point size range constant register */
3801 GLint pointSizeOutIndex; /**< Temp point size output register */
3802 GLboolean prevInstWrotePointSize;
3803
3804 const GLuint *inputMapping;
3805 const GLuint *outputMapping;
3806
3807 /* For every instruction that contains a label (eg CALL), keep
3808 * details so that we can go back afterwards and emit the correct
3809 * tgsi instruction number for each label.
3810 */
3811 struct label *labels;
3812 unsigned labels_size;
3813 unsigned labels_count;
3814
3815 /* Keep a record of the tgsi instruction number that each mesa
3816 * instruction starts at, will be used to fix up labels after
3817 * translation.
3818 */
3819 unsigned *insn;
3820 unsigned insn_size;
3821 unsigned insn_count;
3822
3823 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3824
3825 boolean error;
3826 };
3827
3828 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3829 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3830 TGSI_SEMANTIC_FACE,
3831 TGSI_SEMANTIC_INSTANCEID
3832 };
3833
3834 /**
3835 * Make note of a branch to a label in the TGSI code.
3836 * After we've emitted all instructions, we'll go over the list
3837 * of labels built here and patch the TGSI code with the actual
3838 * location of each label.
3839 */
3840 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3841 {
3842 unsigned i;
3843
3844 if (t->labels_count + 1 >= t->labels_size) {
3845 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3846 t->labels = (struct label *)realloc(t->labels,
3847 t->labels_size * sizeof(struct label));
3848 if (t->labels == NULL) {
3849 static unsigned dummy;
3850 t->error = TRUE;
3851 return &dummy;
3852 }
3853 }
3854
3855 i = t->labels_count++;
3856 t->labels[i].branch_target = branch_target;
3857 return &t->labels[i].token;
3858 }
3859
3860 /**
3861 * Called prior to emitting the TGSI code for each instruction.
3862 * Allocate additional space for instructions if needed.
3863 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3864 * the next TGSI instruction.
3865 */
3866 static void set_insn_start(struct st_translate *t, unsigned start)
3867 {
3868 if (t->insn_count + 1 >= t->insn_size) {
3869 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3870 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
3871 if (t->insn == NULL) {
3872 t->error = TRUE;
3873 return;
3874 }
3875 }
3876
3877 t->insn[t->insn_count++] = start;
3878 }
3879
3880 /**
3881 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
3882 */
3883 static struct ureg_src
3884 emit_immediate(struct st_translate *t,
3885 gl_constant_value values[4],
3886 int type, int size)
3887 {
3888 struct ureg_program *ureg = t->ureg;
3889
3890 switch(type)
3891 {
3892 case GL_FLOAT:
3893 return ureg_DECL_immediate(ureg, &values[0].f, size);
3894 case GL_INT:
3895 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
3896 case GL_UNSIGNED_INT:
3897 case GL_BOOL:
3898 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
3899 default:
3900 assert(!"should not get here - type must be float, int, uint, or bool");
3901 return ureg_src_undef();
3902 }
3903 }
3904
3905 /**
3906 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
3907 */
3908 static struct ureg_dst
3909 dst_register(struct st_translate *t,
3910 gl_register_file file,
3911 GLuint index)
3912 {
3913 switch(file) {
3914 case PROGRAM_UNDEFINED:
3915 return ureg_dst_undef();
3916
3917 case PROGRAM_TEMPORARY:
3918 if (ureg_dst_is_undef(t->temps[index]))
3919 t->temps[index] = ureg_DECL_temporary(t->ureg);
3920
3921 return t->temps[index];
3922
3923 case PROGRAM_OUTPUT:
3924 if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
3925 t->prevInstWrotePointSize = GL_TRUE;
3926
3927 if (t->procType == TGSI_PROCESSOR_VERTEX)
3928 assert(index < VERT_RESULT_MAX);
3929 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
3930 assert(index < FRAG_RESULT_MAX);
3931 else
3932 assert(index < GEOM_RESULT_MAX);
3933
3934 assert(t->outputMapping[index] < Elements(t->outputs));
3935
3936 return t->outputs[t->outputMapping[index]];
3937
3938 case PROGRAM_ADDRESS:
3939 return t->address[index];
3940
3941 default:
3942 assert(!"unknown dst register file");
3943 return ureg_dst_undef();
3944 }
3945 }
3946
3947 /**
3948 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
3949 */
3950 static struct ureg_src
3951 src_register(struct st_translate *t,
3952 gl_register_file file,
3953 GLuint index)
3954 {
3955 switch(file) {
3956 case PROGRAM_UNDEFINED:
3957 return ureg_src_undef();
3958
3959 case PROGRAM_TEMPORARY:
3960 assert(index >= 0);
3961 assert(index < Elements(t->temps));
3962 if (ureg_dst_is_undef(t->temps[index]))
3963 t->temps[index] = ureg_DECL_temporary(t->ureg);
3964 return ureg_src(t->temps[index]);
3965
3966 case PROGRAM_NAMED_PARAM:
3967 case PROGRAM_ENV_PARAM:
3968 case PROGRAM_LOCAL_PARAM:
3969 case PROGRAM_UNIFORM:
3970 assert(index >= 0);
3971 return t->constants[index];
3972 case PROGRAM_STATE_VAR:
3973 case PROGRAM_CONSTANT: /* ie, immediate */
3974 if (index < 0)
3975 return ureg_DECL_constant(t->ureg, 0);
3976 else
3977 return t->constants[index];
3978
3979 case PROGRAM_IMMEDIATE:
3980 return t->immediates[index];
3981
3982 case PROGRAM_INPUT:
3983 assert(t->inputMapping[index] < Elements(t->inputs));
3984 return t->inputs[t->inputMapping[index]];
3985
3986 case PROGRAM_OUTPUT:
3987 assert(t->outputMapping[index] < Elements(t->outputs));
3988 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
3989
3990 case PROGRAM_ADDRESS:
3991 return ureg_src(t->address[index]);
3992
3993 case PROGRAM_SYSTEM_VALUE:
3994 assert(index < Elements(t->systemValues));
3995 return t->systemValues[index];
3996
3997 default:
3998 assert(!"unknown src register file");
3999 return ureg_src_undef();
4000 }
4001 }
4002
4003 /**
4004 * Create a TGSI ureg_dst register from an st_dst_reg.
4005 */
4006 static struct ureg_dst
4007 translate_dst(struct st_translate *t,
4008 const st_dst_reg *dst_reg,
4009 bool saturate)
4010 {
4011 struct ureg_dst dst = dst_register(t,
4012 dst_reg->file,
4013 dst_reg->index);
4014
4015 dst = ureg_writemask(dst, dst_reg->writemask);
4016
4017 if (saturate)
4018 dst = ureg_saturate(dst);
4019
4020 if (dst_reg->reladdr != NULL)
4021 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4022
4023 return dst;
4024 }
4025
4026 /**
4027 * Create a TGSI ureg_src register from an st_src_reg.
4028 */
4029 static struct ureg_src
4030 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4031 {
4032 struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4033
4034 src = ureg_swizzle(src,
4035 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4036 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4037 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4038 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4039
4040 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4041 src = ureg_negate(src);
4042
4043 if (src_reg->reladdr != NULL) {
4044 /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4045 * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4046 * set the bit for src.Negate. So we have to do the operation manually
4047 * here to work around the compiler's problems. */
4048 /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4049 struct ureg_src addr = ureg_src(t->address[0]);
4050 src.Indirect = 1;
4051 src.IndirectFile = addr.File;
4052 src.IndirectIndex = addr.Index;
4053 src.IndirectSwizzle = addr.SwizzleX;
4054
4055 if (src_reg->file != PROGRAM_INPUT &&
4056 src_reg->file != PROGRAM_OUTPUT) {
4057 /* If src_reg->index was negative, it was set to zero in
4058 * src_register(). Reassign it now. But don't do this
4059 * for input/output regs since they get remapped while
4060 * const buffers don't.
4061 */
4062 src.Index = src_reg->index;
4063 }
4064 }
4065
4066 return src;
4067 }
4068
4069 static void
4070 compile_tgsi_instruction(struct st_translate *t,
4071 const struct glsl_to_tgsi_instruction *inst)
4072 {
4073 struct ureg_program *ureg = t->ureg;
4074 GLuint i;
4075 struct ureg_dst dst[1];
4076 struct ureg_src src[4];
4077 unsigned num_dst;
4078 unsigned num_src;
4079
4080 num_dst = num_inst_dst_regs(inst->op);
4081 num_src = num_inst_src_regs(inst->op);
4082
4083 if (num_dst)
4084 dst[0] = translate_dst(t,
4085 &inst->dst,
4086 inst->saturate);
4087
4088 for (i = 0; i < num_src; i++)
4089 src[i] = translate_src(t, &inst->src[i]);
4090
4091 switch(inst->op) {
4092 case TGSI_OPCODE_BGNLOOP:
4093 case TGSI_OPCODE_CAL:
4094 case TGSI_OPCODE_ELSE:
4095 case TGSI_OPCODE_ENDLOOP:
4096 case TGSI_OPCODE_IF:
4097 assert(num_dst == 0);
4098 ureg_label_insn(ureg,
4099 inst->op,
4100 src, num_src,
4101 get_label(t,
4102 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4103 return;
4104
4105 case TGSI_OPCODE_TEX:
4106 case TGSI_OPCODE_TXB:
4107 case TGSI_OPCODE_TXD:
4108 case TGSI_OPCODE_TXL:
4109 case TGSI_OPCODE_TXP:
4110 src[num_src++] = t->samplers[inst->sampler];
4111 ureg_tex_insn(ureg,
4112 inst->op,
4113 dst, num_dst,
4114 translate_texture_target(inst->tex_target, inst->tex_shadow),
4115 src, num_src);
4116 return;
4117
4118 case TGSI_OPCODE_SCS:
4119 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4120 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4121 break;
4122
4123 default:
4124 ureg_insn(ureg,
4125 inst->op,
4126 dst, num_dst,
4127 src, num_src);
4128 break;
4129 }
4130 }
4131
4132 /**
4133 * Emit the TGSI instructions to adjust the WPOS pixel center convention
4134 * Basically, add (adjX, adjY) to the fragment position.
4135 */
4136 static void
4137 emit_adjusted_wpos(struct st_translate *t,
4138 const struct gl_program *program,
4139 float adjX, float adjY)
4140 {
4141 struct ureg_program *ureg = t->ureg;
4142 struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
4143 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4144
4145 /* Note that we bias X and Y and pass Z and W through unchanged.
4146 * The shader might also use gl_FragCoord.w and .z.
4147 */
4148 ureg_ADD(ureg, wpos_temp, wpos_input,
4149 ureg_imm4f(ureg, adjX, adjY, 0.0f, 0.0f));
4150
4151 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4152 }
4153
4154
4155 /**
4156 * Emit the TGSI instructions for inverting the WPOS y coordinate.
4157 * This code is unavoidable because it also depends on whether
4158 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4159 */
4160 static void
4161 emit_wpos_inversion(struct st_translate *t,
4162 const struct gl_program *program,
4163 bool invert)
4164 {
4165 struct ureg_program *ureg = t->ureg;
4166
4167 /* Fragment program uses fragment position input.
4168 * Need to replace instances of INPUT[WPOS] with temp T
4169 * where T = INPUT[WPOS] by y is inverted.
4170 */
4171 static const gl_state_index wposTransformState[STATE_LENGTH]
4172 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4173 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4174
4175 /* XXX: note we are modifying the incoming shader here! Need to
4176 * do this before emitting the constant decls below, or this
4177 * will be missed:
4178 */
4179 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4180 wposTransformState);
4181
4182 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wposTransConst);
4183 struct ureg_dst wpos_temp;
4184 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4185
4186 /* MOV wpos_temp, input[wpos]
4187 */
4188 if (wpos_input.File == TGSI_FILE_TEMPORARY)
4189 wpos_temp = ureg_dst(wpos_input);
4190 else {
4191 wpos_temp = ureg_DECL_temporary(ureg);
4192 ureg_MOV(ureg, wpos_temp, wpos_input);
4193 }
4194
4195 if (invert) {
4196 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4197 */
4198 ureg_MAD(ureg,
4199 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4200 wpos_input,
4201 ureg_scalar(wpostrans, 0),
4202 ureg_scalar(wpostrans, 1));
4203 } else {
4204 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4205 */
4206 ureg_MAD(ureg,
4207 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4208 wpos_input,
4209 ureg_scalar(wpostrans, 2),
4210 ureg_scalar(wpostrans, 3));
4211 }
4212
4213 /* Use wpos_temp as position input from here on:
4214 */
4215 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4216 }
4217
4218
4219 /**
4220 * Emit fragment position/ooordinate code.
4221 */
4222 static void
4223 emit_wpos(struct st_context *st,
4224 struct st_translate *t,
4225 const struct gl_program *program,
4226 struct ureg_program *ureg)
4227 {
4228 const struct gl_fragment_program *fp =
4229 (const struct gl_fragment_program *) program;
4230 struct pipe_screen *pscreen = st->pipe->screen;
4231 boolean invert = FALSE;
4232
4233 if (fp->OriginUpperLeft) {
4234 /* Fragment shader wants origin in upper-left */
4235 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4236 /* the driver supports upper-left origin */
4237 }
4238 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4239 /* the driver supports lower-left origin, need to invert Y */
4240 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4241 invert = TRUE;
4242 }
4243 else
4244 assert(0);
4245 }
4246 else {
4247 /* Fragment shader wants origin in lower-left */
4248 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4249 /* the driver supports lower-left origin */
4250 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4251 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4252 /* the driver supports upper-left origin, need to invert Y */
4253 invert = TRUE;
4254 else
4255 assert(0);
4256 }
4257
4258 if (fp->PixelCenterInteger) {
4259 /* Fragment shader wants pixel center integer */
4260 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER))
4261 /* the driver supports pixel center integer */
4262 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4263 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER))
4264 /* the driver supports pixel center half integer, need to bias X,Y */
4265 emit_adjusted_wpos(t, program, 0.5f, invert ? 0.5f : -0.5f);
4266 else
4267 assert(0);
4268 }
4269 else {
4270 /* Fragment shader wants pixel center half integer */
4271 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4272 /* the driver supports pixel center half integer */
4273 }
4274 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4275 /* the driver supports pixel center integer, need to bias X,Y */
4276 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4277 emit_adjusted_wpos(t, program, 0.5f, invert ? -0.5f : 0.5f);
4278 }
4279 else
4280 assert(0);
4281 }
4282
4283 /* we invert after adjustment so that we avoid the MOV to temporary,
4284 * and reuse the adjustment ADD instead */
4285 emit_wpos_inversion(t, program, invert);
4286 }
4287
4288 /**
4289 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4290 * TGSI uses +1 for front, -1 for back.
4291 * This function converts the TGSI value to the GL value. Simply clamping/
4292 * saturating the value to [0,1] does the job.
4293 */
4294 static void
4295 emit_face_var(struct st_translate *t)
4296 {
4297 struct ureg_program *ureg = t->ureg;
4298 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4299 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4300
4301 /* MOV_SAT face_temp, input[face] */
4302 face_temp = ureg_saturate(face_temp);
4303 ureg_MOV(ureg, face_temp, face_input);
4304
4305 /* Use face_temp as face input from here on: */
4306 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4307 }
4308
4309 static void
4310 emit_edgeflags(struct st_translate *t)
4311 {
4312 struct ureg_program *ureg = t->ureg;
4313 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4314 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4315
4316 ureg_MOV(ureg, edge_dst, edge_src);
4317 }
4318
4319 /**
4320 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4321 * \param program the program to translate
4322 * \param numInputs number of input registers used
4323 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4324 * input indexes
4325 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4326 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4327 * each input
4328 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4329 * \param numOutputs number of output registers used
4330 * \param outputMapping maps Mesa fragment program outputs to TGSI
4331 * generic outputs
4332 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4333 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4334 * each output
4335 *
4336 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4337 */
4338 extern "C" enum pipe_error
4339 st_translate_program(
4340 struct gl_context *ctx,
4341 uint procType,
4342 struct ureg_program *ureg,
4343 glsl_to_tgsi_visitor *program,
4344 const struct gl_program *proginfo,
4345 GLuint numInputs,
4346 const GLuint inputMapping[],
4347 const ubyte inputSemanticName[],
4348 const ubyte inputSemanticIndex[],
4349 const GLuint interpMode[],
4350 GLuint numOutputs,
4351 const GLuint outputMapping[],
4352 const ubyte outputSemanticName[],
4353 const ubyte outputSemanticIndex[],
4354 boolean passthrough_edgeflags)
4355 {
4356 struct st_translate translate, *t;
4357 unsigned i;
4358 enum pipe_error ret = PIPE_OK;
4359
4360 assert(numInputs <= Elements(t->inputs));
4361 assert(numOutputs <= Elements(t->outputs));
4362
4363 t = &translate;
4364 memset(t, 0, sizeof *t);
4365
4366 t->procType = procType;
4367 t->inputMapping = inputMapping;
4368 t->outputMapping = outputMapping;
4369 t->ureg = ureg;
4370 t->pointSizeOutIndex = -1;
4371 t->prevInstWrotePointSize = GL_FALSE;
4372
4373 /*
4374 * Declare input attributes.
4375 */
4376 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4377 for (i = 0; i < numInputs; i++) {
4378 t->inputs[i] = ureg_DECL_fs_input(ureg,
4379 inputSemanticName[i],
4380 inputSemanticIndex[i],
4381 interpMode[i]);
4382 }
4383
4384 if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4385 /* Must do this after setting up t->inputs, and before
4386 * emitting constant references, below:
4387 */
4388 emit_wpos(st_context(ctx), t, proginfo, ureg);
4389 }
4390
4391 if (proginfo->InputsRead & FRAG_BIT_FACE)
4392 emit_face_var(t);
4393
4394 /*
4395 * Declare output attributes.
4396 */
4397 for (i = 0; i < numOutputs; i++) {
4398 switch (outputSemanticName[i]) {
4399 case TGSI_SEMANTIC_POSITION:
4400 t->outputs[i] = ureg_DECL_output(ureg,
4401 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4402 outputSemanticIndex[i]);
4403 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4404 break;
4405 case TGSI_SEMANTIC_STENCIL:
4406 t->outputs[i] = ureg_DECL_output(ureg,
4407 TGSI_SEMANTIC_STENCIL, /* Stencil */
4408 outputSemanticIndex[i]);
4409 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4410 break;
4411 case TGSI_SEMANTIC_COLOR:
4412 t->outputs[i] = ureg_DECL_output(ureg,
4413 TGSI_SEMANTIC_COLOR,
4414 outputSemanticIndex[i]);
4415 break;
4416 default:
4417 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4418 return PIPE_ERROR_BAD_INPUT;
4419 }
4420 }
4421 }
4422 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4423 for (i = 0; i < numInputs; i++) {
4424 t->inputs[i] = ureg_DECL_gs_input(ureg,
4425 i,
4426 inputSemanticName[i],
4427 inputSemanticIndex[i]);
4428 }
4429
4430 for (i = 0; i < numOutputs; i++) {
4431 t->outputs[i] = ureg_DECL_output(ureg,
4432 outputSemanticName[i],
4433 outputSemanticIndex[i]);
4434 }
4435 }
4436 else {
4437 assert(procType == TGSI_PROCESSOR_VERTEX);
4438
4439 for (i = 0; i < numInputs; i++) {
4440 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4441 }
4442
4443 for (i = 0; i < numOutputs; i++) {
4444 t->outputs[i] = ureg_DECL_output(ureg,
4445 outputSemanticName[i],
4446 outputSemanticIndex[i]);
4447 if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4448 /* Writing to the point size result register requires special
4449 * handling to implement clamping.
4450 */
4451 static const gl_state_index pointSizeClampState[STATE_LENGTH]
4452 = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4453 /* XXX: note we are modifying the incoming shader here! Need to
4454 * do this before emitting the constant decls below, or this
4455 * will be missed.
4456 */
4457 unsigned pointSizeClampConst =
4458 _mesa_add_state_reference(proginfo->Parameters,
4459 pointSizeClampState);
4460 struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4461 t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4462 t->pointSizeResult = t->outputs[i];
4463 t->pointSizeOutIndex = i;
4464 t->outputs[i] = psizregtemp;
4465 }
4466 }
4467 if (passthrough_edgeflags)
4468 emit_edgeflags(t);
4469 }
4470
4471 /* Declare address register.
4472 */
4473 if (program->num_address_regs > 0) {
4474 assert(program->num_address_regs == 1);
4475 t->address[0] = ureg_DECL_address(ureg);
4476 }
4477
4478 /* Declare misc input registers
4479 */
4480 {
4481 GLbitfield sysInputs = proginfo->SystemValuesRead;
4482 unsigned numSys = 0;
4483 for (i = 0; sysInputs; i++) {
4484 if (sysInputs & (1 << i)) {
4485 unsigned semName = mesa_sysval_to_semantic[i];
4486 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4487 numSys++;
4488 sysInputs &= ~(1 << i);
4489 }
4490 }
4491 }
4492
4493 if (program->indirect_addr_temps) {
4494 /* If temps are accessed with indirect addressing, declare temporaries
4495 * in sequential order. Else, we declare them on demand elsewhere.
4496 * (Note: the number of temporaries is equal to program->next_temp)
4497 */
4498 for (i = 0; i < (unsigned)program->next_temp; i++) {
4499 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4500 t->temps[i] = ureg_DECL_temporary(t->ureg);
4501 }
4502 }
4503
4504 /* Emit constants and uniforms. TGSI uses a single index space for these,
4505 * so we put all the translated regs in t->constants.
4506 */
4507 if (proginfo->Parameters) {
4508 t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4509 if (t->constants == NULL) {
4510 ret = PIPE_ERROR_OUT_OF_MEMORY;
4511 goto out;
4512 }
4513
4514 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4515 switch (proginfo->Parameters->Parameters[i].Type) {
4516 case PROGRAM_ENV_PARAM:
4517 case PROGRAM_LOCAL_PARAM:
4518 case PROGRAM_STATE_VAR:
4519 case PROGRAM_NAMED_PARAM:
4520 case PROGRAM_UNIFORM:
4521 t->constants[i] = ureg_DECL_constant(ureg, i);
4522 break;
4523
4524 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4525 * addressing of the const buffer.
4526 * FIXME: Be smarter and recognize param arrays:
4527 * indirect addressing is only valid within the referenced
4528 * array.
4529 */
4530 case PROGRAM_CONSTANT:
4531 if (program->indirect_addr_consts)
4532 t->constants[i] = ureg_DECL_constant(ureg, i);
4533 else
4534 t->constants[i] = emit_immediate(t,
4535 proginfo->Parameters->ParameterValues[i],
4536 proginfo->Parameters->Parameters[i].DataType,
4537 4);
4538 break;
4539 default:
4540 break;
4541 }
4542 }
4543 }
4544
4545 /* Emit immediate values.
4546 */
4547 t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4548 if (t->immediates == NULL) {
4549 ret = PIPE_ERROR_OUT_OF_MEMORY;
4550 goto out;
4551 }
4552 i = 0;
4553 foreach_iter(exec_list_iterator, iter, program->immediates) {
4554 immediate_storage *imm = (immediate_storage *)iter.get();
4555 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4556 }
4557
4558 /* texture samplers */
4559 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4560 if (program->samplers_used & (1 << i)) {
4561 t->samplers[i] = ureg_DECL_sampler(ureg, i);
4562 }
4563 }
4564
4565 /* Emit each instruction in turn:
4566 */
4567 foreach_iter(exec_list_iterator, iter, program->instructions) {
4568 set_insn_start(t, ureg_get_instruction_number(ureg));
4569 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4570
4571 if (t->prevInstWrotePointSize && proginfo->Id) {
4572 /* The previous instruction wrote to the (fake) vertex point size
4573 * result register. Now we need to clamp that value to the min/max
4574 * point size range, putting the result into the real point size
4575 * register.
4576 * Note that we can't do this easily at the end of program due to
4577 * possible early return.
4578 */
4579 set_insn_start(t, ureg_get_instruction_number(ureg));
4580 ureg_MAX(t->ureg,
4581 ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4582 ureg_src(t->outputs[t->pointSizeOutIndex]),
4583 ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4584 ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4585 ureg_src(t->outputs[t->pointSizeOutIndex]),
4586 ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4587 }
4588 t->prevInstWrotePointSize = GL_FALSE;
4589 }
4590
4591 /* Fix up all emitted labels:
4592 */
4593 for (i = 0; i < t->labels_count; i++) {
4594 ureg_fixup_label(ureg, t->labels[i].token,
4595 t->insn[t->labels[i].branch_target]);
4596 }
4597
4598 out:
4599 FREE(t->insn);
4600 FREE(t->labels);
4601 FREE(t->constants);
4602 FREE(t->immediates);
4603
4604 if (t->error) {
4605 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4606 }
4607
4608 return ret;
4609 }
4610 /* ----------------------------- End TGSI code ------------------------------ */
4611
4612 /**
4613 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4614 * generating Mesa IR.
4615 */
4616 static struct gl_program *
4617 get_mesa_program(struct gl_context *ctx,
4618 struct gl_shader_program *shader_program,
4619 struct gl_shader *shader)
4620 {
4621 glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4622 struct gl_program *prog;
4623 GLenum target;
4624 const char *target_string;
4625 bool progress;
4626 struct gl_shader_compiler_options *options =
4627 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4628
4629 switch (shader->Type) {
4630 case GL_VERTEX_SHADER:
4631 target = GL_VERTEX_PROGRAM_ARB;
4632 target_string = "vertex";
4633 break;
4634 case GL_FRAGMENT_SHADER:
4635 target = GL_FRAGMENT_PROGRAM_ARB;
4636 target_string = "fragment";
4637 break;
4638 case GL_GEOMETRY_SHADER:
4639 target = GL_GEOMETRY_PROGRAM_NV;
4640 target_string = "geometry";
4641 break;
4642 default:
4643 assert(!"should not be reached");
4644 return NULL;
4645 }
4646
4647 validate_ir_tree(shader->ir);
4648
4649 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4650 if (!prog)
4651 return NULL;
4652 prog->Parameters = _mesa_new_parameter_list();
4653 prog->Varying = _mesa_new_parameter_list();
4654 prog->Attributes = _mesa_new_parameter_list();
4655 v->ctx = ctx;
4656 v->prog = prog;
4657 v->shader_program = shader_program;
4658 v->options = options;
4659 v->glsl_version = ctx->Const.GLSLVersion;
4660
4661 add_uniforms_to_parameters_list(shader_program, shader, prog);
4662
4663 /* Emit intermediate IR for main(). */
4664 visit_exec_list(shader->ir, v);
4665
4666 /* Now emit bodies for any functions that were used. */
4667 do {
4668 progress = GL_FALSE;
4669
4670 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4671 function_entry *entry = (function_entry *)iter.get();
4672
4673 if (!entry->bgn_inst) {
4674 v->current_function = entry;
4675
4676 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4677 entry->bgn_inst->function = entry;
4678
4679 visit_exec_list(&entry->sig->body, v);
4680
4681 glsl_to_tgsi_instruction *last;
4682 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4683 if (last->op != TGSI_OPCODE_RET)
4684 v->emit(NULL, TGSI_OPCODE_RET);
4685
4686 glsl_to_tgsi_instruction *end;
4687 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4688 end->function = entry;
4689
4690 progress = GL_TRUE;
4691 }
4692 }
4693 } while (progress);
4694
4695 #if 0
4696 /* Print out some information (for debugging purposes) used by the
4697 * optimization passes. */
4698 for (i=0; i < v->next_temp; i++) {
4699 int fr = v->get_first_temp_read(i);
4700 int fw = v->get_first_temp_write(i);
4701 int lr = v->get_last_temp_read(i);
4702 int lw = v->get_last_temp_write(i);
4703
4704 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4705 assert(fw <= fr);
4706 }
4707 #endif
4708
4709 /* Remove reads to output registers, and to varyings in vertex shaders. */
4710 v->remove_output_reads(PROGRAM_OUTPUT);
4711 if (target == GL_VERTEX_PROGRAM_ARB)
4712 v->remove_output_reads(PROGRAM_VARYING);
4713
4714 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4715 v->simplify_cmp();
4716 v->copy_propagate();
4717 while (v->eliminate_dead_code_advanced());
4718
4719 /* FIXME: These passes to optimize temporary registers don't work when there
4720 * is indirect addressing of the temporary register space. We need proper
4721 * array support so that we don't have to give up these passes in every
4722 * shader that uses arrays.
4723 */
4724 if (!v->indirect_addr_temps) {
4725 v->eliminate_dead_code();
4726 v->merge_registers();
4727 v->renumber_registers();
4728 }
4729
4730 /* Write the END instruction. */
4731 v->emit(NULL, TGSI_OPCODE_END);
4732
4733 if (ctx->Shader.Flags & GLSL_DUMP) {
4734 printf("\n");
4735 printf("GLSL IR for linked %s program %d:\n", target_string,
4736 shader_program->Name);
4737 _mesa_print_ir(shader->ir, NULL);
4738 printf("\n");
4739 printf("\n");
4740 }
4741
4742 prog->Instructions = NULL;
4743 prog->NumInstructions = 0;
4744
4745 do_set_program_inouts(shader->ir, prog);
4746 count_resources(v, prog);
4747
4748 check_resources(ctx, shader_program, v, prog);
4749
4750 _mesa_reference_program(ctx, &shader->Program, prog);
4751
4752 struct st_vertex_program *stvp;
4753 struct st_fragment_program *stfp;
4754 struct st_geometry_program *stgp;
4755
4756 switch (shader->Type) {
4757 case GL_VERTEX_SHADER:
4758 stvp = (struct st_vertex_program *)prog;
4759 stvp->glsl_to_tgsi = v;
4760 break;
4761 case GL_FRAGMENT_SHADER:
4762 stfp = (struct st_fragment_program *)prog;
4763 stfp->glsl_to_tgsi = v;
4764 break;
4765 case GL_GEOMETRY_SHADER:
4766 stgp = (struct st_geometry_program *)prog;
4767 stgp->glsl_to_tgsi = v;
4768 break;
4769 default:
4770 assert(!"should not be reached");
4771 return NULL;
4772 }
4773
4774 return prog;
4775 }
4776
4777 extern "C" {
4778
4779 struct gl_shader *
4780 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4781 {
4782 struct gl_shader *shader;
4783 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4784 type == GL_GEOMETRY_SHADER_ARB);
4785 shader = rzalloc(NULL, struct gl_shader);
4786 if (shader) {
4787 shader->Type = type;
4788 shader->Name = name;
4789 _mesa_init_shader(ctx, shader);
4790 }
4791 return shader;
4792 }
4793
4794 struct gl_shader_program *
4795 st_new_shader_program(struct gl_context *ctx, GLuint name)
4796 {
4797 struct gl_shader_program *shProg;
4798 shProg = rzalloc(NULL, struct gl_shader_program);
4799 if (shProg) {
4800 shProg->Name = name;
4801 _mesa_init_shader_program(ctx, shProg);
4802 }
4803 return shProg;
4804 }
4805
4806 /**
4807 * Link a shader.
4808 * Called via ctx->Driver.LinkShader()
4809 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
4810 * with code lowering and other optimizations.
4811 */
4812 GLboolean
4813 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4814 {
4815 assert(prog->LinkStatus);
4816
4817 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4818 if (prog->_LinkedShaders[i] == NULL)
4819 continue;
4820
4821 bool progress;
4822 exec_list *ir = prog->_LinkedShaders[i]->ir;
4823 const struct gl_shader_compiler_options *options =
4824 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
4825
4826 do {
4827 progress = false;
4828
4829 /* Lowering */
4830 do_mat_op_to_vec(ir);
4831 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
4832 | LOG_TO_LOG2
4833 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
4834
4835 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
4836
4837 progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
4838
4839 progress = lower_quadop_vector(ir, false) || progress;
4840
4841 if (options->EmitNoIfs) {
4842 progress = lower_discard(ir) || progress;
4843 progress = lower_if_to_cond_assign(ir) || progress;
4844 }
4845
4846 if (options->EmitNoNoise)
4847 progress = lower_noise(ir) || progress;
4848
4849 /* If there are forms of indirect addressing that the driver
4850 * cannot handle, perform the lowering pass.
4851 */
4852 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
4853 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
4854 progress =
4855 lower_variable_index_to_cond_assign(ir,
4856 options->EmitNoIndirectInput,
4857 options->EmitNoIndirectOutput,
4858 options->EmitNoIndirectTemp,
4859 options->EmitNoIndirectUniform)
4860 || progress;
4861
4862 progress = do_vec_index_to_cond_assign(ir) || progress;
4863 } while (progress);
4864
4865 validate_ir_tree(ir);
4866 }
4867
4868 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4869 struct gl_program *linked_prog;
4870
4871 if (prog->_LinkedShaders[i] == NULL)
4872 continue;
4873
4874 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
4875
4876 if (linked_prog) {
4877 bool ok = true;
4878
4879 switch (prog->_LinkedShaders[i]->Type) {
4880 case GL_VERTEX_SHADER:
4881 _mesa_reference_vertprog(ctx, &prog->VertexProgram,
4882 (struct gl_vertex_program *)linked_prog);
4883 ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
4884 linked_prog);
4885 break;
4886 case GL_FRAGMENT_SHADER:
4887 _mesa_reference_fragprog(ctx, &prog->FragmentProgram,
4888 (struct gl_fragment_program *)linked_prog);
4889 ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
4890 linked_prog);
4891 break;
4892 case GL_GEOMETRY_SHADER:
4893 _mesa_reference_geomprog(ctx, &prog->GeometryProgram,
4894 (struct gl_geometry_program *)linked_prog);
4895 ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV,
4896 linked_prog);
4897 break;
4898 }
4899 if (!ok) {
4900 return GL_FALSE;
4901 }
4902 }
4903
4904 _mesa_reference_program(ctx, &linked_prog, NULL);
4905 }
4906
4907 return GL_TRUE;
4908 }
4909
4910
4911 /**
4912 * Link a GLSL shader program. Called via glLinkProgram().
4913 */
4914 void
4915 st_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4916 {
4917 unsigned int i;
4918
4919 _mesa_clear_shader_program_data(ctx, prog);
4920
4921 prog->LinkStatus = GL_TRUE;
4922
4923 for (i = 0; i < prog->NumShaders; i++) {
4924 if (!prog->Shaders[i]->CompileStatus) {
4925 fail_link(prog, "linking with uncompiled shader");
4926 prog->LinkStatus = GL_FALSE;
4927 }
4928 }
4929
4930 prog->Varying = _mesa_new_parameter_list();
4931 _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL);
4932 _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL);
4933 _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL);
4934
4935 if (prog->LinkStatus) {
4936 link_shaders(ctx, prog);
4937 }
4938
4939 if (prog->LinkStatus) {
4940 if (!ctx->Driver.LinkShader(ctx, prog)) {
4941 prog->LinkStatus = GL_FALSE;
4942 }
4943 }
4944
4945 set_uniform_initializers(ctx, prog);
4946
4947 if (ctx->Shader.Flags & GLSL_DUMP) {
4948 if (!prog->LinkStatus) {
4949 printf("GLSL shader program %d failed to link\n", prog->Name);
4950 }
4951
4952 if (prog->InfoLog && prog->InfoLog[0] != 0) {
4953 printf("GLSL shader program %d info log:\n", prog->Name);
4954 printf("%s\n", prog->InfoLog);
4955 }
4956 }
4957 }
4958
4959 } /* extern "C" */