tgsi: populate precise
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "compiler/glsl/glsl_parser_extras.h"
36 #include "compiler/glsl/ir_optimization.h"
37 #include "compiler/glsl/program.h"
38
39 #include "main/errors.h"
40 #include "main/shaderobj.h"
41 #include "main/uniforms.h"
42 #include "main/shaderapi.h"
43 #include "main/shaderimage.h"
44 #include "program/prog_instruction.h"
45
46 #include "pipe/p_context.h"
47 #include "pipe/p_screen.h"
48 #include "tgsi/tgsi_ureg.h"
49 #include "tgsi/tgsi_info.h"
50 #include "util/u_math.h"
51 #include "util/u_memory.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "st_format.h"
55 #include "st_glsl_types.h"
56 #include "st_nir.h"
57 #include "st_shader_cache.h"
58
59 #include "util/hash_table.h"
60 #include <algorithm>
61
62 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
63 (1 << PROGRAM_CONSTANT) | \
64 (1 << PROGRAM_UNIFORM))
65
66 #define MAX_GLSL_TEXTURE_OFFSET 4
67
68 class st_src_reg;
69 class st_dst_reg;
70
71 static int swizzle_for_size(int size);
72
73 static int swizzle_for_type(const glsl_type *type, int component = 0)
74 {
75 unsigned num_elements = 4;
76
77 if (type) {
78 type = type->without_array();
79 if (type->is_scalar() || type->is_vector() || type->is_matrix())
80 num_elements = type->vector_elements;
81 }
82
83 int swizzle = swizzle_for_size(num_elements);
84 assert(num_elements + component <= 4);
85
86 swizzle += component * MAKE_SWIZZLE4(1, 1, 1, 1);
87 return swizzle;
88 }
89
90 static unsigned is_precise(const ir_variable *ir)
91 {
92 if (!ir)
93 return 0;
94 return ir->data.precise || ir->data.invariant;
95 }
96
97 /**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100 class st_src_reg {
101 public:
102 st_src_reg(gl_register_file file, int index, const glsl_type *type,
103 int component = 0, unsigned array_id = 0)
104 {
105 assert(file != PROGRAM_ARRAY || array_id != 0);
106 this->file = file;
107 this->index = index;
108 this->swizzle = swizzle_for_type(type, component);
109 this->negate = 0;
110 this->abs = 0;
111 this->index2D = 0;
112 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
113 this->reladdr = NULL;
114 this->reladdr2 = NULL;
115 this->has_index2 = false;
116 this->double_reg2 = false;
117 this->array_id = array_id;
118 this->is_double_vertex_input = false;
119 }
120
121 st_src_reg(gl_register_file file, int index, enum glsl_base_type type)
122 {
123 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
124 this->type = type;
125 this->file = file;
126 this->index = index;
127 this->index2D = 0;
128 this->swizzle = SWIZZLE_XYZW;
129 this->negate = 0;
130 this->abs = 0;
131 this->reladdr = NULL;
132 this->reladdr2 = NULL;
133 this->has_index2 = false;
134 this->double_reg2 = false;
135 this->array_id = 0;
136 this->is_double_vertex_input = false;
137 }
138
139 st_src_reg(gl_register_file file, int index, enum glsl_base_type type, int index2D)
140 {
141 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
142 this->type = type;
143 this->file = file;
144 this->index = index;
145 this->index2D = index2D;
146 this->swizzle = SWIZZLE_XYZW;
147 this->negate = 0;
148 this->abs = 0;
149 this->reladdr = NULL;
150 this->reladdr2 = NULL;
151 this->has_index2 = false;
152 this->double_reg2 = false;
153 this->array_id = 0;
154 this->is_double_vertex_input = false;
155 }
156
157 st_src_reg()
158 {
159 this->type = GLSL_TYPE_ERROR;
160 this->file = PROGRAM_UNDEFINED;
161 this->index = 0;
162 this->index2D = 0;
163 this->swizzle = 0;
164 this->negate = 0;
165 this->abs = 0;
166 this->reladdr = NULL;
167 this->reladdr2 = NULL;
168 this->has_index2 = false;
169 this->double_reg2 = false;
170 this->array_id = 0;
171 this->is_double_vertex_input = false;
172 }
173
174 explicit st_src_reg(st_dst_reg reg);
175
176 int32_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
177 int16_t index2D;
178 uint16_t swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
179 int negate:4; /**< NEGATE_XYZW mask from mesa */
180 unsigned abs:1;
181 enum glsl_base_type type:5; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
182 unsigned has_index2:1;
183 gl_register_file file:5; /**< PROGRAM_* from Mesa */
184 /*
185 * Is this the second half of a double register pair?
186 * currently used for input mapping only.
187 */
188 unsigned double_reg2:1;
189 unsigned is_double_vertex_input:1;
190 unsigned array_id:10;
191
192 /** Register index should be offset by the integer in this reg. */
193 st_src_reg *reladdr;
194 st_src_reg *reladdr2;
195
196 st_src_reg get_abs()
197 {
198 st_src_reg reg = *this;
199 reg.negate = 0;
200 reg.abs = 1;
201 return reg;
202 }
203 };
204
205 class st_dst_reg {
206 public:
207 st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type, int index)
208 {
209 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
210 this->file = file;
211 this->index = index;
212 this->index2D = 0;
213 this->writemask = writemask;
214 this->reladdr = NULL;
215 this->reladdr2 = NULL;
216 this->has_index2 = false;
217 this->type = type;
218 this->array_id = 0;
219 }
220
221 st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type)
222 {
223 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
224 this->file = file;
225 this->index = 0;
226 this->index2D = 0;
227 this->writemask = writemask;
228 this->reladdr = NULL;
229 this->reladdr2 = NULL;
230 this->has_index2 = false;
231 this->type = type;
232 this->array_id = 0;
233 }
234
235 st_dst_reg()
236 {
237 this->type = GLSL_TYPE_ERROR;
238 this->file = PROGRAM_UNDEFINED;
239 this->index = 0;
240 this->index2D = 0;
241 this->writemask = 0;
242 this->reladdr = NULL;
243 this->reladdr2 = NULL;
244 this->has_index2 = false;
245 this->array_id = 0;
246 }
247
248 explicit st_dst_reg(st_src_reg reg);
249
250 int32_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
251 int16_t index2D;
252 gl_register_file file:5; /**< PROGRAM_* from Mesa */
253 unsigned writemask:4; /**< Bitfield of WRITEMASK_[XYZW] */
254 enum glsl_base_type type:5; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
255 unsigned has_index2:1;
256 unsigned array_id:10;
257
258 /** Register index should be offset by the integer in this reg. */
259 st_src_reg *reladdr;
260 st_src_reg *reladdr2;
261 };
262
263 st_src_reg::st_src_reg(st_dst_reg reg)
264 {
265 this->type = reg.type;
266 this->file = reg.file;
267 this->index = reg.index;
268 this->swizzle = SWIZZLE_XYZW;
269 this->negate = 0;
270 this->abs = 0;
271 this->reladdr = reg.reladdr;
272 this->index2D = reg.index2D;
273 this->reladdr2 = reg.reladdr2;
274 this->has_index2 = reg.has_index2;
275 this->double_reg2 = false;
276 this->array_id = reg.array_id;
277 this->is_double_vertex_input = false;
278 }
279
280 st_dst_reg::st_dst_reg(st_src_reg reg)
281 {
282 this->type = reg.type;
283 this->file = reg.file;
284 this->index = reg.index;
285 this->writemask = WRITEMASK_XYZW;
286 this->reladdr = reg.reladdr;
287 this->index2D = reg.index2D;
288 this->reladdr2 = reg.reladdr2;
289 this->has_index2 = reg.has_index2;
290 this->array_id = reg.array_id;
291 }
292
293 class glsl_to_tgsi_instruction : public exec_node {
294 public:
295 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
296
297 st_dst_reg dst[2];
298 st_src_reg src[4];
299 st_src_reg resource; /**< sampler, image or buffer register */
300 st_src_reg *tex_offsets;
301
302 /** Pointer to the ir source this tree came from for debugging */
303 ir_instruction *ir;
304
305 unsigned op:8; /**< TGSI opcode */
306 unsigned precise:1;
307 unsigned saturate:1;
308 unsigned is_64bit_expanded:1;
309 unsigned sampler_base:5;
310 unsigned sampler_array_size:6; /**< 1-based size of sampler array, 1 if not array */
311 unsigned tex_target:4; /**< One of TEXTURE_*_INDEX */
312 glsl_base_type tex_type:5;
313 unsigned tex_shadow:1;
314 unsigned image_format:9;
315 unsigned tex_offset_num_offset:3;
316 unsigned dead_mask:4; /**< Used in dead code elimination */
317 unsigned buffer_access:3; /**< buffer access type */
318
319 const struct tgsi_opcode_info *info;
320 };
321
322 class variable_storage {
323 DECLARE_RZALLOC_CXX_OPERATORS(variable_storage)
324
325 public:
326 variable_storage(ir_variable *var, gl_register_file file, int index,
327 unsigned array_id = 0)
328 : file(file), index(index), component(0), var(var), array_id(array_id)
329 {
330 assert(file != PROGRAM_ARRAY || array_id != 0);
331 }
332
333 gl_register_file file;
334 int index;
335
336 /* Explicit component location. This is given in terms of the GLSL-style
337 * swizzles where each double is a single component, i.e. for 64-bit types
338 * it can only be 0 or 1.
339 */
340 int component;
341 ir_variable *var; /* variable that maps to this, if any */
342 unsigned array_id;
343 };
344
345 class immediate_storage : public exec_node {
346 public:
347 immediate_storage(gl_constant_value *values, int size32, int type)
348 {
349 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
350 this->size32 = size32;
351 this->type = type;
352 }
353
354 /* doubles are stored across 2 gl_constant_values */
355 gl_constant_value values[4];
356 int size32; /**< Number of 32-bit components (1-4) */
357 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
358 };
359
360 static const st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
361 static const st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
362
363 struct inout_decl {
364 unsigned mesa_index;
365 unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
366 unsigned size;
367 unsigned interp_loc;
368 unsigned gs_out_streams;
369 enum glsl_interp_mode interp;
370 enum glsl_base_type base_type;
371 ubyte usage_mask; /* GLSL-style usage-mask, i.e. single bit per double */
372 };
373
374 static struct inout_decl *
375 find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
376 {
377 assert(array_id != 0);
378
379 for (unsigned i = 0; i < count; i++) {
380 struct inout_decl *decl = &decls[i];
381
382 if (array_id == decl->array_id) {
383 return decl;
384 }
385 }
386
387 return NULL;
388 }
389
390 static enum glsl_base_type
391 find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
392 {
393 if (!array_id)
394 return GLSL_TYPE_ERROR;
395 struct inout_decl *decl = find_inout_array(decls, count, array_id);
396 if (decl)
397 return decl->base_type;
398 return GLSL_TYPE_ERROR;
399 }
400
401 struct rename_reg_pair {
402 bool valid;
403 int new_reg;
404 };
405
406 struct glsl_to_tgsi_visitor : public ir_visitor {
407 public:
408 glsl_to_tgsi_visitor();
409 ~glsl_to_tgsi_visitor();
410
411 struct gl_context *ctx;
412 struct gl_program *prog;
413 struct gl_shader_program *shader_program;
414 struct gl_linked_shader *shader;
415 struct gl_shader_compiler_options *options;
416
417 int next_temp;
418
419 unsigned *array_sizes;
420 unsigned max_num_arrays;
421 unsigned next_array;
422
423 struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
424 unsigned num_inputs;
425 unsigned num_input_arrays;
426 struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
427 unsigned num_outputs;
428 unsigned num_output_arrays;
429
430 int num_address_regs;
431 uint32_t samplers_used;
432 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
433 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
434 int images_used;
435 int image_targets[PIPE_MAX_SHADER_IMAGES];
436 unsigned image_formats[PIPE_MAX_SHADER_IMAGES];
437 bool indirect_addr_consts;
438 int wpos_transform_const;
439
440 int glsl_version;
441 bool native_integers;
442 bool have_sqrt;
443 bool have_fma;
444 bool use_shared_memory;
445 bool has_tex_txf_lz;
446 bool precise;
447
448 variable_storage *find_variable_storage(ir_variable *var);
449
450 int add_constant(gl_register_file file, gl_constant_value values[8],
451 int size, int datatype, uint16_t *swizzle_out);
452
453 st_src_reg get_temp(const glsl_type *type);
454 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
455
456 st_src_reg st_src_reg_for_double(double val);
457 st_src_reg st_src_reg_for_float(float val);
458 st_src_reg st_src_reg_for_int(int val);
459 st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
460
461 /**
462 * \name Visit methods
463 *
464 * As typical for the visitor pattern, there must be one \c visit method for
465 * each concrete subclass of \c ir_instruction. Virtual base classes within
466 * the hierarchy should not have \c visit methods.
467 */
468 /*@{*/
469 virtual void visit(ir_variable *);
470 virtual void visit(ir_loop *);
471 virtual void visit(ir_loop_jump *);
472 virtual void visit(ir_function_signature *);
473 virtual void visit(ir_function *);
474 virtual void visit(ir_expression *);
475 virtual void visit(ir_swizzle *);
476 virtual void visit(ir_dereference_variable *);
477 virtual void visit(ir_dereference_array *);
478 virtual void visit(ir_dereference_record *);
479 virtual void visit(ir_assignment *);
480 virtual void visit(ir_constant *);
481 virtual void visit(ir_call *);
482 virtual void visit(ir_return *);
483 virtual void visit(ir_discard *);
484 virtual void visit(ir_texture *);
485 virtual void visit(ir_if *);
486 virtual void visit(ir_emit_vertex *);
487 virtual void visit(ir_end_primitive *);
488 virtual void visit(ir_barrier *);
489 /*@}*/
490
491 void visit_expression(ir_expression *, st_src_reg *) ATTRIBUTE_NOINLINE;
492
493 void visit_atomic_counter_intrinsic(ir_call *);
494 void visit_ssbo_intrinsic(ir_call *);
495 void visit_membar_intrinsic(ir_call *);
496 void visit_shared_intrinsic(ir_call *);
497 void visit_image_intrinsic(ir_call *);
498 void visit_generic_intrinsic(ir_call *, unsigned op);
499
500 st_src_reg result;
501
502 /** List of variable_storage */
503 struct hash_table *variables;
504
505 /** List of immediate_storage */
506 exec_list immediates;
507 unsigned num_immediates;
508
509 /** List of glsl_to_tgsi_instruction */
510 exec_list instructions;
511
512 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
513 st_dst_reg dst = undef_dst,
514 st_src_reg src0 = undef_src,
515 st_src_reg src1 = undef_src,
516 st_src_reg src2 = undef_src,
517 st_src_reg src3 = undef_src);
518
519 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
520 st_dst_reg dst, st_dst_reg dst1,
521 st_src_reg src0 = undef_src,
522 st_src_reg src1 = undef_src,
523 st_src_reg src2 = undef_src,
524 st_src_reg src3 = undef_src);
525
526 unsigned get_opcode(unsigned op,
527 st_dst_reg dst,
528 st_src_reg src0, st_src_reg src1);
529
530 /**
531 * Emit the correct dot-product instruction for the type of arguments
532 */
533 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
534 st_dst_reg dst,
535 st_src_reg src0,
536 st_src_reg src1,
537 unsigned elements);
538
539 void emit_scalar(ir_instruction *ir, unsigned op,
540 st_dst_reg dst, st_src_reg src0);
541
542 void emit_scalar(ir_instruction *ir, unsigned op,
543 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
544
545 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
546
547 void get_deref_offsets(ir_dereference *ir,
548 unsigned *array_size,
549 unsigned *base,
550 uint16_t *index,
551 st_src_reg *reladdr,
552 bool opaque);
553 void calc_deref_offsets(ir_dereference *tail,
554 unsigned *array_elements,
555 uint16_t *index,
556 st_src_reg *indirect,
557 unsigned *location);
558 st_src_reg canonicalize_gather_offset(st_src_reg offset);
559
560 bool try_emit_mad(ir_expression *ir,
561 int mul_operand);
562 bool try_emit_mad_for_and_not(ir_expression *ir,
563 int mul_operand);
564
565 void emit_swz(ir_expression *ir);
566
567 bool process_move_condition(ir_rvalue *ir);
568
569 void simplify_cmp(void);
570
571 void rename_temp_registers(struct rename_reg_pair *renames);
572 void get_first_temp_read(int *first_reads);
573 void get_first_temp_write(int *first_writes);
574 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
575 void get_last_temp_write(int *last_writes);
576
577 void copy_propagate(void);
578 int eliminate_dead_code(void);
579
580 void merge_two_dsts(void);
581 void merge_registers(void);
582 void renumber_registers(void);
583
584 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
585 st_dst_reg *l, st_src_reg *r,
586 st_src_reg *cond, bool cond_swap);
587
588 void *mem_ctx;
589 };
590
591 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
592 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
593 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
594
595 static void
596 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
597
598 static void
599 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
600 {
601 va_list args;
602 va_start(args, fmt);
603 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
604 va_end(args);
605
606 prog->data->LinkStatus = linking_failure;
607 }
608
609 static int
610 swizzle_for_size(int size)
611 {
612 static const int size_swizzles[4] = {
613 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
614 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
615 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
616 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
617 };
618
619 assert((size >= 1) && (size <= 4));
620 return size_swizzles[size - 1];
621 }
622
623 static bool
624 is_resource_instruction(unsigned opcode)
625 {
626 switch (opcode) {
627 case TGSI_OPCODE_RESQ:
628 case TGSI_OPCODE_LOAD:
629 case TGSI_OPCODE_ATOMUADD:
630 case TGSI_OPCODE_ATOMXCHG:
631 case TGSI_OPCODE_ATOMCAS:
632 case TGSI_OPCODE_ATOMAND:
633 case TGSI_OPCODE_ATOMOR:
634 case TGSI_OPCODE_ATOMXOR:
635 case TGSI_OPCODE_ATOMUMIN:
636 case TGSI_OPCODE_ATOMUMAX:
637 case TGSI_OPCODE_ATOMIMIN:
638 case TGSI_OPCODE_ATOMIMAX:
639 return true;
640 default:
641 return false;
642 }
643 }
644
645 static unsigned
646 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
647 {
648 return op->info->num_dst;
649 }
650
651 static unsigned
652 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
653 {
654 return op->info->is_tex || is_resource_instruction(op->op) ?
655 op->info->num_src - 1 : op->info->num_src;
656 }
657
658 glsl_to_tgsi_instruction *
659 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
660 st_dst_reg dst, st_dst_reg dst1,
661 st_src_reg src0, st_src_reg src1,
662 st_src_reg src2, st_src_reg src3)
663 {
664 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
665 int num_reladdr = 0, i, j;
666 bool dst_is_64bit[2];
667
668 op = get_opcode(op, dst, src0, src1);
669
670 /* If we have to do relative addressing, we want to load the ARL
671 * reg directly for one of the regs, and preload the other reladdr
672 * sources into temps.
673 */
674 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
675 num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
676 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
677 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
678 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
679 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
680
681 reladdr_to_temp(ir, &src3, &num_reladdr);
682 reladdr_to_temp(ir, &src2, &num_reladdr);
683 reladdr_to_temp(ir, &src1, &num_reladdr);
684 reladdr_to_temp(ir, &src0, &num_reladdr);
685
686 if (dst.reladdr || dst.reladdr2) {
687 if (dst.reladdr)
688 emit_arl(ir, address_reg, *dst.reladdr);
689 if (dst.reladdr2)
690 emit_arl(ir, address_reg2, *dst.reladdr2);
691 num_reladdr--;
692 }
693 if (dst1.reladdr) {
694 emit_arl(ir, address_reg, *dst1.reladdr);
695 num_reladdr--;
696 }
697 assert(num_reladdr == 0);
698
699 /* inst->op has only 8 bits. */
700 STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
701
702 inst->op = op;
703 inst->precise = this->precise;
704 inst->info = tgsi_get_opcode_info(op);
705 inst->dst[0] = dst;
706 inst->dst[1] = dst1;
707 inst->src[0] = src0;
708 inst->src[1] = src1;
709 inst->src[2] = src2;
710 inst->src[3] = src3;
711 inst->is_64bit_expanded = false;
712 inst->ir = ir;
713 inst->dead_mask = 0;
714 inst->tex_offsets = NULL;
715 inst->tex_offset_num_offset = 0;
716 inst->saturate = 0;
717 inst->tex_shadow = 0;
718 /* default to float, for paths where this is not initialized
719 * (since 0==UINT which is likely wrong):
720 */
721 inst->tex_type = GLSL_TYPE_FLOAT;
722
723 /* Update indirect addressing status used by TGSI */
724 if (dst.reladdr || dst.reladdr2) {
725 switch(dst.file) {
726 case PROGRAM_STATE_VAR:
727 case PROGRAM_CONSTANT:
728 case PROGRAM_UNIFORM:
729 this->indirect_addr_consts = true;
730 break;
731 case PROGRAM_IMMEDIATE:
732 assert(!"immediates should not have indirect addressing");
733 break;
734 default:
735 break;
736 }
737 }
738 else {
739 for (i = 0; i < 4; i++) {
740 if(inst->src[i].reladdr) {
741 switch(inst->src[i].file) {
742 case PROGRAM_STATE_VAR:
743 case PROGRAM_CONSTANT:
744 case PROGRAM_UNIFORM:
745 this->indirect_addr_consts = true;
746 break;
747 case PROGRAM_IMMEDIATE:
748 assert(!"immediates should not have indirect addressing");
749 break;
750 default:
751 break;
752 }
753 }
754 }
755 }
756
757 /*
758 * This section contains the double processing.
759 * GLSL just represents doubles as single channel values,
760 * however most HW and TGSI represent doubles as pairs of register channels.
761 *
762 * so we have to fixup destination writemask/index and src swizzle/indexes.
763 * dest writemasks need to translate from single channel write mask
764 * to a dual-channel writemask, but also need to modify the index,
765 * if we are touching the Z,W fields in the pre-translated writemask.
766 *
767 * src channels have similiar index modifications along with swizzle
768 * changes to we pick the XY, ZW pairs from the correct index.
769 *
770 * GLSL [0].x -> TGSI [0].xy
771 * GLSL [0].y -> TGSI [0].zw
772 * GLSL [0].z -> TGSI [1].xy
773 * GLSL [0].w -> TGSI [1].zw
774 */
775 for (j = 0; j < 2; j++) {
776 dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
777 if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
778 enum glsl_base_type type = find_array_type(this->outputs, this->num_outputs, inst->dst[j].array_id);
779 if (glsl_base_type_is_64bit(type))
780 dst_is_64bit[j] = true;
781 }
782 }
783
784 if (dst_is_64bit[0] || dst_is_64bit[1] ||
785 glsl_base_type_is_64bit(inst->src[0].type)) {
786 glsl_to_tgsi_instruction *dinst = NULL;
787 int initial_src_swz[4], initial_src_idx[4];
788 int initial_dst_idx[2], initial_dst_writemask[2];
789 /* select the writemask for dst0 or dst1 */
790 unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED ? inst->dst[0].writemask : inst->dst[1].writemask;
791
792 /* copy out the writemask, index and swizzles for all src/dsts. */
793 for (j = 0; j < 2; j++) {
794 initial_dst_writemask[j] = inst->dst[j].writemask;
795 initial_dst_idx[j] = inst->dst[j].index;
796 }
797
798 for (j = 0; j < 4; j++) {
799 initial_src_swz[j] = inst->src[j].swizzle;
800 initial_src_idx[j] = inst->src[j].index;
801 }
802
803 /*
804 * scan all the components in the dst writemask
805 * generate an instruction for each of them if required.
806 */
807 st_src_reg addr;
808 while (writemask) {
809
810 int i = u_bit_scan(&writemask);
811
812 /* before emitting the instruction, see if we have to adjust load / store
813 * address */
814 if (i > 1 && (inst->op == TGSI_OPCODE_LOAD || inst->op == TGSI_OPCODE_STORE) &&
815 addr.file == PROGRAM_UNDEFINED) {
816 /* We have to advance the buffer address by 16 */
817 addr = get_temp(glsl_type::uint_type);
818 emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
819 inst->src[0], st_src_reg_for_int(16));
820 }
821
822 /* first time use previous instruction */
823 if (dinst == NULL) {
824 dinst = inst;
825 } else {
826 /* create a new instructions for subsequent attempts */
827 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
828 *dinst = *inst;
829 dinst->next = NULL;
830 dinst->prev = NULL;
831 }
832 this->instructions.push_tail(dinst);
833 dinst->is_64bit_expanded = true;
834
835 /* modify the destination if we are splitting */
836 for (j = 0; j < 2; j++) {
837 if (dst_is_64bit[j]) {
838 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
839 dinst->dst[j].index = initial_dst_idx[j];
840 if (i > 1) {
841 if (dinst->op == TGSI_OPCODE_LOAD || dinst->op == TGSI_OPCODE_STORE)
842 dinst->src[0] = addr;
843 if (dinst->op != TGSI_OPCODE_STORE)
844 dinst->dst[j].index++;
845 }
846 } else {
847 /* if we aren't writing to a double, just get the bit of the initial writemask
848 for this channel */
849 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
850 }
851 }
852
853 /* modify the src registers */
854 for (j = 0; j < 4; j++) {
855 int swz = GET_SWZ(initial_src_swz[j], i);
856
857 if (glsl_base_type_is_64bit(dinst->src[j].type)) {
858 dinst->src[j].index = initial_src_idx[j];
859 if (swz > 1) {
860 dinst->src[j].double_reg2 = true;
861 dinst->src[j].index++;
862 }
863
864 if (swz & 1)
865 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
866 else
867 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
868
869 } else {
870 /* some opcodes are special case in what they use as sources
871 - [FUI]2D/[UI]2I64 is a float/[u]int src0, DLDEXP is integer src1 */
872 if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D || op == TGSI_OPCODE_I2D ||
873 op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
874 op == TGSI_OPCODE_DLDEXP ||
875 (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
876 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
877 }
878 }
879 }
880 }
881 inst = dinst;
882 } else {
883 this->instructions.push_tail(inst);
884 }
885
886
887 return inst;
888 }
889
890 glsl_to_tgsi_instruction *
891 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
892 st_dst_reg dst,
893 st_src_reg src0, st_src_reg src1,
894 st_src_reg src2, st_src_reg src3)
895 {
896 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
897 }
898
899 /**
900 * Determines whether to use an integer, unsigned integer, or float opcode
901 * based on the operands and input opcode, then emits the result.
902 */
903 unsigned
904 glsl_to_tgsi_visitor::get_opcode(unsigned op,
905 st_dst_reg dst,
906 st_src_reg src0, st_src_reg src1)
907 {
908 enum glsl_base_type type = GLSL_TYPE_FLOAT;
909
910 if (op == TGSI_OPCODE_MOV)
911 return op;
912
913 assert(src0.type != GLSL_TYPE_ARRAY);
914 assert(src0.type != GLSL_TYPE_STRUCT);
915 assert(src1.type != GLSL_TYPE_ARRAY);
916 assert(src1.type != GLSL_TYPE_STRUCT);
917
918 if (is_resource_instruction(op))
919 type = src1.type;
920 else if (src0.type == GLSL_TYPE_INT64 || src1.type == GLSL_TYPE_INT64)
921 type = GLSL_TYPE_INT64;
922 else if (src0.type == GLSL_TYPE_UINT64 || src1.type == GLSL_TYPE_UINT64)
923 type = GLSL_TYPE_UINT64;
924 else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
925 type = GLSL_TYPE_DOUBLE;
926 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
927 type = GLSL_TYPE_FLOAT;
928 else if (native_integers)
929 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
930
931 #define case7(c, f, i, u, d, i64, ui64) \
932 case TGSI_OPCODE_##c: \
933 if (type == GLSL_TYPE_UINT64) \
934 op = TGSI_OPCODE_##ui64; \
935 else if (type == GLSL_TYPE_INT64) \
936 op = TGSI_OPCODE_##i64; \
937 else if (type == GLSL_TYPE_DOUBLE) \
938 op = TGSI_OPCODE_##d; \
939 else if (type == GLSL_TYPE_INT) \
940 op = TGSI_OPCODE_##i; \
941 else if (type == GLSL_TYPE_UINT) \
942 op = TGSI_OPCODE_##u; \
943 else \
944 op = TGSI_OPCODE_##f; \
945 break;
946 #define case5(c, f, i, u, d) \
947 case TGSI_OPCODE_##c: \
948 if (type == GLSL_TYPE_DOUBLE) \
949 op = TGSI_OPCODE_##d; \
950 else if (type == GLSL_TYPE_INT) \
951 op = TGSI_OPCODE_##i; \
952 else if (type == GLSL_TYPE_UINT) \
953 op = TGSI_OPCODE_##u; \
954 else \
955 op = TGSI_OPCODE_##f; \
956 break;
957
958 #define case4(c, f, i, u) \
959 case TGSI_OPCODE_##c: \
960 if (type == GLSL_TYPE_INT) \
961 op = TGSI_OPCODE_##i; \
962 else if (type == GLSL_TYPE_UINT) \
963 op = TGSI_OPCODE_##u; \
964 else \
965 op = TGSI_OPCODE_##f; \
966 break;
967
968 #define case3(f, i, u) case4(f, f, i, u)
969 #define case6d(f, i, u, d, i64, u64) case7(f, f, i, u, d, i64, u64)
970 #define case3fid(f, i, d) case5(f, f, i, i, d)
971 #define case3fid64(f, i, d, i64) case7(f, f, i, i, d, i64, i64)
972 #define case2fi(f, i) case4(f, f, i, i)
973 #define case2iu(i, u) case4(i, LAST, i, u)
974
975 #define case2iu64(i, i64) case7(i, LAST, i, i, LAST, i64, i64)
976 #define case4iu64(i, u, i64, u64) case7(i, LAST, i, u, LAST, i64, u64)
977
978 #define casecomp(c, f, i, u, d, i64, ui64) \
979 case TGSI_OPCODE_##c: \
980 if (type == GLSL_TYPE_INT64) \
981 op = TGSI_OPCODE_##i64; \
982 else if (type == GLSL_TYPE_UINT64) \
983 op = TGSI_OPCODE_##ui64; \
984 else if (type == GLSL_TYPE_DOUBLE) \
985 op = TGSI_OPCODE_##d; \
986 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
987 op = TGSI_OPCODE_##i; \
988 else if (type == GLSL_TYPE_UINT) \
989 op = TGSI_OPCODE_##u; \
990 else if (native_integers) \
991 op = TGSI_OPCODE_##f; \
992 else \
993 op = TGSI_OPCODE_##c; \
994 break;
995
996 switch(op) {
997 case3fid64(ADD, UADD, DADD, U64ADD);
998 case3fid64(MUL, UMUL, DMUL, U64MUL);
999 case3fid(MAD, UMAD, DMAD);
1000 case3fid(FMA, UMAD, DFMA);
1001 case6d(DIV, IDIV, UDIV, DDIV, I64DIV, U64DIV);
1002 case6d(MAX, IMAX, UMAX, DMAX, I64MAX, U64MAX);
1003 case6d(MIN, IMIN, UMIN, DMIN, I64MIN, U64MIN);
1004 case4iu64(MOD, UMOD, I64MOD, U64MOD);
1005
1006 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ, U64SEQ, U64SEQ);
1007 casecomp(SNE, FSNE, USNE, USNE, DSNE, U64SNE, U64SNE);
1008 casecomp(SGE, FSGE, ISGE, USGE, DSGE, I64SGE, U64SGE);
1009 casecomp(SLT, FSLT, ISLT, USLT, DSLT, I64SLT, U64SLT);
1010
1011 case2iu64(SHL, U64SHL);
1012 case4iu64(ISHR, USHR, I64SHR, U64SHR);
1013
1014 case3fid64(SSG, ISSG, DSSG, I64SSG);
1015
1016 case2iu(IBFE, UBFE);
1017 case2iu(IMSB, UMSB);
1018 case2iu(IMUL_HI, UMUL_HI);
1019
1020 case3fid(SQRT, SQRT, DSQRT);
1021
1022 case3fid(RCP, RCP, DRCP);
1023 case3fid(RSQ, RSQ, DRSQ);
1024
1025 case3fid(FRC, FRC, DFRAC);
1026 case3fid(TRUNC, TRUNC, DTRUNC);
1027 case3fid(CEIL, CEIL, DCEIL);
1028 case3fid(FLR, FLR, DFLR);
1029 case3fid(ROUND, ROUND, DROUND);
1030
1031 case2iu(ATOMIMAX, ATOMUMAX);
1032 case2iu(ATOMIMIN, ATOMUMIN);
1033
1034 default: break;
1035 }
1036
1037 assert(op != TGSI_OPCODE_LAST);
1038 return op;
1039 }
1040
1041 glsl_to_tgsi_instruction *
1042 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
1043 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
1044 unsigned elements)
1045 {
1046 static const unsigned dot_opcodes[] = {
1047 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
1048 };
1049
1050 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
1051 }
1052
1053 /**
1054 * Emits TGSI scalar opcodes to produce unique answers across channels.
1055 *
1056 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
1057 * channel determines the result across all channels. So to do a vec4
1058 * of this operation, we want to emit a scalar per source channel used
1059 * to produce dest channels.
1060 */
1061 void
1062 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
1063 st_dst_reg dst,
1064 st_src_reg orig_src0, st_src_reg orig_src1)
1065 {
1066 int i, j;
1067 int done_mask = ~dst.writemask;
1068
1069 /* TGSI RCP is a scalar operation splatting results to all channels,
1070 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
1071 * dst channels.
1072 */
1073 for (i = 0; i < 4; i++) {
1074 GLuint this_mask = (1 << i);
1075 st_src_reg src0 = orig_src0;
1076 st_src_reg src1 = orig_src1;
1077
1078 if (done_mask & this_mask)
1079 continue;
1080
1081 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
1082 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
1083 for (j = i + 1; j < 4; j++) {
1084 /* If there is another enabled component in the destination that is
1085 * derived from the same inputs, generate its value on this pass as
1086 * well.
1087 */
1088 if (!(done_mask & (1 << j)) &&
1089 GET_SWZ(src0.swizzle, j) == src0_swiz &&
1090 GET_SWZ(src1.swizzle, j) == src1_swiz) {
1091 this_mask |= (1 << j);
1092 }
1093 }
1094 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
1095 src0_swiz, src0_swiz);
1096 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
1097 src1_swiz, src1_swiz);
1098
1099 dst.writemask = this_mask;
1100 emit_asm(ir, op, dst, src0, src1);
1101 done_mask |= this_mask;
1102 }
1103 }
1104
1105 void
1106 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
1107 st_dst_reg dst, st_src_reg src0)
1108 {
1109 st_src_reg undef = undef_src;
1110
1111 undef.swizzle = SWIZZLE_XXXX;
1112
1113 emit_scalar(ir, op, dst, src0, undef);
1114 }
1115
1116 void
1117 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
1118 st_dst_reg dst, st_src_reg src0)
1119 {
1120 int op = TGSI_OPCODE_ARL;
1121
1122 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
1123 op = TGSI_OPCODE_UARL;
1124
1125 assert(dst.file == PROGRAM_ADDRESS);
1126 if (dst.index >= this->num_address_regs)
1127 this->num_address_regs = dst.index + 1;
1128
1129 emit_asm(NULL, op, dst, src0);
1130 }
1131
1132 int
1133 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
1134 gl_constant_value values[8], int size, int datatype,
1135 uint16_t *swizzle_out)
1136 {
1137 if (file == PROGRAM_CONSTANT) {
1138 GLuint swizzle = swizzle_out ? *swizzle_out : 0;
1139 int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
1140 size, datatype, &swizzle);
1141 if (swizzle_out)
1142 *swizzle_out = swizzle;
1143 return result;
1144 }
1145
1146 assert(file == PROGRAM_IMMEDIATE);
1147
1148 int index = 0;
1149 immediate_storage *entry;
1150 int size32 = size * ((datatype == GL_DOUBLE ||
1151 datatype == GL_INT64_ARB ||
1152 datatype == GL_UNSIGNED_INT64_ARB)? 2 : 1);
1153 int i;
1154
1155 /* Search immediate storage to see if we already have an identical
1156 * immediate that we can use instead of adding a duplicate entry.
1157 */
1158 foreach_in_list(immediate_storage, entry, &this->immediates) {
1159 immediate_storage *tmp = entry;
1160
1161 for (i = 0; i * 4 < size32; i++) {
1162 int slot_size = MIN2(size32 - (i * 4), 4);
1163 if (tmp->type != datatype || tmp->size32 != slot_size)
1164 break;
1165 if (memcmp(tmp->values, &values[i * 4],
1166 slot_size * sizeof(gl_constant_value)))
1167 break;
1168
1169 /* Everything matches, keep going until the full size is matched */
1170 tmp = (immediate_storage *)tmp->next;
1171 }
1172
1173 /* The full value matched */
1174 if (i * 4 >= size32)
1175 return index;
1176
1177 index++;
1178 }
1179
1180 for (i = 0; i * 4 < size32; i++) {
1181 int slot_size = MIN2(size32 - (i * 4), 4);
1182 /* Add this immediate to the list. */
1183 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
1184 this->immediates.push_tail(entry);
1185 this->num_immediates++;
1186 }
1187 return index;
1188 }
1189
1190 st_src_reg
1191 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1192 {
1193 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1194 union gl_constant_value uval;
1195
1196 uval.f = val;
1197 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1198
1199 return src;
1200 }
1201
1202 st_src_reg
1203 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1204 {
1205 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1206 union gl_constant_value uval[2];
1207
1208 memcpy(uval, &val, sizeof(uval));
1209 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1210 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
1211 return src;
1212 }
1213
1214 st_src_reg
1215 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1216 {
1217 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1218 union gl_constant_value uval;
1219
1220 assert(native_integers);
1221
1222 uval.i = val;
1223 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1224
1225 return src;
1226 }
1227
1228 st_src_reg
1229 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
1230 {
1231 if (native_integers)
1232 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1233 st_src_reg_for_int(val);
1234 else
1235 return st_src_reg_for_float(val);
1236 }
1237
1238 static int
1239 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
1240 {
1241 return st_glsl_attrib_type_size(type, is_vs_input);
1242 }
1243
1244 static int
1245 type_size(const struct glsl_type *type)
1246 {
1247 return st_glsl_type_size(type);
1248 }
1249
1250 /**
1251 * If the given GLSL type is an array or matrix or a structure containing
1252 * an array/matrix member, return true. Else return false.
1253 *
1254 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1255 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
1256 * we have an array that might be indexed with a variable, we need to use
1257 * the later storage type.
1258 */
1259 static bool
1260 type_has_array_or_matrix(const glsl_type *type)
1261 {
1262 if (type->is_array() || type->is_matrix())
1263 return true;
1264
1265 if (type->is_record()) {
1266 for (unsigned i = 0; i < type->length; i++) {
1267 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1268 return true;
1269 }
1270 }
1271 }
1272
1273 return false;
1274 }
1275
1276
1277 /**
1278 * In the initial pass of codegen, we assign temporary numbers to
1279 * intermediate results. (not SSA -- variable assignments will reuse
1280 * storage).
1281 */
1282 st_src_reg
1283 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1284 {
1285 st_src_reg src;
1286
1287 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1288 src.reladdr = NULL;
1289 src.negate = 0;
1290 src.abs = 0;
1291
1292 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1293 if (next_array >= max_num_arrays) {
1294 max_num_arrays += 32;
1295 array_sizes = (unsigned*)
1296 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1297 }
1298
1299 src.file = PROGRAM_ARRAY;
1300 src.index = 0;
1301 src.array_id = next_array + 1;
1302 array_sizes[next_array] = type_size(type);
1303 ++next_array;
1304
1305 } else {
1306 src.file = PROGRAM_TEMPORARY;
1307 src.index = next_temp;
1308 next_temp += type_size(type);
1309 }
1310
1311 if (type->is_array() || type->is_record()) {
1312 src.swizzle = SWIZZLE_NOOP;
1313 } else {
1314 src.swizzle = swizzle_for_size(type->vector_elements);
1315 }
1316
1317 return src;
1318 }
1319
1320 variable_storage *
1321 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1322 {
1323 struct hash_entry *entry;
1324
1325 entry = _mesa_hash_table_search(this->variables, var);
1326 if (!entry)
1327 return NULL;
1328
1329 return (variable_storage *)entry->data;
1330 }
1331
1332 void
1333 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1334 {
1335 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1336 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
1337 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
1338 }
1339
1340 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1341 unsigned int i;
1342 const ir_state_slot *const slots = ir->get_state_slots();
1343 assert(slots != NULL);
1344
1345 /* Check if this statevar's setup in the STATE file exactly
1346 * matches how we'll want to reference it as a
1347 * struct/array/whatever. If not, then we need to move it into
1348 * temporary storage and hope that it'll get copy-propagated
1349 * out.
1350 */
1351 for (i = 0; i < ir->get_num_state_slots(); i++) {
1352 if (slots[i].swizzle != SWIZZLE_XYZW) {
1353 break;
1354 }
1355 }
1356
1357 variable_storage *storage;
1358 st_dst_reg dst;
1359 if (i == ir->get_num_state_slots()) {
1360 /* We'll set the index later. */
1361 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1362
1363 _mesa_hash_table_insert(this->variables, ir, storage);
1364
1365 dst = undef_dst;
1366 } else {
1367 /* The variable_storage constructor allocates slots based on the size
1368 * of the type. However, this had better match the number of state
1369 * elements that we're going to copy into the new temporary.
1370 */
1371 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1372
1373 dst = st_dst_reg(get_temp(ir->type));
1374
1375 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
1376 dst.array_id);
1377
1378 _mesa_hash_table_insert(this->variables, ir, storage);
1379 }
1380
1381
1382 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1383 int index = _mesa_add_state_reference(this->prog->Parameters,
1384 (gl_state_index *)slots[i].tokens);
1385
1386 if (storage->file == PROGRAM_STATE_VAR) {
1387 if (storage->index == -1) {
1388 storage->index = index;
1389 } else {
1390 assert(index == storage->index + (int)i);
1391 }
1392 } else {
1393 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1394 * the data being moved since MOV does not care about the type of
1395 * data it is moving, and we don't want to declare registers with
1396 * array or struct types.
1397 */
1398 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1399 src.swizzle = slots[i].swizzle;
1400 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1401 /* even a float takes up a whole vec4 reg in a struct/array. */
1402 dst.index++;
1403 }
1404 }
1405
1406 if (storage->file == PROGRAM_TEMPORARY &&
1407 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1408 fail_link(this->shader_program,
1409 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1410 ir->name, dst.index - storage->index,
1411 type_size(ir->type));
1412 }
1413 }
1414 }
1415
1416 void
1417 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1418 {
1419 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1420
1421 visit_exec_list(&ir->body_instructions, this);
1422
1423 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1424 }
1425
1426 void
1427 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1428 {
1429 switch (ir->mode) {
1430 case ir_loop_jump::jump_break:
1431 emit_asm(NULL, TGSI_OPCODE_BRK);
1432 break;
1433 case ir_loop_jump::jump_continue:
1434 emit_asm(NULL, TGSI_OPCODE_CONT);
1435 break;
1436 }
1437 }
1438
1439
1440 void
1441 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1442 {
1443 assert(0);
1444 (void)ir;
1445 }
1446
1447 void
1448 glsl_to_tgsi_visitor::visit(ir_function *ir)
1449 {
1450 /* Ignore function bodies other than main() -- we shouldn't see calls to
1451 * them since they should all be inlined before we get to glsl_to_tgsi.
1452 */
1453 if (strcmp(ir->name, "main") == 0) {
1454 const ir_function_signature *sig;
1455 exec_list empty;
1456
1457 sig = ir->matching_signature(NULL, &empty, false);
1458
1459 assert(sig);
1460
1461 foreach_in_list(ir_instruction, ir, &sig->body) {
1462 ir->accept(this);
1463 }
1464 }
1465 }
1466
1467 bool
1468 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1469 {
1470 int nonmul_operand = 1 - mul_operand;
1471 st_src_reg a, b, c;
1472 st_dst_reg result_dst;
1473
1474 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1475 if (!expr || expr->operation != ir_binop_mul)
1476 return false;
1477
1478 expr->operands[0]->accept(this);
1479 a = this->result;
1480 expr->operands[1]->accept(this);
1481 b = this->result;
1482 ir->operands[nonmul_operand]->accept(this);
1483 c = this->result;
1484
1485 this->result = get_temp(ir->type);
1486 result_dst = st_dst_reg(this->result);
1487 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1488 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1489
1490 return true;
1491 }
1492
1493 /**
1494 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1495 *
1496 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1497 * implemented using multiplication, and logical-or is implemented using
1498 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1499 * As result, the logical expression (a & !b) can be rewritten as:
1500 *
1501 * - a * !b
1502 * - a * (1 - b)
1503 * - (a * 1) - (a * b)
1504 * - a + -(a * b)
1505 * - a + (a * -b)
1506 *
1507 * This final expression can be implemented as a single MAD(a, -b, a)
1508 * instruction.
1509 */
1510 bool
1511 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1512 {
1513 const int other_operand = 1 - try_operand;
1514 st_src_reg a, b;
1515
1516 ir_expression *expr = ir->operands[try_operand]->as_expression();
1517 if (!expr || expr->operation != ir_unop_logic_not)
1518 return false;
1519
1520 ir->operands[other_operand]->accept(this);
1521 a = this->result;
1522 expr->operands[0]->accept(this);
1523 b = this->result;
1524
1525 b.negate = ~b.negate;
1526
1527 this->result = get_temp(ir->type);
1528 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1529
1530 return true;
1531 }
1532
1533 void
1534 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1535 st_src_reg *reg, int *num_reladdr)
1536 {
1537 if (!reg->reladdr && !reg->reladdr2)
1538 return;
1539
1540 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1541 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1542
1543 if (*num_reladdr != 1) {
1544 st_src_reg temp = get_temp(reg->type == GLSL_TYPE_DOUBLE ? glsl_type::dvec4_type : glsl_type::vec4_type);
1545
1546 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1547 *reg = temp;
1548 }
1549
1550 (*num_reladdr)--;
1551 }
1552
1553 void
1554 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1555 {
1556 st_src_reg op[ARRAY_SIZE(ir->operands)];
1557
1558 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1559 */
1560 if (ir->operation == ir_binop_add) {
1561 if (try_emit_mad(ir, 1))
1562 return;
1563 if (try_emit_mad(ir, 0))
1564 return;
1565 }
1566
1567 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1568 */
1569 if (!native_integers && ir->operation == ir_binop_logic_and) {
1570 if (try_emit_mad_for_and_not(ir, 1))
1571 return;
1572 if (try_emit_mad_for_and_not(ir, 0))
1573 return;
1574 }
1575
1576 if (ir->operation == ir_quadop_vector)
1577 assert(!"ir_quadop_vector should have been lowered");
1578
1579 for (unsigned int operand = 0; operand < ir->get_num_operands(); operand++) {
1580 this->result.file = PROGRAM_UNDEFINED;
1581 ir->operands[operand]->accept(this);
1582 if (this->result.file == PROGRAM_UNDEFINED) {
1583 printf("Failed to get tree for expression operand:\n");
1584 ir->operands[operand]->print();
1585 printf("\n");
1586 exit(1);
1587 }
1588 op[operand] = this->result;
1589
1590 /* Matrix expression operands should have been broken down to vector
1591 * operations already.
1592 */
1593 assert(!ir->operands[operand]->type->is_matrix());
1594 }
1595
1596 visit_expression(ir, op);
1597 }
1598
1599 /* The non-recursive part of the expression visitor lives in a separate
1600 * function and should be prevented from being inlined, to avoid a stack
1601 * explosion when deeply nested expressions are visited.
1602 */
1603 void
1604 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
1605 {
1606 st_src_reg result_src;
1607 st_dst_reg result_dst;
1608
1609 int vector_elements = ir->operands[0]->type->vector_elements;
1610 if (ir->operands[1]) {
1611 vector_elements = MAX2(vector_elements,
1612 ir->operands[1]->type->vector_elements);
1613 }
1614
1615 this->result.file = PROGRAM_UNDEFINED;
1616
1617 /* Storage for our result. Ideally for an assignment we'd be using
1618 * the actual storage for the result here, instead.
1619 */
1620 result_src = get_temp(ir->type);
1621 /* convenience for the emit functions below. */
1622 result_dst = st_dst_reg(result_src);
1623 /* Limit writes to the channels that will be used by result_src later.
1624 * This does limit this temp's use as a temporary for multi-instruction
1625 * sequences.
1626 */
1627 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1628
1629 switch (ir->operation) {
1630 case ir_unop_logic_not:
1631 if (result_dst.type != GLSL_TYPE_FLOAT)
1632 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1633 else {
1634 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1635 * older GPUs implement SEQ using multiple instructions (i915 uses two
1636 * SGE instructions and a MUL instruction). Since our logic values are
1637 * 0.0 and 1.0, 1-x also implements !x.
1638 */
1639 op[0].negate = ~op[0].negate;
1640 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1641 }
1642 break;
1643 case ir_unop_neg:
1644 if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1645 emit_asm(ir, TGSI_OPCODE_I64NEG, result_dst, op[0]);
1646 else if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1647 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1648 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1649 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1650 else {
1651 op[0].negate = ~op[0].negate;
1652 result_src = op[0];
1653 }
1654 break;
1655 case ir_unop_subroutine_to_int:
1656 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1657 break;
1658 case ir_unop_abs:
1659 if (result_dst.type == GLSL_TYPE_FLOAT)
1660 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
1661 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1662 emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
1663 else if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1664 emit_asm(ir, TGSI_OPCODE_I64ABS, result_dst, op[0]);
1665 else
1666 emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
1667 break;
1668 case ir_unop_sign:
1669 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1670 break;
1671 case ir_unop_rcp:
1672 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1673 break;
1674
1675 case ir_unop_exp2:
1676 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1677 break;
1678 case ir_unop_exp:
1679 assert(!"not reached: should be handled by exp_to_exp2");
1680 break;
1681 case ir_unop_log:
1682 assert(!"not reached: should be handled by log_to_log2");
1683 break;
1684 case ir_unop_log2:
1685 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1686 break;
1687 case ir_unop_sin:
1688 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1689 break;
1690 case ir_unop_cos:
1691 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1692 break;
1693 case ir_unop_saturate: {
1694 glsl_to_tgsi_instruction *inst;
1695 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1696 inst->saturate = true;
1697 break;
1698 }
1699
1700 case ir_unop_dFdx:
1701 case ir_unop_dFdx_coarse:
1702 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1703 break;
1704 case ir_unop_dFdx_fine:
1705 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1706 break;
1707 case ir_unop_dFdy:
1708 case ir_unop_dFdy_coarse:
1709 case ir_unop_dFdy_fine:
1710 {
1711 /* The X component contains 1 or -1 depending on whether the framebuffer
1712 * is a FBO or the window system buffer, respectively.
1713 * It is then multiplied with the source operand of DDY.
1714 */
1715 static const gl_state_index transform_y_state[STATE_LENGTH]
1716 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1717
1718 unsigned transform_y_index =
1719 _mesa_add_state_reference(this->prog->Parameters,
1720 transform_y_state);
1721
1722 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1723 transform_y_index,
1724 glsl_type::vec4_type);
1725 transform_y.swizzle = SWIZZLE_XXXX;
1726
1727 st_src_reg temp = get_temp(glsl_type::vec4_type);
1728
1729 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1730 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1731 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1732 break;
1733 }
1734
1735 case ir_unop_frexp_sig:
1736 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1737 break;
1738
1739 case ir_unop_frexp_exp:
1740 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1741 break;
1742
1743 case ir_unop_noise: {
1744 /* At some point, a motivated person could add a better
1745 * implementation of noise. Currently not even the nvidia
1746 * binary drivers do anything more than this. In any case, the
1747 * place to do this is in the GL state tracker, not the poor
1748 * driver.
1749 */
1750 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1751 break;
1752 }
1753
1754 case ir_binop_add:
1755 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1756 break;
1757 case ir_binop_sub:
1758 op[1].negate = ~op[1].negate;
1759 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1760 break;
1761
1762 case ir_binop_mul:
1763 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1764 break;
1765 case ir_binop_div:
1766 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1767 break;
1768 case ir_binop_mod:
1769 if (result_dst.type == GLSL_TYPE_FLOAT)
1770 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1771 else
1772 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1773 break;
1774
1775 case ir_binop_less:
1776 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1777 break;
1778 case ir_binop_greater:
1779 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1780 break;
1781 case ir_binop_lequal:
1782 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1783 break;
1784 case ir_binop_gequal:
1785 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1786 break;
1787 case ir_binop_equal:
1788 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1789 break;
1790 case ir_binop_nequal:
1791 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1792 break;
1793 case ir_binop_all_equal:
1794 /* "==" operator producing a scalar boolean. */
1795 if (ir->operands[0]->type->is_vector() ||
1796 ir->operands[1]->type->is_vector()) {
1797 st_src_reg temp = get_temp(native_integers ?
1798 glsl_type::uvec4_type :
1799 glsl_type::vec4_type);
1800
1801 if (native_integers) {
1802 st_dst_reg temp_dst = st_dst_reg(temp);
1803 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1804
1805 if (ir->operands[0]->type->is_boolean() &&
1806 ir->operands[1]->as_constant() &&
1807 ir->operands[1]->as_constant()->is_one()) {
1808 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1809 } else {
1810 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1811 }
1812
1813 /* Emit 1-3 AND operations to combine the SEQ results. */
1814 switch (ir->operands[0]->type->vector_elements) {
1815 case 2:
1816 break;
1817 case 3:
1818 temp_dst.writemask = WRITEMASK_Y;
1819 temp1.swizzle = SWIZZLE_YYYY;
1820 temp2.swizzle = SWIZZLE_ZZZZ;
1821 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1822 break;
1823 case 4:
1824 temp_dst.writemask = WRITEMASK_X;
1825 temp1.swizzle = SWIZZLE_XXXX;
1826 temp2.swizzle = SWIZZLE_YYYY;
1827 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1828 temp_dst.writemask = WRITEMASK_Y;
1829 temp1.swizzle = SWIZZLE_ZZZZ;
1830 temp2.swizzle = SWIZZLE_WWWW;
1831 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1832 }
1833
1834 temp1.swizzle = SWIZZLE_XXXX;
1835 temp2.swizzle = SWIZZLE_YYYY;
1836 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1837 } else {
1838 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1839
1840 /* After the dot-product, the value will be an integer on the
1841 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1842 */
1843 emit_dp(ir, result_dst, temp, temp, vector_elements);
1844
1845 /* Negating the result of the dot-product gives values on the range
1846 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1847 * This is achieved using SGE.
1848 */
1849 st_src_reg sge_src = result_src;
1850 sge_src.negate = ~sge_src.negate;
1851 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1852 }
1853 } else {
1854 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1855 }
1856 break;
1857 case ir_binop_any_nequal:
1858 /* "!=" operator producing a scalar boolean. */
1859 if (ir->operands[0]->type->is_vector() ||
1860 ir->operands[1]->type->is_vector()) {
1861 st_src_reg temp = get_temp(native_integers ?
1862 glsl_type::uvec4_type :
1863 glsl_type::vec4_type);
1864 if (ir->operands[0]->type->is_boolean() &&
1865 ir->operands[1]->as_constant() &&
1866 ir->operands[1]->as_constant()->is_zero()) {
1867 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1868 } else {
1869 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1870 }
1871
1872 if (native_integers) {
1873 st_dst_reg temp_dst = st_dst_reg(temp);
1874 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1875
1876 /* Emit 1-3 OR operations to combine the SNE results. */
1877 switch (ir->operands[0]->type->vector_elements) {
1878 case 2:
1879 break;
1880 case 3:
1881 temp_dst.writemask = WRITEMASK_Y;
1882 temp1.swizzle = SWIZZLE_YYYY;
1883 temp2.swizzle = SWIZZLE_ZZZZ;
1884 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1885 break;
1886 case 4:
1887 temp_dst.writemask = WRITEMASK_X;
1888 temp1.swizzle = SWIZZLE_XXXX;
1889 temp2.swizzle = SWIZZLE_YYYY;
1890 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1891 temp_dst.writemask = WRITEMASK_Y;
1892 temp1.swizzle = SWIZZLE_ZZZZ;
1893 temp2.swizzle = SWIZZLE_WWWW;
1894 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1895 }
1896
1897 temp1.swizzle = SWIZZLE_XXXX;
1898 temp2.swizzle = SWIZZLE_YYYY;
1899 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1900 } else {
1901 /* After the dot-product, the value will be an integer on the
1902 * range [0,4]. Zero stays zero, and positive values become 1.0.
1903 */
1904 glsl_to_tgsi_instruction *const dp =
1905 emit_dp(ir, result_dst, temp, temp, vector_elements);
1906 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1907 /* The clamping to [0,1] can be done for free in the fragment
1908 * shader with a saturate.
1909 */
1910 dp->saturate = true;
1911 } else {
1912 /* Negating the result of the dot-product gives values on the range
1913 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1914 * achieved using SLT.
1915 */
1916 st_src_reg slt_src = result_src;
1917 slt_src.negate = ~slt_src.negate;
1918 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1919 }
1920 }
1921 } else {
1922 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1923 }
1924 break;
1925
1926 case ir_binop_logic_xor:
1927 if (native_integers)
1928 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1929 else
1930 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1931 break;
1932
1933 case ir_binop_logic_or: {
1934 if (native_integers) {
1935 /* If integers are used as booleans, we can use an actual "or"
1936 * instruction.
1937 */
1938 assert(native_integers);
1939 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1940 } else {
1941 /* After the addition, the value will be an integer on the
1942 * range [0,2]. Zero stays zero, and positive values become 1.0.
1943 */
1944 glsl_to_tgsi_instruction *add =
1945 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1946 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1947 /* The clamping to [0,1] can be done for free in the fragment
1948 * shader with a saturate if floats are being used as boolean values.
1949 */
1950 add->saturate = true;
1951 } else {
1952 /* Negating the result of the addition gives values on the range
1953 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1954 * is achieved using SLT.
1955 */
1956 st_src_reg slt_src = result_src;
1957 slt_src.negate = ~slt_src.negate;
1958 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1959 }
1960 }
1961 break;
1962 }
1963
1964 case ir_binop_logic_and:
1965 /* If native integers are disabled, the bool args are stored as float 0.0
1966 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1967 * actual AND opcode.
1968 */
1969 if (native_integers)
1970 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1971 else
1972 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1973 break;
1974
1975 case ir_binop_dot:
1976 assert(ir->operands[0]->type->is_vector());
1977 assert(ir->operands[0]->type == ir->operands[1]->type);
1978 emit_dp(ir, result_dst, op[0], op[1],
1979 ir->operands[0]->type->vector_elements);
1980 break;
1981
1982 case ir_unop_sqrt:
1983 if (have_sqrt) {
1984 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1985 } else {
1986 /* This is the only instruction sequence that makes the game "Risen"
1987 * render correctly. ABS is not required for the game, but since GLSL
1988 * declares negative values as "undefined", allowing us to do whatever
1989 * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
1990 * behavior.
1991 */
1992 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
1993 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
1994 }
1995 break;
1996 case ir_unop_rsq:
1997 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1998 break;
1999 case ir_unop_i2f:
2000 if (native_integers) {
2001 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
2002 break;
2003 }
2004 /* fallthrough to next case otherwise */
2005 case ir_unop_b2f:
2006 if (native_integers) {
2007 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
2008 break;
2009 }
2010 /* fallthrough to next case otherwise */
2011 case ir_unop_i2u:
2012 case ir_unop_u2i:
2013 case ir_unop_i642u64:
2014 case ir_unop_u642i64:
2015 /* Converting between signed and unsigned integers is a no-op. */
2016 result_src = op[0];
2017 result_src.type = result_dst.type;
2018 break;
2019 case ir_unop_b2i:
2020 if (native_integers) {
2021 /* Booleans are stored as integers using ~0 for true and 0 for false.
2022 * GLSL requires that int(bool) return 1 for true and 0 for false.
2023 * This conversion is done with AND, but it could be done with NEG.
2024 */
2025 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
2026 } else {
2027 /* Booleans and integers are both stored as floats when native
2028 * integers are disabled.
2029 */
2030 result_src = op[0];
2031 }
2032 break;
2033 case ir_unop_f2i:
2034 if (native_integers)
2035 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
2036 else
2037 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2038 break;
2039 case ir_unop_f2u:
2040 if (native_integers)
2041 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
2042 else
2043 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2044 break;
2045 case ir_unop_bitcast_f2i:
2046 case ir_unop_bitcast_f2u:
2047 /* Make sure we don't propagate the negate modifier to integer opcodes. */
2048 if (op[0].negate || op[0].abs)
2049 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2050 else
2051 result_src = op[0];
2052 result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
2053 GLSL_TYPE_UINT;
2054 break;
2055 case ir_unop_bitcast_i2f:
2056 case ir_unop_bitcast_u2f:
2057 result_src = op[0];
2058 result_src.type = GLSL_TYPE_FLOAT;
2059 break;
2060 case ir_unop_f2b:
2061 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
2062 break;
2063 case ir_unop_d2b:
2064 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
2065 break;
2066 case ir_unop_i2b:
2067 if (native_integers)
2068 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
2069 else
2070 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
2071 break;
2072 case ir_unop_bitcast_u642d:
2073 case ir_unop_bitcast_i642d:
2074 result_src = op[0];
2075 result_src.type = GLSL_TYPE_DOUBLE;
2076 break;
2077 case ir_unop_bitcast_d2i64:
2078 result_src = op[0];
2079 result_src.type = GLSL_TYPE_INT64;
2080 break;
2081 case ir_unop_bitcast_d2u64:
2082 result_src = op[0];
2083 result_src.type = GLSL_TYPE_UINT64;
2084 break;
2085 case ir_unop_trunc:
2086 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2087 break;
2088 case ir_unop_ceil:
2089 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
2090 break;
2091 case ir_unop_floor:
2092 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
2093 break;
2094 case ir_unop_round_even:
2095 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
2096 break;
2097 case ir_unop_fract:
2098 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
2099 break;
2100
2101 case ir_binop_min:
2102 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
2103 break;
2104 case ir_binop_max:
2105 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
2106 break;
2107 case ir_binop_pow:
2108 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
2109 break;
2110
2111 case ir_unop_bit_not:
2112 if (native_integers) {
2113 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
2114 break;
2115 }
2116 case ir_unop_u2f:
2117 if (native_integers) {
2118 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
2119 break;
2120 }
2121 case ir_binop_lshift:
2122 case ir_binop_rshift:
2123 if (native_integers) {
2124 unsigned opcode = ir->operation == ir_binop_lshift ? TGSI_OPCODE_SHL
2125 : TGSI_OPCODE_ISHR;
2126 st_src_reg count;
2127
2128 if (glsl_base_type_is_64bit(op[0].type)) {
2129 /* GLSL shift operations have 32-bit shift counts, but TGSI uses
2130 * 64 bits.
2131 */
2132 count = get_temp(glsl_type::u64vec(ir->operands[1]->type->components()));
2133 emit_asm(ir, TGSI_OPCODE_U2I64, st_dst_reg(count), op[1]);
2134 } else {
2135 count = op[1];
2136 }
2137
2138 emit_asm(ir, opcode, result_dst, op[0], count);
2139 break;
2140 }
2141 case ir_binop_bit_and:
2142 if (native_integers) {
2143 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2144 break;
2145 }
2146 case ir_binop_bit_xor:
2147 if (native_integers) {
2148 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
2149 break;
2150 }
2151 case ir_binop_bit_or:
2152 if (native_integers) {
2153 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
2154 break;
2155 }
2156
2157 assert(!"GLSL 1.30 features unsupported");
2158 break;
2159
2160 case ir_binop_ubo_load: {
2161 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2162 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2163 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
2164 unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
2165 st_src_reg index_reg = get_temp(glsl_type::uint_type);
2166 st_src_reg cbuf;
2167
2168 cbuf.type = ir->type->base_type;
2169 cbuf.file = PROGRAM_CONSTANT;
2170 cbuf.index = 0;
2171 cbuf.reladdr = NULL;
2172 cbuf.negate = 0;
2173 cbuf.abs = 0;
2174
2175 assert(ir->type->is_vector() || ir->type->is_scalar());
2176
2177 if (const_offset_ir) {
2178 /* Constant index into constant buffer */
2179 cbuf.reladdr = NULL;
2180 cbuf.index = const_offset / 16;
2181 }
2182 else {
2183 ir_expression *offset_expr = ir->operands[1]->as_expression();
2184 st_src_reg offset = op[1];
2185
2186 /* The OpenGL spec is written in such a way that accesses with
2187 * non-constant offset are almost always vec4-aligned. The only
2188 * exception to this are members of structs in arrays of structs:
2189 * each struct in an array of structs is at least vec4-aligned,
2190 * but single-element and [ui]vec2 members of the struct may be at
2191 * an offset that is not a multiple of 16 bytes.
2192 *
2193 * Here, we extract that offset, relying on previous passes to always
2194 * generate offset expressions of the form (+ expr constant_offset).
2195 *
2196 * Note that the std430 layout, which allows more cases of alignment
2197 * less than vec4 in arrays, is not supported for uniform blocks, so
2198 * we do not have to deal with it here.
2199 */
2200 if (offset_expr && offset_expr->operation == ir_binop_add) {
2201 const_offset_ir = offset_expr->operands[1]->as_constant();
2202 if (const_offset_ir) {
2203 const_offset = const_offset_ir->value.u[0];
2204 cbuf.index = const_offset / 16;
2205 offset_expr->operands[0]->accept(this);
2206 offset = this->result;
2207 }
2208 }
2209
2210 /* Relative/variable index into constant buffer */
2211 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
2212 st_src_reg_for_int(4));
2213 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2214 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
2215 }
2216
2217 if (const_uniform_block) {
2218 /* Constant constant buffer */
2219 cbuf.reladdr2 = NULL;
2220 cbuf.index2D = const_block;
2221 cbuf.has_index2 = true;
2222 }
2223 else {
2224 /* Relative/variable constant buffer */
2225 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2226 cbuf.index2D = 1;
2227 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
2228 cbuf.has_index2 = true;
2229 }
2230
2231 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2232 if (glsl_base_type_is_64bit(cbuf.type))
2233 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2234 const_offset % 16 / 8,
2235 const_offset % 16 / 8,
2236 const_offset % 16 / 8);
2237 else
2238 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2239 const_offset % 16 / 4,
2240 const_offset % 16 / 4,
2241 const_offset % 16 / 4);
2242
2243 if (ir->type->is_boolean()) {
2244 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2245 } else {
2246 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2247 }
2248 break;
2249 }
2250 case ir_triop_lrp:
2251 /* note: we have to reorder the three args here */
2252 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2253 break;
2254 case ir_triop_csel:
2255 if (this->ctx->Const.NativeIntegers)
2256 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2257 else {
2258 op[0].negate = ~op[0].negate;
2259 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2260 }
2261 break;
2262 case ir_triop_bitfield_extract:
2263 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2264 break;
2265 case ir_quadop_bitfield_insert:
2266 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2267 break;
2268 case ir_unop_bitfield_reverse:
2269 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2270 break;
2271 case ir_unop_bit_count:
2272 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2273 break;
2274 case ir_unop_find_msb:
2275 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2276 break;
2277 case ir_unop_find_lsb:
2278 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2279 break;
2280 case ir_binop_imul_high:
2281 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2282 break;
2283 case ir_triop_fma:
2284 /* In theory, MAD is incorrect here. */
2285 if (have_fma)
2286 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2287 else
2288 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2289 break;
2290 case ir_unop_interpolate_at_centroid:
2291 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2292 break;
2293 case ir_binop_interpolate_at_offset: {
2294 /* The y coordinate needs to be flipped for the default fb */
2295 static const gl_state_index transform_y_state[STATE_LENGTH]
2296 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
2297
2298 unsigned transform_y_index =
2299 _mesa_add_state_reference(this->prog->Parameters,
2300 transform_y_state);
2301
2302 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
2303 transform_y_index,
2304 glsl_type::vec4_type);
2305 transform_y.swizzle = SWIZZLE_XXXX;
2306
2307 st_src_reg temp = get_temp(glsl_type::vec2_type);
2308 st_dst_reg temp_dst = st_dst_reg(temp);
2309
2310 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
2311 temp_dst.writemask = WRITEMASK_Y;
2312 emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
2313 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
2314 break;
2315 }
2316 case ir_binop_interpolate_at_sample:
2317 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2318 break;
2319
2320 case ir_unop_d2f:
2321 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2322 break;
2323 case ir_unop_f2d:
2324 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2325 break;
2326 case ir_unop_d2i:
2327 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2328 break;
2329 case ir_unop_i2d:
2330 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2331 break;
2332 case ir_unop_d2u:
2333 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2334 break;
2335 case ir_unop_u2d:
2336 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2337 break;
2338 case ir_unop_unpack_double_2x32:
2339 case ir_unop_pack_double_2x32:
2340 case ir_unop_unpack_int_2x32:
2341 case ir_unop_pack_int_2x32:
2342 case ir_unop_unpack_uint_2x32:
2343 case ir_unop_pack_uint_2x32:
2344 case ir_unop_unpack_sampler_2x32:
2345 case ir_unop_pack_sampler_2x32:
2346 case ir_unop_unpack_image_2x32:
2347 case ir_unop_pack_image_2x32:
2348 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2349 break;
2350
2351 case ir_binop_ldexp:
2352 if (ir->operands[0]->type->is_double()) {
2353 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2354 } else {
2355 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2356 }
2357 break;
2358
2359 case ir_unop_pack_half_2x16:
2360 emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2361 break;
2362 case ir_unop_unpack_half_2x16:
2363 emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2364 break;
2365
2366 case ir_unop_get_buffer_size: {
2367 ir_constant *const_offset = ir->operands[0]->as_constant();
2368 st_src_reg buffer(
2369 PROGRAM_BUFFER,
2370 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
2371 (const_offset ? const_offset->value.u[0] : 0),
2372 GLSL_TYPE_UINT);
2373 if (!const_offset) {
2374 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
2375 *buffer.reladdr = op[0];
2376 emit_arl(ir, sampler_reladdr, op[0]);
2377 }
2378 emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
2379 break;
2380 }
2381
2382 case ir_unop_u2i64:
2383 case ir_unop_u2u64:
2384 case ir_unop_b2i64: {
2385 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2386 st_dst_reg temp_dst = st_dst_reg(temp);
2387 unsigned orig_swz = op[0].swizzle;
2388 /*
2389 * To convert unsigned to 64-bit:
2390 * zero Y channel, copy X channel.
2391 */
2392 temp_dst.writemask = WRITEMASK_Y;
2393 if (vector_elements > 1)
2394 temp_dst.writemask |= WRITEMASK_W;
2395 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2396 temp_dst.writemask = WRITEMASK_X;
2397 if (vector_elements > 1)
2398 temp_dst.writemask |= WRITEMASK_Z;
2399 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 0), GET_SWZ(orig_swz, 0),
2400 GET_SWZ(orig_swz, 1), GET_SWZ(orig_swz, 1));
2401 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2402 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2403 else
2404 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2405 result_src = temp;
2406 result_src.type = GLSL_TYPE_UINT64;
2407 if (vector_elements > 2) {
2408 /* Subtle: We rely on the fact that get_temp here returns the next
2409 * TGSI temporary register directly after the temp register used for
2410 * the first two components, so that the result gets picked up
2411 * automatically.
2412 */
2413 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2414 st_dst_reg temp_dst = st_dst_reg(temp);
2415 temp_dst.writemask = WRITEMASK_Y;
2416 if (vector_elements > 3)
2417 temp_dst.writemask |= WRITEMASK_W;
2418 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2419
2420 temp_dst.writemask = WRITEMASK_X;
2421 if (vector_elements > 3)
2422 temp_dst.writemask |= WRITEMASK_Z;
2423 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 2), GET_SWZ(orig_swz, 2),
2424 GET_SWZ(orig_swz, 3), GET_SWZ(orig_swz, 3));
2425 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2426 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2427 else
2428 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2429 }
2430 break;
2431 }
2432 case ir_unop_i642i:
2433 case ir_unop_u642i:
2434 case ir_unop_u642u:
2435 case ir_unop_i642u: {
2436 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2437 st_dst_reg temp_dst = st_dst_reg(temp);
2438 unsigned orig_swz = op[0].swizzle;
2439 unsigned orig_idx = op[0].index;
2440 int el;
2441 temp_dst.writemask = WRITEMASK_X;
2442
2443 for (el = 0; el < vector_elements; el++) {
2444 unsigned swz = GET_SWZ(orig_swz, el);
2445 if (swz & 1)
2446 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z);
2447 else
2448 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
2449 if (swz > 2)
2450 op[0].index = orig_idx + 1;
2451 op[0].type = GLSL_TYPE_UINT;
2452 temp_dst.writemask = WRITEMASK_X << el;
2453 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2454 }
2455 result_src = temp;
2456 if (ir->operation == ir_unop_u642u || ir->operation == ir_unop_i642u)
2457 result_src.type = GLSL_TYPE_UINT;
2458 else
2459 result_src.type = GLSL_TYPE_INT;
2460 break;
2461 }
2462 case ir_unop_i642b:
2463 emit_asm(ir, TGSI_OPCODE_U64SNE, result_dst, op[0], st_src_reg_for_int(0));
2464 break;
2465 case ir_unop_i642f:
2466 emit_asm(ir, TGSI_OPCODE_I642F, result_dst, op[0]);
2467 break;
2468 case ir_unop_u642f:
2469 emit_asm(ir, TGSI_OPCODE_U642F, result_dst, op[0]);
2470 break;
2471 case ir_unop_i642d:
2472 emit_asm(ir, TGSI_OPCODE_I642D, result_dst, op[0]);
2473 break;
2474 case ir_unop_u642d:
2475 emit_asm(ir, TGSI_OPCODE_U642D, result_dst, op[0]);
2476 break;
2477 case ir_unop_i2i64:
2478 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2479 break;
2480 case ir_unop_f2i64:
2481 emit_asm(ir, TGSI_OPCODE_F2I64, result_dst, op[0]);
2482 break;
2483 case ir_unop_d2i64:
2484 emit_asm(ir, TGSI_OPCODE_D2I64, result_dst, op[0]);
2485 break;
2486 case ir_unop_i2u64:
2487 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2488 break;
2489 case ir_unop_f2u64:
2490 emit_asm(ir, TGSI_OPCODE_F2U64, result_dst, op[0]);
2491 break;
2492 case ir_unop_d2u64:
2493 emit_asm(ir, TGSI_OPCODE_D2U64, result_dst, op[0]);
2494 break;
2495 /* these might be needed */
2496 case ir_unop_pack_snorm_2x16:
2497 case ir_unop_pack_unorm_2x16:
2498 case ir_unop_pack_snorm_4x8:
2499 case ir_unop_pack_unorm_4x8:
2500
2501 case ir_unop_unpack_snorm_2x16:
2502 case ir_unop_unpack_unorm_2x16:
2503 case ir_unop_unpack_snorm_4x8:
2504 case ir_unop_unpack_unorm_4x8:
2505
2506 case ir_quadop_vector:
2507 case ir_binop_vector_extract:
2508 case ir_triop_vector_insert:
2509 case ir_binop_carry:
2510 case ir_binop_borrow:
2511 case ir_unop_ssbo_unsized_array_length:
2512 /* This operation is not supported, or should have already been handled.
2513 */
2514 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2515 break;
2516 }
2517
2518 this->result = result_src;
2519 }
2520
2521
2522 void
2523 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2524 {
2525 st_src_reg src;
2526 int i;
2527 int swizzle[4];
2528
2529 /* Note that this is only swizzles in expressions, not those on the left
2530 * hand side of an assignment, which do write masking. See ir_assignment
2531 * for that.
2532 */
2533
2534 ir->val->accept(this);
2535 src = this->result;
2536 assert(src.file != PROGRAM_UNDEFINED);
2537 assert(ir->type->vector_elements > 0);
2538
2539 for (i = 0; i < 4; i++) {
2540 if (i < ir->type->vector_elements) {
2541 switch (i) {
2542 case 0:
2543 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2544 break;
2545 case 1:
2546 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2547 break;
2548 case 2:
2549 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2550 break;
2551 case 3:
2552 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2553 break;
2554 }
2555 } else {
2556 /* If the type is smaller than a vec4, replicate the last
2557 * channel out.
2558 */
2559 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2560 }
2561 }
2562
2563 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2564
2565 this->result = src;
2566 }
2567
2568 /* Test if the variable is an array. Note that geometry and
2569 * tessellation shader inputs are outputs are always arrays (except
2570 * for patch inputs), so only the array element type is considered.
2571 */
2572 static bool
2573 is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
2574 {
2575 const glsl_type *type = var->type;
2576
2577 *remove_array = false;
2578
2579 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2580 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2581 return false;
2582
2583 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2584 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2585 stage == MESA_SHADER_TESS_CTRL) &&
2586 !var->data.patch) {
2587 if (!var->type->is_array())
2588 return false; /* a system value probably */
2589
2590 type = var->type->fields.array;
2591 *remove_array = true;
2592 }
2593
2594 return type->is_array() || type->is_matrix();
2595 }
2596
2597 static unsigned
2598 st_translate_interp_loc(ir_variable *var)
2599 {
2600 if (var->data.centroid)
2601 return TGSI_INTERPOLATE_LOC_CENTROID;
2602 else if (var->data.sample)
2603 return TGSI_INTERPOLATE_LOC_SAMPLE;
2604 else
2605 return TGSI_INTERPOLATE_LOC_CENTER;
2606 }
2607
2608 void
2609 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2610 {
2611 variable_storage *entry = find_variable_storage(ir->var);
2612 ir_variable *var = ir->var;
2613 bool remove_array;
2614
2615 if (!entry) {
2616 switch (var->data.mode) {
2617 case ir_var_uniform:
2618 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2619 var->data.param_index);
2620 _mesa_hash_table_insert(this->variables, var, entry);
2621 break;
2622 case ir_var_shader_in: {
2623 /* The linker assigns locations for varyings and attributes,
2624 * including deprecated builtins (like gl_Color), user-assign
2625 * generic attributes (glBindVertexLocation), and
2626 * user-defined varyings.
2627 */
2628 assert(var->data.location != -1);
2629
2630 const glsl_type *type_without_array = var->type->without_array();
2631 struct inout_decl *decl = &inputs[num_inputs];
2632 unsigned component = var->data.location_frac;
2633 unsigned num_components;
2634 num_inputs++;
2635
2636 if (type_without_array->is_64bit())
2637 component = component / 2;
2638 if (type_without_array->vector_elements)
2639 num_components = type_without_array->vector_elements;
2640 else
2641 num_components = 4;
2642
2643 decl->mesa_index = var->data.location;
2644 decl->interp = (glsl_interp_mode) var->data.interpolation;
2645 decl->interp_loc = st_translate_interp_loc(var);
2646 decl->base_type = type_without_array->base_type;
2647 decl->usage_mask = u_bit_consecutive(component, num_components);
2648
2649 if (is_inout_array(shader->Stage, var, &remove_array)) {
2650 decl->array_id = num_input_arrays + 1;
2651 num_input_arrays++;
2652 } else {
2653 decl->array_id = 0;
2654 }
2655
2656 if (remove_array)
2657 decl->size = type_size(var->type->fields.array);
2658 else
2659 decl->size = type_size(var->type);
2660
2661 entry = new(mem_ctx) variable_storage(var,
2662 PROGRAM_INPUT,
2663 decl->mesa_index,
2664 decl->array_id);
2665 entry->component = component;
2666
2667 _mesa_hash_table_insert(this->variables, var, entry);
2668
2669 break;
2670 }
2671 case ir_var_shader_out: {
2672 assert(var->data.location != -1);
2673
2674 const glsl_type *type_without_array = var->type->without_array();
2675 struct inout_decl *decl = &outputs[num_outputs];
2676 unsigned component = var->data.location_frac;
2677 unsigned num_components;
2678 num_outputs++;
2679
2680 if (type_without_array->is_64bit())
2681 component = component / 2;
2682 if (type_without_array->vector_elements)
2683 num_components = type_without_array->vector_elements;
2684 else
2685 num_components = 4;
2686
2687 decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
2688 decl->base_type = type_without_array->base_type;
2689 decl->usage_mask = u_bit_consecutive(component, num_components);
2690 if (var->data.stream & (1u << 31)) {
2691 decl->gs_out_streams = var->data.stream & ~(1u << 31);
2692 } else {
2693 assert(var->data.stream < 4);
2694 decl->gs_out_streams = 0;
2695 for (unsigned i = 0; i < num_components; ++i)
2696 decl->gs_out_streams |= var->data.stream << (2 * (component + i));
2697 }
2698
2699 if (is_inout_array(shader->Stage, var, &remove_array)) {
2700 decl->array_id = num_output_arrays + 1;
2701 num_output_arrays++;
2702 } else {
2703 decl->array_id = 0;
2704 }
2705
2706 if (remove_array)
2707 decl->size = type_size(var->type->fields.array);
2708 else
2709 decl->size = type_size(var->type);
2710
2711 if (var->data.fb_fetch_output) {
2712 st_dst_reg dst = st_dst_reg(get_temp(var->type));
2713 st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
2714 var->type, component, decl->array_id);
2715 emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
2716 entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
2717 dst.array_id);
2718 } else {
2719 entry = new(mem_ctx) variable_storage(var,
2720 PROGRAM_OUTPUT,
2721 decl->mesa_index,
2722 decl->array_id);
2723 }
2724 entry->component = component;
2725
2726 _mesa_hash_table_insert(this->variables, var, entry);
2727
2728 break;
2729 }
2730 case ir_var_system_value:
2731 entry = new(mem_ctx) variable_storage(var,
2732 PROGRAM_SYSTEM_VALUE,
2733 var->data.location);
2734 break;
2735 case ir_var_auto:
2736 case ir_var_temporary:
2737 st_src_reg src = get_temp(var->type);
2738
2739 entry = new(mem_ctx) variable_storage(var, src.file, src.index,
2740 src.array_id);
2741 _mesa_hash_table_insert(this->variables, var, entry);
2742
2743 break;
2744 }
2745
2746 if (!entry) {
2747 printf("Failed to make storage for %s\n", var->name);
2748 exit(1);
2749 }
2750 }
2751
2752 this->result = st_src_reg(entry->file, entry->index, var->type,
2753 entry->component, entry->array_id);
2754 if (this->shader->Stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in && var->type->is_double())
2755 this->result.is_double_vertex_input = true;
2756 if (!native_integers)
2757 this->result.type = GLSL_TYPE_FLOAT;
2758 }
2759
2760 static void
2761 shrink_array_declarations(struct inout_decl *decls, unsigned count,
2762 GLbitfield64* usage_mask,
2763 GLbitfield64 double_usage_mask,
2764 GLbitfield* patch_usage_mask)
2765 {
2766 unsigned i;
2767 int j;
2768
2769 /* Fix array declarations by removing unused array elements at both ends
2770 * of the arrays. For example, mat4[3] where only mat[1] is used.
2771 */
2772 for (i = 0; i < count; i++) {
2773 struct inout_decl *decl = &decls[i];
2774 if (!decl->array_id)
2775 continue;
2776
2777 /* Shrink the beginning. */
2778 for (j = 0; j < (int)decl->size; j++) {
2779 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2780 if (*patch_usage_mask &
2781 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2782 break;
2783 }
2784 else {
2785 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2786 break;
2787 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2788 break;
2789 }
2790
2791 decl->mesa_index++;
2792 decl->size--;
2793 j--;
2794 }
2795
2796 /* Shrink the end. */
2797 for (j = decl->size-1; j >= 0; j--) {
2798 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2799 if (*patch_usage_mask &
2800 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2801 break;
2802 }
2803 else {
2804 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2805 break;
2806 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2807 break;
2808 }
2809
2810 decl->size--;
2811 }
2812
2813 /* When not all entries of an array are accessed, we mark them as used
2814 * here anyway, to ensure that the input/output mapping logic doesn't get
2815 * confused.
2816 *
2817 * TODO This happens when an array isn't used via indirect access, which
2818 * some game ports do (at least eON-based). There is an optimization
2819 * opportunity here by replacing the array declaration with non-array
2820 * declarations of those slots that are actually used.
2821 */
2822 for (j = 1; j < (int)decl->size; ++j) {
2823 if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2824 *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2825 else
2826 *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2827 }
2828 }
2829 }
2830
2831 void
2832 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2833 {
2834 ir_constant *index;
2835 st_src_reg src;
2836 int element_size = type_size(ir->type);
2837 bool is_2D = false;
2838
2839 index = ir->array_index->constant_expression_value();
2840
2841 ir->array->accept(this);
2842 src = this->result;
2843
2844 if (ir->array->ir_type != ir_type_dereference_array) {
2845 switch (this->prog->Target) {
2846 case GL_TESS_CONTROL_PROGRAM_NV:
2847 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2848 !ir->variable_referenced()->data.patch;
2849 break;
2850 case GL_TESS_EVALUATION_PROGRAM_NV:
2851 is_2D = src.file == PROGRAM_INPUT &&
2852 !ir->variable_referenced()->data.patch;
2853 break;
2854 case GL_GEOMETRY_PROGRAM_NV:
2855 is_2D = src.file == PROGRAM_INPUT;
2856 break;
2857 }
2858 }
2859
2860 if (is_2D)
2861 element_size = 1;
2862
2863 if (index) {
2864
2865 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
2866 src.file == PROGRAM_INPUT)
2867 element_size = attrib_type_size(ir->type, true);
2868 if (is_2D) {
2869 src.index2D = index->value.i[0];
2870 src.has_index2 = true;
2871 } else
2872 src.index += index->value.i[0] * element_size;
2873 } else {
2874 /* Variable index array dereference. It eats the "vec4" of the
2875 * base of the array and an index that offsets the TGSI register
2876 * index.
2877 */
2878 ir->array_index->accept(this);
2879
2880 st_src_reg index_reg;
2881
2882 if (element_size == 1) {
2883 index_reg = this->result;
2884 } else {
2885 index_reg = get_temp(native_integers ?
2886 glsl_type::int_type : glsl_type::float_type);
2887
2888 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2889 this->result, st_src_reg_for_type(index_reg.type, element_size));
2890 }
2891
2892 /* If there was already a relative address register involved, add the
2893 * new and the old together to get the new offset.
2894 */
2895 if (!is_2D && src.reladdr != NULL) {
2896 st_src_reg accum_reg = get_temp(native_integers ?
2897 glsl_type::int_type : glsl_type::float_type);
2898
2899 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2900 index_reg, *src.reladdr);
2901
2902 index_reg = accum_reg;
2903 }
2904
2905 if (is_2D) {
2906 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2907 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2908 src.index2D = 0;
2909 src.has_index2 = true;
2910 } else {
2911 src.reladdr = ralloc(mem_ctx, st_src_reg);
2912 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2913 }
2914 }
2915
2916 /* Change the register type to the element type of the array. */
2917 src.type = ir->type->base_type;
2918
2919 this->result = src;
2920 }
2921
2922 void
2923 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2924 {
2925 unsigned int i;
2926 const glsl_type *struct_type = ir->record->type;
2927 int offset = 0;
2928
2929 ir->record->accept(this);
2930
2931 for (i = 0; i < struct_type->length; i++) {
2932 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2933 break;
2934 offset += type_size(struct_type->fields.structure[i].type);
2935 }
2936
2937 /* If the type is smaller than a vec4, replicate the last channel out. */
2938 if (ir->type->is_scalar() || ir->type->is_vector())
2939 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2940 else
2941 this->result.swizzle = SWIZZLE_NOOP;
2942
2943 this->result.index += offset;
2944 this->result.type = ir->type->base_type;
2945 }
2946
2947 /**
2948 * We want to be careful in assignment setup to hit the actual storage
2949 * instead of potentially using a temporary like we might with the
2950 * ir_dereference handler.
2951 */
2952 static st_dst_reg
2953 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
2954 {
2955 /* The LHS must be a dereference. If the LHS is a variable indexed array
2956 * access of a vector, it must be separated into a series conditional moves
2957 * before reaching this point (see ir_vec_index_to_cond_assign).
2958 */
2959 assert(ir->as_dereference());
2960 ir_dereference_array *deref_array = ir->as_dereference_array();
2961 if (deref_array) {
2962 assert(!deref_array->array->type->is_vector());
2963 }
2964
2965 /* Use the rvalue deref handler for the most part. We write swizzles using
2966 * the writemask, but we do extract the base component for enhanced layouts
2967 * from the source swizzle.
2968 */
2969 ir->accept(v);
2970 *component = GET_SWZ(v->result.swizzle, 0);
2971 return st_dst_reg(v->result);
2972 }
2973
2974 /**
2975 * Process the condition of a conditional assignment
2976 *
2977 * Examines the condition of a conditional assignment to generate the optimal
2978 * first operand of a \c CMP instruction. If the condition is a relational
2979 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2980 * used as the source for the \c CMP instruction. Otherwise the comparison
2981 * is processed to a boolean result, and the boolean result is used as the
2982 * operand to the CMP instruction.
2983 */
2984 bool
2985 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2986 {
2987 ir_rvalue *src_ir = ir;
2988 bool negate = true;
2989 bool switch_order = false;
2990
2991 ir_expression *const expr = ir->as_expression();
2992
2993 if (native_integers) {
2994 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2995 enum glsl_base_type type = expr->operands[0]->type->base_type;
2996 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2997 type == GLSL_TYPE_BOOL) {
2998 if (expr->operation == ir_binop_equal) {
2999 if (expr->operands[0]->is_zero()) {
3000 src_ir = expr->operands[1];
3001 switch_order = true;
3002 }
3003 else if (expr->operands[1]->is_zero()) {
3004 src_ir = expr->operands[0];
3005 switch_order = true;
3006 }
3007 }
3008 else if (expr->operation == ir_binop_nequal) {
3009 if (expr->operands[0]->is_zero()) {
3010 src_ir = expr->operands[1];
3011 }
3012 else if (expr->operands[1]->is_zero()) {
3013 src_ir = expr->operands[0];
3014 }
3015 }
3016 }
3017 }
3018
3019 src_ir->accept(this);
3020 return switch_order;
3021 }
3022
3023 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
3024 bool zero_on_left = false;
3025
3026 if (expr->operands[0]->is_zero()) {
3027 src_ir = expr->operands[1];
3028 zero_on_left = true;
3029 } else if (expr->operands[1]->is_zero()) {
3030 src_ir = expr->operands[0];
3031 zero_on_left = false;
3032 }
3033
3034 /* a is - 0 + - 0 +
3035 * (a < 0) T F F ( a < 0) T F F
3036 * (0 < a) F F T (-a < 0) F F T
3037 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
3038 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
3039 * (a > 0) F F T (-a < 0) F F T
3040 * (0 > a) T F F ( a < 0) T F F
3041 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
3042 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
3043 *
3044 * Note that exchanging the order of 0 and 'a' in the comparison simply
3045 * means that the value of 'a' should be negated.
3046 */
3047 if (src_ir != ir) {
3048 switch (expr->operation) {
3049 case ir_binop_less:
3050 switch_order = false;
3051 negate = zero_on_left;
3052 break;
3053
3054 case ir_binop_greater:
3055 switch_order = false;
3056 negate = !zero_on_left;
3057 break;
3058
3059 case ir_binop_lequal:
3060 switch_order = true;
3061 negate = !zero_on_left;
3062 break;
3063
3064 case ir_binop_gequal:
3065 switch_order = true;
3066 negate = zero_on_left;
3067 break;
3068
3069 default:
3070 /* This isn't the right kind of comparison afterall, so make sure
3071 * the whole condition is visited.
3072 */
3073 src_ir = ir;
3074 break;
3075 }
3076 }
3077 }
3078
3079 src_ir->accept(this);
3080
3081 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
3082 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
3083 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
3084 * computing the condition.
3085 */
3086 if (negate)
3087 this->result.negate = ~this->result.negate;
3088
3089 return switch_order;
3090 }
3091
3092 void
3093 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
3094 st_dst_reg *l, st_src_reg *r,
3095 st_src_reg *cond, bool cond_swap)
3096 {
3097 if (type->is_record()) {
3098 for (unsigned int i = 0; i < type->length; i++) {
3099 emit_block_mov(ir, type->fields.structure[i].type, l, r,
3100 cond, cond_swap);
3101 }
3102 return;
3103 }
3104
3105 if (type->is_array()) {
3106 for (unsigned int i = 0; i < type->length; i++) {
3107 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
3108 }
3109 return;
3110 }
3111
3112 if (type->is_matrix()) {
3113 const struct glsl_type *vec_type;
3114
3115 vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
3116 type->vector_elements, 1);
3117
3118 for (int i = 0; i < type->matrix_columns; i++) {
3119 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
3120 }
3121 return;
3122 }
3123
3124 assert(type->is_scalar() || type->is_vector());
3125
3126 l->type = type->base_type;
3127 r->type = type->base_type;
3128 if (cond) {
3129 st_src_reg l_src = st_src_reg(*l);
3130 l_src.swizzle = swizzle_for_size(type->vector_elements);
3131
3132 if (native_integers) {
3133 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
3134 cond_swap ? l_src : *r,
3135 cond_swap ? *r : l_src);
3136 } else {
3137 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
3138 cond_swap ? l_src : *r,
3139 cond_swap ? *r : l_src);
3140 }
3141 } else {
3142 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
3143 }
3144 l->index++;
3145 r->index++;
3146 if (type->is_dual_slot()) {
3147 l->index++;
3148 if (r->is_double_vertex_input == false)
3149 r->index++;
3150 }
3151 }
3152
3153 void
3154 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
3155 {
3156 int dst_component;
3157 st_dst_reg l;
3158 st_src_reg r;
3159
3160 /* all generated instructions need to be flaged as precise */
3161 this->precise = is_precise(ir->lhs->variable_referenced());
3162 ir->rhs->accept(this);
3163 r = this->result;
3164
3165 l = get_assignment_lhs(ir->lhs, this, &dst_component);
3166
3167 {
3168 int swizzles[4];
3169 int first_enabled_chan = 0;
3170 int rhs_chan = 0;
3171 ir_variable *variable = ir->lhs->variable_referenced();
3172
3173 if (shader->Stage == MESA_SHADER_FRAGMENT &&
3174 variable->data.mode == ir_var_shader_out &&
3175 (variable->data.location == FRAG_RESULT_DEPTH ||
3176 variable->data.location == FRAG_RESULT_STENCIL)) {
3177 assert(ir->lhs->type->is_scalar());
3178 assert(ir->write_mask == WRITEMASK_X);
3179
3180 if (variable->data.location == FRAG_RESULT_DEPTH)
3181 l.writemask = WRITEMASK_Z;
3182 else {
3183 assert(variable->data.location == FRAG_RESULT_STENCIL);
3184 l.writemask = WRITEMASK_Y;
3185 }
3186 } else if (ir->write_mask == 0) {
3187 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
3188
3189 unsigned num_elements = ir->lhs->type->without_array()->vector_elements;
3190
3191 if (num_elements) {
3192 l.writemask = u_bit_consecutive(0, num_elements);
3193 } else {
3194 /* The type is a struct or an array of (array of) structs. */
3195 l.writemask = WRITEMASK_XYZW;
3196 }
3197 } else {
3198 l.writemask = ir->write_mask;
3199 }
3200
3201 for (int i = 0; i < 4; i++) {
3202 if (l.writemask & (1 << i)) {
3203 first_enabled_chan = GET_SWZ(r.swizzle, i);
3204 break;
3205 }
3206 }
3207
3208 l.writemask = l.writemask << dst_component;
3209
3210 /* Swizzle a small RHS vector into the channels being written.
3211 *
3212 * glsl ir treats write_mask as dictating how many channels are
3213 * present on the RHS while TGSI treats write_mask as just
3214 * showing which channels of the vec4 RHS get written.
3215 */
3216 for (int i = 0; i < 4; i++) {
3217 if (l.writemask & (1 << i))
3218 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
3219 else
3220 swizzles[i] = first_enabled_chan;
3221 }
3222 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
3223 swizzles[2], swizzles[3]);
3224 }
3225
3226 assert(l.file != PROGRAM_UNDEFINED);
3227 assert(r.file != PROGRAM_UNDEFINED);
3228
3229 if (ir->condition) {
3230 const bool switch_order = this->process_move_condition(ir->condition);
3231 st_src_reg condition = this->result;
3232
3233 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
3234 } else if (ir->rhs->as_expression() &&
3235 this->instructions.get_tail() &&
3236 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
3237 !((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
3238 type_size(ir->lhs->type) == 1 &&
3239 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
3240 /* To avoid emitting an extra MOV when assigning an expression to a
3241 * variable, emit the last instruction of the expression again, but
3242 * replace the destination register with the target of the assignment.
3243 * Dead code elimination will remove the original instruction.
3244 */
3245 glsl_to_tgsi_instruction *inst, *new_inst;
3246 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
3247 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
3248 new_inst->saturate = inst->saturate;
3249 inst->dead_mask = inst->dst[0].writemask;
3250 } else {
3251 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
3252 }
3253 this->precise = 0;
3254 }
3255
3256
3257 void
3258 glsl_to_tgsi_visitor::visit(ir_constant *ir)
3259 {
3260 st_src_reg src;
3261 GLdouble stack_vals[4] = { 0 };
3262 gl_constant_value *values = (gl_constant_value *) stack_vals;
3263 GLenum gl_type = GL_NONE;
3264 unsigned int i;
3265 static int in_array = 0;
3266 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
3267
3268 /* Unfortunately, 4 floats is all we can get into
3269 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
3270 * aggregate constant and move each constant value into it. If we
3271 * get lucky, copy propagation will eliminate the extra moves.
3272 */
3273 if (ir->type->is_record()) {
3274 st_src_reg temp_base = get_temp(ir->type);
3275 st_dst_reg temp = st_dst_reg(temp_base);
3276
3277 foreach_in_list(ir_constant, field_value, &ir->components) {
3278 int size = type_size(field_value->type);
3279
3280 assert(size > 0);
3281
3282 field_value->accept(this);
3283 src = this->result;
3284
3285 for (i = 0; i < (unsigned int)size; i++) {
3286 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3287
3288 src.index++;
3289 temp.index++;
3290 }
3291 }
3292 this->result = temp_base;
3293 return;
3294 }
3295
3296 if (ir->type->is_array()) {
3297 st_src_reg temp_base = get_temp(ir->type);
3298 st_dst_reg temp = st_dst_reg(temp_base);
3299 int size = type_size(ir->type->fields.array);
3300
3301 assert(size > 0);
3302 in_array++;
3303
3304 for (i = 0; i < ir->type->length; i++) {
3305 ir->array_elements[i]->accept(this);
3306 src = this->result;
3307 for (int j = 0; j < size; j++) {
3308 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3309
3310 src.index++;
3311 temp.index++;
3312 }
3313 }
3314 this->result = temp_base;
3315 in_array--;
3316 return;
3317 }
3318
3319 if (ir->type->is_matrix()) {
3320 st_src_reg mat = get_temp(ir->type);
3321 st_dst_reg mat_column = st_dst_reg(mat);
3322
3323 for (i = 0; i < ir->type->matrix_columns; i++) {
3324 switch (ir->type->base_type) {
3325 case GLSL_TYPE_FLOAT:
3326 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
3327
3328 src = st_src_reg(file, -1, ir->type->base_type);
3329 src.index = add_constant(file,
3330 values,
3331 ir->type->vector_elements,
3332 GL_FLOAT,
3333 &src.swizzle);
3334 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3335 break;
3336 case GLSL_TYPE_DOUBLE:
3337 values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
3338 src = st_src_reg(file, -1, ir->type->base_type);
3339 src.index = add_constant(file,
3340 values,
3341 ir->type->vector_elements,
3342 GL_DOUBLE,
3343 &src.swizzle);
3344 if (ir->type->vector_elements >= 2) {
3345 mat_column.writemask = WRITEMASK_XY;
3346 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3347 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3348 } else {
3349 mat_column.writemask = WRITEMASK_X;
3350 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
3351 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3352 }
3353 src.index++;
3354 if (ir->type->vector_elements > 2) {
3355 if (ir->type->vector_elements == 4) {
3356 mat_column.writemask = WRITEMASK_ZW;
3357 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3358 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3359 } else {
3360 mat_column.writemask = WRITEMASK_Z;
3361 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
3362 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3363 mat_column.writemask = WRITEMASK_XYZW;
3364 src.swizzle = SWIZZLE_XYZW;
3365 }
3366 mat_column.index++;
3367 }
3368 break;
3369 default:
3370 unreachable("Illegal matrix constant type.\n");
3371 break;
3372 }
3373 mat_column.index++;
3374 }
3375 this->result = mat;
3376 return;
3377 }
3378
3379 switch (ir->type->base_type) {
3380 case GLSL_TYPE_FLOAT:
3381 gl_type = GL_FLOAT;
3382 for (i = 0; i < ir->type->vector_elements; i++) {
3383 values[i].f = ir->value.f[i];
3384 }
3385 break;
3386 case GLSL_TYPE_DOUBLE:
3387 gl_type = GL_DOUBLE;
3388 for (i = 0; i < ir->type->vector_elements; i++) {
3389 memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
3390 }
3391 break;
3392 case GLSL_TYPE_INT64:
3393 gl_type = GL_INT64_ARB;
3394 for (i = 0; i < ir->type->vector_elements; i++) {
3395 memcpy(&values[i * 2], &ir->value.d[i], sizeof(int64_t));
3396 }
3397 break;
3398 case GLSL_TYPE_UINT64:
3399 gl_type = GL_UNSIGNED_INT64_ARB;
3400 for (i = 0; i < ir->type->vector_elements; i++) {
3401 memcpy(&values[i * 2], &ir->value.d[i], sizeof(uint64_t));
3402 }
3403 break;
3404 case GLSL_TYPE_UINT:
3405 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3406 for (i = 0; i < ir->type->vector_elements; i++) {
3407 if (native_integers)
3408 values[i].u = ir->value.u[i];
3409 else
3410 values[i].f = ir->value.u[i];
3411 }
3412 break;
3413 case GLSL_TYPE_INT:
3414 gl_type = native_integers ? GL_INT : GL_FLOAT;
3415 for (i = 0; i < ir->type->vector_elements; i++) {
3416 if (native_integers)
3417 values[i].i = ir->value.i[i];
3418 else
3419 values[i].f = ir->value.i[i];
3420 }
3421 break;
3422 case GLSL_TYPE_BOOL:
3423 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3424 for (i = 0; i < ir->type->vector_elements; i++) {
3425 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3426 }
3427 break;
3428 default:
3429 assert(!"Non-float/uint/int/bool constant");
3430 }
3431
3432 this->result = st_src_reg(file, -1, ir->type);
3433 this->result.index = add_constant(file,
3434 values,
3435 ir->type->vector_elements,
3436 gl_type,
3437 &this->result.swizzle);
3438 }
3439
3440 void
3441 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3442 {
3443 exec_node *param = ir->actual_parameters.get_head();
3444 ir_dereference *deref = static_cast<ir_dereference *>(param);
3445 ir_variable *location = deref->variable_referenced();
3446
3447 st_src_reg buffer(
3448 PROGRAM_BUFFER, location->data.binding, GLSL_TYPE_ATOMIC_UINT);
3449
3450 /* Calculate the surface offset */
3451 st_src_reg offset;
3452 unsigned array_size = 0, base = 0;
3453 uint16_t index = 0;
3454
3455 get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
3456
3457 if (offset.file != PROGRAM_UNDEFINED) {
3458 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
3459 offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
3460 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
3461 offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
3462 } else {
3463 offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
3464 }
3465
3466 ir->return_deref->accept(this);
3467 st_dst_reg dst(this->result);
3468 dst.writemask = WRITEMASK_X;
3469
3470 glsl_to_tgsi_instruction *inst;
3471
3472 if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
3473 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
3474 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
3475 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3476 st_src_reg_for_int(1));
3477 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
3478 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3479 st_src_reg_for_int(-1));
3480 emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
3481 } else {
3482 param = param->get_next();
3483 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3484 val->accept(this);
3485
3486 st_src_reg data = this->result, data2 = undef_src;
3487 unsigned opcode;
3488 switch (ir->callee->intrinsic_id) {
3489 case ir_intrinsic_atomic_counter_add:
3490 opcode = TGSI_OPCODE_ATOMUADD;
3491 break;
3492 case ir_intrinsic_atomic_counter_min:
3493 opcode = TGSI_OPCODE_ATOMIMIN;
3494 break;
3495 case ir_intrinsic_atomic_counter_max:
3496 opcode = TGSI_OPCODE_ATOMIMAX;
3497 break;
3498 case ir_intrinsic_atomic_counter_and:
3499 opcode = TGSI_OPCODE_ATOMAND;
3500 break;
3501 case ir_intrinsic_atomic_counter_or:
3502 opcode = TGSI_OPCODE_ATOMOR;
3503 break;
3504 case ir_intrinsic_atomic_counter_xor:
3505 opcode = TGSI_OPCODE_ATOMXOR;
3506 break;
3507 case ir_intrinsic_atomic_counter_exchange:
3508 opcode = TGSI_OPCODE_ATOMXCHG;
3509 break;
3510 case ir_intrinsic_atomic_counter_comp_swap: {
3511 opcode = TGSI_OPCODE_ATOMCAS;
3512 param = param->get_next();
3513 val = ((ir_instruction *)param)->as_rvalue();
3514 val->accept(this);
3515 data2 = this->result;
3516 break;
3517 }
3518 default:
3519 assert(!"Unexpected intrinsic");
3520 return;
3521 }
3522
3523 inst = emit_asm(ir, opcode, dst, offset, data, data2);
3524 }
3525
3526 inst->resource = buffer;
3527 }
3528
3529 void
3530 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
3531 {
3532 exec_node *param = ir->actual_parameters.get_head();
3533
3534 ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
3535
3536 param = param->get_next();
3537 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3538
3539 ir_constant *const_block = block->as_constant();
3540
3541 st_src_reg buffer(
3542 PROGRAM_BUFFER,
3543 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
3544 (const_block ? const_block->value.u[0] : 0),
3545 GLSL_TYPE_UINT);
3546
3547 if (!const_block) {
3548 block->accept(this);
3549 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3550 *buffer.reladdr = this->result;
3551 emit_arl(ir, sampler_reladdr, this->result);
3552 }
3553
3554 /* Calculate the surface offset */
3555 offset->accept(this);
3556 st_src_reg off = this->result;
3557
3558 st_dst_reg dst = undef_dst;
3559 if (ir->return_deref) {
3560 ir->return_deref->accept(this);
3561 dst = st_dst_reg(this->result);
3562 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3563 }
3564
3565 glsl_to_tgsi_instruction *inst;
3566
3567 if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
3568 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3569 if (dst.type == GLSL_TYPE_BOOL)
3570 emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst), st_src_reg_for_int(0));
3571 } else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
3572 param = param->get_next();
3573 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3574 val->accept(this);
3575
3576 param = param->get_next();
3577 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3578 assert(write_mask);
3579 dst.writemask = write_mask->value.u[0];
3580
3581 dst.type = this->result.type;
3582 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3583 } else {
3584 param = param->get_next();
3585 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3586 val->accept(this);
3587
3588 st_src_reg data = this->result, data2 = undef_src;
3589 unsigned opcode;
3590 switch (ir->callee->intrinsic_id) {
3591 case ir_intrinsic_ssbo_atomic_add:
3592 opcode = TGSI_OPCODE_ATOMUADD;
3593 break;
3594 case ir_intrinsic_ssbo_atomic_min:
3595 opcode = TGSI_OPCODE_ATOMIMIN;
3596 break;
3597 case ir_intrinsic_ssbo_atomic_max:
3598 opcode = TGSI_OPCODE_ATOMIMAX;
3599 break;
3600 case ir_intrinsic_ssbo_atomic_and:
3601 opcode = TGSI_OPCODE_ATOMAND;
3602 break;
3603 case ir_intrinsic_ssbo_atomic_or:
3604 opcode = TGSI_OPCODE_ATOMOR;
3605 break;
3606 case ir_intrinsic_ssbo_atomic_xor:
3607 opcode = TGSI_OPCODE_ATOMXOR;
3608 break;
3609 case ir_intrinsic_ssbo_atomic_exchange:
3610 opcode = TGSI_OPCODE_ATOMXCHG;
3611 break;
3612 case ir_intrinsic_ssbo_atomic_comp_swap:
3613 opcode = TGSI_OPCODE_ATOMCAS;
3614 param = param->get_next();
3615 val = ((ir_instruction *)param)->as_rvalue();
3616 val->accept(this);
3617 data2 = this->result;
3618 break;
3619 default:
3620 assert(!"Unexpected intrinsic");
3621 return;
3622 }
3623
3624 inst = emit_asm(ir, opcode, dst, off, data, data2);
3625 }
3626
3627 param = param->get_next();
3628 ir_constant *access = NULL;
3629 if (!param->is_tail_sentinel()) {
3630 access = ((ir_instruction *)param)->as_constant();
3631 assert(access);
3632 }
3633
3634 /* The emit_asm() might have actually split the op into pieces, e.g. for
3635 * double stores. We have to go back and fix up all the generated ops.
3636 */
3637 unsigned op = inst->op;
3638 do {
3639 inst->resource = buffer;
3640 if (access)
3641 inst->buffer_access = access->value.u[0];
3642
3643 if (inst == this->instructions.get_head_raw())
3644 break;
3645 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3646
3647 if (inst->op == TGSI_OPCODE_UADD) {
3648 if (inst == this->instructions.get_head_raw())
3649 break;
3650 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3651 }
3652 } while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
3653 }
3654
3655 void
3656 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
3657 {
3658 switch (ir->callee->intrinsic_id) {
3659 case ir_intrinsic_memory_barrier:
3660 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3661 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3662 TGSI_MEMBAR_ATOMIC_BUFFER |
3663 TGSI_MEMBAR_SHADER_IMAGE |
3664 TGSI_MEMBAR_SHARED));
3665 break;
3666 case ir_intrinsic_memory_barrier_atomic_counter:
3667 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3668 st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
3669 break;
3670 case ir_intrinsic_memory_barrier_buffer:
3671 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3672 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
3673 break;
3674 case ir_intrinsic_memory_barrier_image:
3675 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3676 st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
3677 break;
3678 case ir_intrinsic_memory_barrier_shared:
3679 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3680 st_src_reg_for_int(TGSI_MEMBAR_SHARED));
3681 break;
3682 case ir_intrinsic_group_memory_barrier:
3683 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3684 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3685 TGSI_MEMBAR_ATOMIC_BUFFER |
3686 TGSI_MEMBAR_SHADER_IMAGE |
3687 TGSI_MEMBAR_SHARED |
3688 TGSI_MEMBAR_THREAD_GROUP));
3689 break;
3690 default:
3691 assert(!"Unexpected memory barrier intrinsic");
3692 }
3693 }
3694
3695 void
3696 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
3697 {
3698 exec_node *param = ir->actual_parameters.get_head();
3699
3700 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3701
3702 st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
3703
3704 /* Calculate the surface offset */
3705 offset->accept(this);
3706 st_src_reg off = this->result;
3707
3708 st_dst_reg dst = undef_dst;
3709 if (ir->return_deref) {
3710 ir->return_deref->accept(this);
3711 dst = st_dst_reg(this->result);
3712 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3713 }
3714
3715 glsl_to_tgsi_instruction *inst;
3716
3717 if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
3718 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3719 inst->resource = buffer;
3720 } else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
3721 param = param->get_next();
3722 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3723 val->accept(this);
3724
3725 param = param->get_next();
3726 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3727 assert(write_mask);
3728 dst.writemask = write_mask->value.u[0];
3729
3730 dst.type = this->result.type;
3731 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3732 inst->resource = buffer;
3733 } else {
3734 param = param->get_next();
3735 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3736 val->accept(this);
3737
3738 st_src_reg data = this->result, data2 = undef_src;
3739 unsigned opcode;
3740 switch (ir->callee->intrinsic_id) {
3741 case ir_intrinsic_shared_atomic_add:
3742 opcode = TGSI_OPCODE_ATOMUADD;
3743 break;
3744 case ir_intrinsic_shared_atomic_min:
3745 opcode = TGSI_OPCODE_ATOMIMIN;
3746 break;
3747 case ir_intrinsic_shared_atomic_max:
3748 opcode = TGSI_OPCODE_ATOMIMAX;
3749 break;
3750 case ir_intrinsic_shared_atomic_and:
3751 opcode = TGSI_OPCODE_ATOMAND;
3752 break;
3753 case ir_intrinsic_shared_atomic_or:
3754 opcode = TGSI_OPCODE_ATOMOR;
3755 break;
3756 case ir_intrinsic_shared_atomic_xor:
3757 opcode = TGSI_OPCODE_ATOMXOR;
3758 break;
3759 case ir_intrinsic_shared_atomic_exchange:
3760 opcode = TGSI_OPCODE_ATOMXCHG;
3761 break;
3762 case ir_intrinsic_shared_atomic_comp_swap:
3763 opcode = TGSI_OPCODE_ATOMCAS;
3764 param = param->get_next();
3765 val = ((ir_instruction *)param)->as_rvalue();
3766 val->accept(this);
3767 data2 = this->result;
3768 break;
3769 default:
3770 assert(!"Unexpected intrinsic");
3771 return;
3772 }
3773
3774 inst = emit_asm(ir, opcode, dst, off, data, data2);
3775 inst->resource = buffer;
3776 }
3777 }
3778
3779 static void
3780 get_image_qualifiers(ir_dereference *ir, const glsl_type **type,
3781 bool *memory_coherent, bool *memory_volatile,
3782 bool *memory_restrict, unsigned *image_format)
3783 {
3784
3785 switch (ir->ir_type) {
3786 case ir_type_dereference_record: {
3787 ir_dereference_record *deref_record = ir->as_dereference_record();
3788 const glsl_type *struct_type = deref_record->record->type;
3789
3790 for (unsigned i = 0; i < struct_type->length; i++) {
3791 if (!strcmp(struct_type->fields.structure[i].name,
3792 deref_record->field)) {
3793 *type = struct_type->fields.structure[i].type;
3794 *memory_coherent =
3795 struct_type->fields.structure[i].memory_coherent;
3796 *memory_volatile =
3797 struct_type->fields.structure[i].memory_volatile;
3798 *memory_restrict =
3799 struct_type->fields.structure[i].memory_restrict;
3800 *image_format =
3801 struct_type->fields.structure[i].image_format;
3802 break;
3803 }
3804 }
3805 break;
3806 }
3807
3808 case ir_type_dereference_array: {
3809 ir_dereference_array *deref_arr = ir->as_dereference_array();
3810 get_image_qualifiers((ir_dereference *)deref_arr->array, type,
3811 memory_coherent, memory_volatile, memory_restrict,
3812 image_format);
3813 break;
3814 }
3815
3816 case ir_type_dereference_variable: {
3817 ir_variable *var = ir->variable_referenced();
3818
3819 *type = var->type->without_array();
3820 *memory_coherent = var->data.memory_coherent;
3821 *memory_volatile = var->data.memory_volatile;
3822 *memory_restrict = var->data.memory_restrict;
3823 *image_format = var->data.image_format;
3824 break;
3825 }
3826
3827 default:
3828 break;
3829 }
3830 }
3831
3832 void
3833 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
3834 {
3835 exec_node *param = ir->actual_parameters.get_head();
3836
3837 ir_dereference *img = (ir_dereference *)param;
3838 const ir_variable *imgvar = img->variable_referenced();
3839 unsigned sampler_array_size = 1, sampler_base = 0;
3840 bool memory_coherent = false, memory_volatile = false, memory_restrict = false;
3841 unsigned image_format = 0;
3842 const glsl_type *type = NULL;
3843
3844 get_image_qualifiers(img, &type, &memory_coherent, &memory_volatile,
3845 &memory_restrict, &image_format);
3846
3847 st_src_reg reladdr;
3848 st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
3849 uint16_t index = 0;
3850 get_deref_offsets(img, &sampler_array_size, &sampler_base,
3851 &index, &reladdr, !imgvar->contains_bindless());
3852
3853 image.index = index;
3854 if (reladdr.file != PROGRAM_UNDEFINED) {
3855 image.reladdr = ralloc(mem_ctx, st_src_reg);
3856 *image.reladdr = reladdr;
3857 emit_arl(ir, sampler_reladdr, reladdr);
3858 }
3859
3860 st_dst_reg dst = undef_dst;
3861 if (ir->return_deref) {
3862 ir->return_deref->accept(this);
3863 dst = st_dst_reg(this->result);
3864 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3865 }
3866
3867 glsl_to_tgsi_instruction *inst;
3868
3869 if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
3870 dst.writemask = WRITEMASK_XYZ;
3871 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
3872 } else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
3873 st_src_reg res = get_temp(glsl_type::ivec4_type);
3874 st_dst_reg dstres = st_dst_reg(res);
3875 dstres.writemask = WRITEMASK_W;
3876 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
3877 res.swizzle = SWIZZLE_WWWW;
3878 emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
3879 } else {
3880 st_src_reg arg1 = undef_src, arg2 = undef_src;
3881 st_src_reg coord;
3882 st_dst_reg coord_dst;
3883 coord = get_temp(glsl_type::ivec4_type);
3884 coord_dst = st_dst_reg(coord);
3885 coord_dst.writemask = (1 << type->coordinate_components()) - 1;
3886 param = param->get_next();
3887 ((ir_dereference *)param)->accept(this);
3888 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3889 coord.swizzle = SWIZZLE_XXXX;
3890 switch (type->coordinate_components()) {
3891 case 4: assert(!"unexpected coord count");
3892 /* fallthrough */
3893 case 3: coord.swizzle |= SWIZZLE_Z << 6;
3894 /* fallthrough */
3895 case 2: coord.swizzle |= SWIZZLE_Y << 3;
3896 }
3897
3898 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
3899 param = param->get_next();
3900 ((ir_dereference *)param)->accept(this);
3901 st_src_reg sample = this->result;
3902 sample.swizzle = SWIZZLE_XXXX;
3903 coord_dst.writemask = WRITEMASK_W;
3904 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
3905 coord.swizzle |= SWIZZLE_W << 9;
3906 }
3907
3908 param = param->get_next();
3909 if (!param->is_tail_sentinel()) {
3910 ((ir_dereference *)param)->accept(this);
3911 arg1 = this->result;
3912 param = param->get_next();
3913 }
3914
3915 if (!param->is_tail_sentinel()) {
3916 ((ir_dereference *)param)->accept(this);
3917 arg2 = this->result;
3918 param = param->get_next();
3919 }
3920
3921 assert(param->is_tail_sentinel());
3922
3923 unsigned opcode;
3924 switch (ir->callee->intrinsic_id) {
3925 case ir_intrinsic_image_load:
3926 opcode = TGSI_OPCODE_LOAD;
3927 break;
3928 case ir_intrinsic_image_store:
3929 opcode = TGSI_OPCODE_STORE;
3930 break;
3931 case ir_intrinsic_image_atomic_add:
3932 opcode = TGSI_OPCODE_ATOMUADD;
3933 break;
3934 case ir_intrinsic_image_atomic_min:
3935 opcode = TGSI_OPCODE_ATOMIMIN;
3936 break;
3937 case ir_intrinsic_image_atomic_max:
3938 opcode = TGSI_OPCODE_ATOMIMAX;
3939 break;
3940 case ir_intrinsic_image_atomic_and:
3941 opcode = TGSI_OPCODE_ATOMAND;
3942 break;
3943 case ir_intrinsic_image_atomic_or:
3944 opcode = TGSI_OPCODE_ATOMOR;
3945 break;
3946 case ir_intrinsic_image_atomic_xor:
3947 opcode = TGSI_OPCODE_ATOMXOR;
3948 break;
3949 case ir_intrinsic_image_atomic_exchange:
3950 opcode = TGSI_OPCODE_ATOMXCHG;
3951 break;
3952 case ir_intrinsic_image_atomic_comp_swap:
3953 opcode = TGSI_OPCODE_ATOMCAS;
3954 break;
3955 default:
3956 assert(!"Unexpected intrinsic");
3957 return;
3958 }
3959
3960 inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
3961 if (opcode == TGSI_OPCODE_STORE)
3962 inst->dst[0].writemask = WRITEMASK_XYZW;
3963 }
3964
3965 if (imgvar->contains_bindless()) {
3966 img->accept(this);
3967 inst->resource = this->result;
3968 inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3969 SWIZZLE_X, SWIZZLE_Y);
3970 } else {
3971 inst->resource = image;
3972 inst->sampler_array_size = sampler_array_size;
3973 inst->sampler_base = sampler_base;
3974 }
3975
3976 inst->tex_target = type->sampler_index();
3977 inst->image_format = st_mesa_format_to_pipe_format(st_context(ctx),
3978 _mesa_get_shader_image_format(image_format));
3979
3980 if (memory_coherent)
3981 inst->buffer_access |= TGSI_MEMORY_COHERENT;
3982 if (memory_restrict)
3983 inst->buffer_access |= TGSI_MEMORY_RESTRICT;
3984 if (memory_volatile)
3985 inst->buffer_access |= TGSI_MEMORY_VOLATILE;
3986 }
3987
3988 void
3989 glsl_to_tgsi_visitor::visit_generic_intrinsic(ir_call *ir, unsigned op)
3990 {
3991 ir->return_deref->accept(this);
3992 st_dst_reg dst = st_dst_reg(this->result);
3993
3994 dst.writemask = u_bit_consecutive(0, ir->return_deref->var->type->vector_elements);
3995
3996 st_src_reg src[4] = { undef_src, undef_src, undef_src, undef_src };
3997 unsigned num_src = 0;
3998 foreach_in_list(ir_rvalue, param, &ir->actual_parameters) {
3999 assert(num_src < ARRAY_SIZE(src));
4000
4001 this->result.file = PROGRAM_UNDEFINED;
4002 param->accept(this);
4003 assert(this->result.file != PROGRAM_UNDEFINED);
4004
4005 src[num_src] = this->result;
4006 num_src++;
4007 }
4008
4009 emit_asm(ir, op, dst, src[0], src[1], src[2], src[3]);
4010 }
4011
4012 void
4013 glsl_to_tgsi_visitor::visit(ir_call *ir)
4014 {
4015 ir_function_signature *sig = ir->callee;
4016
4017 /* Filter out intrinsics */
4018 switch (sig->intrinsic_id) {
4019 case ir_intrinsic_atomic_counter_read:
4020 case ir_intrinsic_atomic_counter_increment:
4021 case ir_intrinsic_atomic_counter_predecrement:
4022 case ir_intrinsic_atomic_counter_add:
4023 case ir_intrinsic_atomic_counter_min:
4024 case ir_intrinsic_atomic_counter_max:
4025 case ir_intrinsic_atomic_counter_and:
4026 case ir_intrinsic_atomic_counter_or:
4027 case ir_intrinsic_atomic_counter_xor:
4028 case ir_intrinsic_atomic_counter_exchange:
4029 case ir_intrinsic_atomic_counter_comp_swap:
4030 visit_atomic_counter_intrinsic(ir);
4031 return;
4032
4033 case ir_intrinsic_ssbo_load:
4034 case ir_intrinsic_ssbo_store:
4035 case ir_intrinsic_ssbo_atomic_add:
4036 case ir_intrinsic_ssbo_atomic_min:
4037 case ir_intrinsic_ssbo_atomic_max:
4038 case ir_intrinsic_ssbo_atomic_and:
4039 case ir_intrinsic_ssbo_atomic_or:
4040 case ir_intrinsic_ssbo_atomic_xor:
4041 case ir_intrinsic_ssbo_atomic_exchange:
4042 case ir_intrinsic_ssbo_atomic_comp_swap:
4043 visit_ssbo_intrinsic(ir);
4044 return;
4045
4046 case ir_intrinsic_memory_barrier:
4047 case ir_intrinsic_memory_barrier_atomic_counter:
4048 case ir_intrinsic_memory_barrier_buffer:
4049 case ir_intrinsic_memory_barrier_image:
4050 case ir_intrinsic_memory_barrier_shared:
4051 case ir_intrinsic_group_memory_barrier:
4052 visit_membar_intrinsic(ir);
4053 return;
4054
4055 case ir_intrinsic_shared_load:
4056 case ir_intrinsic_shared_store:
4057 case ir_intrinsic_shared_atomic_add:
4058 case ir_intrinsic_shared_atomic_min:
4059 case ir_intrinsic_shared_atomic_max:
4060 case ir_intrinsic_shared_atomic_and:
4061 case ir_intrinsic_shared_atomic_or:
4062 case ir_intrinsic_shared_atomic_xor:
4063 case ir_intrinsic_shared_atomic_exchange:
4064 case ir_intrinsic_shared_atomic_comp_swap:
4065 visit_shared_intrinsic(ir);
4066 return;
4067
4068 case ir_intrinsic_image_load:
4069 case ir_intrinsic_image_store:
4070 case ir_intrinsic_image_atomic_add:
4071 case ir_intrinsic_image_atomic_min:
4072 case ir_intrinsic_image_atomic_max:
4073 case ir_intrinsic_image_atomic_and:
4074 case ir_intrinsic_image_atomic_or:
4075 case ir_intrinsic_image_atomic_xor:
4076 case ir_intrinsic_image_atomic_exchange:
4077 case ir_intrinsic_image_atomic_comp_swap:
4078 case ir_intrinsic_image_size:
4079 case ir_intrinsic_image_samples:
4080 visit_image_intrinsic(ir);
4081 return;
4082
4083 case ir_intrinsic_shader_clock:
4084 visit_generic_intrinsic(ir, TGSI_OPCODE_CLOCK);
4085 return;
4086
4087 case ir_intrinsic_vote_all:
4088 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ALL);
4089 return;
4090 case ir_intrinsic_vote_any:
4091 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ANY);
4092 return;
4093 case ir_intrinsic_vote_eq:
4094 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_EQ);
4095 return;
4096 case ir_intrinsic_ballot:
4097 visit_generic_intrinsic(ir, TGSI_OPCODE_BALLOT);
4098 return;
4099 case ir_intrinsic_read_first_invocation:
4100 visit_generic_intrinsic(ir, TGSI_OPCODE_READ_FIRST);
4101 return;
4102 case ir_intrinsic_read_invocation:
4103 visit_generic_intrinsic(ir, TGSI_OPCODE_READ_INVOC);
4104 return;
4105
4106 case ir_intrinsic_invalid:
4107 case ir_intrinsic_generic_load:
4108 case ir_intrinsic_generic_store:
4109 case ir_intrinsic_generic_atomic_add:
4110 case ir_intrinsic_generic_atomic_and:
4111 case ir_intrinsic_generic_atomic_or:
4112 case ir_intrinsic_generic_atomic_xor:
4113 case ir_intrinsic_generic_atomic_min:
4114 case ir_intrinsic_generic_atomic_max:
4115 case ir_intrinsic_generic_atomic_exchange:
4116 case ir_intrinsic_generic_atomic_comp_swap:
4117 unreachable("Invalid intrinsic");
4118 }
4119 }
4120
4121 void
4122 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
4123 unsigned *array_elements,
4124 uint16_t *index,
4125 st_src_reg *indirect,
4126 unsigned *location)
4127 {
4128 switch (tail->ir_type) {
4129 case ir_type_dereference_record: {
4130 ir_dereference_record *deref_record = tail->as_dereference_record();
4131 const glsl_type *struct_type = deref_record->record->type;
4132 int field_index = deref_record->record->type->field_index(deref_record->field);
4133
4134 calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
4135
4136 assert(field_index >= 0);
4137 *location += struct_type->record_location_offset(field_index);
4138 break;
4139 }
4140
4141 case ir_type_dereference_array: {
4142 ir_dereference_array *deref_arr = tail->as_dereference_array();
4143 ir_constant *array_index = deref_arr->array_index->constant_expression_value();
4144
4145 if (!array_index) {
4146 st_src_reg temp_reg;
4147 st_dst_reg temp_dst;
4148
4149 temp_reg = get_temp(glsl_type::uint_type);
4150 temp_dst = st_dst_reg(temp_reg);
4151 temp_dst.writemask = 1;
4152
4153 deref_arr->array_index->accept(this);
4154 if (*array_elements != 1)
4155 emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
4156 else
4157 emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
4158
4159 if (indirect->file == PROGRAM_UNDEFINED)
4160 *indirect = temp_reg;
4161 else {
4162 temp_dst = st_dst_reg(*indirect);
4163 temp_dst.writemask = 1;
4164 emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
4165 }
4166 } else
4167 *index += array_index->value.u[0] * *array_elements;
4168
4169 *array_elements *= deref_arr->array->type->length;
4170
4171 calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
4172 break;
4173 }
4174 default:
4175 break;
4176 }
4177 }
4178
4179 void
4180 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
4181 unsigned *array_size,
4182 unsigned *base,
4183 uint16_t *index,
4184 st_src_reg *reladdr,
4185 bool opaque)
4186 {
4187 GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
4188 unsigned location = 0;
4189 ir_variable *var = ir->variable_referenced();
4190
4191 memset(reladdr, 0, sizeof(*reladdr));
4192 reladdr->file = PROGRAM_UNDEFINED;
4193
4194 *base = 0;
4195 *array_size = 1;
4196
4197 assert(var);
4198 location = var->data.location;
4199 calc_deref_offsets(ir, array_size, index, reladdr, &location);
4200
4201 /*
4202 * If we end up with no indirect then adjust the base to the index,
4203 * and set the array size to 1.
4204 */
4205 if (reladdr->file == PROGRAM_UNDEFINED) {
4206 *base = *index;
4207 *array_size = 1;
4208 }
4209
4210 if (opaque) {
4211 assert(location != 0xffffffff);
4212 *base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4213 *index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4214 }
4215 }
4216
4217 st_src_reg
4218 glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
4219 {
4220 if (offset.reladdr || offset.reladdr2) {
4221 st_src_reg tmp = get_temp(glsl_type::ivec2_type);
4222 st_dst_reg tmp_dst = st_dst_reg(tmp);
4223 tmp_dst.writemask = WRITEMASK_XY;
4224 emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
4225 return tmp;
4226 }
4227
4228 return offset;
4229 }
4230
4231 void
4232 glsl_to_tgsi_visitor::visit(ir_texture *ir)
4233 {
4234 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
4235 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
4236 st_src_reg levels_src, reladdr;
4237 st_dst_reg result_dst, coord_dst, cube_sc_dst;
4238 glsl_to_tgsi_instruction *inst = NULL;
4239 unsigned opcode = TGSI_OPCODE_NOP;
4240 const glsl_type *sampler_type = ir->sampler->type;
4241 unsigned sampler_array_size = 1, sampler_base = 0;
4242 bool is_cube_array = false, is_cube_shadow = false;
4243 ir_variable *var = ir->sampler->variable_referenced();
4244 unsigned i;
4245
4246 /* if we are a cube array sampler or a cube shadow */
4247 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4248 is_cube_array = sampler_type->sampler_array;
4249 is_cube_shadow = sampler_type->sampler_shadow;
4250 }
4251
4252 if (ir->coordinate) {
4253 ir->coordinate->accept(this);
4254
4255 /* Put our coords in a temp. We'll need to modify them for shadow,
4256 * projection, or LOD, so the only case we'd use it as-is is if
4257 * we're doing plain old texturing. The optimization passes on
4258 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
4259 */
4260 coord = get_temp(glsl_type::vec4_type);
4261 coord_dst = st_dst_reg(coord);
4262 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
4263 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4264 }
4265
4266 if (ir->projector) {
4267 ir->projector->accept(this);
4268 projector = this->result;
4269 }
4270
4271 /* Storage for our result. Ideally for an assignment we'd be using
4272 * the actual storage for the result here, instead.
4273 */
4274 result_src = get_temp(ir->type);
4275 result_dst = st_dst_reg(result_src);
4276 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
4277
4278 switch (ir->op) {
4279 case ir_tex:
4280 opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
4281 if (ir->offset) {
4282 ir->offset->accept(this);
4283 offset[0] = this->result;
4284 }
4285 break;
4286 case ir_txb:
4287 if (is_cube_array || is_cube_shadow) {
4288 opcode = TGSI_OPCODE_TXB2;
4289 }
4290 else {
4291 opcode = TGSI_OPCODE_TXB;
4292 }
4293 ir->lod_info.bias->accept(this);
4294 lod_info = this->result;
4295 if (ir->offset) {
4296 ir->offset->accept(this);
4297 offset[0] = this->result;
4298 }
4299 break;
4300 case ir_txl:
4301 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4302 opcode = TGSI_OPCODE_TEX_LZ;
4303 } else {
4304 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
4305 ir->lod_info.lod->accept(this);
4306 lod_info = this->result;
4307 }
4308 if (ir->offset) {
4309 ir->offset->accept(this);
4310 offset[0] = this->result;
4311 }
4312 break;
4313 case ir_txd:
4314 opcode = TGSI_OPCODE_TXD;
4315 ir->lod_info.grad.dPdx->accept(this);
4316 dx = this->result;
4317 ir->lod_info.grad.dPdy->accept(this);
4318 dy = this->result;
4319 if (ir->offset) {
4320 ir->offset->accept(this);
4321 offset[0] = this->result;
4322 }
4323 break;
4324 case ir_txs:
4325 opcode = TGSI_OPCODE_TXQ;
4326 ir->lod_info.lod->accept(this);
4327 lod_info = this->result;
4328 break;
4329 case ir_query_levels:
4330 opcode = TGSI_OPCODE_TXQ;
4331 lod_info = undef_src;
4332 levels_src = get_temp(ir->type);
4333 break;
4334 case ir_txf:
4335 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4336 opcode = TGSI_OPCODE_TXF_LZ;
4337 } else {
4338 opcode = TGSI_OPCODE_TXF;
4339 ir->lod_info.lod->accept(this);
4340 lod_info = this->result;
4341 }
4342 if (ir->offset) {
4343 ir->offset->accept(this);
4344 offset[0] = this->result;
4345 }
4346 break;
4347 case ir_txf_ms:
4348 opcode = TGSI_OPCODE_TXF;
4349 ir->lod_info.sample_index->accept(this);
4350 sample_index = this->result;
4351 break;
4352 case ir_tg4:
4353 opcode = TGSI_OPCODE_TG4;
4354 ir->lod_info.component->accept(this);
4355 component = this->result;
4356 if (ir->offset) {
4357 ir->offset->accept(this);
4358 if (ir->offset->type->is_array()) {
4359 const glsl_type *elt_type = ir->offset->type->fields.array;
4360 for (i = 0; i < ir->offset->type->length; i++) {
4361 offset[i] = this->result;
4362 offset[i].index += i * type_size(elt_type);
4363 offset[i].type = elt_type->base_type;
4364 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
4365 offset[i] = canonicalize_gather_offset(offset[i]);
4366 }
4367 } else {
4368 offset[0] = canonicalize_gather_offset(this->result);
4369 }
4370 }
4371 break;
4372 case ir_lod:
4373 opcode = TGSI_OPCODE_LODQ;
4374 break;
4375 case ir_texture_samples:
4376 opcode = TGSI_OPCODE_TXQS;
4377 break;
4378 case ir_samples_identical:
4379 unreachable("Unexpected ir_samples_identical opcode");
4380 }
4381
4382 if (ir->projector) {
4383 if (opcode == TGSI_OPCODE_TEX) {
4384 /* Slot the projector in as the last component of the coord. */
4385 coord_dst.writemask = WRITEMASK_W;
4386 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
4387 coord_dst.writemask = WRITEMASK_XYZW;
4388 opcode = TGSI_OPCODE_TXP;
4389 } else {
4390 st_src_reg coord_w = coord;
4391 coord_w.swizzle = SWIZZLE_WWWW;
4392
4393 /* For the other TEX opcodes there's no projective version
4394 * since the last slot is taken up by LOD info. Do the
4395 * projective divide now.
4396 */
4397 coord_dst.writemask = WRITEMASK_W;
4398 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
4399
4400 /* In the case where we have to project the coordinates "by hand,"
4401 * the shadow comparator value must also be projected.
4402 */
4403 st_src_reg tmp_src = coord;
4404 if (ir->shadow_comparator) {
4405 /* Slot the shadow value in as the second to last component of the
4406 * coord.
4407 */
4408 ir->shadow_comparator->accept(this);
4409
4410 tmp_src = get_temp(glsl_type::vec4_type);
4411 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
4412
4413 /* Projective division not allowed for array samplers. */
4414 assert(!sampler_type->sampler_array);
4415
4416 tmp_dst.writemask = WRITEMASK_Z;
4417 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
4418
4419 tmp_dst.writemask = WRITEMASK_XY;
4420 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
4421 }
4422
4423 coord_dst.writemask = WRITEMASK_XYZ;
4424 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
4425
4426 coord_dst.writemask = WRITEMASK_XYZW;
4427 coord.swizzle = SWIZZLE_XYZW;
4428 }
4429 }
4430
4431 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
4432 * comparator was put in the correct place (and projected) by the code,
4433 * above, that handles by-hand projection.
4434 */
4435 if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
4436 /* Slot the shadow value in as the second to last component of the
4437 * coord.
4438 */
4439 ir->shadow_comparator->accept(this);
4440
4441 if (is_cube_array) {
4442 cube_sc = get_temp(glsl_type::float_type);
4443 cube_sc_dst = st_dst_reg(cube_sc);
4444 cube_sc_dst.writemask = WRITEMASK_X;
4445 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
4446 cube_sc_dst.writemask = WRITEMASK_X;
4447 }
4448 else {
4449 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
4450 sampler_type->sampler_array) ||
4451 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4452 coord_dst.writemask = WRITEMASK_W;
4453 } else {
4454 coord_dst.writemask = WRITEMASK_Z;
4455 }
4456 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4457 coord_dst.writemask = WRITEMASK_XYZW;
4458 }
4459 }
4460
4461 if (ir->op == ir_txf_ms) {
4462 coord_dst.writemask = WRITEMASK_W;
4463 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
4464 coord_dst.writemask = WRITEMASK_XYZW;
4465 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
4466 opcode == TGSI_OPCODE_TXF) {
4467 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
4468 coord_dst.writemask = WRITEMASK_W;
4469 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
4470 coord_dst.writemask = WRITEMASK_XYZW;
4471 }
4472
4473 st_src_reg sampler(PROGRAM_SAMPLER, 0, GLSL_TYPE_UINT);
4474
4475 uint16_t index = 0;
4476 get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
4477 &index, &reladdr, !var->contains_bindless());
4478
4479 sampler.index = index;
4480 if (reladdr.file != PROGRAM_UNDEFINED) {
4481 sampler.reladdr = ralloc(mem_ctx, st_src_reg);
4482 *sampler.reladdr = reladdr;
4483 emit_arl(ir, sampler_reladdr, reladdr);
4484 }
4485
4486 if (opcode == TGSI_OPCODE_TXD)
4487 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
4488 else if (opcode == TGSI_OPCODE_TXQ) {
4489 if (ir->op == ir_query_levels) {
4490 /* the level is stored in W */
4491 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
4492 result_dst.writemask = WRITEMASK_X;
4493 levels_src.swizzle = SWIZZLE_WWWW;
4494 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
4495 } else
4496 inst = emit_asm(ir, opcode, result_dst, lod_info);
4497 } else if (opcode == TGSI_OPCODE_TXQS) {
4498 inst = emit_asm(ir, opcode, result_dst);
4499 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
4500 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
4501 } else if (opcode == TGSI_OPCODE_TEX2) {
4502 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4503 } else if (opcode == TGSI_OPCODE_TG4) {
4504 if (is_cube_array && ir->shadow_comparator) {
4505 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4506 } else {
4507 inst = emit_asm(ir, opcode, result_dst, coord, component);
4508 }
4509 } else
4510 inst = emit_asm(ir, opcode, result_dst, coord);
4511
4512 if (ir->shadow_comparator)
4513 inst->tex_shadow = GL_TRUE;
4514
4515 if (var->contains_bindless()) {
4516 ir->sampler->accept(this);
4517 inst->resource = this->result;
4518 inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
4519 SWIZZLE_X, SWIZZLE_Y);
4520 } else {
4521 inst->resource = sampler;
4522 inst->sampler_array_size = sampler_array_size;
4523 inst->sampler_base = sampler_base;
4524 }
4525
4526 if (ir->offset) {
4527 if (!inst->tex_offsets)
4528 inst->tex_offsets = rzalloc_array(inst, st_src_reg, MAX_GLSL_TEXTURE_OFFSET);
4529
4530 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
4531 inst->tex_offsets[i] = offset[i];
4532 inst->tex_offset_num_offset = i;
4533 }
4534
4535 inst->tex_target = sampler_type->sampler_index();
4536 inst->tex_type = ir->type->base_type;
4537
4538 this->result = result_src;
4539 }
4540
4541 void
4542 glsl_to_tgsi_visitor::visit(ir_return *ir)
4543 {
4544 assert(!ir->get_value());
4545
4546 emit_asm(ir, TGSI_OPCODE_RET);
4547 }
4548
4549 void
4550 glsl_to_tgsi_visitor::visit(ir_discard *ir)
4551 {
4552 if (ir->condition) {
4553 ir->condition->accept(this);
4554 st_src_reg condition = this->result;
4555
4556 /* Convert the bool condition to a float so we can negate. */
4557 if (native_integers) {
4558 st_src_reg temp = get_temp(ir->condition->type);
4559 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
4560 condition, st_src_reg_for_float(1.0));
4561 condition = temp;
4562 }
4563
4564 condition.negate = ~condition.negate;
4565 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
4566 } else {
4567 /* unconditional kil */
4568 emit_asm(ir, TGSI_OPCODE_KILL);
4569 }
4570 }
4571
4572 void
4573 glsl_to_tgsi_visitor::visit(ir_if *ir)
4574 {
4575 unsigned if_opcode;
4576 glsl_to_tgsi_instruction *if_inst;
4577
4578 ir->condition->accept(this);
4579 assert(this->result.file != PROGRAM_UNDEFINED);
4580
4581 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
4582
4583 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
4584
4585 this->instructions.push_tail(if_inst);
4586
4587 visit_exec_list(&ir->then_instructions, this);
4588
4589 if (!ir->else_instructions.is_empty()) {
4590 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
4591 visit_exec_list(&ir->else_instructions, this);
4592 }
4593
4594 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
4595 }
4596
4597
4598 void
4599 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
4600 {
4601 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4602
4603 ir->stream->accept(this);
4604 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
4605 }
4606
4607 void
4608 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
4609 {
4610 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4611
4612 ir->stream->accept(this);
4613 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
4614 }
4615
4616 void
4617 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
4618 {
4619 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
4620 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
4621
4622 emit_asm(ir, TGSI_OPCODE_BARRIER);
4623 }
4624
4625 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
4626 {
4627 STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
4628
4629 result.file = PROGRAM_UNDEFINED;
4630 next_temp = 1;
4631 array_sizes = NULL;
4632 max_num_arrays = 0;
4633 next_array = 0;
4634 num_inputs = 0;
4635 num_outputs = 0;
4636 num_input_arrays = 0;
4637 num_output_arrays = 0;
4638 num_immediates = 0;
4639 num_address_regs = 0;
4640 samplers_used = 0;
4641 images_used = 0;
4642 indirect_addr_consts = false;
4643 wpos_transform_const = -1;
4644 glsl_version = 0;
4645 native_integers = false;
4646 mem_ctx = ralloc_context(NULL);
4647 ctx = NULL;
4648 prog = NULL;
4649 shader_program = NULL;
4650 shader = NULL;
4651 options = NULL;
4652 have_sqrt = false;
4653 have_fma = false;
4654 use_shared_memory = false;
4655 has_tex_txf_lz = false;
4656 variables = NULL;
4657 }
4658
4659 static void var_destroy(struct hash_entry *entry)
4660 {
4661 variable_storage *storage = (variable_storage *)entry->data;
4662
4663 delete storage;
4664 }
4665
4666 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
4667 {
4668 _mesa_hash_table_destroy(variables, var_destroy);
4669 free(array_sizes);
4670 ralloc_free(mem_ctx);
4671 }
4672
4673 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
4674 {
4675 delete v;
4676 }
4677
4678
4679 /**
4680 * Count resources used by the given gpu program (number of texture
4681 * samplers, etc).
4682 */
4683 static void
4684 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
4685 {
4686 v->samplers_used = 0;
4687 v->images_used = 0;
4688
4689 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
4690 if (inst->info->is_tex) {
4691 for (int i = 0; i < inst->sampler_array_size; i++) {
4692 unsigned idx = inst->sampler_base + i;
4693 v->samplers_used |= 1u << idx;
4694
4695 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
4696 v->sampler_types[idx] = inst->tex_type;
4697 v->sampler_targets[idx] =
4698 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4699
4700 if (inst->tex_shadow) {
4701 prog->ShadowSamplers |= 1 << (inst->resource.index + i);
4702 }
4703 }
4704 }
4705
4706 if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
4707 prog->ExternalSamplersUsed |= 1 << inst->resource.index;
4708
4709 if (inst->resource.file != PROGRAM_UNDEFINED && (
4710 is_resource_instruction(inst->op) ||
4711 inst->op == TGSI_OPCODE_STORE)) {
4712 if (inst->resource.file == PROGRAM_MEMORY) {
4713 v->use_shared_memory = true;
4714 } else if (inst->resource.file == PROGRAM_IMAGE) {
4715 for (int i = 0; i < inst->sampler_array_size; i++) {
4716 unsigned idx = inst->sampler_base + i;
4717 v->images_used |= 1 << idx;
4718 v->image_targets[idx] =
4719 st_translate_texture_target(inst->tex_target, false);
4720 v->image_formats[idx] = inst->image_format;
4721 }
4722 }
4723 }
4724 }
4725 prog->SamplersUsed = v->samplers_used;
4726
4727 if (v->shader_program != NULL)
4728 _mesa_update_shader_textures_used(v->shader_program, prog);
4729 }
4730
4731 /**
4732 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
4733 * are read from the given src in this instruction
4734 */
4735 static int
4736 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
4737 {
4738 int read_mask = 0, comp;
4739
4740 /* Now, given the src swizzle and the written channels, find which
4741 * components are actually read
4742 */
4743 for (comp = 0; comp < 4; ++comp) {
4744 const unsigned coord = GET_SWZ(src.swizzle, comp);
4745 assert(coord < 4);
4746 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
4747 read_mask |= 1 << coord;
4748 }
4749
4750 return read_mask;
4751 }
4752
4753 /**
4754 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
4755 * instruction is the first instruction to write to register T0. There are
4756 * several lowering passes done in GLSL IR (e.g. branches and
4757 * relative addressing) that create a large number of conditional assignments
4758 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
4759 *
4760 * Here is why this conversion is safe:
4761 * CMP T0, T1 T2 T0 can be expanded to:
4762 * if (T1 < 0.0)
4763 * MOV T0, T2;
4764 * else
4765 * MOV T0, T0;
4766 *
4767 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
4768 * as the original program. If (T1 < 0.0) evaluates to false, executing
4769 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
4770 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
4771 * because any instruction that was going to read from T0 after this was going
4772 * to read a garbage value anyway.
4773 */
4774 void
4775 glsl_to_tgsi_visitor::simplify_cmp(void)
4776 {
4777 int tempWritesSize = 0;
4778 unsigned *tempWrites = NULL;
4779 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
4780
4781 memset(outputWrites, 0, sizeof(outputWrites));
4782
4783 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4784 unsigned prevWriteMask = 0;
4785
4786 /* Give up if we encounter relative addressing or flow control. */
4787 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
4788 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
4789 inst->info->is_branch ||
4790 inst->op == TGSI_OPCODE_CONT ||
4791 inst->op == TGSI_OPCODE_END ||
4792 inst->op == TGSI_OPCODE_RET) {
4793 break;
4794 }
4795
4796 if (inst->dst[0].file == PROGRAM_OUTPUT) {
4797 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
4798 prevWriteMask = outputWrites[inst->dst[0].index];
4799 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4800 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
4801 if (inst->dst[0].index >= tempWritesSize) {
4802 const int inc = 4096;
4803
4804 tempWrites = (unsigned*)
4805 realloc(tempWrites,
4806 (tempWritesSize + inc) * sizeof(unsigned));
4807 if (!tempWrites)
4808 return;
4809
4810 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
4811 tempWritesSize += inc;
4812 }
4813
4814 prevWriteMask = tempWrites[inst->dst[0].index];
4815 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4816 } else
4817 continue;
4818
4819 /* For a CMP to be considered a conditional write, the destination
4820 * register and source register two must be the same. */
4821 if (inst->op == TGSI_OPCODE_CMP
4822 && !(inst->dst[0].writemask & prevWriteMask)
4823 && inst->src[2].file == inst->dst[0].file
4824 && inst->src[2].index == inst->dst[0].index
4825 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
4826
4827 inst->op = TGSI_OPCODE_MOV;
4828 inst->info = tgsi_get_opcode_info(inst->op);
4829 inst->src[0] = inst->src[1];
4830 }
4831 }
4832
4833 free(tempWrites);
4834 }
4835
4836 /* Replaces all references to a temporary register index with another index. */
4837 void
4838 glsl_to_tgsi_visitor::rename_temp_registers(struct rename_reg_pair *renames)
4839 {
4840 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4841 unsigned j;
4842 for (j = 0; j < num_inst_src_regs(inst); j++) {
4843 if (inst->src[j].file == PROGRAM_TEMPORARY) {
4844 int old_idx = inst->src[j].index;
4845 if (renames[old_idx].valid)
4846 inst->src[j].index = renames[old_idx].new_reg;
4847 }
4848 }
4849
4850 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4851 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
4852 int old_idx = inst->tex_offsets[j].index;
4853 if (renames[old_idx].valid)
4854 inst->tex_offsets[j].index = renames[old_idx].new_reg;
4855 }
4856 }
4857
4858 if (inst->resource.file == PROGRAM_TEMPORARY) {
4859 int old_idx = inst->resource.index;
4860 if (renames[old_idx].valid)
4861 inst->resource.index = renames[old_idx].new_reg;
4862 }
4863
4864 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4865 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4866 int old_idx = inst->dst[j].index;
4867 if (renames[old_idx].valid)
4868 inst->dst[j].index = renames[old_idx].new_reg;}
4869 }
4870 }
4871 }
4872
4873 void
4874 glsl_to_tgsi_visitor::get_first_temp_write(int *first_writes)
4875 {
4876 int depth = 0; /* loop depth */
4877 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4878 unsigned i = 0, j;
4879
4880 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4881 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4882 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4883 if (first_writes[inst->dst[j].index] == -1)
4884 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4885 }
4886 }
4887
4888 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4889 if(depth++ == 0)
4890 loop_start = i;
4891 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4892 if (--depth == 0)
4893 loop_start = -1;
4894 }
4895 assert(depth >= 0);
4896 i++;
4897 }
4898 }
4899
4900 void
4901 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
4902 {
4903 int depth = 0; /* loop depth */
4904 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4905 unsigned i = 0, j;
4906
4907 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4908 for (j = 0; j < num_inst_src_regs(inst); j++) {
4909 if (inst->src[j].file == PROGRAM_TEMPORARY) {
4910 if (first_reads[inst->src[j].index] == -1)
4911 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
4912 }
4913 }
4914 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4915 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
4916 if (first_reads[inst->tex_offsets[j].index] == -1)
4917 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
4918 }
4919 }
4920 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4921 if(depth++ == 0)
4922 loop_start = i;
4923 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4924 if (--depth == 0)
4925 loop_start = -1;
4926 }
4927 assert(depth >= 0);
4928 i++;
4929 }
4930 }
4931
4932 void
4933 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
4934 {
4935 int depth = 0; /* loop depth */
4936 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4937 unsigned i = 0, j;
4938 int k;
4939 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4940 for (j = 0; j < num_inst_src_regs(inst); j++) {
4941 if (inst->src[j].file == PROGRAM_TEMPORARY)
4942 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
4943 }
4944 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4945 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4946 if (first_writes[inst->dst[j].index] == -1)
4947 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4948 last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
4949 }
4950 }
4951 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4952 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4953 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
4954 }
4955 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4956 if(depth++ == 0)
4957 loop_start = i;
4958 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4959 if (--depth == 0) {
4960 loop_start = -1;
4961 for (k = 0; k < this->next_temp; k++) {
4962 if (last_reads[k] == -2) {
4963 last_reads[k] = i;
4964 }
4965 }
4966 }
4967 }
4968 assert(depth >= 0);
4969 i++;
4970 }
4971 }
4972
4973 void
4974 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
4975 {
4976 int depth = 0; /* loop depth */
4977 int i = 0, k;
4978 unsigned j;
4979
4980 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4981 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4982 if (inst->dst[j].file == PROGRAM_TEMPORARY)
4983 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
4984 }
4985
4986 if (inst->op == TGSI_OPCODE_BGNLOOP)
4987 depth++;
4988 else if (inst->op == TGSI_OPCODE_ENDLOOP)
4989 if (--depth == 0) {
4990 for (k = 0; k < this->next_temp; k++) {
4991 if (last_writes[k] == -2) {
4992 last_writes[k] = i;
4993 }
4994 }
4995 }
4996 assert(depth >= 0);
4997 i++;
4998 }
4999 }
5000
5001 /*
5002 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
5003 * channels for copy propagation and updates following instructions to
5004 * use the original versions.
5005 *
5006 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5007 * will occur. As an example, a TXP production before this pass:
5008 *
5009 * 0: MOV TEMP[1], INPUT[4].xyyy;
5010 * 1: MOV TEMP[1].w, INPUT[4].wwww;
5011 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
5012 *
5013 * and after:
5014 *
5015 * 0: MOV TEMP[1], INPUT[4].xyyy;
5016 * 1: MOV TEMP[1].w, INPUT[4].wwww;
5017 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5018 *
5019 * which allows for dead code elimination on TEMP[1]'s writes.
5020 */
5021 void
5022 glsl_to_tgsi_visitor::copy_propagate(void)
5023 {
5024 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
5025 glsl_to_tgsi_instruction *,
5026 this->next_temp * 4);
5027 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5028 int level = 0;
5029
5030 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5031 assert(inst->dst[0].file != PROGRAM_TEMPORARY
5032 || inst->dst[0].index < this->next_temp);
5033
5034 /* First, do any copy propagation possible into the src regs. */
5035 for (int r = 0; r < 3; r++) {
5036 glsl_to_tgsi_instruction *first = NULL;
5037 bool good = true;
5038 int acp_base = inst->src[r].index * 4;
5039
5040 if (inst->src[r].file != PROGRAM_TEMPORARY ||
5041 inst->src[r].reladdr ||
5042 inst->src[r].reladdr2)
5043 continue;
5044
5045 /* See if we can find entries in the ACP consisting of MOVs
5046 * from the same src register for all the swizzled channels
5047 * of this src register reference.
5048 */
5049 for (int i = 0; i < 4; i++) {
5050 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
5051 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
5052
5053 if (!copy_chan) {
5054 good = false;
5055 break;
5056 }
5057
5058 assert(acp_level[acp_base + src_chan] <= level);
5059
5060 if (!first) {
5061 first = copy_chan;
5062 } else {
5063 if (first->src[0].file != copy_chan->src[0].file ||
5064 first->src[0].index != copy_chan->src[0].index ||
5065 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
5066 first->src[0].index2D != copy_chan->src[0].index2D) {
5067 good = false;
5068 break;
5069 }
5070 }
5071 }
5072
5073 if (good) {
5074 /* We've now validated that we can copy-propagate to
5075 * replace this src register reference. Do it.
5076 */
5077 inst->src[r].file = first->src[0].file;
5078 inst->src[r].index = first->src[0].index;
5079 inst->src[r].index2D = first->src[0].index2D;
5080 inst->src[r].has_index2 = first->src[0].has_index2;
5081 inst->src[r].double_reg2 = first->src[0].double_reg2;
5082 inst->src[r].array_id = first->src[0].array_id;
5083
5084 int swizzle = 0;
5085 for (int i = 0; i < 4; i++) {
5086 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
5087 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
5088 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
5089 }
5090 inst->src[r].swizzle = swizzle;
5091 }
5092 }
5093
5094 switch (inst->op) {
5095 case TGSI_OPCODE_BGNLOOP:
5096 case TGSI_OPCODE_ENDLOOP:
5097 /* End of a basic block, clear the ACP entirely. */
5098 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
5099 break;
5100
5101 case TGSI_OPCODE_IF:
5102 case TGSI_OPCODE_UIF:
5103 ++level;
5104 break;
5105
5106 case TGSI_OPCODE_ENDIF:
5107 case TGSI_OPCODE_ELSE:
5108 /* Clear all channels written inside the block from the ACP, but
5109 * leaving those that were not touched.
5110 */
5111 for (int r = 0; r < this->next_temp; r++) {
5112 for (int c = 0; c < 4; c++) {
5113 if (!acp[4 * r + c])
5114 continue;
5115
5116 if (acp_level[4 * r + c] >= level)
5117 acp[4 * r + c] = NULL;
5118 }
5119 }
5120 if (inst->op == TGSI_OPCODE_ENDIF)
5121 --level;
5122 break;
5123
5124 default:
5125 /* Continuing the block, clear any written channels from
5126 * the ACP.
5127 */
5128 for (int d = 0; d < 2; d++) {
5129 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
5130 /* Any temporary might be written, so no copy propagation
5131 * across this instruction.
5132 */
5133 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
5134 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
5135 inst->dst[d].reladdr) {
5136 /* Any output might be written, so no copy propagation
5137 * from outputs across this instruction.
5138 */
5139 for (int r = 0; r < this->next_temp; r++) {
5140 for (int c = 0; c < 4; c++) {
5141 if (!acp[4 * r + c])
5142 continue;
5143
5144 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
5145 acp[4 * r + c] = NULL;
5146 }
5147 }
5148 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
5149 inst->dst[d].file == PROGRAM_OUTPUT) {
5150 /* Clear where it's used as dst. */
5151 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
5152 for (int c = 0; c < 4; c++) {
5153 if (inst->dst[d].writemask & (1 << c))
5154 acp[4 * inst->dst[d].index + c] = NULL;
5155 }
5156 }
5157
5158 /* Clear where it's used as src. */
5159 for (int r = 0; r < this->next_temp; r++) {
5160 for (int c = 0; c < 4; c++) {
5161 if (!acp[4 * r + c])
5162 continue;
5163
5164 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
5165
5166 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
5167 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
5168 inst->dst[d].writemask & (1 << src_chan)) {
5169 acp[4 * r + c] = NULL;
5170 }
5171 }
5172 }
5173 }
5174 }
5175 break;
5176 }
5177
5178 /* If this is a copy, add it to the ACP. */
5179 if (inst->op == TGSI_OPCODE_MOV &&
5180 inst->dst[0].file == PROGRAM_TEMPORARY &&
5181 !(inst->dst[0].file == inst->src[0].file &&
5182 inst->dst[0].index == inst->src[0].index) &&
5183 !inst->dst[0].reladdr &&
5184 !inst->dst[0].reladdr2 &&
5185 !inst->saturate &&
5186 inst->src[0].file != PROGRAM_ARRAY &&
5187 !inst->src[0].reladdr &&
5188 !inst->src[0].reladdr2 &&
5189 !inst->src[0].negate &&
5190 !inst->src[0].abs) {
5191 for (int i = 0; i < 4; i++) {
5192 if (inst->dst[0].writemask & (1 << i)) {
5193 acp[4 * inst->dst[0].index + i] = inst;
5194 acp_level[4 * inst->dst[0].index + i] = level;
5195 }
5196 }
5197 }
5198 }
5199
5200 ralloc_free(acp_level);
5201 ralloc_free(acp);
5202 }
5203
5204 /*
5205 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
5206 * code elimination.
5207 *
5208 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5209 * will occur. As an example, a TXP production after copy propagation but
5210 * before this pass:
5211 *
5212 * 0: MOV TEMP[1], INPUT[4].xyyy;
5213 * 1: MOV TEMP[1].w, INPUT[4].wwww;
5214 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5215 *
5216 * and after this pass:
5217 *
5218 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5219 */
5220 int
5221 glsl_to_tgsi_visitor::eliminate_dead_code(void)
5222 {
5223 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
5224 glsl_to_tgsi_instruction *,
5225 this->next_temp * 4);
5226 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5227 int level = 0;
5228 int removed = 0;
5229
5230 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5231 assert(inst->dst[0].file != PROGRAM_TEMPORARY
5232 || inst->dst[0].index < this->next_temp);
5233
5234 switch (inst->op) {
5235 case TGSI_OPCODE_BGNLOOP:
5236 case TGSI_OPCODE_ENDLOOP:
5237 case TGSI_OPCODE_CONT:
5238 case TGSI_OPCODE_BRK:
5239 /* End of a basic block, clear the write array entirely.
5240 *
5241 * This keeps us from killing dead code when the writes are
5242 * on either side of a loop, even when the register isn't touched
5243 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
5244 * dead code of this type, so it shouldn't make a difference as long as
5245 * the dead code elimination pass in the GLSL compiler does its job.
5246 */
5247 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5248 break;
5249
5250 case TGSI_OPCODE_ENDIF:
5251 case TGSI_OPCODE_ELSE:
5252 /* Promote the recorded level of all channels written inside the
5253 * preceding if or else block to the level above the if/else block.
5254 */
5255 for (int r = 0; r < this->next_temp; r++) {
5256 for (int c = 0; c < 4; c++) {
5257 if (!writes[4 * r + c])
5258 continue;
5259
5260 if (write_level[4 * r + c] == level)
5261 write_level[4 * r + c] = level-1;
5262 }
5263 }
5264 if(inst->op == TGSI_OPCODE_ENDIF)
5265 --level;
5266 break;
5267
5268 case TGSI_OPCODE_IF:
5269 case TGSI_OPCODE_UIF:
5270 ++level;
5271 /* fallthrough to default case to mark the condition as read */
5272 default:
5273 /* Continuing the block, clear any channels from the write array that
5274 * are read by this instruction.
5275 */
5276 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
5277 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
5278 /* Any temporary might be read, so no dead code elimination
5279 * across this instruction.
5280 */
5281 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5282 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
5283 /* Clear where it's used as src. */
5284 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
5285 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
5286 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
5287 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
5288
5289 for (int c = 0; c < 4; c++) {
5290 if (src_chans & (1 << c))
5291 writes[4 * inst->src[i].index + c] = NULL;
5292 }
5293 }
5294 }
5295 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
5296 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
5297 /* Any temporary might be read, so no dead code elimination
5298 * across this instruction.
5299 */
5300 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5301 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
5302 /* Clear where it's used as src. */
5303 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
5304 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
5305 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
5306 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
5307
5308 for (int c = 0; c < 4; c++) {
5309 if (src_chans & (1 << c))
5310 writes[4 * inst->tex_offsets[i].index + c] = NULL;
5311 }
5312 }
5313 }
5314
5315 if (inst->resource.file == PROGRAM_TEMPORARY) {
5316 int src_chans;
5317
5318 src_chans = 1 << GET_SWZ(inst->resource.swizzle, 0);
5319 src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 1);
5320 src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 2);
5321 src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 3);
5322
5323 for (int c = 0; c < 4; c++) {
5324 if (src_chans & (1 << c))
5325 writes[4 * inst->resource.index + c] = NULL;
5326 }
5327 }
5328
5329 break;
5330 }
5331
5332 /* If this instruction writes to a temporary, add it to the write array.
5333 * If there is already an instruction in the write array for one or more
5334 * of the channels, flag that channel write as dead.
5335 */
5336 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5337 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
5338 !inst->dst[i].reladdr) {
5339 for (int c = 0; c < 4; c++) {
5340 if (inst->dst[i].writemask & (1 << c)) {
5341 if (writes[4 * inst->dst[i].index + c]) {
5342 if (write_level[4 * inst->dst[i].index + c] < level)
5343 continue;
5344 else
5345 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
5346 }
5347 writes[4 * inst->dst[i].index + c] = inst;
5348 write_level[4 * inst->dst[i].index + c] = level;
5349 }
5350 }
5351 }
5352 }
5353 }
5354
5355 /* Anything still in the write array at this point is dead code. */
5356 for (int r = 0; r < this->next_temp; r++) {
5357 for (int c = 0; c < 4; c++) {
5358 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
5359 if (inst)
5360 inst->dead_mask |= (1 << c);
5361 }
5362 }
5363
5364 /* Now actually remove the instructions that are completely dead and update
5365 * the writemask of other instructions with dead channels.
5366 */
5367 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5368 if (!inst->dead_mask || !inst->dst[0].writemask)
5369 continue;
5370 /* No amount of dead masks should remove memory stores */
5371 if (inst->info->is_store)
5372 continue;
5373
5374 if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
5375 inst->remove();
5376 delete inst;
5377 removed++;
5378 } else {
5379 if (glsl_base_type_is_64bit(inst->dst[0].type)) {
5380 if (inst->dead_mask == WRITEMASK_XY ||
5381 inst->dead_mask == WRITEMASK_ZW)
5382 inst->dst[0].writemask &= ~(inst->dead_mask);
5383 } else
5384 inst->dst[0].writemask &= ~(inst->dead_mask);
5385 }
5386 }
5387
5388 ralloc_free(write_level);
5389 ralloc_free(writes);
5390
5391 return removed;
5392 }
5393
5394 /* merge DFRACEXP instructions into one. */
5395 void
5396 glsl_to_tgsi_visitor::merge_two_dsts(void)
5397 {
5398 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5399 glsl_to_tgsi_instruction *inst2;
5400 bool merged;
5401 if (num_inst_dst_regs(inst) != 2)
5402 continue;
5403
5404 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
5405 inst->dst[1].file != PROGRAM_UNDEFINED)
5406 continue;
5407
5408 inst2 = (glsl_to_tgsi_instruction *) inst->next;
5409 do {
5410
5411 if (inst->src[0].file == inst2->src[0].file &&
5412 inst->src[0].index == inst2->src[0].index &&
5413 inst->src[0].type == inst2->src[0].type &&
5414 inst->src[0].swizzle == inst2->src[0].swizzle)
5415 break;
5416 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
5417 } while (inst2);
5418
5419 if (!inst2)
5420 continue;
5421 merged = false;
5422 if (inst->dst[0].file == PROGRAM_UNDEFINED) {
5423 merged = true;
5424 inst->dst[0] = inst2->dst[0];
5425 } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
5426 inst->dst[1] = inst2->dst[1];
5427 merged = true;
5428 }
5429
5430 if (merged) {
5431 inst2->remove();
5432 delete inst2;
5433 }
5434 }
5435 }
5436
5437 /* Merges temporary registers together where possible to reduce the number of
5438 * registers needed to run a program.
5439 *
5440 * Produces optimal code only after copy propagation and dead code elimination
5441 * have been run. */
5442 void
5443 glsl_to_tgsi_visitor::merge_registers(void)
5444 {
5445 int *last_reads = ralloc_array(mem_ctx, int, this->next_temp);
5446 int *first_writes = ralloc_array(mem_ctx, int, this->next_temp);
5447 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5448 int i, j;
5449
5450 /* Read the indices of the last read and first write to each temp register
5451 * into an array so that we don't have to traverse the instruction list as
5452 * much. */
5453 for (i = 0; i < this->next_temp; i++) {
5454 last_reads[i] = -1;
5455 first_writes[i] = -1;
5456 }
5457 get_last_temp_read_first_temp_write(last_reads, first_writes);
5458
5459 /* Start looking for registers with non-overlapping usages that can be
5460 * merged together. */
5461 for (i = 0; i < this->next_temp; i++) {
5462 /* Don't touch unused registers. */
5463 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
5464
5465 for (j = 0; j < this->next_temp; j++) {
5466 /* Don't touch unused registers. */
5467 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
5468
5469 /* We can merge the two registers if the first write to j is after or
5470 * in the same instruction as the last read from i. Note that the
5471 * register at index i will always be used earlier or at the same time
5472 * as the register at index j. */
5473 if (first_writes[i] <= first_writes[j] &&
5474 last_reads[i] <= first_writes[j]) {
5475 renames[j].new_reg = i;
5476 renames[j].valid = true;
5477
5478 /* Update the first_writes and last_reads arrays with the new
5479 * values for the merged register index, and mark the newly unused
5480 * register index as such. */
5481 assert(last_reads[j] >= last_reads[i]);
5482 last_reads[i] = last_reads[j];
5483 first_writes[j] = -1;
5484 last_reads[j] = -1;
5485 }
5486 }
5487 }
5488
5489 rename_temp_registers(renames);
5490 ralloc_free(renames);
5491 ralloc_free(last_reads);
5492 ralloc_free(first_writes);
5493 }
5494
5495 /* Reassign indices to temporary registers by reusing unused indices created
5496 * by optimization passes. */
5497 void
5498 glsl_to_tgsi_visitor::renumber_registers(void)
5499 {
5500 int i = 0;
5501 int new_index = 0;
5502 int *first_writes = ralloc_array(mem_ctx, int, this->next_temp);
5503 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5504
5505 for (i = 0; i < this->next_temp; i++) {
5506 first_writes[i] = -1;
5507 }
5508 get_first_temp_write(first_writes);
5509
5510 for (i = 0; i < this->next_temp; i++) {
5511 if (first_writes[i] < 0) continue;
5512 if (i != new_index) {
5513 renames[i].new_reg = new_index;
5514 renames[i].valid = true;
5515 }
5516 new_index++;
5517 }
5518
5519 rename_temp_registers(renames);
5520 this->next_temp = new_index;
5521 ralloc_free(renames);
5522 ralloc_free(first_writes);
5523 }
5524
5525 /* ------------------------- TGSI conversion stuff -------------------------- */
5526
5527 /**
5528 * Intermediate state used during shader translation.
5529 */
5530 struct st_translate {
5531 struct ureg_program *ureg;
5532
5533 unsigned temps_size;
5534 struct ureg_dst *temps;
5535
5536 struct ureg_dst *arrays;
5537 unsigned num_temp_arrays;
5538 struct ureg_src *constants;
5539 int num_constants;
5540 struct ureg_src *immediates;
5541 int num_immediates;
5542 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
5543 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
5544 struct ureg_dst address[3];
5545 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
5546 struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
5547 struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
5548 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
5549 struct ureg_src shared_memory;
5550 unsigned *array_sizes;
5551 struct inout_decl *input_decls;
5552 unsigned num_input_decls;
5553 struct inout_decl *output_decls;
5554 unsigned num_output_decls;
5555
5556 const ubyte *inputMapping;
5557 const ubyte *outputMapping;
5558
5559 unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
5560 };
5561
5562 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
5563 unsigned
5564 _mesa_sysval_to_semantic(unsigned sysval)
5565 {
5566 switch (sysval) {
5567 /* Vertex shader */
5568 case SYSTEM_VALUE_VERTEX_ID:
5569 return TGSI_SEMANTIC_VERTEXID;
5570 case SYSTEM_VALUE_INSTANCE_ID:
5571 return TGSI_SEMANTIC_INSTANCEID;
5572 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
5573 return TGSI_SEMANTIC_VERTEXID_NOBASE;
5574 case SYSTEM_VALUE_BASE_VERTEX:
5575 return TGSI_SEMANTIC_BASEVERTEX;
5576 case SYSTEM_VALUE_BASE_INSTANCE:
5577 return TGSI_SEMANTIC_BASEINSTANCE;
5578 case SYSTEM_VALUE_DRAW_ID:
5579 return TGSI_SEMANTIC_DRAWID;
5580
5581 /* Geometry shader */
5582 case SYSTEM_VALUE_INVOCATION_ID:
5583 return TGSI_SEMANTIC_INVOCATIONID;
5584
5585 /* Fragment shader */
5586 case SYSTEM_VALUE_FRAG_COORD:
5587 return TGSI_SEMANTIC_POSITION;
5588 case SYSTEM_VALUE_FRONT_FACE:
5589 return TGSI_SEMANTIC_FACE;
5590 case SYSTEM_VALUE_SAMPLE_ID:
5591 return TGSI_SEMANTIC_SAMPLEID;
5592 case SYSTEM_VALUE_SAMPLE_POS:
5593 return TGSI_SEMANTIC_SAMPLEPOS;
5594 case SYSTEM_VALUE_SAMPLE_MASK_IN:
5595 return TGSI_SEMANTIC_SAMPLEMASK;
5596 case SYSTEM_VALUE_HELPER_INVOCATION:
5597 return TGSI_SEMANTIC_HELPER_INVOCATION;
5598
5599 /* Tessellation shader */
5600 case SYSTEM_VALUE_TESS_COORD:
5601 return TGSI_SEMANTIC_TESSCOORD;
5602 case SYSTEM_VALUE_VERTICES_IN:
5603 return TGSI_SEMANTIC_VERTICESIN;
5604 case SYSTEM_VALUE_PRIMITIVE_ID:
5605 return TGSI_SEMANTIC_PRIMID;
5606 case SYSTEM_VALUE_TESS_LEVEL_OUTER:
5607 return TGSI_SEMANTIC_TESSOUTER;
5608 case SYSTEM_VALUE_TESS_LEVEL_INNER:
5609 return TGSI_SEMANTIC_TESSINNER;
5610
5611 /* Compute shader */
5612 case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
5613 return TGSI_SEMANTIC_THREAD_ID;
5614 case SYSTEM_VALUE_WORK_GROUP_ID:
5615 return TGSI_SEMANTIC_BLOCK_ID;
5616 case SYSTEM_VALUE_NUM_WORK_GROUPS:
5617 return TGSI_SEMANTIC_GRID_SIZE;
5618 case SYSTEM_VALUE_LOCAL_GROUP_SIZE:
5619 return TGSI_SEMANTIC_BLOCK_SIZE;
5620
5621 /* ARB_shader_ballot */
5622 case SYSTEM_VALUE_SUBGROUP_SIZE:
5623 return TGSI_SEMANTIC_SUBGROUP_SIZE;
5624 case SYSTEM_VALUE_SUBGROUP_INVOCATION:
5625 return TGSI_SEMANTIC_SUBGROUP_INVOCATION;
5626 case SYSTEM_VALUE_SUBGROUP_EQ_MASK:
5627 return TGSI_SEMANTIC_SUBGROUP_EQ_MASK;
5628 case SYSTEM_VALUE_SUBGROUP_GE_MASK:
5629 return TGSI_SEMANTIC_SUBGROUP_GE_MASK;
5630 case SYSTEM_VALUE_SUBGROUP_GT_MASK:
5631 return TGSI_SEMANTIC_SUBGROUP_GT_MASK;
5632 case SYSTEM_VALUE_SUBGROUP_LE_MASK:
5633 return TGSI_SEMANTIC_SUBGROUP_LE_MASK;
5634 case SYSTEM_VALUE_SUBGROUP_LT_MASK:
5635 return TGSI_SEMANTIC_SUBGROUP_LT_MASK;
5636
5637 /* Unhandled */
5638 case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
5639 case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
5640 case SYSTEM_VALUE_VERTEX_CNT:
5641 default:
5642 assert(!"Unexpected SYSTEM_VALUE_ enum");
5643 return TGSI_SEMANTIC_COUNT;
5644 }
5645 }
5646
5647 /**
5648 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
5649 */
5650 static struct ureg_src
5651 emit_immediate(struct st_translate *t,
5652 gl_constant_value values[4],
5653 int type, int size)
5654 {
5655 struct ureg_program *ureg = t->ureg;
5656
5657 switch(type)
5658 {
5659 case GL_FLOAT:
5660 return ureg_DECL_immediate(ureg, &values[0].f, size);
5661 case GL_DOUBLE:
5662 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
5663 case GL_INT64_ARB:
5664 return ureg_DECL_immediate_int64(ureg, (int64_t *)&values[0].f, size);
5665 case GL_UNSIGNED_INT64_ARB:
5666 return ureg_DECL_immediate_uint64(ureg, (uint64_t *)&values[0].f, size);
5667 case GL_INT:
5668 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
5669 case GL_UNSIGNED_INT:
5670 case GL_BOOL:
5671 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
5672 default:
5673 assert(!"should not get here - type must be float, int, uint, or bool");
5674 return ureg_src_undef();
5675 }
5676 }
5677
5678 /**
5679 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
5680 */
5681 static struct ureg_dst
5682 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
5683 unsigned array_id)
5684 {
5685 unsigned array;
5686
5687 switch(file) {
5688 case PROGRAM_UNDEFINED:
5689 return ureg_dst_undef();
5690
5691 case PROGRAM_TEMPORARY:
5692 /* Allocate space for temporaries on demand. */
5693 if (index >= t->temps_size) {
5694 const int inc = align(index - t->temps_size + 1, 4096);
5695
5696 t->temps = (struct ureg_dst*)
5697 realloc(t->temps,
5698 (t->temps_size + inc) * sizeof(struct ureg_dst));
5699 if (!t->temps)
5700 return ureg_dst_undef();
5701
5702 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
5703 t->temps_size += inc;
5704 }
5705
5706 if (ureg_dst_is_undef(t->temps[index]))
5707 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
5708
5709 return t->temps[index];
5710
5711 case PROGRAM_ARRAY:
5712 assert(array_id && array_id <= t->num_temp_arrays);
5713 array = array_id - 1;
5714
5715 if (ureg_dst_is_undef(t->arrays[array]))
5716 t->arrays[array] = ureg_DECL_array_temporary(
5717 t->ureg, t->array_sizes[array], TRUE);
5718
5719 return ureg_dst_array_offset(t->arrays[array], index);
5720
5721 case PROGRAM_OUTPUT:
5722 if (!array_id) {
5723 if (t->procType == PIPE_SHADER_FRAGMENT)
5724 assert(index < 2 * FRAG_RESULT_MAX);
5725 else if (t->procType == PIPE_SHADER_TESS_CTRL ||
5726 t->procType == PIPE_SHADER_TESS_EVAL)
5727 assert(index < VARYING_SLOT_TESS_MAX);
5728 else
5729 assert(index < VARYING_SLOT_MAX);
5730
5731 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
5732 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
5733 return t->outputs[t->outputMapping[index]];
5734 }
5735 else {
5736 struct inout_decl *decl = find_inout_array(t->output_decls, t->num_output_decls, array_id);
5737 unsigned mesa_index = decl->mesa_index;
5738 int slot = t->outputMapping[mesa_index];
5739
5740 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
5741
5742 struct ureg_dst dst = t->outputs[slot];
5743 dst.ArrayID = array_id;
5744 return ureg_dst_array_offset(dst, index - mesa_index);
5745 }
5746
5747 case PROGRAM_ADDRESS:
5748 return t->address[index];
5749
5750 default:
5751 assert(!"unknown dst register file");
5752 return ureg_dst_undef();
5753 }
5754 }
5755
5756 /**
5757 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
5758 */
5759 static struct ureg_src
5760 src_register(struct st_translate *t, const st_src_reg *reg)
5761 {
5762 int index = reg->index;
5763 int double_reg2 = reg->double_reg2 ? 1 : 0;
5764
5765 switch(reg->file) {
5766 case PROGRAM_UNDEFINED:
5767 return ureg_imm4f(t->ureg, 0, 0, 0, 0);
5768
5769 case PROGRAM_TEMPORARY:
5770 case PROGRAM_ARRAY:
5771 return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
5772
5773 case PROGRAM_OUTPUT: {
5774 struct ureg_dst dst = dst_register(t, reg->file, reg->index, reg->array_id);
5775 assert(dst.WriteMask != 0);
5776 unsigned shift = ffs(dst.WriteMask) - 1;
5777 return ureg_swizzle(ureg_src(dst),
5778 shift,
5779 MIN2(shift + 1, 3),
5780 MIN2(shift + 2, 3),
5781 MIN2(shift + 3, 3));
5782 }
5783
5784 case PROGRAM_UNIFORM:
5785 assert(reg->index >= 0);
5786 return reg->index < t->num_constants ?
5787 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5788 case PROGRAM_STATE_VAR:
5789 case PROGRAM_CONSTANT: /* ie, immediate */
5790 if (reg->has_index2)
5791 return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
5792 else
5793 return reg->index >= 0 && reg->index < t->num_constants ?
5794 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5795
5796 case PROGRAM_IMMEDIATE:
5797 assert(reg->index >= 0 && reg->index < t->num_immediates);
5798 return t->immediates[reg->index];
5799
5800 case PROGRAM_INPUT:
5801 /* GLSL inputs are 64-bit containers, so we have to
5802 * map back to the original index and add the offset after
5803 * mapping. */
5804 index -= double_reg2;
5805 if (!reg->array_id) {
5806 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
5807 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
5808 return t->inputs[t->inputMapping[index] + double_reg2];
5809 }
5810 else {
5811 struct inout_decl *decl = find_inout_array(t->input_decls, t->num_input_decls, reg->array_id);
5812 unsigned mesa_index = decl->mesa_index;
5813 int slot = t->inputMapping[mesa_index];
5814
5815 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
5816
5817 struct ureg_src src = t->inputs[slot];
5818 src.ArrayID = reg->array_id;
5819 return ureg_src_array_offset(src, index + double_reg2 - mesa_index);
5820 }
5821
5822 case PROGRAM_ADDRESS:
5823 return ureg_src(t->address[reg->index]);
5824
5825 case PROGRAM_SYSTEM_VALUE:
5826 assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
5827 return t->systemValues[reg->index];
5828
5829 default:
5830 assert(!"unknown src register file");
5831 return ureg_src_undef();
5832 }
5833 }
5834
5835 /**
5836 * Create a TGSI ureg_dst register from an st_dst_reg.
5837 */
5838 static struct ureg_dst
5839 translate_dst(struct st_translate *t,
5840 const st_dst_reg *dst_reg,
5841 bool saturate)
5842 {
5843 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
5844 dst_reg->array_id);
5845
5846 if (dst.File == TGSI_FILE_NULL)
5847 return dst;
5848
5849 dst = ureg_writemask(dst, dst_reg->writemask);
5850
5851 if (saturate)
5852 dst = ureg_saturate(dst);
5853
5854 if (dst_reg->reladdr != NULL) {
5855 assert(dst_reg->file != PROGRAM_TEMPORARY);
5856 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
5857 }
5858
5859 if (dst_reg->has_index2) {
5860 if (dst_reg->reladdr2)
5861 dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
5862 dst_reg->index2D);
5863 else
5864 dst = ureg_dst_dimension(dst, dst_reg->index2D);
5865 }
5866
5867 return dst;
5868 }
5869
5870 /**
5871 * Create a TGSI ureg_src register from an st_src_reg.
5872 */
5873 static struct ureg_src
5874 translate_src(struct st_translate *t, const st_src_reg *src_reg)
5875 {
5876 struct ureg_src src = src_register(t, src_reg);
5877
5878 if (src_reg->has_index2) {
5879 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
5880 * and UBO constant buffers (buffer, position).
5881 */
5882 if (src_reg->reladdr2)
5883 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
5884 src_reg->index2D);
5885 else
5886 src = ureg_src_dimension(src, src_reg->index2D);
5887 }
5888
5889 src = ureg_swizzle(src,
5890 GET_SWZ(src_reg->swizzle, 0) & 0x3,
5891 GET_SWZ(src_reg->swizzle, 1) & 0x3,
5892 GET_SWZ(src_reg->swizzle, 2) & 0x3,
5893 GET_SWZ(src_reg->swizzle, 3) & 0x3);
5894
5895 if (src_reg->abs)
5896 src = ureg_abs(src);
5897
5898 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
5899 src = ureg_negate(src);
5900
5901 if (src_reg->reladdr != NULL) {
5902 assert(src_reg->file != PROGRAM_TEMPORARY);
5903 src = ureg_src_indirect(src, ureg_src(t->address[0]));
5904 }
5905
5906 return src;
5907 }
5908
5909 static struct tgsi_texture_offset
5910 translate_tex_offset(struct st_translate *t,
5911 const st_src_reg *in_offset)
5912 {
5913 struct tgsi_texture_offset offset;
5914 struct ureg_src src = translate_src(t, in_offset);
5915
5916 offset.File = src.File;
5917 offset.Index = src.Index;
5918 offset.SwizzleX = src.SwizzleX;
5919 offset.SwizzleY = src.SwizzleY;
5920 offset.SwizzleZ = src.SwizzleZ;
5921 offset.Padding = 0;
5922
5923 assert(!src.Indirect);
5924 assert(!src.DimIndirect);
5925 assert(!src.Dimension);
5926 assert(!src.Absolute); /* those shouldn't be used with integers anyway */
5927 assert(!src.Negate);
5928
5929 return offset;
5930 }
5931
5932 static void
5933 compile_tgsi_instruction(struct st_translate *t,
5934 const glsl_to_tgsi_instruction *inst)
5935 {
5936 struct ureg_program *ureg = t->ureg;
5937 int i;
5938 struct ureg_dst dst[2];
5939 struct ureg_src src[4];
5940 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
5941
5942 int num_dst;
5943 int num_src;
5944 unsigned tex_target = 0;
5945
5946 num_dst = num_inst_dst_regs(inst);
5947 num_src = num_inst_src_regs(inst);
5948
5949 for (i = 0; i < num_dst; i++)
5950 dst[i] = translate_dst(t,
5951 &inst->dst[i],
5952 inst->saturate);
5953
5954 for (i = 0; i < num_src; i++)
5955 src[i] = translate_src(t, &inst->src[i]);
5956
5957 switch(inst->op) {
5958 case TGSI_OPCODE_BGNLOOP:
5959 case TGSI_OPCODE_ELSE:
5960 case TGSI_OPCODE_ENDLOOP:
5961 case TGSI_OPCODE_IF:
5962 case TGSI_OPCODE_UIF:
5963 assert(num_dst == 0);
5964 ureg_insn(ureg, inst->op, NULL, 0, src, num_src, inst->precise);
5965 return;
5966
5967 case TGSI_OPCODE_TEX:
5968 case TGSI_OPCODE_TEX_LZ:
5969 case TGSI_OPCODE_TXB:
5970 case TGSI_OPCODE_TXD:
5971 case TGSI_OPCODE_TXL:
5972 case TGSI_OPCODE_TXP:
5973 case TGSI_OPCODE_TXQ:
5974 case TGSI_OPCODE_TXQS:
5975 case TGSI_OPCODE_TXF:
5976 case TGSI_OPCODE_TXF_LZ:
5977 case TGSI_OPCODE_TEX2:
5978 case TGSI_OPCODE_TXB2:
5979 case TGSI_OPCODE_TXL2:
5980 case TGSI_OPCODE_TG4:
5981 case TGSI_OPCODE_LODQ:
5982 if (inst->resource.file == PROGRAM_SAMPLER) {
5983 src[num_src] = t->samplers[inst->resource.index];
5984 } else {
5985 /* Bindless samplers. */
5986 src[num_src] = translate_src(t, &inst->resource);
5987 }
5988 assert(src[num_src].File != TGSI_FILE_NULL);
5989 if (inst->resource.reladdr)
5990 src[num_src] =
5991 ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
5992 num_src++;
5993 for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
5994 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
5995 }
5996 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5997
5998 ureg_tex_insn(ureg,
5999 inst->op,
6000 dst, num_dst,
6001 tex_target,
6002 st_translate_texture_type(inst->tex_type),
6003 texoffsets, inst->tex_offset_num_offset,
6004 src, num_src);
6005 return;
6006
6007 case TGSI_OPCODE_RESQ:
6008 case TGSI_OPCODE_LOAD:
6009 case TGSI_OPCODE_ATOMUADD:
6010 case TGSI_OPCODE_ATOMXCHG:
6011 case TGSI_OPCODE_ATOMCAS:
6012 case TGSI_OPCODE_ATOMAND:
6013 case TGSI_OPCODE_ATOMOR:
6014 case TGSI_OPCODE_ATOMXOR:
6015 case TGSI_OPCODE_ATOMUMIN:
6016 case TGSI_OPCODE_ATOMUMAX:
6017 case TGSI_OPCODE_ATOMIMIN:
6018 case TGSI_OPCODE_ATOMIMAX:
6019 for (i = num_src - 1; i >= 0; i--)
6020 src[i + 1] = src[i];
6021 num_src++;
6022 if (inst->resource.file == PROGRAM_MEMORY) {
6023 src[0] = t->shared_memory;
6024 } else if (inst->resource.file == PROGRAM_BUFFER) {
6025 src[0] = t->buffers[inst->resource.index];
6026 } else {
6027 if (inst->resource.file == PROGRAM_IMAGE) {
6028 src[0] = t->images[inst->resource.index];
6029 } else {
6030 /* Bindless images. */
6031 src[0] = translate_src(t, &inst->resource);
6032 }
6033 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
6034 }
6035 if (inst->resource.reladdr)
6036 src[0] = ureg_src_indirect(src[0], ureg_src(t->address[2]));
6037 assert(src[0].File != TGSI_FILE_NULL);
6038 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
6039 inst->buffer_access,
6040 tex_target, inst->image_format);
6041 break;
6042
6043 case TGSI_OPCODE_STORE:
6044 if (inst->resource.file == PROGRAM_MEMORY) {
6045 dst[0] = ureg_dst(t->shared_memory);
6046 } else if (inst->resource.file == PROGRAM_BUFFER) {
6047 dst[0] = ureg_dst(t->buffers[inst->resource.index]);
6048 } else {
6049 if (inst->resource.file == PROGRAM_IMAGE) {
6050 dst[0] = ureg_dst(t->images[inst->resource.index]);
6051 } else {
6052 /* Bindless images. */
6053 dst[0] = ureg_dst(translate_src(t, &inst->resource));
6054 }
6055 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
6056 }
6057 dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
6058 if (inst->resource.reladdr)
6059 dst[0] = ureg_dst_indirect(dst[0], ureg_src(t->address[2]));
6060 assert(dst[0].File != TGSI_FILE_NULL);
6061 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
6062 inst->buffer_access,
6063 tex_target, inst->image_format);
6064 break;
6065
6066 case TGSI_OPCODE_SCS:
6067 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
6068 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src, inst->precise);
6069 break;
6070
6071 default:
6072 ureg_insn(ureg,
6073 inst->op,
6074 dst, num_dst,
6075 src, num_src, inst->precise);
6076 break;
6077 }
6078 }
6079
6080 /**
6081 * Emit the TGSI instructions for inverting and adjusting WPOS.
6082 * This code is unavoidable because it also depends on whether
6083 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
6084 */
6085 static void
6086 emit_wpos_adjustment(struct gl_context *ctx,
6087 struct st_translate *t,
6088 int wpos_transform_const,
6089 boolean invert,
6090 GLfloat adjX, GLfloat adjY[2])
6091 {
6092 struct ureg_program *ureg = t->ureg;
6093
6094 assert(wpos_transform_const >= 0);
6095
6096 /* Fragment program uses fragment position input.
6097 * Need to replace instances of INPUT[WPOS] with temp T
6098 * where T = INPUT[WPOS] is inverted by Y.
6099 */
6100 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
6101 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
6102 struct ureg_src *wpos =
6103 ctx->Const.GLSLFragCoordIsSysVal ?
6104 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
6105 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
6106 struct ureg_src wpos_input = *wpos;
6107
6108 /* First, apply the coordinate shift: */
6109 if (adjX || adjY[0] || adjY[1]) {
6110 if (adjY[0] != adjY[1]) {
6111 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
6112 * depending on whether inversion is actually going to be applied
6113 * or not, which is determined by testing against the inversion
6114 * state variable used below, which will be either +1 or -1.
6115 */
6116 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
6117
6118 ureg_CMP(ureg, adj_temp,
6119 ureg_scalar(wpostrans, invert ? 2 : 0),
6120 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
6121 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
6122 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
6123 } else {
6124 ureg_ADD(ureg, wpos_temp, wpos_input,
6125 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
6126 }
6127 wpos_input = ureg_src(wpos_temp);
6128 } else {
6129 /* MOV wpos_temp, input[wpos]
6130 */
6131 ureg_MOV( ureg, wpos_temp, wpos_input );
6132 }
6133
6134 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
6135 * inversion/identity, or the other way around if we're drawing to an FBO.
6136 */
6137 if (invert) {
6138 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
6139 */
6140 ureg_MAD( ureg,
6141 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
6142 wpos_input,
6143 ureg_scalar(wpostrans, 0),
6144 ureg_scalar(wpostrans, 1));
6145 } else {
6146 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
6147 */
6148 ureg_MAD( ureg,
6149 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
6150 wpos_input,
6151 ureg_scalar(wpostrans, 2),
6152 ureg_scalar(wpostrans, 3));
6153 }
6154
6155 /* Use wpos_temp as position input from here on:
6156 */
6157 *wpos = ureg_src(wpos_temp);
6158 }
6159
6160
6161 /**
6162 * Emit fragment position/ooordinate code.
6163 */
6164 static void
6165 emit_wpos(struct st_context *st,
6166 struct st_translate *t,
6167 const struct gl_program *program,
6168 struct ureg_program *ureg,
6169 int wpos_transform_const)
6170 {
6171 struct pipe_screen *pscreen = st->pipe->screen;
6172 GLfloat adjX = 0.0f;
6173 GLfloat adjY[2] = { 0.0f, 0.0f };
6174 boolean invert = FALSE;
6175
6176 /* Query the pixel center conventions supported by the pipe driver and set
6177 * adjX, adjY to help out if it cannot handle the requested one internally.
6178 *
6179 * The bias of the y-coordinate depends on whether y-inversion takes place
6180 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
6181 * drawing to an FBO (causes additional inversion), and whether the pipe
6182 * driver origin and the requested origin differ (the latter condition is
6183 * stored in the 'invert' variable).
6184 *
6185 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
6186 *
6187 * center shift only:
6188 * i -> h: +0.5
6189 * h -> i: -0.5
6190 *
6191 * inversion only:
6192 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
6193 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
6194 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
6195 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
6196 *
6197 * inversion and center shift:
6198 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
6199 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
6200 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
6201 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
6202 */
6203 if (program->OriginUpperLeft) {
6204 /* Fragment shader wants origin in upper-left */
6205 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
6206 /* the driver supports upper-left origin */
6207 }
6208 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
6209 /* the driver supports lower-left origin, need to invert Y */
6210 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6211 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6212 invert = TRUE;
6213 }
6214 else
6215 assert(0);
6216 }
6217 else {
6218 /* Fragment shader wants origin in lower-left */
6219 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
6220 /* the driver supports lower-left origin */
6221 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6222 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6223 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
6224 /* the driver supports upper-left origin, need to invert Y */
6225 invert = TRUE;
6226 else
6227 assert(0);
6228 }
6229
6230 if (program->PixelCenterInteger) {
6231 /* Fragment shader wants pixel center integer */
6232 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6233 /* the driver supports pixel center integer */
6234 adjY[1] = 1.0f;
6235 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6236 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6237 }
6238 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6239 /* the driver supports pixel center half integer, need to bias X,Y */
6240 adjX = -0.5f;
6241 adjY[0] = -0.5f;
6242 adjY[1] = 0.5f;
6243 }
6244 else
6245 assert(0);
6246 }
6247 else {
6248 /* Fragment shader wants pixel center half integer */
6249 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6250 /* the driver supports pixel center half integer */
6251 }
6252 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6253 /* the driver supports pixel center integer, need to bias X,Y */
6254 adjX = adjY[0] = adjY[1] = 0.5f;
6255 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6256 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6257 }
6258 else
6259 assert(0);
6260 }
6261
6262 /* we invert after adjustment so that we avoid the MOV to temporary,
6263 * and reuse the adjustment ADD instead */
6264 emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
6265 }
6266
6267 /**
6268 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
6269 * TGSI uses +1 for front, -1 for back.
6270 * This function converts the TGSI value to the GL value. Simply clamping/
6271 * saturating the value to [0,1] does the job.
6272 */
6273 static void
6274 emit_face_var(struct gl_context *ctx, struct st_translate *t)
6275 {
6276 struct ureg_program *ureg = t->ureg;
6277 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
6278 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
6279
6280 if (ctx->Const.NativeIntegers) {
6281 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
6282 }
6283 else {
6284 /* MOV_SAT face_temp, input[face] */
6285 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
6286 }
6287
6288 /* Use face_temp as face input from here on: */
6289 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
6290 }
6291
6292 static void
6293 emit_compute_block_size(const struct gl_program *prog,
6294 struct ureg_program *ureg) {
6295 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
6296 prog->info.cs.local_size[0]);
6297 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
6298 prog->info.cs.local_size[1]);
6299 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
6300 prog->info.cs.local_size[2]);
6301 }
6302
6303 struct sort_inout_decls {
6304 bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
6305 return mapping[a.mesa_index] < mapping[b.mesa_index];
6306 }
6307
6308 const ubyte *mapping;
6309 };
6310
6311 /* Sort the given array of decls by the corresponding slot (TGSI file index).
6312 *
6313 * This is for the benefit of older drivers which are broken when the
6314 * declarations aren't sorted in this way.
6315 */
6316 static void
6317 sort_inout_decls_by_slot(struct inout_decl *decls,
6318 unsigned count,
6319 const ubyte mapping[])
6320 {
6321 sort_inout_decls sorter;
6322 sorter.mapping = mapping;
6323 std::sort(decls, decls + count, sorter);
6324 }
6325
6326 static unsigned
6327 st_translate_interp(enum glsl_interp_mode glsl_qual, GLuint varying)
6328 {
6329 switch (glsl_qual) {
6330 case INTERP_MODE_NONE:
6331 if (varying == VARYING_SLOT_COL0 || varying == VARYING_SLOT_COL1)
6332 return TGSI_INTERPOLATE_COLOR;
6333 return TGSI_INTERPOLATE_PERSPECTIVE;
6334 case INTERP_MODE_SMOOTH:
6335 return TGSI_INTERPOLATE_PERSPECTIVE;
6336 case INTERP_MODE_FLAT:
6337 return TGSI_INTERPOLATE_CONSTANT;
6338 case INTERP_MODE_NOPERSPECTIVE:
6339 return TGSI_INTERPOLATE_LINEAR;
6340 default:
6341 assert(0 && "unexpected interp mode in st_translate_interp()");
6342 return TGSI_INTERPOLATE_PERSPECTIVE;
6343 }
6344 }
6345
6346 /**
6347 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
6348 * \param program the program to translate
6349 * \param numInputs number of input registers used
6350 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
6351 * input indexes
6352 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
6353 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
6354 * each input
6355 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
6356 * \param numOutputs number of output registers used
6357 * \param outputMapping maps Mesa fragment program outputs to TGSI
6358 * generic outputs
6359 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
6360 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
6361 * each output
6362 *
6363 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
6364 */
6365 extern "C" enum pipe_error
6366 st_translate_program(
6367 struct gl_context *ctx,
6368 uint procType,
6369 struct ureg_program *ureg,
6370 glsl_to_tgsi_visitor *program,
6371 const struct gl_program *proginfo,
6372 GLuint numInputs,
6373 const ubyte inputMapping[],
6374 const ubyte inputSlotToAttr[],
6375 const ubyte inputSemanticName[],
6376 const ubyte inputSemanticIndex[],
6377 const ubyte interpMode[],
6378 GLuint numOutputs,
6379 const ubyte outputMapping[],
6380 const ubyte outputSemanticName[],
6381 const ubyte outputSemanticIndex[])
6382 {
6383 struct st_translate *t;
6384 unsigned i;
6385 struct gl_program_constants *frag_const =
6386 &ctx->Const.Program[MESA_SHADER_FRAGMENT];
6387 enum pipe_error ret = PIPE_OK;
6388
6389 assert(numInputs <= ARRAY_SIZE(t->inputs));
6390 assert(numOutputs <= ARRAY_SIZE(t->outputs));
6391
6392 t = CALLOC_STRUCT(st_translate);
6393 if (!t) {
6394 ret = PIPE_ERROR_OUT_OF_MEMORY;
6395 goto out;
6396 }
6397
6398 t->procType = procType;
6399 t->inputMapping = inputMapping;
6400 t->outputMapping = outputMapping;
6401 t->ureg = ureg;
6402 t->num_temp_arrays = program->next_array;
6403 if (t->num_temp_arrays)
6404 t->arrays = (struct ureg_dst*)
6405 calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
6406
6407 /*
6408 * Declare input attributes.
6409 */
6410 switch (procType) {
6411 case PIPE_SHADER_FRAGMENT:
6412 case PIPE_SHADER_GEOMETRY:
6413 case PIPE_SHADER_TESS_EVAL:
6414 case PIPE_SHADER_TESS_CTRL:
6415 sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
6416
6417 for (i = 0; i < program->num_inputs; ++i) {
6418 struct inout_decl *decl = &program->inputs[i];
6419 unsigned slot = inputMapping[decl->mesa_index];
6420 struct ureg_src src;
6421 ubyte tgsi_usage_mask = decl->usage_mask;
6422
6423 if (glsl_base_type_is_64bit(decl->base_type)) {
6424 if (tgsi_usage_mask == 1)
6425 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6426 else if (tgsi_usage_mask == 2)
6427 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6428 else
6429 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6430 }
6431
6432 unsigned interp_mode = 0;
6433 unsigned interp_location = 0;
6434 if (procType == PIPE_SHADER_FRAGMENT) {
6435 assert(interpMode);
6436 interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
6437 interpMode[slot] :
6438 st_translate_interp(decl->interp, inputSlotToAttr[slot]);
6439
6440 interp_location = decl->interp_loc;
6441 }
6442
6443 src = ureg_DECL_fs_input_cyl_centroid_layout(ureg,
6444 inputSemanticName[slot], inputSemanticIndex[slot],
6445 interp_mode, 0, interp_location, slot, tgsi_usage_mask,
6446 decl->array_id, decl->size);
6447
6448 for (unsigned j = 0; j < decl->size; ++j) {
6449 if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
6450 /* The ArrayID is set up in dst_register */
6451 t->inputs[slot + j] = src;
6452 t->inputs[slot + j].ArrayID = 0;
6453 t->inputs[slot + j].Index += j;
6454 }
6455 }
6456 }
6457 break;
6458 case PIPE_SHADER_VERTEX:
6459 for (i = 0; i < numInputs; i++) {
6460 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
6461 }
6462 break;
6463 case PIPE_SHADER_COMPUTE:
6464 break;
6465 default:
6466 assert(0);
6467 }
6468
6469 /*
6470 * Declare output attributes.
6471 */
6472 switch (procType) {
6473 case PIPE_SHADER_FRAGMENT:
6474 case PIPE_SHADER_COMPUTE:
6475 break;
6476 case PIPE_SHADER_GEOMETRY:
6477 case PIPE_SHADER_TESS_EVAL:
6478 case PIPE_SHADER_TESS_CTRL:
6479 case PIPE_SHADER_VERTEX:
6480 sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
6481
6482 for (i = 0; i < program->num_outputs; ++i) {
6483 struct inout_decl *decl = &program->outputs[i];
6484 unsigned slot = outputMapping[decl->mesa_index];
6485 struct ureg_dst dst;
6486 ubyte tgsi_usage_mask = decl->usage_mask;
6487
6488 if (glsl_base_type_is_64bit(decl->base_type)) {
6489 if (tgsi_usage_mask == 1)
6490 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6491 else if (tgsi_usage_mask == 2)
6492 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6493 else
6494 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6495 }
6496
6497 dst = ureg_DECL_output_layout(ureg,
6498 outputSemanticName[slot], outputSemanticIndex[slot],
6499 decl->gs_out_streams,
6500 slot, tgsi_usage_mask, decl->array_id, decl->size);
6501
6502 for (unsigned j = 0; j < decl->size; ++j) {
6503 if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
6504 /* The ArrayID is set up in dst_register */
6505 t->outputs[slot + j] = dst;
6506 t->outputs[slot + j].ArrayID = 0;
6507 t->outputs[slot + j].Index += j;
6508 }
6509 }
6510 }
6511 break;
6512 default:
6513 assert(0);
6514 }
6515
6516 if (procType == PIPE_SHADER_FRAGMENT) {
6517 if (program->shader->Program->info.fs.early_fragment_tests ||
6518 program->shader->Program->info.fs.post_depth_coverage) {
6519 ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
6520
6521 if (program->shader->Program->info.fs.post_depth_coverage)
6522 ureg_property(ureg, TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE, 1);
6523 }
6524
6525 if (proginfo->info.inputs_read & VARYING_BIT_POS) {
6526 /* Must do this after setting up t->inputs. */
6527 emit_wpos(st_context(ctx), t, proginfo, ureg,
6528 program->wpos_transform_const);
6529 }
6530
6531 if (proginfo->info.inputs_read & VARYING_BIT_FACE)
6532 emit_face_var(ctx, t);
6533
6534 for (i = 0; i < numOutputs; i++) {
6535 switch (outputSemanticName[i]) {
6536 case TGSI_SEMANTIC_POSITION:
6537 t->outputs[i] = ureg_DECL_output(ureg,
6538 TGSI_SEMANTIC_POSITION, /* Z/Depth */
6539 outputSemanticIndex[i]);
6540 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
6541 break;
6542 case TGSI_SEMANTIC_STENCIL:
6543 t->outputs[i] = ureg_DECL_output(ureg,
6544 TGSI_SEMANTIC_STENCIL, /* Stencil */
6545 outputSemanticIndex[i]);
6546 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
6547 break;
6548 case TGSI_SEMANTIC_COLOR:
6549 t->outputs[i] = ureg_DECL_output(ureg,
6550 TGSI_SEMANTIC_COLOR,
6551 outputSemanticIndex[i]);
6552 break;
6553 case TGSI_SEMANTIC_SAMPLEMASK:
6554 t->outputs[i] = ureg_DECL_output(ureg,
6555 TGSI_SEMANTIC_SAMPLEMASK,
6556 outputSemanticIndex[i]);
6557 /* TODO: If we ever support more than 32 samples, this will have
6558 * to become an array.
6559 */
6560 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6561 break;
6562 default:
6563 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
6564 ret = PIPE_ERROR_BAD_INPUT;
6565 goto out;
6566 }
6567 }
6568 }
6569 else if (procType == PIPE_SHADER_VERTEX) {
6570 for (i = 0; i < numOutputs; i++) {
6571 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
6572 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
6573 ureg_MOV(ureg,
6574 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
6575 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
6576 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6577 }
6578 }
6579 }
6580
6581 if (procType == PIPE_SHADER_COMPUTE) {
6582 emit_compute_block_size(proginfo, ureg);
6583 }
6584
6585 /* Declare address register.
6586 */
6587 if (program->num_address_regs > 0) {
6588 assert(program->num_address_regs <= 3);
6589 for (int i = 0; i < program->num_address_regs; i++)
6590 t->address[i] = ureg_DECL_address(ureg);
6591 }
6592
6593 /* Declare misc input registers
6594 */
6595 {
6596 GLbitfield sysInputs = proginfo->info.system_values_read;
6597
6598 for (i = 0; sysInputs; i++) {
6599 if (sysInputs & (1 << i)) {
6600 unsigned semName = _mesa_sysval_to_semantic(i);
6601
6602 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
6603
6604 if (semName == TGSI_SEMANTIC_INSTANCEID ||
6605 semName == TGSI_SEMANTIC_VERTEXID) {
6606 /* From Gallium perspective, these system values are always
6607 * integer, and require native integer support. However, if
6608 * native integer is supported on the vertex stage but not the
6609 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
6610 * assumes these system values are floats. To resolve the
6611 * inconsistency, we insert a U2F.
6612 */
6613 struct st_context *st = st_context(ctx);
6614 struct pipe_screen *pscreen = st->pipe->screen;
6615 assert(procType == PIPE_SHADER_VERTEX);
6616 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
6617 (void) pscreen;
6618 if (!ctx->Const.NativeIntegers) {
6619 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
6620 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
6621 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
6622 }
6623 }
6624
6625 if (procType == PIPE_SHADER_FRAGMENT &&
6626 semName == TGSI_SEMANTIC_POSITION)
6627 emit_wpos(st_context(ctx), t, proginfo, ureg,
6628 program->wpos_transform_const);
6629
6630 sysInputs &= ~(1 << i);
6631 }
6632 }
6633 }
6634
6635 t->array_sizes = program->array_sizes;
6636 t->input_decls = program->inputs;
6637 t->num_input_decls = program->num_inputs;
6638 t->output_decls = program->outputs;
6639 t->num_output_decls = program->num_outputs;
6640
6641 /* Emit constants and uniforms. TGSI uses a single index space for these,
6642 * so we put all the translated regs in t->constants.
6643 */
6644 if (proginfo->Parameters) {
6645 t->constants = (struct ureg_src *)
6646 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
6647 if (t->constants == NULL) {
6648 ret = PIPE_ERROR_OUT_OF_MEMORY;
6649 goto out;
6650 }
6651 t->num_constants = proginfo->Parameters->NumParameters;
6652
6653 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
6654 switch (proginfo->Parameters->Parameters[i].Type) {
6655 case PROGRAM_STATE_VAR:
6656 case PROGRAM_UNIFORM:
6657 t->constants[i] = ureg_DECL_constant(ureg, i);
6658 break;
6659
6660 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
6661 * addressing of the const buffer.
6662 * FIXME: Be smarter and recognize param arrays:
6663 * indirect addressing is only valid within the referenced
6664 * array.
6665 */
6666 case PROGRAM_CONSTANT:
6667 if (program->indirect_addr_consts)
6668 t->constants[i] = ureg_DECL_constant(ureg, i);
6669 else
6670 t->constants[i] = emit_immediate(t,
6671 proginfo->Parameters->ParameterValues[i],
6672 proginfo->Parameters->Parameters[i].DataType,
6673 4);
6674 break;
6675 default:
6676 break;
6677 }
6678 }
6679 }
6680
6681 for (i = 0; i < proginfo->info.num_ubos; i++) {
6682 unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
6683 unsigned num_const_vecs = (size + 15) / 16;
6684 unsigned first, last;
6685 assert(num_const_vecs > 0);
6686 first = 0;
6687 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
6688 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
6689 }
6690
6691 /* Emit immediate values.
6692 */
6693 t->immediates = (struct ureg_src *)
6694 calloc(program->num_immediates, sizeof(struct ureg_src));
6695 if (t->immediates == NULL) {
6696 ret = PIPE_ERROR_OUT_OF_MEMORY;
6697 goto out;
6698 }
6699 t->num_immediates = program->num_immediates;
6700
6701 i = 0;
6702 foreach_in_list(immediate_storage, imm, &program->immediates) {
6703 assert(i < program->num_immediates);
6704 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
6705 }
6706 assert(i == program->num_immediates);
6707
6708 /* texture samplers */
6709 for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
6710 if (program->samplers_used & (1u << i)) {
6711 unsigned type = st_translate_texture_type(program->sampler_types[i]);
6712
6713 t->samplers[i] = ureg_DECL_sampler(ureg, i);
6714
6715 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
6716 type, type, type, type );
6717 }
6718 }
6719
6720 /* Declare atomic and shader storage buffers. */
6721 {
6722 struct gl_program *prog = program->prog;
6723
6724 for (i = 0; i < prog->info.num_abos; i++) {
6725 unsigned index = prog->sh.AtomicBuffers[i]->Binding;
6726 assert(index < frag_const->MaxAtomicBuffers);
6727 t->buffers[index] = ureg_DECL_buffer(ureg, index, true);
6728 }
6729
6730 assert(prog->info.num_ssbos <= frag_const->MaxShaderStorageBlocks);
6731 for (i = 0; i < prog->info.num_ssbos; i++) {
6732 unsigned index = frag_const->MaxAtomicBuffers + i;
6733 t->buffers[index] = ureg_DECL_buffer(ureg, index, false);
6734 }
6735 }
6736
6737 if (program->use_shared_memory)
6738 t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
6739
6740 for (i = 0; i < program->shader->Program->info.num_images; i++) {
6741 if (program->images_used & (1 << i)) {
6742 t->images[i] = ureg_DECL_image(ureg, i,
6743 program->image_targets[i],
6744 program->image_formats[i],
6745 true, false);
6746 }
6747 }
6748
6749 /* Emit each instruction in turn:
6750 */
6751 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
6752 compile_tgsi_instruction(t, inst);
6753
6754 /* Set the next shader stage hint for VS and TES. */
6755 switch (procType) {
6756 case PIPE_SHADER_VERTEX:
6757 case PIPE_SHADER_TESS_EVAL:
6758 if (program->shader_program->SeparateShader)
6759 break;
6760
6761 for (i = program->shader->Stage+1; i <= MESA_SHADER_FRAGMENT; i++) {
6762 if (program->shader_program->_LinkedShaders[i]) {
6763 ureg_set_next_shader_processor(
6764 ureg, pipe_shader_type_from_mesa((gl_shader_stage)i));
6765 break;
6766 }
6767 }
6768 break;
6769 }
6770
6771 out:
6772 if (t) {
6773 free(t->arrays);
6774 free(t->temps);
6775 free(t->constants);
6776 t->num_constants = 0;
6777 free(t->immediates);
6778 t->num_immediates = 0;
6779 FREE(t);
6780 }
6781
6782 return ret;
6783 }
6784 /* ----------------------------- End TGSI code ------------------------------ */
6785
6786
6787 /**
6788 * Convert a shader's GLSL IR into a Mesa gl_program, although without
6789 * generating Mesa IR.
6790 */
6791 static struct gl_program *
6792 get_mesa_program_tgsi(struct gl_context *ctx,
6793 struct gl_shader_program *shader_program,
6794 struct gl_linked_shader *shader)
6795 {
6796 glsl_to_tgsi_visitor* v;
6797 struct gl_program *prog;
6798 struct gl_shader_compiler_options *options =
6799 &ctx->Const.ShaderCompilerOptions[shader->Stage];
6800 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6801 enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(shader->Stage);
6802 unsigned skip_merge_registers;
6803
6804 validate_ir_tree(shader->ir);
6805
6806 prog = shader->Program;
6807
6808 prog->Parameters = _mesa_new_parameter_list();
6809 v = new glsl_to_tgsi_visitor();
6810 v->ctx = ctx;
6811 v->prog = prog;
6812 v->shader_program = shader_program;
6813 v->shader = shader;
6814 v->options = options;
6815 v->glsl_version = ctx->Const.GLSLVersion;
6816 v->native_integers = ctx->Const.NativeIntegers;
6817
6818 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
6819 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
6820 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
6821 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
6822 v->has_tex_txf_lz = pscreen->get_param(pscreen,
6823 PIPE_CAP_TGSI_TEX_TXF_LZ);
6824
6825 v->variables = _mesa_hash_table_create(v->mem_ctx, _mesa_hash_pointer,
6826 _mesa_key_pointer_equal);
6827 skip_merge_registers =
6828 pscreen->get_shader_param(pscreen, ptarget,
6829 PIPE_SHADER_CAP_TGSI_SKIP_MERGE_REGISTERS);
6830
6831 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
6832 prog->Parameters);
6833
6834 /* Remove reads from output registers. */
6835 if (!pscreen->get_param(pscreen, PIPE_CAP_TGSI_CAN_READ_OUTPUTS))
6836 lower_output_reads(shader->Stage, shader->ir);
6837
6838 /* Emit intermediate IR for main(). */
6839 visit_exec_list(shader->ir, v);
6840
6841 #if 0
6842 /* Print out some information (for debugging purposes) used by the
6843 * optimization passes. */
6844 {
6845 int i;
6846 int *first_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
6847 int *first_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
6848 int *last_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
6849 int *last_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
6850
6851 for (i = 0; i < v->next_temp; i++) {
6852 first_writes[i] = -1;
6853 first_reads[i] = -1;
6854 last_writes[i] = -1;
6855 last_reads[i] = -1;
6856 }
6857 v->get_first_temp_read(first_reads);
6858 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
6859 v->get_last_temp_write(last_writes);
6860 for (i = 0; i < v->next_temp; i++)
6861 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
6862 first_writes[i],
6863 last_reads[i],
6864 last_writes[i]);
6865 ralloc_free(first_writes);
6866 ralloc_free(first_reads);
6867 ralloc_free(last_writes);
6868 ralloc_free(last_reads);
6869 }
6870 #endif
6871
6872 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
6873 v->simplify_cmp();
6874
6875 if (shader->Stage != MESA_SHADER_TESS_CTRL &&
6876 shader->Stage != MESA_SHADER_TESS_EVAL)
6877 v->copy_propagate();
6878
6879 while (v->eliminate_dead_code());
6880
6881 v->merge_two_dsts();
6882 if (!skip_merge_registers)
6883 v->merge_registers();
6884 v->renumber_registers();
6885
6886 /* Write the END instruction. */
6887 v->emit_asm(NULL, TGSI_OPCODE_END);
6888
6889 if (ctx->_Shader->Flags & GLSL_DUMP) {
6890 _mesa_log("\n");
6891 _mesa_log("GLSL IR for linked %s program %d:\n",
6892 _mesa_shader_stage_to_string(shader->Stage),
6893 shader_program->Name);
6894 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
6895 _mesa_log("\n\n");
6896 }
6897
6898 do_set_program_inouts(shader->ir, prog, shader->Stage);
6899 _mesa_copy_linked_program_data(shader_program, shader);
6900 shrink_array_declarations(v->inputs, v->num_inputs,
6901 &prog->info.inputs_read,
6902 prog->info.double_inputs_read,
6903 &prog->info.patch_inputs_read);
6904 shrink_array_declarations(v->outputs, v->num_outputs,
6905 &prog->info.outputs_written, 0ULL,
6906 &prog->info.patch_outputs_written);
6907 count_resources(v, prog);
6908
6909 /* The GLSL IR won't be needed anymore. */
6910 ralloc_free(shader->ir);
6911 shader->ir = NULL;
6912
6913 /* This must be done before the uniform storage is associated. */
6914 if (shader->Stage == MESA_SHADER_FRAGMENT &&
6915 (prog->info.inputs_read & VARYING_BIT_POS ||
6916 prog->info.system_values_read & (1 << SYSTEM_VALUE_FRAG_COORD))) {
6917 static const gl_state_index wposTransformState[STATE_LENGTH] = {
6918 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
6919 };
6920
6921 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
6922 wposTransformState);
6923 }
6924
6925 /* Avoid reallocation of the program parameter list, because the uniform
6926 * storage is only associated with the original parameter list.
6927 * This should be enough for Bitmap and DrawPixels constants.
6928 */
6929 _mesa_reserve_parameter_storage(prog->Parameters, 8);
6930
6931 /* This has to be done last. Any operation the can cause
6932 * prog->ParameterValues to get reallocated (e.g., anything that adds a
6933 * program constant) has to happen before creating this linkage.
6934 */
6935 _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
6936 if (!shader_program->data->LinkStatus) {
6937 free_glsl_to_tgsi_visitor(v);
6938 _mesa_reference_program(ctx, &shader->Program, NULL);
6939 return NULL;
6940 }
6941
6942 struct st_vertex_program *stvp;
6943 struct st_fragment_program *stfp;
6944 struct st_common_program *stp;
6945 struct st_compute_program *stcp;
6946
6947 switch (shader->Stage) {
6948 case MESA_SHADER_VERTEX:
6949 stvp = (struct st_vertex_program *)prog;
6950 stvp->glsl_to_tgsi = v;
6951 break;
6952 case MESA_SHADER_FRAGMENT:
6953 stfp = (struct st_fragment_program *)prog;
6954 stfp->glsl_to_tgsi = v;
6955 break;
6956 case MESA_SHADER_TESS_CTRL:
6957 case MESA_SHADER_TESS_EVAL:
6958 case MESA_SHADER_GEOMETRY:
6959 stp = st_common_program(prog);
6960 stp->glsl_to_tgsi = v;
6961 break;
6962 case MESA_SHADER_COMPUTE:
6963 stcp = (struct st_compute_program *)prog;
6964 stcp->glsl_to_tgsi = v;
6965 break;
6966 default:
6967 assert(!"should not be reached");
6968 return NULL;
6969 }
6970
6971 return prog;
6972 }
6973
6974 /* See if there are unsupported control flow statements. */
6975 class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
6976 private:
6977 const struct gl_shader_compiler_options *options;
6978 public:
6979 ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
6980 : options(options),
6981 unsupported(false)
6982 {
6983 }
6984
6985 virtual ir_visitor_status visit_enter(ir_function *ir)
6986 {
6987 /* Other functions are skipped (same as glsl_to_tgsi). */
6988 if (strcmp(ir->name, "main") == 0)
6989 return visit_continue;
6990
6991 return visit_continue_with_parent;
6992 }
6993
6994 virtual ir_visitor_status visit_enter(ir_call *ir)
6995 {
6996 if (!ir->callee->is_intrinsic()) {
6997 unsupported = true; /* it's a function call */
6998 return visit_stop;
6999 }
7000 return visit_continue;
7001 }
7002
7003 virtual ir_visitor_status visit_enter(ir_return *ir)
7004 {
7005 if (options->EmitNoMainReturn) {
7006 unsupported = true;
7007 return visit_stop;
7008 }
7009 return visit_continue;
7010 }
7011
7012 bool unsupported;
7013 };
7014
7015 static bool
7016 has_unsupported_control_flow(exec_list *ir,
7017 const struct gl_shader_compiler_options *options)
7018 {
7019 ir_control_flow_info_visitor visitor(options);
7020 visit_list_elements(&visitor, ir);
7021 return visitor.unsupported;
7022 }
7023
7024 extern "C" {
7025
7026 /**
7027 * Link a shader.
7028 * Called via ctx->Driver.LinkShader()
7029 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
7030 * with code lowering and other optimizations.
7031 */
7032 GLboolean
7033 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
7034 {
7035 /* Return early if we are loading the shader from on-disk cache */
7036 if (st_load_tgsi_from_disk_cache(ctx, prog)) {
7037 return GL_TRUE;
7038 }
7039
7040 struct pipe_screen *pscreen = ctx->st->pipe->screen;
7041 assert(prog->data->LinkStatus);
7042
7043 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
7044 if (prog->_LinkedShaders[i] == NULL)
7045 continue;
7046
7047 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
7048 exec_list *ir = shader->ir;
7049 gl_shader_stage stage = shader->Stage;
7050 const struct gl_shader_compiler_options *options =
7051 &ctx->Const.ShaderCompilerOptions[stage];
7052 enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(stage);
7053 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
7054 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
7055 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
7056 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
7057 unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
7058 PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
7059
7060 /* If there are forms of indirect addressing that the driver
7061 * cannot handle, perform the lowering pass.
7062 */
7063 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
7064 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
7065 lower_variable_index_to_cond_assign(stage, ir,
7066 options->EmitNoIndirectInput,
7067 options->EmitNoIndirectOutput,
7068 options->EmitNoIndirectTemp,
7069 options->EmitNoIndirectUniform);
7070 }
7071
7072 if (!pscreen->get_param(pscreen, PIPE_CAP_INT64_DIVMOD))
7073 lower_64bit_integer_instructions(ir, DIV64 | MOD64);
7074
7075 if (ctx->Extensions.ARB_shading_language_packing) {
7076 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
7077 LOWER_UNPACK_SNORM_2x16 |
7078 LOWER_PACK_UNORM_2x16 |
7079 LOWER_UNPACK_UNORM_2x16 |
7080 LOWER_PACK_SNORM_4x8 |
7081 LOWER_UNPACK_SNORM_4x8 |
7082 LOWER_UNPACK_UNORM_4x8 |
7083 LOWER_PACK_UNORM_4x8;
7084
7085 if (ctx->Extensions.ARB_gpu_shader5)
7086 lower_inst |= LOWER_PACK_USE_BFI |
7087 LOWER_PACK_USE_BFE;
7088 if (!ctx->st->has_half_float_packing)
7089 lower_inst |= LOWER_PACK_HALF_2x16 |
7090 LOWER_UNPACK_HALF_2x16;
7091
7092 lower_packing_builtins(ir, lower_inst);
7093 }
7094
7095 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
7096 lower_offset_arrays(ir);
7097 do_mat_op_to_vec(ir);
7098
7099 if (stage == MESA_SHADER_FRAGMENT)
7100 lower_blend_equation_advanced(shader);
7101
7102 lower_instructions(ir,
7103 MOD_TO_FLOOR |
7104 FDIV_TO_MUL_RCP |
7105 EXP_TO_EXP2 |
7106 LOG_TO_LOG2 |
7107 LDEXP_TO_ARITH |
7108 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
7109 CARRY_TO_ARITH |
7110 BORROW_TO_ARITH |
7111 (have_dround ? 0 : DOPS_TO_DFRAC) |
7112 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
7113 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
7114 (options->EmitNoSat ? SAT_TO_CLAMP : 0) |
7115 (ctx->Const.ForceGLSLAbsSqrt ? SQRT_TO_ABS_SQRT : 0) |
7116 /* Assume that if ARB_gpu_shader5 is not supported
7117 * then all of the extended integer functions need
7118 * lowering. It may be necessary to add some caps
7119 * for individual instructions.
7120 */
7121 (!ctx->Extensions.ARB_gpu_shader5
7122 ? BIT_COUNT_TO_MATH |
7123 EXTRACT_TO_SHIFTS |
7124 INSERT_TO_SHIFTS |
7125 REVERSE_TO_SHIFTS |
7126 FIND_LSB_TO_FLOAT_CAST |
7127 FIND_MSB_TO_FLOAT_CAST |
7128 IMUL_HIGH_TO_MUL
7129 : 0));
7130
7131 do_vec_index_to_cond_assign(ir);
7132 lower_vector_insert(ir, true);
7133 lower_quadop_vector(ir, false);
7134 lower_noise(ir);
7135 if (options->MaxIfDepth == 0) {
7136 lower_discard(ir);
7137 }
7138
7139 if (ctx->Const.GLSLOptimizeConservatively) {
7140 /* Do it once and repeat only if there's unsupported control flow. */
7141 do {
7142 do_common_optimization(ir, true, true, options,
7143 ctx->Const.NativeIntegers);
7144 lower_if_to_cond_assign((gl_shader_stage)i, ir,
7145 options->MaxIfDepth, if_threshold);
7146 } while (has_unsupported_control_flow(ir, options));
7147 } else {
7148 /* Repeat it until it stops making changes. */
7149 bool progress;
7150 do {
7151 progress = do_common_optimization(ir, true, true, options,
7152 ctx->Const.NativeIntegers);
7153 progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
7154 options->MaxIfDepth, if_threshold);
7155 } while (progress);
7156 }
7157
7158 validate_ir_tree(ir);
7159 }
7160
7161 build_program_resource_list(ctx, prog);
7162
7163 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
7164 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
7165 if (shader == NULL)
7166 continue;
7167
7168 enum pipe_shader_type ptarget =
7169 st_shader_stage_to_ptarget(shader->Stage);
7170 enum pipe_shader_ir preferred_ir = (enum pipe_shader_ir)
7171 pscreen->get_shader_param(pscreen, ptarget,
7172 PIPE_SHADER_CAP_PREFERRED_IR);
7173
7174 struct gl_program *linked_prog = NULL;
7175 if (preferred_ir == PIPE_SHADER_IR_NIR) {
7176 /* TODO only for GLSL VS/FS/CS for now: */
7177 switch (shader->Stage) {
7178 case MESA_SHADER_VERTEX:
7179 case MESA_SHADER_FRAGMENT:
7180 case MESA_SHADER_COMPUTE:
7181 linked_prog = st_nir_get_mesa_program(ctx, prog, shader);
7182 default:
7183 break;
7184 }
7185 } else {
7186 linked_prog = get_mesa_program_tgsi(ctx, prog, shader);
7187 }
7188
7189 if (linked_prog) {
7190 st_set_prog_affected_state_flags(linked_prog);
7191 if (!ctx->Driver.ProgramStringNotify(ctx,
7192 _mesa_shader_stage_to_program(i),
7193 linked_prog)) {
7194 _mesa_reference_program(ctx, &shader->Program, NULL);
7195 return GL_FALSE;
7196 }
7197 }
7198 }
7199
7200 return GL_TRUE;
7201 }
7202
7203 void
7204 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
7205 const ubyte outputMapping[],
7206 struct pipe_stream_output_info *so)
7207 {
7208 if (!glsl_to_tgsi->shader_program->last_vert_prog)
7209 return;
7210
7211 struct gl_transform_feedback_info *info =
7212 glsl_to_tgsi->shader_program->last_vert_prog->sh.LinkedTransformFeedback;
7213 st_translate_stream_output_info2(info, outputMapping, so);
7214 }
7215
7216 void
7217 st_translate_stream_output_info2(struct gl_transform_feedback_info *info,
7218 const ubyte outputMapping[],
7219 struct pipe_stream_output_info *so)
7220 {
7221 unsigned i;
7222
7223 for (i = 0; i < info->NumOutputs; i++) {
7224 so->output[i].register_index =
7225 outputMapping[info->Outputs[i].OutputRegister];
7226 so->output[i].start_component = info->Outputs[i].ComponentOffset;
7227 so->output[i].num_components = info->Outputs[i].NumComponents;
7228 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
7229 so->output[i].dst_offset = info->Outputs[i].DstOffset;
7230 so->output[i].stream = info->Outputs[i].StreamId;
7231 }
7232
7233 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
7234 so->stride[i] = info->Buffers[i].Stride;
7235 }
7236 so->num_outputs = info->NumOutputs;
7237 }
7238
7239 } /* extern "C" */