st/glsl_to_tgsi: fix 64-bit integer bit shifts
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "compiler/glsl/glsl_parser_extras.h"
36 #include "compiler/glsl/ir_optimization.h"
37 #include "compiler/glsl/program.h"
38
39 #include "main/errors.h"
40 #include "main/shaderobj.h"
41 #include "main/uniforms.h"
42 #include "main/shaderapi.h"
43 #include "main/shaderimage.h"
44 #include "program/prog_instruction.h"
45
46 #include "pipe/p_context.h"
47 #include "pipe/p_screen.h"
48 #include "tgsi/tgsi_ureg.h"
49 #include "tgsi/tgsi_info.h"
50 #include "util/u_math.h"
51 #include "util/u_memory.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "st_format.h"
55 #include "st_glsl_types.h"
56 #include "st_nir.h"
57 #include "st_shader_cache.h"
58
59 #include <algorithm>
60
61 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
62 (1 << PROGRAM_CONSTANT) | \
63 (1 << PROGRAM_UNIFORM))
64
65 #define MAX_GLSL_TEXTURE_OFFSET 4
66
67 class st_src_reg;
68 class st_dst_reg;
69
70 static int swizzle_for_size(int size);
71
72 static int swizzle_for_type(const glsl_type *type, int component = 0)
73 {
74 unsigned num_elements = 4;
75
76 if (type) {
77 type = type->without_array();
78 if (type->is_scalar() || type->is_vector() || type->is_matrix())
79 num_elements = type->vector_elements;
80 }
81
82 int swizzle = swizzle_for_size(num_elements);
83 assert(num_elements + component <= 4);
84
85 swizzle += component * MAKE_SWIZZLE4(1, 1, 1, 1);
86 return swizzle;
87 }
88
89 /**
90 * This struct is a corresponding struct to TGSI ureg_src.
91 */
92 class st_src_reg {
93 public:
94 st_src_reg(gl_register_file file, int index, const glsl_type *type,
95 int component = 0, unsigned array_id = 0)
96 {
97 assert(file != PROGRAM_ARRAY || array_id != 0);
98 this->file = file;
99 this->index = index;
100 this->swizzle = swizzle_for_type(type, component);
101 this->negate = 0;
102 this->abs = 0;
103 this->index2D = 0;
104 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
105 this->reladdr = NULL;
106 this->reladdr2 = NULL;
107 this->has_index2 = false;
108 this->double_reg2 = false;
109 this->array_id = array_id;
110 this->is_double_vertex_input = false;
111 }
112
113 st_src_reg(gl_register_file file, int index, enum glsl_base_type type)
114 {
115 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
116 this->type = type;
117 this->file = file;
118 this->index = index;
119 this->index2D = 0;
120 this->swizzle = SWIZZLE_XYZW;
121 this->negate = 0;
122 this->abs = 0;
123 this->reladdr = NULL;
124 this->reladdr2 = NULL;
125 this->has_index2 = false;
126 this->double_reg2 = false;
127 this->array_id = 0;
128 this->is_double_vertex_input = false;
129 }
130
131 st_src_reg(gl_register_file file, int index, enum glsl_base_type type, int index2D)
132 {
133 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
134 this->type = type;
135 this->file = file;
136 this->index = index;
137 this->index2D = index2D;
138 this->swizzle = SWIZZLE_XYZW;
139 this->negate = 0;
140 this->abs = 0;
141 this->reladdr = NULL;
142 this->reladdr2 = NULL;
143 this->has_index2 = false;
144 this->double_reg2 = false;
145 this->array_id = 0;
146 this->is_double_vertex_input = false;
147 }
148
149 st_src_reg()
150 {
151 this->type = GLSL_TYPE_ERROR;
152 this->file = PROGRAM_UNDEFINED;
153 this->index = 0;
154 this->index2D = 0;
155 this->swizzle = 0;
156 this->negate = 0;
157 this->abs = 0;
158 this->reladdr = NULL;
159 this->reladdr2 = NULL;
160 this->has_index2 = false;
161 this->double_reg2 = false;
162 this->array_id = 0;
163 this->is_double_vertex_input = false;
164 }
165
166 explicit st_src_reg(st_dst_reg reg);
167
168 int16_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
169 int16_t index2D;
170 uint16_t swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
171 int negate:4; /**< NEGATE_XYZW mask from mesa */
172 unsigned abs:1;
173 enum glsl_base_type type:5; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
174 unsigned has_index2:1;
175 gl_register_file file:5; /**< PROGRAM_* from Mesa */
176 /*
177 * Is this the second half of a double register pair?
178 * currently used for input mapping only.
179 */
180 unsigned double_reg2:1;
181 unsigned is_double_vertex_input:1;
182 unsigned array_id:10;
183
184 /** Register index should be offset by the integer in this reg. */
185 st_src_reg *reladdr;
186 st_src_reg *reladdr2;
187
188 st_src_reg get_abs()
189 {
190 st_src_reg reg = *this;
191 reg.negate = 0;
192 reg.abs = 1;
193 return reg;
194 }
195 };
196
197 class st_dst_reg {
198 public:
199 st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type, int index)
200 {
201 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
202 this->file = file;
203 this->index = index;
204 this->index2D = 0;
205 this->writemask = writemask;
206 this->reladdr = NULL;
207 this->reladdr2 = NULL;
208 this->has_index2 = false;
209 this->type = type;
210 this->array_id = 0;
211 }
212
213 st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type)
214 {
215 assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
216 this->file = file;
217 this->index = 0;
218 this->index2D = 0;
219 this->writemask = writemask;
220 this->reladdr = NULL;
221 this->reladdr2 = NULL;
222 this->has_index2 = false;
223 this->type = type;
224 this->array_id = 0;
225 }
226
227 st_dst_reg()
228 {
229 this->type = GLSL_TYPE_ERROR;
230 this->file = PROGRAM_UNDEFINED;
231 this->index = 0;
232 this->index2D = 0;
233 this->writemask = 0;
234 this->reladdr = NULL;
235 this->reladdr2 = NULL;
236 this->has_index2 = false;
237 this->array_id = 0;
238 }
239
240 explicit st_dst_reg(st_src_reg reg);
241
242 int16_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
243 int16_t index2D;
244 gl_register_file file:5; /**< PROGRAM_* from Mesa */
245 unsigned writemask:4; /**< Bitfield of WRITEMASK_[XYZW] */
246 enum glsl_base_type type:5; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
247 unsigned has_index2:1;
248 unsigned array_id:10;
249
250 /** Register index should be offset by the integer in this reg. */
251 st_src_reg *reladdr;
252 st_src_reg *reladdr2;
253 };
254
255 st_src_reg::st_src_reg(st_dst_reg reg)
256 {
257 this->type = reg.type;
258 this->file = reg.file;
259 this->index = reg.index;
260 this->swizzle = SWIZZLE_XYZW;
261 this->negate = 0;
262 this->abs = 0;
263 this->reladdr = reg.reladdr;
264 this->index2D = reg.index2D;
265 this->reladdr2 = reg.reladdr2;
266 this->has_index2 = reg.has_index2;
267 this->double_reg2 = false;
268 this->array_id = reg.array_id;
269 this->is_double_vertex_input = false;
270 }
271
272 st_dst_reg::st_dst_reg(st_src_reg reg)
273 {
274 this->type = reg.type;
275 this->file = reg.file;
276 this->index = reg.index;
277 this->writemask = WRITEMASK_XYZW;
278 this->reladdr = reg.reladdr;
279 this->index2D = reg.index2D;
280 this->reladdr2 = reg.reladdr2;
281 this->has_index2 = reg.has_index2;
282 this->array_id = reg.array_id;
283 }
284
285 class glsl_to_tgsi_instruction : public exec_node {
286 public:
287 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
288
289 st_dst_reg dst[2];
290 st_src_reg src[4];
291 st_src_reg resource; /**< sampler or buffer register */
292 st_src_reg *tex_offsets;
293
294 /** Pointer to the ir source this tree came from for debugging */
295 ir_instruction *ir;
296
297 unsigned op:8; /**< TGSI opcode */
298 unsigned saturate:1;
299 unsigned is_64bit_expanded:1;
300 unsigned sampler_base:5;
301 unsigned sampler_array_size:6; /**< 1-based size of sampler array, 1 if not array */
302 unsigned tex_target:4; /**< One of TEXTURE_*_INDEX */
303 glsl_base_type tex_type:5;
304 unsigned tex_shadow:1;
305 unsigned image_format:9;
306 unsigned tex_offset_num_offset:3;
307 unsigned dead_mask:4; /**< Used in dead code elimination */
308 unsigned buffer_access:3; /**< buffer access type */
309
310 const struct tgsi_opcode_info *info;
311 };
312
313 class variable_storage : public exec_node {
314 public:
315 variable_storage(ir_variable *var, gl_register_file file, int index,
316 unsigned array_id = 0)
317 : file(file), index(index), component(0), var(var), array_id(array_id)
318 {
319 assert(file != PROGRAM_ARRAY || array_id != 0);
320 }
321
322 gl_register_file file;
323 int index;
324
325 /* Explicit component location. This is given in terms of the GLSL-style
326 * swizzles where each double is a single component, i.e. for 64-bit types
327 * it can only be 0 or 1.
328 */
329 int component;
330 ir_variable *var; /* variable that maps to this, if any */
331 unsigned array_id;
332 };
333
334 class immediate_storage : public exec_node {
335 public:
336 immediate_storage(gl_constant_value *values, int size32, int type)
337 {
338 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
339 this->size32 = size32;
340 this->type = type;
341 }
342
343 /* doubles are stored across 2 gl_constant_values */
344 gl_constant_value values[4];
345 int size32; /**< Number of 32-bit components (1-4) */
346 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
347 };
348
349 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
350 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
351
352 struct inout_decl {
353 unsigned mesa_index;
354 unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
355 unsigned size;
356 unsigned interp_loc;
357 unsigned gs_out_streams;
358 enum glsl_interp_mode interp;
359 enum glsl_base_type base_type;
360 ubyte usage_mask; /* GLSL-style usage-mask, i.e. single bit per double */
361 };
362
363 static struct inout_decl *
364 find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
365 {
366 assert(array_id != 0);
367
368 for (unsigned i = 0; i < count; i++) {
369 struct inout_decl *decl = &decls[i];
370
371 if (array_id == decl->array_id) {
372 return decl;
373 }
374 }
375
376 return NULL;
377 }
378
379 static enum glsl_base_type
380 find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
381 {
382 if (!array_id)
383 return GLSL_TYPE_ERROR;
384 struct inout_decl *decl = find_inout_array(decls, count, array_id);
385 if (decl)
386 return decl->base_type;
387 return GLSL_TYPE_ERROR;
388 }
389
390 struct rename_reg_pair {
391 int old_reg;
392 int new_reg;
393 };
394
395 struct glsl_to_tgsi_visitor : public ir_visitor {
396 public:
397 glsl_to_tgsi_visitor();
398 ~glsl_to_tgsi_visitor();
399
400 struct gl_context *ctx;
401 struct gl_program *prog;
402 struct gl_shader_program *shader_program;
403 struct gl_linked_shader *shader;
404 struct gl_shader_compiler_options *options;
405
406 int next_temp;
407
408 unsigned *array_sizes;
409 unsigned max_num_arrays;
410 unsigned next_array;
411
412 struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
413 unsigned num_inputs;
414 unsigned num_input_arrays;
415 struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
416 unsigned num_outputs;
417 unsigned num_output_arrays;
418
419 int num_address_regs;
420 uint32_t samplers_used;
421 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
422 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
423 int buffers_used;
424 int images_used;
425 int image_targets[PIPE_MAX_SHADER_IMAGES];
426 unsigned image_formats[PIPE_MAX_SHADER_IMAGES];
427 bool indirect_addr_consts;
428 int wpos_transform_const;
429
430 int glsl_version;
431 bool native_integers;
432 bool have_sqrt;
433 bool have_fma;
434 bool use_shared_memory;
435 bool has_tex_txf_lz;
436
437 variable_storage *find_variable_storage(ir_variable *var);
438
439 int add_constant(gl_register_file file, gl_constant_value values[8],
440 int size, int datatype, uint16_t *swizzle_out);
441
442 st_src_reg get_temp(const glsl_type *type);
443 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
444
445 st_src_reg st_src_reg_for_double(double val);
446 st_src_reg st_src_reg_for_float(float val);
447 st_src_reg st_src_reg_for_int(int val);
448 st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
449
450 /**
451 * \name Visit methods
452 *
453 * As typical for the visitor pattern, there must be one \c visit method for
454 * each concrete subclass of \c ir_instruction. Virtual base classes within
455 * the hierarchy should not have \c visit methods.
456 */
457 /*@{*/
458 virtual void visit(ir_variable *);
459 virtual void visit(ir_loop *);
460 virtual void visit(ir_loop_jump *);
461 virtual void visit(ir_function_signature *);
462 virtual void visit(ir_function *);
463 virtual void visit(ir_expression *);
464 virtual void visit(ir_swizzle *);
465 virtual void visit(ir_dereference_variable *);
466 virtual void visit(ir_dereference_array *);
467 virtual void visit(ir_dereference_record *);
468 virtual void visit(ir_assignment *);
469 virtual void visit(ir_constant *);
470 virtual void visit(ir_call *);
471 virtual void visit(ir_return *);
472 virtual void visit(ir_discard *);
473 virtual void visit(ir_texture *);
474 virtual void visit(ir_if *);
475 virtual void visit(ir_emit_vertex *);
476 virtual void visit(ir_end_primitive *);
477 virtual void visit(ir_barrier *);
478 /*@}*/
479
480 void visit_expression(ir_expression *, st_src_reg *) ATTRIBUTE_NOINLINE;
481
482 void visit_atomic_counter_intrinsic(ir_call *);
483 void visit_ssbo_intrinsic(ir_call *);
484 void visit_membar_intrinsic(ir_call *);
485 void visit_shared_intrinsic(ir_call *);
486 void visit_image_intrinsic(ir_call *);
487
488 st_src_reg result;
489
490 /** List of variable_storage */
491 exec_list variables;
492
493 /** List of immediate_storage */
494 exec_list immediates;
495 unsigned num_immediates;
496
497 /** List of glsl_to_tgsi_instruction */
498 exec_list instructions;
499
500 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
501 st_dst_reg dst = undef_dst,
502 st_src_reg src0 = undef_src,
503 st_src_reg src1 = undef_src,
504 st_src_reg src2 = undef_src,
505 st_src_reg src3 = undef_src);
506
507 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
508 st_dst_reg dst, st_dst_reg dst1,
509 st_src_reg src0 = undef_src,
510 st_src_reg src1 = undef_src,
511 st_src_reg src2 = undef_src,
512 st_src_reg src3 = undef_src);
513
514 unsigned get_opcode(unsigned op,
515 st_dst_reg dst,
516 st_src_reg src0, st_src_reg src1);
517
518 /**
519 * Emit the correct dot-product instruction for the type of arguments
520 */
521 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
522 st_dst_reg dst,
523 st_src_reg src0,
524 st_src_reg src1,
525 unsigned elements);
526
527 void emit_scalar(ir_instruction *ir, unsigned op,
528 st_dst_reg dst, st_src_reg src0);
529
530 void emit_scalar(ir_instruction *ir, unsigned op,
531 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
532
533 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
534
535 void get_deref_offsets(ir_dereference *ir,
536 unsigned *array_size,
537 unsigned *base,
538 uint16_t *index,
539 st_src_reg *reladdr,
540 bool opaque);
541 void calc_deref_offsets(ir_dereference *tail,
542 unsigned *array_elements,
543 uint16_t *index,
544 st_src_reg *indirect,
545 unsigned *location);
546 st_src_reg canonicalize_gather_offset(st_src_reg offset);
547
548 bool try_emit_mad(ir_expression *ir,
549 int mul_operand);
550 bool try_emit_mad_for_and_not(ir_expression *ir,
551 int mul_operand);
552
553 void emit_swz(ir_expression *ir);
554
555 bool process_move_condition(ir_rvalue *ir);
556
557 void simplify_cmp(void);
558
559 void rename_temp_registers(int num_renames, struct rename_reg_pair *renames);
560 void get_first_temp_read(int *first_reads);
561 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
562 void get_last_temp_write(int *last_writes);
563
564 void copy_propagate(void);
565 int eliminate_dead_code(void);
566
567 void merge_two_dsts(void);
568 void merge_registers(void);
569 void renumber_registers(void);
570
571 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
572 st_dst_reg *l, st_src_reg *r,
573 st_src_reg *cond, bool cond_swap);
574
575 void *mem_ctx;
576 };
577
578 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
579 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
580 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
581
582 static void
583 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
584
585 static void
586 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
587 {
588 va_list args;
589 va_start(args, fmt);
590 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
591 va_end(args);
592
593 prog->data->LinkStatus = linking_failure;
594 }
595
596 static int
597 swizzle_for_size(int size)
598 {
599 static const int size_swizzles[4] = {
600 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
601 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
602 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
603 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
604 };
605
606 assert((size >= 1) && (size <= 4));
607 return size_swizzles[size - 1];
608 }
609
610 static bool
611 is_resource_instruction(unsigned opcode)
612 {
613 switch (opcode) {
614 case TGSI_OPCODE_RESQ:
615 case TGSI_OPCODE_LOAD:
616 case TGSI_OPCODE_ATOMUADD:
617 case TGSI_OPCODE_ATOMXCHG:
618 case TGSI_OPCODE_ATOMCAS:
619 case TGSI_OPCODE_ATOMAND:
620 case TGSI_OPCODE_ATOMOR:
621 case TGSI_OPCODE_ATOMXOR:
622 case TGSI_OPCODE_ATOMUMIN:
623 case TGSI_OPCODE_ATOMUMAX:
624 case TGSI_OPCODE_ATOMIMIN:
625 case TGSI_OPCODE_ATOMIMAX:
626 return true;
627 default:
628 return false;
629 }
630 }
631
632 static unsigned
633 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
634 {
635 return op->info->num_dst;
636 }
637
638 static unsigned
639 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
640 {
641 return op->info->is_tex || is_resource_instruction(op->op) ?
642 op->info->num_src - 1 : op->info->num_src;
643 }
644
645 glsl_to_tgsi_instruction *
646 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
647 st_dst_reg dst, st_dst_reg dst1,
648 st_src_reg src0, st_src_reg src1,
649 st_src_reg src2, st_src_reg src3)
650 {
651 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
652 int num_reladdr = 0, i, j;
653 bool dst_is_64bit[2];
654
655 op = get_opcode(op, dst, src0, src1);
656
657 /* If we have to do relative addressing, we want to load the ARL
658 * reg directly for one of the regs, and preload the other reladdr
659 * sources into temps.
660 */
661 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
662 num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
663 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
664 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
665 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
666 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
667
668 reladdr_to_temp(ir, &src3, &num_reladdr);
669 reladdr_to_temp(ir, &src2, &num_reladdr);
670 reladdr_to_temp(ir, &src1, &num_reladdr);
671 reladdr_to_temp(ir, &src0, &num_reladdr);
672
673 if (dst.reladdr || dst.reladdr2) {
674 if (dst.reladdr)
675 emit_arl(ir, address_reg, *dst.reladdr);
676 if (dst.reladdr2)
677 emit_arl(ir, address_reg2, *dst.reladdr2);
678 num_reladdr--;
679 }
680 if (dst1.reladdr) {
681 emit_arl(ir, address_reg, *dst1.reladdr);
682 num_reladdr--;
683 }
684 assert(num_reladdr == 0);
685
686 /* inst->op has only 8 bits. */
687 STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
688
689 inst->op = op;
690 inst->info = tgsi_get_opcode_info(op);
691 inst->dst[0] = dst;
692 inst->dst[1] = dst1;
693 inst->src[0] = src0;
694 inst->src[1] = src1;
695 inst->src[2] = src2;
696 inst->src[3] = src3;
697 inst->is_64bit_expanded = false;
698 inst->ir = ir;
699 inst->dead_mask = 0;
700 inst->tex_offsets = NULL;
701 inst->tex_offset_num_offset = 0;
702 inst->saturate = 0;
703 inst->tex_shadow = 0;
704 /* default to float, for paths where this is not initialized
705 * (since 0==UINT which is likely wrong):
706 */
707 inst->tex_type = GLSL_TYPE_FLOAT;
708
709 /* Update indirect addressing status used by TGSI */
710 if (dst.reladdr || dst.reladdr2) {
711 switch(dst.file) {
712 case PROGRAM_STATE_VAR:
713 case PROGRAM_CONSTANT:
714 case PROGRAM_UNIFORM:
715 this->indirect_addr_consts = true;
716 break;
717 case PROGRAM_IMMEDIATE:
718 assert(!"immediates should not have indirect addressing");
719 break;
720 default:
721 break;
722 }
723 }
724 else {
725 for (i = 0; i < 4; i++) {
726 if(inst->src[i].reladdr) {
727 switch(inst->src[i].file) {
728 case PROGRAM_STATE_VAR:
729 case PROGRAM_CONSTANT:
730 case PROGRAM_UNIFORM:
731 this->indirect_addr_consts = true;
732 break;
733 case PROGRAM_IMMEDIATE:
734 assert(!"immediates should not have indirect addressing");
735 break;
736 default:
737 break;
738 }
739 }
740 }
741 }
742
743 /*
744 * This section contains the double processing.
745 * GLSL just represents doubles as single channel values,
746 * however most HW and TGSI represent doubles as pairs of register channels.
747 *
748 * so we have to fixup destination writemask/index and src swizzle/indexes.
749 * dest writemasks need to translate from single channel write mask
750 * to a dual-channel writemask, but also need to modify the index,
751 * if we are touching the Z,W fields in the pre-translated writemask.
752 *
753 * src channels have similiar index modifications along with swizzle
754 * changes to we pick the XY, ZW pairs from the correct index.
755 *
756 * GLSL [0].x -> TGSI [0].xy
757 * GLSL [0].y -> TGSI [0].zw
758 * GLSL [0].z -> TGSI [1].xy
759 * GLSL [0].w -> TGSI [1].zw
760 */
761 for (j = 0; j < 2; j++) {
762 dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
763 if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
764 enum glsl_base_type type = find_array_type(this->outputs, this->num_outputs, inst->dst[j].array_id);
765 if (glsl_base_type_is_64bit(type))
766 dst_is_64bit[j] = true;
767 }
768 }
769
770 if (dst_is_64bit[0] || dst_is_64bit[1] ||
771 glsl_base_type_is_64bit(inst->src[0].type)) {
772 glsl_to_tgsi_instruction *dinst = NULL;
773 int initial_src_swz[4], initial_src_idx[4];
774 int initial_dst_idx[2], initial_dst_writemask[2];
775 /* select the writemask for dst0 or dst1 */
776 unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED ? inst->dst[0].writemask : inst->dst[1].writemask;
777
778 /* copy out the writemask, index and swizzles for all src/dsts. */
779 for (j = 0; j < 2; j++) {
780 initial_dst_writemask[j] = inst->dst[j].writemask;
781 initial_dst_idx[j] = inst->dst[j].index;
782 }
783
784 for (j = 0; j < 4; j++) {
785 initial_src_swz[j] = inst->src[j].swizzle;
786 initial_src_idx[j] = inst->src[j].index;
787 }
788
789 /*
790 * scan all the components in the dst writemask
791 * generate an instruction for each of them if required.
792 */
793 st_src_reg addr;
794 while (writemask) {
795
796 int i = u_bit_scan(&writemask);
797
798 /* before emitting the instruction, see if we have to adjust load / store
799 * address */
800 if (i > 1 && (inst->op == TGSI_OPCODE_LOAD || inst->op == TGSI_OPCODE_STORE) &&
801 addr.file == PROGRAM_UNDEFINED) {
802 /* We have to advance the buffer address by 16 */
803 addr = get_temp(glsl_type::uint_type);
804 emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
805 inst->src[0], st_src_reg_for_int(16));
806 }
807
808 /* first time use previous instruction */
809 if (dinst == NULL) {
810 dinst = inst;
811 } else {
812 /* create a new instructions for subsequent attempts */
813 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
814 *dinst = *inst;
815 dinst->next = NULL;
816 dinst->prev = NULL;
817 }
818 this->instructions.push_tail(dinst);
819 dinst->is_64bit_expanded = true;
820
821 /* modify the destination if we are splitting */
822 for (j = 0; j < 2; j++) {
823 if (dst_is_64bit[j]) {
824 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
825 dinst->dst[j].index = initial_dst_idx[j];
826 if (i > 1) {
827 if (dinst->op == TGSI_OPCODE_LOAD || dinst->op == TGSI_OPCODE_STORE)
828 dinst->src[0] = addr;
829 if (dinst->op != TGSI_OPCODE_STORE)
830 dinst->dst[j].index++;
831 }
832 } else {
833 /* if we aren't writing to a double, just get the bit of the initial writemask
834 for this channel */
835 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
836 }
837 }
838
839 /* modify the src registers */
840 for (j = 0; j < 4; j++) {
841 int swz = GET_SWZ(initial_src_swz[j], i);
842
843 if (glsl_base_type_is_64bit(dinst->src[j].type)) {
844 dinst->src[j].index = initial_src_idx[j];
845 if (swz > 1) {
846 dinst->src[j].double_reg2 = true;
847 dinst->src[j].index++;
848 }
849
850 if (swz & 1)
851 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
852 else
853 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
854
855 } else {
856 /* some opcodes are special case in what they use as sources
857 - [FUI]2D/[UI]2I64 is a float/[u]int src0, DLDEXP is integer src1 */
858 if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D || op == TGSI_OPCODE_I2D ||
859 op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
860 op == TGSI_OPCODE_DLDEXP ||
861 (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
862 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
863 }
864 }
865 }
866 }
867 inst = dinst;
868 } else {
869 this->instructions.push_tail(inst);
870 }
871
872
873 return inst;
874 }
875
876 glsl_to_tgsi_instruction *
877 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
878 st_dst_reg dst,
879 st_src_reg src0, st_src_reg src1,
880 st_src_reg src2, st_src_reg src3)
881 {
882 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
883 }
884
885 /**
886 * Determines whether to use an integer, unsigned integer, or float opcode
887 * based on the operands and input opcode, then emits the result.
888 */
889 unsigned
890 glsl_to_tgsi_visitor::get_opcode(unsigned op,
891 st_dst_reg dst,
892 st_src_reg src0, st_src_reg src1)
893 {
894 enum glsl_base_type type = GLSL_TYPE_FLOAT;
895
896 if (op == TGSI_OPCODE_MOV)
897 return op;
898
899 assert(src0.type != GLSL_TYPE_ARRAY);
900 assert(src0.type != GLSL_TYPE_STRUCT);
901 assert(src1.type != GLSL_TYPE_ARRAY);
902 assert(src1.type != GLSL_TYPE_STRUCT);
903
904 if (is_resource_instruction(op))
905 type = src1.type;
906 else if (src0.type == GLSL_TYPE_INT64 || src1.type == GLSL_TYPE_INT64)
907 type = GLSL_TYPE_INT64;
908 else if (src0.type == GLSL_TYPE_UINT64 || src1.type == GLSL_TYPE_UINT64)
909 type = GLSL_TYPE_UINT64;
910 else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
911 type = GLSL_TYPE_DOUBLE;
912 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
913 type = GLSL_TYPE_FLOAT;
914 else if (native_integers)
915 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
916
917 #define case7(c, f, i, u, d, i64, ui64) \
918 case TGSI_OPCODE_##c: \
919 if (type == GLSL_TYPE_UINT64) \
920 op = TGSI_OPCODE_##ui64; \
921 else if (type == GLSL_TYPE_INT64) \
922 op = TGSI_OPCODE_##i64; \
923 else if (type == GLSL_TYPE_DOUBLE) \
924 op = TGSI_OPCODE_##d; \
925 else if (type == GLSL_TYPE_INT) \
926 op = TGSI_OPCODE_##i; \
927 else if (type == GLSL_TYPE_UINT) \
928 op = TGSI_OPCODE_##u; \
929 else \
930 op = TGSI_OPCODE_##f; \
931 break;
932 #define case5(c, f, i, u, d) \
933 case TGSI_OPCODE_##c: \
934 if (type == GLSL_TYPE_DOUBLE) \
935 op = TGSI_OPCODE_##d; \
936 else if (type == GLSL_TYPE_INT) \
937 op = TGSI_OPCODE_##i; \
938 else if (type == GLSL_TYPE_UINT) \
939 op = TGSI_OPCODE_##u; \
940 else \
941 op = TGSI_OPCODE_##f; \
942 break;
943
944 #define case4(c, f, i, u) \
945 case TGSI_OPCODE_##c: \
946 if (type == GLSL_TYPE_INT) \
947 op = TGSI_OPCODE_##i; \
948 else if (type == GLSL_TYPE_UINT) \
949 op = TGSI_OPCODE_##u; \
950 else \
951 op = TGSI_OPCODE_##f; \
952 break;
953
954 #define case3(f, i, u) case4(f, f, i, u)
955 #define case6d(f, i, u, d, i64, u64) case7(f, f, i, u, d, i64, u64)
956 #define case3fid(f, i, d) case5(f, f, i, i, d)
957 #define case3fid64(f, i, d, i64) case7(f, f, i, i, d, i64, i64)
958 #define case2fi(f, i) case4(f, f, i, i)
959 #define case2iu(i, u) case4(i, LAST, i, u)
960
961 #define case2iu64(i, i64) case7(i, LAST, i, i, LAST, i64, i64)
962 #define case4iu64(i, u, i64, u64) case7(i, LAST, i, u, LAST, i64, u64)
963
964 #define casecomp(c, f, i, u, d, i64, ui64) \
965 case TGSI_OPCODE_##c: \
966 if (type == GLSL_TYPE_INT64) \
967 op = TGSI_OPCODE_##i64; \
968 else if (type == GLSL_TYPE_UINT64) \
969 op = TGSI_OPCODE_##ui64; \
970 else if (type == GLSL_TYPE_DOUBLE) \
971 op = TGSI_OPCODE_##d; \
972 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
973 op = TGSI_OPCODE_##i; \
974 else if (type == GLSL_TYPE_UINT) \
975 op = TGSI_OPCODE_##u; \
976 else if (native_integers) \
977 op = TGSI_OPCODE_##f; \
978 else \
979 op = TGSI_OPCODE_##c; \
980 break;
981
982 switch(op) {
983 case3fid64(ADD, UADD, DADD, U64ADD);
984 case3fid64(MUL, UMUL, DMUL, U64MUL);
985 case3fid(MAD, UMAD, DMAD);
986 case3fid(FMA, UMAD, DFMA);
987 case6d(DIV, IDIV, UDIV, DDIV, I64DIV, U64DIV);
988 case6d(MAX, IMAX, UMAX, DMAX, I64MAX, U64MAX);
989 case6d(MIN, IMIN, UMIN, DMIN, I64MIN, U64MIN);
990 case4iu64(MOD, UMOD, I64MOD, U64MOD);
991
992 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ, U64SEQ, U64SEQ);
993 casecomp(SNE, FSNE, USNE, USNE, DSNE, U64SNE, U64SNE);
994 casecomp(SGE, FSGE, ISGE, USGE, DSGE, I64SGE, U64SGE);
995 casecomp(SLT, FSLT, ISLT, USLT, DSLT, I64SLT, U64SLT);
996
997 case2iu64(SHL, U64SHL);
998 case4iu64(ISHR, USHR, I64SHR, U64SHR);
999
1000 case3fid64(SSG, ISSG, DSSG, I64SSG);
1001
1002 case2iu(IBFE, UBFE);
1003 case2iu(IMSB, UMSB);
1004 case2iu(IMUL_HI, UMUL_HI);
1005
1006 case3fid(SQRT, SQRT, DSQRT);
1007
1008 case3fid(RCP, RCP, DRCP);
1009 case3fid(RSQ, RSQ, DRSQ);
1010
1011 case3fid(FRC, FRC, DFRAC);
1012 case3fid(TRUNC, TRUNC, DTRUNC);
1013 case3fid(CEIL, CEIL, DCEIL);
1014 case3fid(FLR, FLR, DFLR);
1015 case3fid(ROUND, ROUND, DROUND);
1016
1017 case2iu(ATOMIMAX, ATOMUMAX);
1018 case2iu(ATOMIMIN, ATOMUMIN);
1019
1020 default: break;
1021 }
1022
1023 assert(op != TGSI_OPCODE_LAST);
1024 return op;
1025 }
1026
1027 glsl_to_tgsi_instruction *
1028 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
1029 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
1030 unsigned elements)
1031 {
1032 static const unsigned dot_opcodes[] = {
1033 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
1034 };
1035
1036 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
1037 }
1038
1039 /**
1040 * Emits TGSI scalar opcodes to produce unique answers across channels.
1041 *
1042 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
1043 * channel determines the result across all channels. So to do a vec4
1044 * of this operation, we want to emit a scalar per source channel used
1045 * to produce dest channels.
1046 */
1047 void
1048 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
1049 st_dst_reg dst,
1050 st_src_reg orig_src0, st_src_reg orig_src1)
1051 {
1052 int i, j;
1053 int done_mask = ~dst.writemask;
1054
1055 /* TGSI RCP is a scalar operation splatting results to all channels,
1056 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
1057 * dst channels.
1058 */
1059 for (i = 0; i < 4; i++) {
1060 GLuint this_mask = (1 << i);
1061 st_src_reg src0 = orig_src0;
1062 st_src_reg src1 = orig_src1;
1063
1064 if (done_mask & this_mask)
1065 continue;
1066
1067 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
1068 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
1069 for (j = i + 1; j < 4; j++) {
1070 /* If there is another enabled component in the destination that is
1071 * derived from the same inputs, generate its value on this pass as
1072 * well.
1073 */
1074 if (!(done_mask & (1 << j)) &&
1075 GET_SWZ(src0.swizzle, j) == src0_swiz &&
1076 GET_SWZ(src1.swizzle, j) == src1_swiz) {
1077 this_mask |= (1 << j);
1078 }
1079 }
1080 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
1081 src0_swiz, src0_swiz);
1082 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
1083 src1_swiz, src1_swiz);
1084
1085 dst.writemask = this_mask;
1086 emit_asm(ir, op, dst, src0, src1);
1087 done_mask |= this_mask;
1088 }
1089 }
1090
1091 void
1092 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
1093 st_dst_reg dst, st_src_reg src0)
1094 {
1095 st_src_reg undef = undef_src;
1096
1097 undef.swizzle = SWIZZLE_XXXX;
1098
1099 emit_scalar(ir, op, dst, src0, undef);
1100 }
1101
1102 void
1103 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
1104 st_dst_reg dst, st_src_reg src0)
1105 {
1106 int op = TGSI_OPCODE_ARL;
1107
1108 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
1109 op = TGSI_OPCODE_UARL;
1110
1111 assert(dst.file == PROGRAM_ADDRESS);
1112 if (dst.index >= this->num_address_regs)
1113 this->num_address_regs = dst.index + 1;
1114
1115 emit_asm(NULL, op, dst, src0);
1116 }
1117
1118 int
1119 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
1120 gl_constant_value values[8], int size, int datatype,
1121 uint16_t *swizzle_out)
1122 {
1123 if (file == PROGRAM_CONSTANT) {
1124 GLuint swizzle = swizzle_out ? *swizzle_out : 0;
1125 int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
1126 size, datatype, &swizzle);
1127 if (swizzle_out)
1128 *swizzle_out = swizzle;
1129 return result;
1130 }
1131
1132 assert(file == PROGRAM_IMMEDIATE);
1133
1134 int index = 0;
1135 immediate_storage *entry;
1136 int size32 = size * ((datatype == GL_DOUBLE ||
1137 datatype == GL_INT64_ARB ||
1138 datatype == GL_UNSIGNED_INT64_ARB)? 2 : 1);
1139 int i;
1140
1141 /* Search immediate storage to see if we already have an identical
1142 * immediate that we can use instead of adding a duplicate entry.
1143 */
1144 foreach_in_list(immediate_storage, entry, &this->immediates) {
1145 immediate_storage *tmp = entry;
1146
1147 for (i = 0; i * 4 < size32; i++) {
1148 int slot_size = MIN2(size32 - (i * 4), 4);
1149 if (tmp->type != datatype || tmp->size32 != slot_size)
1150 break;
1151 if (memcmp(tmp->values, &values[i * 4],
1152 slot_size * sizeof(gl_constant_value)))
1153 break;
1154
1155 /* Everything matches, keep going until the full size is matched */
1156 tmp = (immediate_storage *)tmp->next;
1157 }
1158
1159 /* The full value matched */
1160 if (i * 4 >= size32)
1161 return index;
1162
1163 index++;
1164 }
1165
1166 for (i = 0; i * 4 < size32; i++) {
1167 int slot_size = MIN2(size32 - (i * 4), 4);
1168 /* Add this immediate to the list. */
1169 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
1170 this->immediates.push_tail(entry);
1171 this->num_immediates++;
1172 }
1173 return index;
1174 }
1175
1176 st_src_reg
1177 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1178 {
1179 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1180 union gl_constant_value uval;
1181
1182 uval.f = val;
1183 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1184
1185 return src;
1186 }
1187
1188 st_src_reg
1189 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1190 {
1191 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1192 union gl_constant_value uval[2];
1193
1194 memcpy(uval, &val, sizeof(uval));
1195 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1196 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
1197 return src;
1198 }
1199
1200 st_src_reg
1201 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1202 {
1203 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1204 union gl_constant_value uval;
1205
1206 assert(native_integers);
1207
1208 uval.i = val;
1209 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1210
1211 return src;
1212 }
1213
1214 st_src_reg
1215 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
1216 {
1217 if (native_integers)
1218 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1219 st_src_reg_for_int(val);
1220 else
1221 return st_src_reg_for_float(val);
1222 }
1223
1224 static int
1225 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
1226 {
1227 return st_glsl_attrib_type_size(type, is_vs_input);
1228 }
1229
1230 static int
1231 type_size(const struct glsl_type *type)
1232 {
1233 return st_glsl_type_size(type);
1234 }
1235
1236 /**
1237 * If the given GLSL type is an array or matrix or a structure containing
1238 * an array/matrix member, return true. Else return false.
1239 *
1240 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1241 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
1242 * we have an array that might be indexed with a variable, we need to use
1243 * the later storage type.
1244 */
1245 static bool
1246 type_has_array_or_matrix(const glsl_type *type)
1247 {
1248 if (type->is_array() || type->is_matrix())
1249 return true;
1250
1251 if (type->is_record()) {
1252 for (unsigned i = 0; i < type->length; i++) {
1253 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1254 return true;
1255 }
1256 }
1257 }
1258
1259 return false;
1260 }
1261
1262
1263 /**
1264 * In the initial pass of codegen, we assign temporary numbers to
1265 * intermediate results. (not SSA -- variable assignments will reuse
1266 * storage).
1267 */
1268 st_src_reg
1269 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1270 {
1271 st_src_reg src;
1272
1273 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1274 src.reladdr = NULL;
1275 src.negate = 0;
1276 src.abs = 0;
1277
1278 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1279 if (next_array >= max_num_arrays) {
1280 max_num_arrays += 32;
1281 array_sizes = (unsigned*)
1282 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1283 }
1284
1285 src.file = PROGRAM_ARRAY;
1286 src.index = 0;
1287 src.array_id = next_array + 1;
1288 array_sizes[next_array] = type_size(type);
1289 ++next_array;
1290
1291 } else {
1292 src.file = PROGRAM_TEMPORARY;
1293 src.index = next_temp;
1294 next_temp += type_size(type);
1295 }
1296
1297 if (type->is_array() || type->is_record()) {
1298 src.swizzle = SWIZZLE_NOOP;
1299 } else {
1300 src.swizzle = swizzle_for_size(type->vector_elements);
1301 }
1302
1303 return src;
1304 }
1305
1306 variable_storage *
1307 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1308 {
1309
1310 foreach_in_list(variable_storage, entry, &this->variables) {
1311 if (entry->var == var)
1312 return entry;
1313 }
1314
1315 return NULL;
1316 }
1317
1318 void
1319 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1320 {
1321 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1322 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
1323 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
1324 }
1325
1326 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1327 unsigned int i;
1328 const ir_state_slot *const slots = ir->get_state_slots();
1329 assert(slots != NULL);
1330
1331 /* Check if this statevar's setup in the STATE file exactly
1332 * matches how we'll want to reference it as a
1333 * struct/array/whatever. If not, then we need to move it into
1334 * temporary storage and hope that it'll get copy-propagated
1335 * out.
1336 */
1337 for (i = 0; i < ir->get_num_state_slots(); i++) {
1338 if (slots[i].swizzle != SWIZZLE_XYZW) {
1339 break;
1340 }
1341 }
1342
1343 variable_storage *storage;
1344 st_dst_reg dst;
1345 if (i == ir->get_num_state_slots()) {
1346 /* We'll set the index later. */
1347 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1348 this->variables.push_tail(storage);
1349
1350 dst = undef_dst;
1351 } else {
1352 /* The variable_storage constructor allocates slots based on the size
1353 * of the type. However, this had better match the number of state
1354 * elements that we're going to copy into the new temporary.
1355 */
1356 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1357
1358 dst = st_dst_reg(get_temp(ir->type));
1359
1360 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
1361 dst.array_id);
1362
1363 this->variables.push_tail(storage);
1364 }
1365
1366
1367 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1368 int index = _mesa_add_state_reference(this->prog->Parameters,
1369 (gl_state_index *)slots[i].tokens);
1370
1371 if (storage->file == PROGRAM_STATE_VAR) {
1372 if (storage->index == -1) {
1373 storage->index = index;
1374 } else {
1375 assert(index == storage->index + (int)i);
1376 }
1377 } else {
1378 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1379 * the data being moved since MOV does not care about the type of
1380 * data it is moving, and we don't want to declare registers with
1381 * array or struct types.
1382 */
1383 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1384 src.swizzle = slots[i].swizzle;
1385 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1386 /* even a float takes up a whole vec4 reg in a struct/array. */
1387 dst.index++;
1388 }
1389 }
1390
1391 if (storage->file == PROGRAM_TEMPORARY &&
1392 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1393 fail_link(this->shader_program,
1394 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1395 ir->name, dst.index - storage->index,
1396 type_size(ir->type));
1397 }
1398 }
1399 }
1400
1401 void
1402 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1403 {
1404 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1405
1406 visit_exec_list(&ir->body_instructions, this);
1407
1408 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1409 }
1410
1411 void
1412 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1413 {
1414 switch (ir->mode) {
1415 case ir_loop_jump::jump_break:
1416 emit_asm(NULL, TGSI_OPCODE_BRK);
1417 break;
1418 case ir_loop_jump::jump_continue:
1419 emit_asm(NULL, TGSI_OPCODE_CONT);
1420 break;
1421 }
1422 }
1423
1424
1425 void
1426 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1427 {
1428 assert(0);
1429 (void)ir;
1430 }
1431
1432 void
1433 glsl_to_tgsi_visitor::visit(ir_function *ir)
1434 {
1435 /* Ignore function bodies other than main() -- we shouldn't see calls to
1436 * them since they should all be inlined before we get to glsl_to_tgsi.
1437 */
1438 if (strcmp(ir->name, "main") == 0) {
1439 const ir_function_signature *sig;
1440 exec_list empty;
1441
1442 sig = ir->matching_signature(NULL, &empty, false);
1443
1444 assert(sig);
1445
1446 foreach_in_list(ir_instruction, ir, &sig->body) {
1447 ir->accept(this);
1448 }
1449 }
1450 }
1451
1452 bool
1453 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1454 {
1455 int nonmul_operand = 1 - mul_operand;
1456 st_src_reg a, b, c;
1457 st_dst_reg result_dst;
1458
1459 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1460 if (!expr || expr->operation != ir_binop_mul)
1461 return false;
1462
1463 expr->operands[0]->accept(this);
1464 a = this->result;
1465 expr->operands[1]->accept(this);
1466 b = this->result;
1467 ir->operands[nonmul_operand]->accept(this);
1468 c = this->result;
1469
1470 this->result = get_temp(ir->type);
1471 result_dst = st_dst_reg(this->result);
1472 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1473 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1474
1475 return true;
1476 }
1477
1478 /**
1479 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1480 *
1481 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1482 * implemented using multiplication, and logical-or is implemented using
1483 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1484 * As result, the logical expression (a & !b) can be rewritten as:
1485 *
1486 * - a * !b
1487 * - a * (1 - b)
1488 * - (a * 1) - (a * b)
1489 * - a + -(a * b)
1490 * - a + (a * -b)
1491 *
1492 * This final expression can be implemented as a single MAD(a, -b, a)
1493 * instruction.
1494 */
1495 bool
1496 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1497 {
1498 const int other_operand = 1 - try_operand;
1499 st_src_reg a, b;
1500
1501 ir_expression *expr = ir->operands[try_operand]->as_expression();
1502 if (!expr || expr->operation != ir_unop_logic_not)
1503 return false;
1504
1505 ir->operands[other_operand]->accept(this);
1506 a = this->result;
1507 expr->operands[0]->accept(this);
1508 b = this->result;
1509
1510 b.negate = ~b.negate;
1511
1512 this->result = get_temp(ir->type);
1513 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1514
1515 return true;
1516 }
1517
1518 void
1519 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1520 st_src_reg *reg, int *num_reladdr)
1521 {
1522 if (!reg->reladdr && !reg->reladdr2)
1523 return;
1524
1525 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1526 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1527
1528 if (*num_reladdr != 1) {
1529 st_src_reg temp = get_temp(reg->type == GLSL_TYPE_DOUBLE ? glsl_type::dvec4_type : glsl_type::vec4_type);
1530
1531 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1532 *reg = temp;
1533 }
1534
1535 (*num_reladdr)--;
1536 }
1537
1538 void
1539 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1540 {
1541 st_src_reg op[ARRAY_SIZE(ir->operands)];
1542
1543 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1544 */
1545 if (ir->operation == ir_binop_add) {
1546 if (try_emit_mad(ir, 1))
1547 return;
1548 if (try_emit_mad(ir, 0))
1549 return;
1550 }
1551
1552 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1553 */
1554 if (!native_integers && ir->operation == ir_binop_logic_and) {
1555 if (try_emit_mad_for_and_not(ir, 1))
1556 return;
1557 if (try_emit_mad_for_and_not(ir, 0))
1558 return;
1559 }
1560
1561 if (ir->operation == ir_quadop_vector)
1562 assert(!"ir_quadop_vector should have been lowered");
1563
1564 for (unsigned int operand = 0; operand < ir->get_num_operands(); operand++) {
1565 this->result.file = PROGRAM_UNDEFINED;
1566 ir->operands[operand]->accept(this);
1567 if (this->result.file == PROGRAM_UNDEFINED) {
1568 printf("Failed to get tree for expression operand:\n");
1569 ir->operands[operand]->print();
1570 printf("\n");
1571 exit(1);
1572 }
1573 op[operand] = this->result;
1574
1575 /* Matrix expression operands should have been broken down to vector
1576 * operations already.
1577 */
1578 assert(!ir->operands[operand]->type->is_matrix());
1579 }
1580
1581 visit_expression(ir, op);
1582 }
1583
1584 /* The non-recursive part of the expression visitor lives in a separate
1585 * function and should be prevented from being inlined, to avoid a stack
1586 * explosion when deeply nested expressions are visited.
1587 */
1588 void
1589 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
1590 {
1591 st_src_reg result_src;
1592 st_dst_reg result_dst;
1593
1594 int vector_elements = ir->operands[0]->type->vector_elements;
1595 if (ir->operands[1]) {
1596 vector_elements = MAX2(vector_elements,
1597 ir->operands[1]->type->vector_elements);
1598 }
1599
1600 this->result.file = PROGRAM_UNDEFINED;
1601
1602 /* Storage for our result. Ideally for an assignment we'd be using
1603 * the actual storage for the result here, instead.
1604 */
1605 result_src = get_temp(ir->type);
1606 /* convenience for the emit functions below. */
1607 result_dst = st_dst_reg(result_src);
1608 /* Limit writes to the channels that will be used by result_src later.
1609 * This does limit this temp's use as a temporary for multi-instruction
1610 * sequences.
1611 */
1612 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1613
1614 switch (ir->operation) {
1615 case ir_unop_logic_not:
1616 if (result_dst.type != GLSL_TYPE_FLOAT)
1617 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1618 else {
1619 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1620 * older GPUs implement SEQ using multiple instructions (i915 uses two
1621 * SGE instructions and a MUL instruction). Since our logic values are
1622 * 0.0 and 1.0, 1-x also implements !x.
1623 */
1624 op[0].negate = ~op[0].negate;
1625 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1626 }
1627 break;
1628 case ir_unop_neg:
1629 if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1630 emit_asm(ir, TGSI_OPCODE_I64NEG, result_dst, op[0]);
1631 else if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1632 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1633 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1634 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1635 else {
1636 op[0].negate = ~op[0].negate;
1637 result_src = op[0];
1638 }
1639 break;
1640 case ir_unop_subroutine_to_int:
1641 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1642 break;
1643 case ir_unop_abs:
1644 if (result_dst.type == GLSL_TYPE_FLOAT)
1645 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
1646 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1647 emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
1648 else if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1649 emit_asm(ir, TGSI_OPCODE_I64ABS, result_dst, op[0]);
1650 else
1651 emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
1652 break;
1653 case ir_unop_sign:
1654 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1655 break;
1656 case ir_unop_rcp:
1657 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1658 break;
1659
1660 case ir_unop_exp2:
1661 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1662 break;
1663 case ir_unop_exp:
1664 case ir_unop_log:
1665 assert(!"not reached: should be handled by ir_explog_to_explog2");
1666 break;
1667 case ir_unop_log2:
1668 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1669 break;
1670 case ir_unop_sin:
1671 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1672 break;
1673 case ir_unop_cos:
1674 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1675 break;
1676 case ir_unop_saturate: {
1677 glsl_to_tgsi_instruction *inst;
1678 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1679 inst->saturate = true;
1680 break;
1681 }
1682
1683 case ir_unop_dFdx:
1684 case ir_unop_dFdx_coarse:
1685 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1686 break;
1687 case ir_unop_dFdx_fine:
1688 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1689 break;
1690 case ir_unop_dFdy:
1691 case ir_unop_dFdy_coarse:
1692 case ir_unop_dFdy_fine:
1693 {
1694 /* The X component contains 1 or -1 depending on whether the framebuffer
1695 * is a FBO or the window system buffer, respectively.
1696 * It is then multiplied with the source operand of DDY.
1697 */
1698 static const gl_state_index transform_y_state[STATE_LENGTH]
1699 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1700
1701 unsigned transform_y_index =
1702 _mesa_add_state_reference(this->prog->Parameters,
1703 transform_y_state);
1704
1705 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1706 transform_y_index,
1707 glsl_type::vec4_type);
1708 transform_y.swizzle = SWIZZLE_XXXX;
1709
1710 st_src_reg temp = get_temp(glsl_type::vec4_type);
1711
1712 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1713 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1714 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1715 break;
1716 }
1717
1718 case ir_unop_frexp_sig:
1719 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1720 break;
1721
1722 case ir_unop_frexp_exp:
1723 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1724 break;
1725
1726 case ir_unop_noise: {
1727 /* At some point, a motivated person could add a better
1728 * implementation of noise. Currently not even the nvidia
1729 * binary drivers do anything more than this. In any case, the
1730 * place to do this is in the GL state tracker, not the poor
1731 * driver.
1732 */
1733 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1734 break;
1735 }
1736
1737 case ir_binop_add:
1738 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1739 break;
1740 case ir_binop_sub:
1741 op[1].negate = ~op[1].negate;
1742 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1743 break;
1744
1745 case ir_binop_mul:
1746 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1747 break;
1748 case ir_binop_div:
1749 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1750 break;
1751 case ir_binop_mod:
1752 if (result_dst.type == GLSL_TYPE_FLOAT)
1753 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1754 else
1755 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1756 break;
1757
1758 case ir_binop_less:
1759 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1760 break;
1761 case ir_binop_greater:
1762 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1763 break;
1764 case ir_binop_lequal:
1765 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1766 break;
1767 case ir_binop_gequal:
1768 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1769 break;
1770 case ir_binop_equal:
1771 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1772 break;
1773 case ir_binop_nequal:
1774 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1775 break;
1776 case ir_binop_all_equal:
1777 /* "==" operator producing a scalar boolean. */
1778 if (ir->operands[0]->type->is_vector() ||
1779 ir->operands[1]->type->is_vector()) {
1780 st_src_reg temp = get_temp(native_integers ?
1781 glsl_type::uvec4_type :
1782 glsl_type::vec4_type);
1783
1784 if (native_integers) {
1785 st_dst_reg temp_dst = st_dst_reg(temp);
1786 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1787
1788 if (ir->operands[0]->type->is_boolean() &&
1789 ir->operands[1]->as_constant() &&
1790 ir->operands[1]->as_constant()->is_one()) {
1791 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1792 } else {
1793 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1794 }
1795
1796 /* Emit 1-3 AND operations to combine the SEQ results. */
1797 switch (ir->operands[0]->type->vector_elements) {
1798 case 2:
1799 break;
1800 case 3:
1801 temp_dst.writemask = WRITEMASK_Y;
1802 temp1.swizzle = SWIZZLE_YYYY;
1803 temp2.swizzle = SWIZZLE_ZZZZ;
1804 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1805 break;
1806 case 4:
1807 temp_dst.writemask = WRITEMASK_X;
1808 temp1.swizzle = SWIZZLE_XXXX;
1809 temp2.swizzle = SWIZZLE_YYYY;
1810 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1811 temp_dst.writemask = WRITEMASK_Y;
1812 temp1.swizzle = SWIZZLE_ZZZZ;
1813 temp2.swizzle = SWIZZLE_WWWW;
1814 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1815 }
1816
1817 temp1.swizzle = SWIZZLE_XXXX;
1818 temp2.swizzle = SWIZZLE_YYYY;
1819 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1820 } else {
1821 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1822
1823 /* After the dot-product, the value will be an integer on the
1824 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1825 */
1826 emit_dp(ir, result_dst, temp, temp, vector_elements);
1827
1828 /* Negating the result of the dot-product gives values on the range
1829 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1830 * This is achieved using SGE.
1831 */
1832 st_src_reg sge_src = result_src;
1833 sge_src.negate = ~sge_src.negate;
1834 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1835 }
1836 } else {
1837 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1838 }
1839 break;
1840 case ir_binop_any_nequal:
1841 /* "!=" operator producing a scalar boolean. */
1842 if (ir->operands[0]->type->is_vector() ||
1843 ir->operands[1]->type->is_vector()) {
1844 st_src_reg temp = get_temp(native_integers ?
1845 glsl_type::uvec4_type :
1846 glsl_type::vec4_type);
1847 if (ir->operands[0]->type->is_boolean() &&
1848 ir->operands[1]->as_constant() &&
1849 ir->operands[1]->as_constant()->is_zero()) {
1850 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1851 } else {
1852 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1853 }
1854
1855 if (native_integers) {
1856 st_dst_reg temp_dst = st_dst_reg(temp);
1857 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1858
1859 /* Emit 1-3 OR operations to combine the SNE results. */
1860 switch (ir->operands[0]->type->vector_elements) {
1861 case 2:
1862 break;
1863 case 3:
1864 temp_dst.writemask = WRITEMASK_Y;
1865 temp1.swizzle = SWIZZLE_YYYY;
1866 temp2.swizzle = SWIZZLE_ZZZZ;
1867 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1868 break;
1869 case 4:
1870 temp_dst.writemask = WRITEMASK_X;
1871 temp1.swizzle = SWIZZLE_XXXX;
1872 temp2.swizzle = SWIZZLE_YYYY;
1873 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1874 temp_dst.writemask = WRITEMASK_Y;
1875 temp1.swizzle = SWIZZLE_ZZZZ;
1876 temp2.swizzle = SWIZZLE_WWWW;
1877 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1878 }
1879
1880 temp1.swizzle = SWIZZLE_XXXX;
1881 temp2.swizzle = SWIZZLE_YYYY;
1882 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1883 } else {
1884 /* After the dot-product, the value will be an integer on the
1885 * range [0,4]. Zero stays zero, and positive values become 1.0.
1886 */
1887 glsl_to_tgsi_instruction *const dp =
1888 emit_dp(ir, result_dst, temp, temp, vector_elements);
1889 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1890 /* The clamping to [0,1] can be done for free in the fragment
1891 * shader with a saturate.
1892 */
1893 dp->saturate = true;
1894 } else {
1895 /* Negating the result of the dot-product gives values on the range
1896 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1897 * achieved using SLT.
1898 */
1899 st_src_reg slt_src = result_src;
1900 slt_src.negate = ~slt_src.negate;
1901 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1902 }
1903 }
1904 } else {
1905 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1906 }
1907 break;
1908
1909 case ir_binop_logic_xor:
1910 if (native_integers)
1911 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1912 else
1913 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1914 break;
1915
1916 case ir_binop_logic_or: {
1917 if (native_integers) {
1918 /* If integers are used as booleans, we can use an actual "or"
1919 * instruction.
1920 */
1921 assert(native_integers);
1922 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1923 } else {
1924 /* After the addition, the value will be an integer on the
1925 * range [0,2]. Zero stays zero, and positive values become 1.0.
1926 */
1927 glsl_to_tgsi_instruction *add =
1928 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1929 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1930 /* The clamping to [0,1] can be done for free in the fragment
1931 * shader with a saturate if floats are being used as boolean values.
1932 */
1933 add->saturate = true;
1934 } else {
1935 /* Negating the result of the addition gives values on the range
1936 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1937 * is achieved using SLT.
1938 */
1939 st_src_reg slt_src = result_src;
1940 slt_src.negate = ~slt_src.negate;
1941 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1942 }
1943 }
1944 break;
1945 }
1946
1947 case ir_binop_logic_and:
1948 /* If native integers are disabled, the bool args are stored as float 0.0
1949 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1950 * actual AND opcode.
1951 */
1952 if (native_integers)
1953 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1954 else
1955 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1956 break;
1957
1958 case ir_binop_dot:
1959 assert(ir->operands[0]->type->is_vector());
1960 assert(ir->operands[0]->type == ir->operands[1]->type);
1961 emit_dp(ir, result_dst, op[0], op[1],
1962 ir->operands[0]->type->vector_elements);
1963 break;
1964
1965 case ir_unop_sqrt:
1966 if (have_sqrt) {
1967 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1968 } else {
1969 /* This is the only instruction sequence that makes the game "Risen"
1970 * render correctly. ABS is not required for the game, but since GLSL
1971 * declares negative values as "undefined", allowing us to do whatever
1972 * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
1973 * behavior.
1974 */
1975 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
1976 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
1977 }
1978 break;
1979 case ir_unop_rsq:
1980 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1981 break;
1982 case ir_unop_i2f:
1983 if (native_integers) {
1984 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1985 break;
1986 }
1987 /* fallthrough to next case otherwise */
1988 case ir_unop_b2f:
1989 if (native_integers) {
1990 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1991 break;
1992 }
1993 /* fallthrough to next case otherwise */
1994 case ir_unop_i2u:
1995 case ir_unop_u2i:
1996 case ir_unop_i642u64:
1997 case ir_unop_u642i64:
1998 /* Converting between signed and unsigned integers is a no-op. */
1999 result_src = op[0];
2000 result_src.type = result_dst.type;
2001 break;
2002 case ir_unop_b2i:
2003 if (native_integers) {
2004 /* Booleans are stored as integers using ~0 for true and 0 for false.
2005 * GLSL requires that int(bool) return 1 for true and 0 for false.
2006 * This conversion is done with AND, but it could be done with NEG.
2007 */
2008 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
2009 } else {
2010 /* Booleans and integers are both stored as floats when native
2011 * integers are disabled.
2012 */
2013 result_src = op[0];
2014 }
2015 break;
2016 case ir_unop_f2i:
2017 if (native_integers)
2018 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
2019 else
2020 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2021 break;
2022 case ir_unop_f2u:
2023 if (native_integers)
2024 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
2025 else
2026 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2027 break;
2028 case ir_unop_bitcast_f2i:
2029 case ir_unop_bitcast_f2u:
2030 /* Make sure we don't propagate the negate modifier to integer opcodes. */
2031 if (op[0].negate || op[0].abs)
2032 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2033 else
2034 result_src = op[0];
2035 result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
2036 GLSL_TYPE_UINT;
2037 break;
2038 case ir_unop_bitcast_i2f:
2039 case ir_unop_bitcast_u2f:
2040 result_src = op[0];
2041 result_src.type = GLSL_TYPE_FLOAT;
2042 break;
2043 case ir_unop_f2b:
2044 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
2045 break;
2046 case ir_unop_d2b:
2047 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
2048 break;
2049 case ir_unop_i2b:
2050 if (native_integers)
2051 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
2052 else
2053 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
2054 break;
2055 case ir_unop_bitcast_u642d:
2056 case ir_unop_bitcast_i642d:
2057 result_src = op[0];
2058 result_src.type = GLSL_TYPE_DOUBLE;
2059 break;
2060 case ir_unop_bitcast_d2i64:
2061 result_src = op[0];
2062 result_src.type = GLSL_TYPE_INT64;
2063 break;
2064 case ir_unop_bitcast_d2u64:
2065 result_src = op[0];
2066 result_src.type = GLSL_TYPE_UINT64;
2067 break;
2068 case ir_unop_trunc:
2069 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2070 break;
2071 case ir_unop_ceil:
2072 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
2073 break;
2074 case ir_unop_floor:
2075 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
2076 break;
2077 case ir_unop_round_even:
2078 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
2079 break;
2080 case ir_unop_fract:
2081 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
2082 break;
2083
2084 case ir_binop_min:
2085 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
2086 break;
2087 case ir_binop_max:
2088 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
2089 break;
2090 case ir_binop_pow:
2091 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
2092 break;
2093
2094 case ir_unop_bit_not:
2095 if (native_integers) {
2096 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
2097 break;
2098 }
2099 case ir_unop_u2f:
2100 if (native_integers) {
2101 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
2102 break;
2103 }
2104 case ir_binop_lshift:
2105 case ir_binop_rshift:
2106 if (native_integers) {
2107 unsigned opcode = ir->operation == ir_binop_lshift ? TGSI_OPCODE_SHL
2108 : TGSI_OPCODE_ISHR;
2109 st_src_reg count;
2110
2111 if (glsl_base_type_is_64bit(op[0].type)) {
2112 /* GLSL shift operations have 32-bit shift counts, but TGSI uses
2113 * 64 bits.
2114 */
2115 count = get_temp(glsl_type::u64vec(ir->operands[1]->type->components()));
2116 emit_asm(ir, TGSI_OPCODE_U2I64, st_dst_reg(count), op[1]);
2117 } else {
2118 count = op[1];
2119 }
2120
2121 emit_asm(ir, opcode, result_dst, op[0], count);
2122 break;
2123 }
2124 case ir_binop_bit_and:
2125 if (native_integers) {
2126 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2127 break;
2128 }
2129 case ir_binop_bit_xor:
2130 if (native_integers) {
2131 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
2132 break;
2133 }
2134 case ir_binop_bit_or:
2135 if (native_integers) {
2136 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
2137 break;
2138 }
2139
2140 assert(!"GLSL 1.30 features unsupported");
2141 break;
2142
2143 case ir_binop_ubo_load: {
2144 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2145 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2146 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
2147 unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
2148 st_src_reg index_reg = get_temp(glsl_type::uint_type);
2149 st_src_reg cbuf;
2150
2151 cbuf.type = ir->type->base_type;
2152 cbuf.file = PROGRAM_CONSTANT;
2153 cbuf.index = 0;
2154 cbuf.reladdr = NULL;
2155 cbuf.negate = 0;
2156 cbuf.abs = 0;
2157
2158 assert(ir->type->is_vector() || ir->type->is_scalar());
2159
2160 if (const_offset_ir) {
2161 /* Constant index into constant buffer */
2162 cbuf.reladdr = NULL;
2163 cbuf.index = const_offset / 16;
2164 }
2165 else {
2166 ir_expression *offset_expr = ir->operands[1]->as_expression();
2167 st_src_reg offset = op[1];
2168
2169 /* The OpenGL spec is written in such a way that accesses with
2170 * non-constant offset are almost always vec4-aligned. The only
2171 * exception to this are members of structs in arrays of structs:
2172 * each struct in an array of structs is at least vec4-aligned,
2173 * but single-element and [ui]vec2 members of the struct may be at
2174 * an offset that is not a multiple of 16 bytes.
2175 *
2176 * Here, we extract that offset, relying on previous passes to always
2177 * generate offset expressions of the form (+ expr constant_offset).
2178 *
2179 * Note that the std430 layout, which allows more cases of alignment
2180 * less than vec4 in arrays, is not supported for uniform blocks, so
2181 * we do not have to deal with it here.
2182 */
2183 if (offset_expr && offset_expr->operation == ir_binop_add) {
2184 const_offset_ir = offset_expr->operands[1]->as_constant();
2185 if (const_offset_ir) {
2186 const_offset = const_offset_ir->value.u[0];
2187 cbuf.index = const_offset / 16;
2188 offset_expr->operands[0]->accept(this);
2189 offset = this->result;
2190 }
2191 }
2192
2193 /* Relative/variable index into constant buffer */
2194 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
2195 st_src_reg_for_int(4));
2196 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2197 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
2198 }
2199
2200 if (const_uniform_block) {
2201 /* Constant constant buffer */
2202 cbuf.reladdr2 = NULL;
2203 cbuf.index2D = const_block;
2204 cbuf.has_index2 = true;
2205 }
2206 else {
2207 /* Relative/variable constant buffer */
2208 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2209 cbuf.index2D = 1;
2210 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
2211 cbuf.has_index2 = true;
2212 }
2213
2214 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2215 if (glsl_base_type_is_64bit(cbuf.type))
2216 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2217 const_offset % 16 / 8,
2218 const_offset % 16 / 8,
2219 const_offset % 16 / 8);
2220 else
2221 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2222 const_offset % 16 / 4,
2223 const_offset % 16 / 4,
2224 const_offset % 16 / 4);
2225
2226 if (ir->type->base_type == GLSL_TYPE_BOOL) {
2227 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2228 } else {
2229 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2230 }
2231 break;
2232 }
2233 case ir_triop_lrp:
2234 /* note: we have to reorder the three args here */
2235 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2236 break;
2237 case ir_triop_csel:
2238 if (this->ctx->Const.NativeIntegers)
2239 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2240 else {
2241 op[0].negate = ~op[0].negate;
2242 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2243 }
2244 break;
2245 case ir_triop_bitfield_extract:
2246 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2247 break;
2248 case ir_quadop_bitfield_insert:
2249 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2250 break;
2251 case ir_unop_bitfield_reverse:
2252 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2253 break;
2254 case ir_unop_bit_count:
2255 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2256 break;
2257 case ir_unop_find_msb:
2258 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2259 break;
2260 case ir_unop_find_lsb:
2261 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2262 break;
2263 case ir_binop_imul_high:
2264 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2265 break;
2266 case ir_triop_fma:
2267 /* In theory, MAD is incorrect here. */
2268 if (have_fma)
2269 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2270 else
2271 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2272 break;
2273 case ir_unop_interpolate_at_centroid:
2274 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2275 break;
2276 case ir_binop_interpolate_at_offset: {
2277 /* The y coordinate needs to be flipped for the default fb */
2278 static const gl_state_index transform_y_state[STATE_LENGTH]
2279 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
2280
2281 unsigned transform_y_index =
2282 _mesa_add_state_reference(this->prog->Parameters,
2283 transform_y_state);
2284
2285 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
2286 transform_y_index,
2287 glsl_type::vec4_type);
2288 transform_y.swizzle = SWIZZLE_XXXX;
2289
2290 st_src_reg temp = get_temp(glsl_type::vec2_type);
2291 st_dst_reg temp_dst = st_dst_reg(temp);
2292
2293 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
2294 temp_dst.writemask = WRITEMASK_Y;
2295 emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
2296 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
2297 break;
2298 }
2299 case ir_binop_interpolate_at_sample:
2300 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2301 break;
2302
2303 case ir_unop_d2f:
2304 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2305 break;
2306 case ir_unop_f2d:
2307 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2308 break;
2309 case ir_unop_d2i:
2310 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2311 break;
2312 case ir_unop_i2d:
2313 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2314 break;
2315 case ir_unop_d2u:
2316 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2317 break;
2318 case ir_unop_u2d:
2319 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2320 break;
2321 case ir_unop_unpack_double_2x32:
2322 case ir_unop_pack_double_2x32:
2323 case ir_unop_unpack_int_2x32:
2324 case ir_unop_pack_int_2x32:
2325 case ir_unop_unpack_uint_2x32:
2326 case ir_unop_pack_uint_2x32:
2327 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2328 break;
2329
2330 case ir_binop_ldexp:
2331 if (ir->operands[0]->type->base_type == GLSL_TYPE_DOUBLE) {
2332 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2333 } else {
2334 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2335 }
2336 break;
2337
2338 case ir_unop_pack_half_2x16:
2339 emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2340 break;
2341 case ir_unop_unpack_half_2x16:
2342 emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2343 break;
2344
2345 case ir_unop_get_buffer_size: {
2346 ir_constant *const_offset = ir->operands[0]->as_constant();
2347 st_src_reg buffer(
2348 PROGRAM_BUFFER,
2349 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
2350 (const_offset ? const_offset->value.u[0] : 0),
2351 GLSL_TYPE_UINT);
2352 if (!const_offset) {
2353 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
2354 *buffer.reladdr = op[0];
2355 emit_arl(ir, sampler_reladdr, op[0]);
2356 }
2357 emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
2358 break;
2359 }
2360
2361 case ir_unop_vote_any:
2362 emit_asm(ir, TGSI_OPCODE_VOTE_ANY, result_dst, op[0]);
2363 break;
2364 case ir_unop_vote_all:
2365 emit_asm(ir, TGSI_OPCODE_VOTE_ALL, result_dst, op[0]);
2366 break;
2367 case ir_unop_vote_eq:
2368 emit_asm(ir, TGSI_OPCODE_VOTE_EQ, result_dst, op[0]);
2369 break;
2370 case ir_unop_u2i64:
2371 case ir_unop_u2u64:
2372 case ir_unop_b2i64: {
2373 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2374 st_dst_reg temp_dst = st_dst_reg(temp);
2375 unsigned orig_swz = op[0].swizzle;
2376 /*
2377 * To convert unsigned to 64-bit:
2378 * zero Y channel, copy X channel.
2379 */
2380 temp_dst.writemask = WRITEMASK_Y;
2381 if (vector_elements > 1)
2382 temp_dst.writemask |= WRITEMASK_W;
2383 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2384 temp_dst.writemask = WRITEMASK_X;
2385 if (vector_elements > 1)
2386 temp_dst.writemask |= WRITEMASK_Z;
2387 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 0), GET_SWZ(orig_swz, 0),
2388 GET_SWZ(orig_swz, 1), GET_SWZ(orig_swz, 1));
2389 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2390 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2391 else
2392 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2393 result_src = temp;
2394 result_src.type = GLSL_TYPE_UINT64;
2395 if (vector_elements > 2) {
2396 /* Subtle: We rely on the fact that get_temp here returns the next
2397 * TGSI temporary register directly after the temp register used for
2398 * the first two components, so that the result gets picked up
2399 * automatically.
2400 */
2401 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2402 st_dst_reg temp_dst = st_dst_reg(temp);
2403 temp_dst.writemask = WRITEMASK_Y;
2404 if (vector_elements > 3)
2405 temp_dst.writemask |= WRITEMASK_W;
2406 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2407
2408 temp_dst.writemask = WRITEMASK_X;
2409 if (vector_elements > 3)
2410 temp_dst.writemask |= WRITEMASK_Z;
2411 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 2), GET_SWZ(orig_swz, 2),
2412 GET_SWZ(orig_swz, 3), GET_SWZ(orig_swz, 3));
2413 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2414 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2415 else
2416 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2417 }
2418 break;
2419 }
2420 case ir_unop_i642i:
2421 case ir_unop_u642i:
2422 case ir_unop_u642u:
2423 case ir_unop_i642u: {
2424 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2425 st_dst_reg temp_dst = st_dst_reg(temp);
2426 unsigned orig_swz = op[0].swizzle;
2427 unsigned orig_idx = op[0].index;
2428 int el;
2429 temp_dst.writemask = WRITEMASK_X;
2430
2431 for (el = 0; el < vector_elements; el++) {
2432 unsigned swz = GET_SWZ(orig_swz, el);
2433 if (swz & 1)
2434 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z);
2435 else
2436 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
2437 if (swz > 2)
2438 op[0].index = orig_idx + 1;
2439 op[0].type = GLSL_TYPE_UINT;
2440 temp_dst.writemask = WRITEMASK_X << el;
2441 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2442 }
2443 result_src = temp;
2444 if (ir->operation == ir_unop_u642u || ir->operation == ir_unop_i642u)
2445 result_src.type = GLSL_TYPE_UINT;
2446 else
2447 result_src.type = GLSL_TYPE_INT;
2448 break;
2449 }
2450 case ir_unop_i642b:
2451 emit_asm(ir, TGSI_OPCODE_U64SNE, result_dst, op[0], st_src_reg_for_int(0));
2452 break;
2453 case ir_unop_i642f:
2454 emit_asm(ir, TGSI_OPCODE_I642F, result_dst, op[0]);
2455 break;
2456 case ir_unop_u642f:
2457 emit_asm(ir, TGSI_OPCODE_U642F, result_dst, op[0]);
2458 break;
2459 case ir_unop_i642d:
2460 emit_asm(ir, TGSI_OPCODE_I642D, result_dst, op[0]);
2461 break;
2462 case ir_unop_u642d:
2463 emit_asm(ir, TGSI_OPCODE_U642D, result_dst, op[0]);
2464 break;
2465 case ir_unop_i2i64:
2466 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2467 break;
2468 case ir_unop_f2i64:
2469 emit_asm(ir, TGSI_OPCODE_F2I64, result_dst, op[0]);
2470 break;
2471 case ir_unop_d2i64:
2472 emit_asm(ir, TGSI_OPCODE_D2I64, result_dst, op[0]);
2473 break;
2474 case ir_unop_i2u64:
2475 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2476 break;
2477 case ir_unop_f2u64:
2478 emit_asm(ir, TGSI_OPCODE_F2U64, result_dst, op[0]);
2479 break;
2480 case ir_unop_d2u64:
2481 emit_asm(ir, TGSI_OPCODE_D2U64, result_dst, op[0]);
2482 break;
2483 /* these might be needed */
2484 case ir_unop_pack_snorm_2x16:
2485 case ir_unop_pack_unorm_2x16:
2486 case ir_unop_pack_snorm_4x8:
2487 case ir_unop_pack_unorm_4x8:
2488
2489 case ir_unop_unpack_snorm_2x16:
2490 case ir_unop_unpack_unorm_2x16:
2491 case ir_unop_unpack_snorm_4x8:
2492 case ir_unop_unpack_unorm_4x8:
2493
2494 case ir_quadop_vector:
2495 case ir_binop_vector_extract:
2496 case ir_triop_vector_insert:
2497 case ir_binop_carry:
2498 case ir_binop_borrow:
2499 case ir_unop_ssbo_unsized_array_length:
2500 /* This operation is not supported, or should have already been handled.
2501 */
2502 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2503 break;
2504 }
2505
2506 this->result = result_src;
2507 }
2508
2509
2510 void
2511 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2512 {
2513 st_src_reg src;
2514 int i;
2515 int swizzle[4];
2516
2517 /* Note that this is only swizzles in expressions, not those on the left
2518 * hand side of an assignment, which do write masking. See ir_assignment
2519 * for that.
2520 */
2521
2522 ir->val->accept(this);
2523 src = this->result;
2524 assert(src.file != PROGRAM_UNDEFINED);
2525 assert(ir->type->vector_elements > 0);
2526
2527 for (i = 0; i < 4; i++) {
2528 if (i < ir->type->vector_elements) {
2529 switch (i) {
2530 case 0:
2531 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2532 break;
2533 case 1:
2534 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2535 break;
2536 case 2:
2537 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2538 break;
2539 case 3:
2540 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2541 break;
2542 }
2543 } else {
2544 /* If the type is smaller than a vec4, replicate the last
2545 * channel out.
2546 */
2547 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2548 }
2549 }
2550
2551 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2552
2553 this->result = src;
2554 }
2555
2556 /* Test if the variable is an array. Note that geometry and
2557 * tessellation shader inputs are outputs are always arrays (except
2558 * for patch inputs), so only the array element type is considered.
2559 */
2560 static bool
2561 is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
2562 {
2563 const glsl_type *type = var->type;
2564
2565 *remove_array = false;
2566
2567 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2568 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2569 return false;
2570
2571 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2572 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2573 stage == MESA_SHADER_TESS_CTRL) &&
2574 !var->data.patch) {
2575 if (!var->type->is_array())
2576 return false; /* a system value probably */
2577
2578 type = var->type->fields.array;
2579 *remove_array = true;
2580 }
2581
2582 return type->is_array() || type->is_matrix();
2583 }
2584
2585 static unsigned
2586 st_translate_interp_loc(ir_variable *var)
2587 {
2588 if (var->data.centroid)
2589 return TGSI_INTERPOLATE_LOC_CENTROID;
2590 else if (var->data.sample)
2591 return TGSI_INTERPOLATE_LOC_SAMPLE;
2592 else
2593 return TGSI_INTERPOLATE_LOC_CENTER;
2594 }
2595
2596 void
2597 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2598 {
2599 variable_storage *entry = find_variable_storage(ir->var);
2600 ir_variable *var = ir->var;
2601 bool remove_array;
2602
2603 if (!entry) {
2604 switch (var->data.mode) {
2605 case ir_var_uniform:
2606 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2607 var->data.param_index);
2608 this->variables.push_tail(entry);
2609 break;
2610 case ir_var_shader_in: {
2611 /* The linker assigns locations for varyings and attributes,
2612 * including deprecated builtins (like gl_Color), user-assign
2613 * generic attributes (glBindVertexLocation), and
2614 * user-defined varyings.
2615 */
2616 assert(var->data.location != -1);
2617
2618 const glsl_type *type_without_array = var->type->without_array();
2619 struct inout_decl *decl = &inputs[num_inputs];
2620 unsigned component = var->data.location_frac;
2621 unsigned num_components;
2622 num_inputs++;
2623
2624 if (type_without_array->is_64bit())
2625 component = component / 2;
2626 if (type_without_array->vector_elements)
2627 num_components = type_without_array->vector_elements;
2628 else
2629 num_components = 4;
2630
2631 decl->mesa_index = var->data.location;
2632 decl->interp = (glsl_interp_mode) var->data.interpolation;
2633 decl->interp_loc = st_translate_interp_loc(var);
2634 decl->base_type = type_without_array->base_type;
2635 decl->usage_mask = u_bit_consecutive(component, num_components);
2636
2637 if (is_inout_array(shader->Stage, var, &remove_array)) {
2638 decl->array_id = num_input_arrays + 1;
2639 num_input_arrays++;
2640 } else {
2641 decl->array_id = 0;
2642 }
2643
2644 if (remove_array)
2645 decl->size = type_size(var->type->fields.array);
2646 else
2647 decl->size = type_size(var->type);
2648
2649 entry = new(mem_ctx) variable_storage(var,
2650 PROGRAM_INPUT,
2651 decl->mesa_index,
2652 decl->array_id);
2653 entry->component = component;
2654
2655 this->variables.push_tail(entry);
2656 break;
2657 }
2658 case ir_var_shader_out: {
2659 assert(var->data.location != -1);
2660
2661 const glsl_type *type_without_array = var->type->without_array();
2662 struct inout_decl *decl = &outputs[num_outputs];
2663 unsigned component = var->data.location_frac;
2664 unsigned num_components;
2665 num_outputs++;
2666
2667 if (type_without_array->is_64bit())
2668 component = component / 2;
2669 if (type_without_array->vector_elements)
2670 num_components = type_without_array->vector_elements;
2671 else
2672 num_components = 4;
2673
2674 decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
2675 decl->base_type = type_without_array->base_type;
2676 decl->usage_mask = u_bit_consecutive(component, num_components);
2677 if (var->data.stream & (1u << 31)) {
2678 decl->gs_out_streams = var->data.stream & ~(1u << 31);
2679 } else {
2680 assert(var->data.stream < 4);
2681 decl->gs_out_streams = 0;
2682 for (unsigned i = 0; i < num_components; ++i)
2683 decl->gs_out_streams |= var->data.stream << (2 * (component + i));
2684 }
2685
2686 if (is_inout_array(shader->Stage, var, &remove_array)) {
2687 decl->array_id = num_output_arrays + 1;
2688 num_output_arrays++;
2689 } else {
2690 decl->array_id = 0;
2691 }
2692
2693 if (remove_array)
2694 decl->size = type_size(var->type->fields.array);
2695 else
2696 decl->size = type_size(var->type);
2697
2698 if (var->data.fb_fetch_output) {
2699 st_dst_reg dst = st_dst_reg(get_temp(var->type));
2700 st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
2701 var->type, component, decl->array_id);
2702 emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
2703 entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
2704 dst.array_id);
2705 } else {
2706 entry = new(mem_ctx) variable_storage(var,
2707 PROGRAM_OUTPUT,
2708 decl->mesa_index,
2709 decl->array_id);
2710 }
2711 entry->component = component;
2712
2713 this->variables.push_tail(entry);
2714 break;
2715 }
2716 case ir_var_system_value:
2717 entry = new(mem_ctx) variable_storage(var,
2718 PROGRAM_SYSTEM_VALUE,
2719 var->data.location);
2720 break;
2721 case ir_var_auto:
2722 case ir_var_temporary:
2723 st_src_reg src = get_temp(var->type);
2724
2725 entry = new(mem_ctx) variable_storage(var, src.file, src.index,
2726 src.array_id);
2727 this->variables.push_tail(entry);
2728
2729 break;
2730 }
2731
2732 if (!entry) {
2733 printf("Failed to make storage for %s\n", var->name);
2734 exit(1);
2735 }
2736 }
2737
2738 this->result = st_src_reg(entry->file, entry->index, var->type,
2739 entry->component, entry->array_id);
2740 if (this->shader->Stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in && var->type->is_double())
2741 this->result.is_double_vertex_input = true;
2742 if (!native_integers)
2743 this->result.type = GLSL_TYPE_FLOAT;
2744 }
2745
2746 static void
2747 shrink_array_declarations(struct inout_decl *decls, unsigned count,
2748 GLbitfield64* usage_mask,
2749 GLbitfield64 double_usage_mask,
2750 GLbitfield* patch_usage_mask)
2751 {
2752 unsigned i;
2753 int j;
2754
2755 /* Fix array declarations by removing unused array elements at both ends
2756 * of the arrays. For example, mat4[3] where only mat[1] is used.
2757 */
2758 for (i = 0; i < count; i++) {
2759 struct inout_decl *decl = &decls[i];
2760 if (!decl->array_id)
2761 continue;
2762
2763 /* Shrink the beginning. */
2764 for (j = 0; j < (int)decl->size; j++) {
2765 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2766 if (*patch_usage_mask &
2767 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2768 break;
2769 }
2770 else {
2771 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2772 break;
2773 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2774 break;
2775 }
2776
2777 decl->mesa_index++;
2778 decl->size--;
2779 j--;
2780 }
2781
2782 /* Shrink the end. */
2783 for (j = decl->size-1; j >= 0; j--) {
2784 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2785 if (*patch_usage_mask &
2786 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2787 break;
2788 }
2789 else {
2790 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2791 break;
2792 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2793 break;
2794 }
2795
2796 decl->size--;
2797 }
2798
2799 /* When not all entries of an array are accessed, we mark them as used
2800 * here anyway, to ensure that the input/output mapping logic doesn't get
2801 * confused.
2802 *
2803 * TODO This happens when an array isn't used via indirect access, which
2804 * some game ports do (at least eON-based). There is an optimization
2805 * opportunity here by replacing the array declaration with non-array
2806 * declarations of those slots that are actually used.
2807 */
2808 for (j = 1; j < (int)decl->size; ++j) {
2809 if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2810 *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2811 else
2812 *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2813 }
2814 }
2815 }
2816
2817 void
2818 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2819 {
2820 ir_constant *index;
2821 st_src_reg src;
2822 int element_size = type_size(ir->type);
2823 bool is_2D = false;
2824
2825 index = ir->array_index->constant_expression_value();
2826
2827 ir->array->accept(this);
2828 src = this->result;
2829
2830 if (ir->array->ir_type != ir_type_dereference_array) {
2831 switch (this->prog->Target) {
2832 case GL_TESS_CONTROL_PROGRAM_NV:
2833 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2834 !ir->variable_referenced()->data.patch;
2835 break;
2836 case GL_TESS_EVALUATION_PROGRAM_NV:
2837 is_2D = src.file == PROGRAM_INPUT &&
2838 !ir->variable_referenced()->data.patch;
2839 break;
2840 case GL_GEOMETRY_PROGRAM_NV:
2841 is_2D = src.file == PROGRAM_INPUT;
2842 break;
2843 }
2844 }
2845
2846 if (is_2D)
2847 element_size = 1;
2848
2849 if (index) {
2850
2851 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
2852 src.file == PROGRAM_INPUT)
2853 element_size = attrib_type_size(ir->type, true);
2854 if (is_2D) {
2855 src.index2D = index->value.i[0];
2856 src.has_index2 = true;
2857 } else
2858 src.index += index->value.i[0] * element_size;
2859 } else {
2860 /* Variable index array dereference. It eats the "vec4" of the
2861 * base of the array and an index that offsets the TGSI register
2862 * index.
2863 */
2864 ir->array_index->accept(this);
2865
2866 st_src_reg index_reg;
2867
2868 if (element_size == 1) {
2869 index_reg = this->result;
2870 } else {
2871 index_reg = get_temp(native_integers ?
2872 glsl_type::int_type : glsl_type::float_type);
2873
2874 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2875 this->result, st_src_reg_for_type(index_reg.type, element_size));
2876 }
2877
2878 /* If there was already a relative address register involved, add the
2879 * new and the old together to get the new offset.
2880 */
2881 if (!is_2D && src.reladdr != NULL) {
2882 st_src_reg accum_reg = get_temp(native_integers ?
2883 glsl_type::int_type : glsl_type::float_type);
2884
2885 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2886 index_reg, *src.reladdr);
2887
2888 index_reg = accum_reg;
2889 }
2890
2891 if (is_2D) {
2892 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2893 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2894 src.index2D = 0;
2895 src.has_index2 = true;
2896 } else {
2897 src.reladdr = ralloc(mem_ctx, st_src_reg);
2898 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2899 }
2900 }
2901
2902 /* Change the register type to the element type of the array. */
2903 src.type = ir->type->base_type;
2904
2905 this->result = src;
2906 }
2907
2908 void
2909 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2910 {
2911 unsigned int i;
2912 const glsl_type *struct_type = ir->record->type;
2913 int offset = 0;
2914
2915 ir->record->accept(this);
2916
2917 for (i = 0; i < struct_type->length; i++) {
2918 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2919 break;
2920 offset += type_size(struct_type->fields.structure[i].type);
2921 }
2922
2923 /* If the type is smaller than a vec4, replicate the last channel out. */
2924 if (ir->type->is_scalar() || ir->type->is_vector())
2925 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2926 else
2927 this->result.swizzle = SWIZZLE_NOOP;
2928
2929 this->result.index += offset;
2930 this->result.type = ir->type->base_type;
2931 }
2932
2933 /**
2934 * We want to be careful in assignment setup to hit the actual storage
2935 * instead of potentially using a temporary like we might with the
2936 * ir_dereference handler.
2937 */
2938 static st_dst_reg
2939 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
2940 {
2941 /* The LHS must be a dereference. If the LHS is a variable indexed array
2942 * access of a vector, it must be separated into a series conditional moves
2943 * before reaching this point (see ir_vec_index_to_cond_assign).
2944 */
2945 assert(ir->as_dereference());
2946 ir_dereference_array *deref_array = ir->as_dereference_array();
2947 if (deref_array) {
2948 assert(!deref_array->array->type->is_vector());
2949 }
2950
2951 /* Use the rvalue deref handler for the most part. We write swizzles using
2952 * the writemask, but we do extract the base component for enhanced layouts
2953 * from the source swizzle.
2954 */
2955 ir->accept(v);
2956 *component = GET_SWZ(v->result.swizzle, 0);
2957 return st_dst_reg(v->result);
2958 }
2959
2960 /**
2961 * Process the condition of a conditional assignment
2962 *
2963 * Examines the condition of a conditional assignment to generate the optimal
2964 * first operand of a \c CMP instruction. If the condition is a relational
2965 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2966 * used as the source for the \c CMP instruction. Otherwise the comparison
2967 * is processed to a boolean result, and the boolean result is used as the
2968 * operand to the CMP instruction.
2969 */
2970 bool
2971 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2972 {
2973 ir_rvalue *src_ir = ir;
2974 bool negate = true;
2975 bool switch_order = false;
2976
2977 ir_expression *const expr = ir->as_expression();
2978
2979 if (native_integers) {
2980 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2981 enum glsl_base_type type = expr->operands[0]->type->base_type;
2982 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2983 type == GLSL_TYPE_BOOL) {
2984 if (expr->operation == ir_binop_equal) {
2985 if (expr->operands[0]->is_zero()) {
2986 src_ir = expr->operands[1];
2987 switch_order = true;
2988 }
2989 else if (expr->operands[1]->is_zero()) {
2990 src_ir = expr->operands[0];
2991 switch_order = true;
2992 }
2993 }
2994 else if (expr->operation == ir_binop_nequal) {
2995 if (expr->operands[0]->is_zero()) {
2996 src_ir = expr->operands[1];
2997 }
2998 else if (expr->operands[1]->is_zero()) {
2999 src_ir = expr->operands[0];
3000 }
3001 }
3002 }
3003 }
3004
3005 src_ir->accept(this);
3006 return switch_order;
3007 }
3008
3009 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
3010 bool zero_on_left = false;
3011
3012 if (expr->operands[0]->is_zero()) {
3013 src_ir = expr->operands[1];
3014 zero_on_left = true;
3015 } else if (expr->operands[1]->is_zero()) {
3016 src_ir = expr->operands[0];
3017 zero_on_left = false;
3018 }
3019
3020 /* a is - 0 + - 0 +
3021 * (a < 0) T F F ( a < 0) T F F
3022 * (0 < a) F F T (-a < 0) F F T
3023 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
3024 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
3025 * (a > 0) F F T (-a < 0) F F T
3026 * (0 > a) T F F ( a < 0) T F F
3027 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
3028 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
3029 *
3030 * Note that exchanging the order of 0 and 'a' in the comparison simply
3031 * means that the value of 'a' should be negated.
3032 */
3033 if (src_ir != ir) {
3034 switch (expr->operation) {
3035 case ir_binop_less:
3036 switch_order = false;
3037 negate = zero_on_left;
3038 break;
3039
3040 case ir_binop_greater:
3041 switch_order = false;
3042 negate = !zero_on_left;
3043 break;
3044
3045 case ir_binop_lequal:
3046 switch_order = true;
3047 negate = !zero_on_left;
3048 break;
3049
3050 case ir_binop_gequal:
3051 switch_order = true;
3052 negate = zero_on_left;
3053 break;
3054
3055 default:
3056 /* This isn't the right kind of comparison afterall, so make sure
3057 * the whole condition is visited.
3058 */
3059 src_ir = ir;
3060 break;
3061 }
3062 }
3063 }
3064
3065 src_ir->accept(this);
3066
3067 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
3068 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
3069 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
3070 * computing the condition.
3071 */
3072 if (negate)
3073 this->result.negate = ~this->result.negate;
3074
3075 return switch_order;
3076 }
3077
3078 void
3079 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
3080 st_dst_reg *l, st_src_reg *r,
3081 st_src_reg *cond, bool cond_swap)
3082 {
3083 if (type->base_type == GLSL_TYPE_STRUCT) {
3084 for (unsigned int i = 0; i < type->length; i++) {
3085 emit_block_mov(ir, type->fields.structure[i].type, l, r,
3086 cond, cond_swap);
3087 }
3088 return;
3089 }
3090
3091 if (type->is_array()) {
3092 for (unsigned int i = 0; i < type->length; i++) {
3093 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
3094 }
3095 return;
3096 }
3097
3098 if (type->is_matrix()) {
3099 const struct glsl_type *vec_type;
3100
3101 vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
3102 type->vector_elements, 1);
3103
3104 for (int i = 0; i < type->matrix_columns; i++) {
3105 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
3106 }
3107 return;
3108 }
3109
3110 assert(type->is_scalar() || type->is_vector());
3111
3112 l->type = type->base_type;
3113 r->type = type->base_type;
3114 if (cond) {
3115 st_src_reg l_src = st_src_reg(*l);
3116 l_src.swizzle = swizzle_for_size(type->vector_elements);
3117
3118 if (native_integers) {
3119 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
3120 cond_swap ? l_src : *r,
3121 cond_swap ? *r : l_src);
3122 } else {
3123 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
3124 cond_swap ? l_src : *r,
3125 cond_swap ? *r : l_src);
3126 }
3127 } else {
3128 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
3129 }
3130 l->index++;
3131 r->index++;
3132 if (type->is_dual_slot()) {
3133 l->index++;
3134 if (r->is_double_vertex_input == false)
3135 r->index++;
3136 }
3137 }
3138
3139 void
3140 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
3141 {
3142 int dst_component;
3143 st_dst_reg l;
3144 st_src_reg r;
3145
3146 ir->rhs->accept(this);
3147 r = this->result;
3148
3149 l = get_assignment_lhs(ir->lhs, this, &dst_component);
3150
3151 {
3152 int swizzles[4];
3153 int first_enabled_chan = 0;
3154 int rhs_chan = 0;
3155 ir_variable *variable = ir->lhs->variable_referenced();
3156
3157 if (shader->Stage == MESA_SHADER_FRAGMENT &&
3158 variable->data.mode == ir_var_shader_out &&
3159 (variable->data.location == FRAG_RESULT_DEPTH ||
3160 variable->data.location == FRAG_RESULT_STENCIL)) {
3161 assert(ir->lhs->type->is_scalar());
3162 assert(ir->write_mask == WRITEMASK_X);
3163
3164 if (variable->data.location == FRAG_RESULT_DEPTH)
3165 l.writemask = WRITEMASK_Z;
3166 else {
3167 assert(variable->data.location == FRAG_RESULT_STENCIL);
3168 l.writemask = WRITEMASK_Y;
3169 }
3170 } else if (ir->write_mask == 0) {
3171 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
3172
3173 unsigned num_elements = ir->lhs->type->without_array()->vector_elements;
3174
3175 if (num_elements) {
3176 l.writemask = u_bit_consecutive(0, num_elements);
3177 } else {
3178 /* The type is a struct or an array of (array of) structs. */
3179 l.writemask = WRITEMASK_XYZW;
3180 }
3181 } else {
3182 l.writemask = ir->write_mask;
3183 }
3184
3185 for (int i = 0; i < 4; i++) {
3186 if (l.writemask & (1 << i)) {
3187 first_enabled_chan = GET_SWZ(r.swizzle, i);
3188 break;
3189 }
3190 }
3191
3192 l.writemask = l.writemask << dst_component;
3193
3194 /* Swizzle a small RHS vector into the channels being written.
3195 *
3196 * glsl ir treats write_mask as dictating how many channels are
3197 * present on the RHS while TGSI treats write_mask as just
3198 * showing which channels of the vec4 RHS get written.
3199 */
3200 for (int i = 0; i < 4; i++) {
3201 if (l.writemask & (1 << i))
3202 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
3203 else
3204 swizzles[i] = first_enabled_chan;
3205 }
3206 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
3207 swizzles[2], swizzles[3]);
3208 }
3209
3210 assert(l.file != PROGRAM_UNDEFINED);
3211 assert(r.file != PROGRAM_UNDEFINED);
3212
3213 if (ir->condition) {
3214 const bool switch_order = this->process_move_condition(ir->condition);
3215 st_src_reg condition = this->result;
3216
3217 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
3218 } else if (ir->rhs->as_expression() &&
3219 this->instructions.get_tail() &&
3220 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
3221 !((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
3222 type_size(ir->lhs->type) == 1 &&
3223 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
3224 /* To avoid emitting an extra MOV when assigning an expression to a
3225 * variable, emit the last instruction of the expression again, but
3226 * replace the destination register with the target of the assignment.
3227 * Dead code elimination will remove the original instruction.
3228 */
3229 glsl_to_tgsi_instruction *inst, *new_inst;
3230 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
3231 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
3232 new_inst->saturate = inst->saturate;
3233 inst->dead_mask = inst->dst[0].writemask;
3234 } else {
3235 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
3236 }
3237 }
3238
3239
3240 void
3241 glsl_to_tgsi_visitor::visit(ir_constant *ir)
3242 {
3243 st_src_reg src;
3244 GLdouble stack_vals[4] = { 0 };
3245 gl_constant_value *values = (gl_constant_value *) stack_vals;
3246 GLenum gl_type = GL_NONE;
3247 unsigned int i;
3248 static int in_array = 0;
3249 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
3250
3251 /* Unfortunately, 4 floats is all we can get into
3252 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
3253 * aggregate constant and move each constant value into it. If we
3254 * get lucky, copy propagation will eliminate the extra moves.
3255 */
3256 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
3257 st_src_reg temp_base = get_temp(ir->type);
3258 st_dst_reg temp = st_dst_reg(temp_base);
3259
3260 foreach_in_list(ir_constant, field_value, &ir->components) {
3261 int size = type_size(field_value->type);
3262
3263 assert(size > 0);
3264
3265 field_value->accept(this);
3266 src = this->result;
3267
3268 for (i = 0; i < (unsigned int)size; i++) {
3269 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3270
3271 src.index++;
3272 temp.index++;
3273 }
3274 }
3275 this->result = temp_base;
3276 return;
3277 }
3278
3279 if (ir->type->is_array()) {
3280 st_src_reg temp_base = get_temp(ir->type);
3281 st_dst_reg temp = st_dst_reg(temp_base);
3282 int size = type_size(ir->type->fields.array);
3283
3284 assert(size > 0);
3285 in_array++;
3286
3287 for (i = 0; i < ir->type->length; i++) {
3288 ir->array_elements[i]->accept(this);
3289 src = this->result;
3290 for (int j = 0; j < size; j++) {
3291 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3292
3293 src.index++;
3294 temp.index++;
3295 }
3296 }
3297 this->result = temp_base;
3298 in_array--;
3299 return;
3300 }
3301
3302 if (ir->type->is_matrix()) {
3303 st_src_reg mat = get_temp(ir->type);
3304 st_dst_reg mat_column = st_dst_reg(mat);
3305
3306 for (i = 0; i < ir->type->matrix_columns; i++) {
3307 switch (ir->type->base_type) {
3308 case GLSL_TYPE_FLOAT:
3309 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
3310
3311 src = st_src_reg(file, -1, ir->type->base_type);
3312 src.index = add_constant(file,
3313 values,
3314 ir->type->vector_elements,
3315 GL_FLOAT,
3316 &src.swizzle);
3317 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3318 break;
3319 case GLSL_TYPE_DOUBLE:
3320 values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
3321 src = st_src_reg(file, -1, ir->type->base_type);
3322 src.index = add_constant(file,
3323 values,
3324 ir->type->vector_elements,
3325 GL_DOUBLE,
3326 &src.swizzle);
3327 if (ir->type->vector_elements >= 2) {
3328 mat_column.writemask = WRITEMASK_XY;
3329 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3330 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3331 } else {
3332 mat_column.writemask = WRITEMASK_X;
3333 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
3334 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3335 }
3336 src.index++;
3337 if (ir->type->vector_elements > 2) {
3338 if (ir->type->vector_elements == 4) {
3339 mat_column.writemask = WRITEMASK_ZW;
3340 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3341 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3342 } else {
3343 mat_column.writemask = WRITEMASK_Z;
3344 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
3345 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3346 mat_column.writemask = WRITEMASK_XYZW;
3347 src.swizzle = SWIZZLE_XYZW;
3348 }
3349 mat_column.index++;
3350 }
3351 break;
3352 default:
3353 unreachable("Illegal matrix constant type.\n");
3354 break;
3355 }
3356 mat_column.index++;
3357 }
3358 this->result = mat;
3359 return;
3360 }
3361
3362 switch (ir->type->base_type) {
3363 case GLSL_TYPE_FLOAT:
3364 gl_type = GL_FLOAT;
3365 for (i = 0; i < ir->type->vector_elements; i++) {
3366 values[i].f = ir->value.f[i];
3367 }
3368 break;
3369 case GLSL_TYPE_DOUBLE:
3370 gl_type = GL_DOUBLE;
3371 for (i = 0; i < ir->type->vector_elements; i++) {
3372 memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
3373 }
3374 break;
3375 case GLSL_TYPE_INT64:
3376 gl_type = GL_INT64_ARB;
3377 for (i = 0; i < ir->type->vector_elements; i++) {
3378 memcpy(&values[i * 2], &ir->value.d[i], sizeof(int64_t));
3379 }
3380 break;
3381 case GLSL_TYPE_UINT64:
3382 gl_type = GL_UNSIGNED_INT64_ARB;
3383 for (i = 0; i < ir->type->vector_elements; i++) {
3384 memcpy(&values[i * 2], &ir->value.d[i], sizeof(uint64_t));
3385 }
3386 break;
3387 case GLSL_TYPE_UINT:
3388 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3389 for (i = 0; i < ir->type->vector_elements; i++) {
3390 if (native_integers)
3391 values[i].u = ir->value.u[i];
3392 else
3393 values[i].f = ir->value.u[i];
3394 }
3395 break;
3396 case GLSL_TYPE_INT:
3397 gl_type = native_integers ? GL_INT : GL_FLOAT;
3398 for (i = 0; i < ir->type->vector_elements; i++) {
3399 if (native_integers)
3400 values[i].i = ir->value.i[i];
3401 else
3402 values[i].f = ir->value.i[i];
3403 }
3404 break;
3405 case GLSL_TYPE_BOOL:
3406 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3407 for (i = 0; i < ir->type->vector_elements; i++) {
3408 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3409 }
3410 break;
3411 default:
3412 assert(!"Non-float/uint/int/bool constant");
3413 }
3414
3415 this->result = st_src_reg(file, -1, ir->type);
3416 this->result.index = add_constant(file,
3417 values,
3418 ir->type->vector_elements,
3419 gl_type,
3420 &this->result.swizzle);
3421 }
3422
3423 void
3424 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3425 {
3426 exec_node *param = ir->actual_parameters.get_head();
3427 ir_dereference *deref = static_cast<ir_dereference *>(param);
3428 ir_variable *location = deref->variable_referenced();
3429
3430 st_src_reg buffer(
3431 PROGRAM_BUFFER, location->data.binding, GLSL_TYPE_ATOMIC_UINT);
3432
3433 /* Calculate the surface offset */
3434 st_src_reg offset;
3435 unsigned array_size = 0, base = 0;
3436 uint16_t index = 0;
3437
3438 get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
3439
3440 if (offset.file != PROGRAM_UNDEFINED) {
3441 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
3442 offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
3443 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
3444 offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
3445 } else {
3446 offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
3447 }
3448
3449 ir->return_deref->accept(this);
3450 st_dst_reg dst(this->result);
3451 dst.writemask = WRITEMASK_X;
3452
3453 glsl_to_tgsi_instruction *inst;
3454
3455 if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
3456 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
3457 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
3458 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3459 st_src_reg_for_int(1));
3460 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
3461 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3462 st_src_reg_for_int(-1));
3463 emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
3464 } else {
3465 param = param->get_next();
3466 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3467 val->accept(this);
3468
3469 st_src_reg data = this->result, data2 = undef_src;
3470 unsigned opcode;
3471 switch (ir->callee->intrinsic_id) {
3472 case ir_intrinsic_atomic_counter_add:
3473 opcode = TGSI_OPCODE_ATOMUADD;
3474 break;
3475 case ir_intrinsic_atomic_counter_min:
3476 opcode = TGSI_OPCODE_ATOMIMIN;
3477 break;
3478 case ir_intrinsic_atomic_counter_max:
3479 opcode = TGSI_OPCODE_ATOMIMAX;
3480 break;
3481 case ir_intrinsic_atomic_counter_and:
3482 opcode = TGSI_OPCODE_ATOMAND;
3483 break;
3484 case ir_intrinsic_atomic_counter_or:
3485 opcode = TGSI_OPCODE_ATOMOR;
3486 break;
3487 case ir_intrinsic_atomic_counter_xor:
3488 opcode = TGSI_OPCODE_ATOMXOR;
3489 break;
3490 case ir_intrinsic_atomic_counter_exchange:
3491 opcode = TGSI_OPCODE_ATOMXCHG;
3492 break;
3493 case ir_intrinsic_atomic_counter_comp_swap: {
3494 opcode = TGSI_OPCODE_ATOMCAS;
3495 param = param->get_next();
3496 val = ((ir_instruction *)param)->as_rvalue();
3497 val->accept(this);
3498 data2 = this->result;
3499 break;
3500 }
3501 default:
3502 assert(!"Unexpected intrinsic");
3503 return;
3504 }
3505
3506 inst = emit_asm(ir, opcode, dst, offset, data, data2);
3507 }
3508
3509 inst->resource = buffer;
3510 }
3511
3512 void
3513 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
3514 {
3515 exec_node *param = ir->actual_parameters.get_head();
3516
3517 ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
3518
3519 param = param->get_next();
3520 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3521
3522 ir_constant *const_block = block->as_constant();
3523
3524 st_src_reg buffer(
3525 PROGRAM_BUFFER,
3526 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
3527 (const_block ? const_block->value.u[0] : 0),
3528 GLSL_TYPE_UINT);
3529
3530 if (!const_block) {
3531 block->accept(this);
3532 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3533 *buffer.reladdr = this->result;
3534 emit_arl(ir, sampler_reladdr, this->result);
3535 }
3536
3537 /* Calculate the surface offset */
3538 offset->accept(this);
3539 st_src_reg off = this->result;
3540
3541 st_dst_reg dst = undef_dst;
3542 if (ir->return_deref) {
3543 ir->return_deref->accept(this);
3544 dst = st_dst_reg(this->result);
3545 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3546 }
3547
3548 glsl_to_tgsi_instruction *inst;
3549
3550 if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
3551 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3552 if (dst.type == GLSL_TYPE_BOOL)
3553 emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst), st_src_reg_for_int(0));
3554 } else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
3555 param = param->get_next();
3556 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3557 val->accept(this);
3558
3559 param = param->get_next();
3560 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3561 assert(write_mask);
3562 dst.writemask = write_mask->value.u[0];
3563
3564 dst.type = this->result.type;
3565 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3566 } else {
3567 param = param->get_next();
3568 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3569 val->accept(this);
3570
3571 st_src_reg data = this->result, data2 = undef_src;
3572 unsigned opcode;
3573 switch (ir->callee->intrinsic_id) {
3574 case ir_intrinsic_ssbo_atomic_add:
3575 opcode = TGSI_OPCODE_ATOMUADD;
3576 break;
3577 case ir_intrinsic_ssbo_atomic_min:
3578 opcode = TGSI_OPCODE_ATOMIMIN;
3579 break;
3580 case ir_intrinsic_ssbo_atomic_max:
3581 opcode = TGSI_OPCODE_ATOMIMAX;
3582 break;
3583 case ir_intrinsic_ssbo_atomic_and:
3584 opcode = TGSI_OPCODE_ATOMAND;
3585 break;
3586 case ir_intrinsic_ssbo_atomic_or:
3587 opcode = TGSI_OPCODE_ATOMOR;
3588 break;
3589 case ir_intrinsic_ssbo_atomic_xor:
3590 opcode = TGSI_OPCODE_ATOMXOR;
3591 break;
3592 case ir_intrinsic_ssbo_atomic_exchange:
3593 opcode = TGSI_OPCODE_ATOMXCHG;
3594 break;
3595 case ir_intrinsic_ssbo_atomic_comp_swap:
3596 opcode = TGSI_OPCODE_ATOMCAS;
3597 param = param->get_next();
3598 val = ((ir_instruction *)param)->as_rvalue();
3599 val->accept(this);
3600 data2 = this->result;
3601 break;
3602 default:
3603 assert(!"Unexpected intrinsic");
3604 return;
3605 }
3606
3607 inst = emit_asm(ir, opcode, dst, off, data, data2);
3608 }
3609
3610 param = param->get_next();
3611 ir_constant *access = NULL;
3612 if (!param->is_tail_sentinel()) {
3613 access = ((ir_instruction *)param)->as_constant();
3614 assert(access);
3615 }
3616
3617 /* The emit_asm() might have actually split the op into pieces, e.g. for
3618 * double stores. We have to go back and fix up all the generated ops.
3619 */
3620 unsigned op = inst->op;
3621 do {
3622 inst->resource = buffer;
3623 if (access)
3624 inst->buffer_access = access->value.u[0];
3625
3626 if (inst == this->instructions.get_head_raw())
3627 break;
3628 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3629
3630 if (inst->op == TGSI_OPCODE_UADD) {
3631 if (inst == this->instructions.get_head_raw())
3632 break;
3633 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
3634 }
3635 } while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
3636 }
3637
3638 void
3639 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
3640 {
3641 switch (ir->callee->intrinsic_id) {
3642 case ir_intrinsic_memory_barrier:
3643 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3644 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3645 TGSI_MEMBAR_ATOMIC_BUFFER |
3646 TGSI_MEMBAR_SHADER_IMAGE |
3647 TGSI_MEMBAR_SHARED));
3648 break;
3649 case ir_intrinsic_memory_barrier_atomic_counter:
3650 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3651 st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
3652 break;
3653 case ir_intrinsic_memory_barrier_buffer:
3654 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3655 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
3656 break;
3657 case ir_intrinsic_memory_barrier_image:
3658 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3659 st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
3660 break;
3661 case ir_intrinsic_memory_barrier_shared:
3662 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3663 st_src_reg_for_int(TGSI_MEMBAR_SHARED));
3664 break;
3665 case ir_intrinsic_group_memory_barrier:
3666 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3667 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3668 TGSI_MEMBAR_ATOMIC_BUFFER |
3669 TGSI_MEMBAR_SHADER_IMAGE |
3670 TGSI_MEMBAR_SHARED |
3671 TGSI_MEMBAR_THREAD_GROUP));
3672 break;
3673 default:
3674 assert(!"Unexpected memory barrier intrinsic");
3675 }
3676 }
3677
3678 void
3679 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
3680 {
3681 exec_node *param = ir->actual_parameters.get_head();
3682
3683 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3684
3685 st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
3686
3687 /* Calculate the surface offset */
3688 offset->accept(this);
3689 st_src_reg off = this->result;
3690
3691 st_dst_reg dst = undef_dst;
3692 if (ir->return_deref) {
3693 ir->return_deref->accept(this);
3694 dst = st_dst_reg(this->result);
3695 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3696 }
3697
3698 glsl_to_tgsi_instruction *inst;
3699
3700 if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
3701 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3702 inst->resource = buffer;
3703 } else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
3704 param = param->get_next();
3705 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3706 val->accept(this);
3707
3708 param = param->get_next();
3709 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3710 assert(write_mask);
3711 dst.writemask = write_mask->value.u[0];
3712
3713 dst.type = this->result.type;
3714 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3715 inst->resource = buffer;
3716 } else {
3717 param = param->get_next();
3718 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3719 val->accept(this);
3720
3721 st_src_reg data = this->result, data2 = undef_src;
3722 unsigned opcode;
3723 switch (ir->callee->intrinsic_id) {
3724 case ir_intrinsic_shared_atomic_add:
3725 opcode = TGSI_OPCODE_ATOMUADD;
3726 break;
3727 case ir_intrinsic_shared_atomic_min:
3728 opcode = TGSI_OPCODE_ATOMIMIN;
3729 break;
3730 case ir_intrinsic_shared_atomic_max:
3731 opcode = TGSI_OPCODE_ATOMIMAX;
3732 break;
3733 case ir_intrinsic_shared_atomic_and:
3734 opcode = TGSI_OPCODE_ATOMAND;
3735 break;
3736 case ir_intrinsic_shared_atomic_or:
3737 opcode = TGSI_OPCODE_ATOMOR;
3738 break;
3739 case ir_intrinsic_shared_atomic_xor:
3740 opcode = TGSI_OPCODE_ATOMXOR;
3741 break;
3742 case ir_intrinsic_shared_atomic_exchange:
3743 opcode = TGSI_OPCODE_ATOMXCHG;
3744 break;
3745 case ir_intrinsic_shared_atomic_comp_swap:
3746 opcode = TGSI_OPCODE_ATOMCAS;
3747 param = param->get_next();
3748 val = ((ir_instruction *)param)->as_rvalue();
3749 val->accept(this);
3750 data2 = this->result;
3751 break;
3752 default:
3753 assert(!"Unexpected intrinsic");
3754 return;
3755 }
3756
3757 inst = emit_asm(ir, opcode, dst, off, data, data2);
3758 inst->resource = buffer;
3759 }
3760 }
3761
3762 void
3763 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
3764 {
3765 exec_node *param = ir->actual_parameters.get_head();
3766
3767 ir_dereference *img = (ir_dereference *)param;
3768 const ir_variable *imgvar = img->variable_referenced();
3769 const glsl_type *type = imgvar->type->without_array();
3770 unsigned sampler_array_size = 1, sampler_base = 0;
3771
3772 st_src_reg reladdr;
3773 st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
3774
3775 get_deref_offsets(img, &sampler_array_size, &sampler_base,
3776 (uint16_t*)&image.index, &reladdr, true);
3777
3778 if (reladdr.file != PROGRAM_UNDEFINED) {
3779 image.reladdr = ralloc(mem_ctx, st_src_reg);
3780 *image.reladdr = reladdr;
3781 emit_arl(ir, sampler_reladdr, reladdr);
3782 }
3783
3784 st_dst_reg dst = undef_dst;
3785 if (ir->return_deref) {
3786 ir->return_deref->accept(this);
3787 dst = st_dst_reg(this->result);
3788 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3789 }
3790
3791 glsl_to_tgsi_instruction *inst;
3792
3793 if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
3794 dst.writemask = WRITEMASK_XYZ;
3795 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
3796 } else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
3797 st_src_reg res = get_temp(glsl_type::ivec4_type);
3798 st_dst_reg dstres = st_dst_reg(res);
3799 dstres.writemask = WRITEMASK_W;
3800 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
3801 res.swizzle = SWIZZLE_WWWW;
3802 emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
3803 } else {
3804 st_src_reg arg1 = undef_src, arg2 = undef_src;
3805 st_src_reg coord;
3806 st_dst_reg coord_dst;
3807 coord = get_temp(glsl_type::ivec4_type);
3808 coord_dst = st_dst_reg(coord);
3809 coord_dst.writemask = (1 << type->coordinate_components()) - 1;
3810 param = param->get_next();
3811 ((ir_dereference *)param)->accept(this);
3812 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3813 coord.swizzle = SWIZZLE_XXXX;
3814 switch (type->coordinate_components()) {
3815 case 4: assert(!"unexpected coord count");
3816 /* fallthrough */
3817 case 3: coord.swizzle |= SWIZZLE_Z << 6;
3818 /* fallthrough */
3819 case 2: coord.swizzle |= SWIZZLE_Y << 3;
3820 }
3821
3822 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
3823 param = param->get_next();
3824 ((ir_dereference *)param)->accept(this);
3825 st_src_reg sample = this->result;
3826 sample.swizzle = SWIZZLE_XXXX;
3827 coord_dst.writemask = WRITEMASK_W;
3828 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
3829 coord.swizzle |= SWIZZLE_W << 9;
3830 }
3831
3832 param = param->get_next();
3833 if (!param->is_tail_sentinel()) {
3834 ((ir_dereference *)param)->accept(this);
3835 arg1 = this->result;
3836 param = param->get_next();
3837 }
3838
3839 if (!param->is_tail_sentinel()) {
3840 ((ir_dereference *)param)->accept(this);
3841 arg2 = this->result;
3842 param = param->get_next();
3843 }
3844
3845 assert(param->is_tail_sentinel());
3846
3847 unsigned opcode;
3848 switch (ir->callee->intrinsic_id) {
3849 case ir_intrinsic_image_load:
3850 opcode = TGSI_OPCODE_LOAD;
3851 break;
3852 case ir_intrinsic_image_store:
3853 opcode = TGSI_OPCODE_STORE;
3854 break;
3855 case ir_intrinsic_image_atomic_add:
3856 opcode = TGSI_OPCODE_ATOMUADD;
3857 break;
3858 case ir_intrinsic_image_atomic_min:
3859 opcode = TGSI_OPCODE_ATOMIMIN;
3860 break;
3861 case ir_intrinsic_image_atomic_max:
3862 opcode = TGSI_OPCODE_ATOMIMAX;
3863 break;
3864 case ir_intrinsic_image_atomic_and:
3865 opcode = TGSI_OPCODE_ATOMAND;
3866 break;
3867 case ir_intrinsic_image_atomic_or:
3868 opcode = TGSI_OPCODE_ATOMOR;
3869 break;
3870 case ir_intrinsic_image_atomic_xor:
3871 opcode = TGSI_OPCODE_ATOMXOR;
3872 break;
3873 case ir_intrinsic_image_atomic_exchange:
3874 opcode = TGSI_OPCODE_ATOMXCHG;
3875 break;
3876 case ir_intrinsic_image_atomic_comp_swap:
3877 opcode = TGSI_OPCODE_ATOMCAS;
3878 break;
3879 default:
3880 assert(!"Unexpected intrinsic");
3881 return;
3882 }
3883
3884 inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
3885 if (opcode == TGSI_OPCODE_STORE)
3886 inst->dst[0].writemask = WRITEMASK_XYZW;
3887 }
3888
3889 inst->resource = image;
3890 inst->sampler_array_size = sampler_array_size;
3891 inst->sampler_base = sampler_base;
3892
3893 inst->tex_target = type->sampler_index();
3894 inst->image_format = st_mesa_format_to_pipe_format(st_context(ctx),
3895 _mesa_get_shader_image_format(imgvar->data.image_format));
3896
3897 if (imgvar->data.image_coherent)
3898 inst->buffer_access |= TGSI_MEMORY_COHERENT;
3899 if (imgvar->data.image_restrict)
3900 inst->buffer_access |= TGSI_MEMORY_RESTRICT;
3901 if (imgvar->data.image_volatile)
3902 inst->buffer_access |= TGSI_MEMORY_VOLATILE;
3903 }
3904
3905 void
3906 glsl_to_tgsi_visitor::visit(ir_call *ir)
3907 {
3908 ir_function_signature *sig = ir->callee;
3909
3910 /* Filter out intrinsics */
3911 switch (sig->intrinsic_id) {
3912 case ir_intrinsic_atomic_counter_read:
3913 case ir_intrinsic_atomic_counter_increment:
3914 case ir_intrinsic_atomic_counter_predecrement:
3915 case ir_intrinsic_atomic_counter_add:
3916 case ir_intrinsic_atomic_counter_min:
3917 case ir_intrinsic_atomic_counter_max:
3918 case ir_intrinsic_atomic_counter_and:
3919 case ir_intrinsic_atomic_counter_or:
3920 case ir_intrinsic_atomic_counter_xor:
3921 case ir_intrinsic_atomic_counter_exchange:
3922 case ir_intrinsic_atomic_counter_comp_swap:
3923 visit_atomic_counter_intrinsic(ir);
3924 return;
3925
3926 case ir_intrinsic_ssbo_load:
3927 case ir_intrinsic_ssbo_store:
3928 case ir_intrinsic_ssbo_atomic_add:
3929 case ir_intrinsic_ssbo_atomic_min:
3930 case ir_intrinsic_ssbo_atomic_max:
3931 case ir_intrinsic_ssbo_atomic_and:
3932 case ir_intrinsic_ssbo_atomic_or:
3933 case ir_intrinsic_ssbo_atomic_xor:
3934 case ir_intrinsic_ssbo_atomic_exchange:
3935 case ir_intrinsic_ssbo_atomic_comp_swap:
3936 visit_ssbo_intrinsic(ir);
3937 return;
3938
3939 case ir_intrinsic_memory_barrier:
3940 case ir_intrinsic_memory_barrier_atomic_counter:
3941 case ir_intrinsic_memory_barrier_buffer:
3942 case ir_intrinsic_memory_barrier_image:
3943 case ir_intrinsic_memory_barrier_shared:
3944 case ir_intrinsic_group_memory_barrier:
3945 visit_membar_intrinsic(ir);
3946 return;
3947
3948 case ir_intrinsic_shared_load:
3949 case ir_intrinsic_shared_store:
3950 case ir_intrinsic_shared_atomic_add:
3951 case ir_intrinsic_shared_atomic_min:
3952 case ir_intrinsic_shared_atomic_max:
3953 case ir_intrinsic_shared_atomic_and:
3954 case ir_intrinsic_shared_atomic_or:
3955 case ir_intrinsic_shared_atomic_xor:
3956 case ir_intrinsic_shared_atomic_exchange:
3957 case ir_intrinsic_shared_atomic_comp_swap:
3958 visit_shared_intrinsic(ir);
3959 return;
3960
3961 case ir_intrinsic_image_load:
3962 case ir_intrinsic_image_store:
3963 case ir_intrinsic_image_atomic_add:
3964 case ir_intrinsic_image_atomic_min:
3965 case ir_intrinsic_image_atomic_max:
3966 case ir_intrinsic_image_atomic_and:
3967 case ir_intrinsic_image_atomic_or:
3968 case ir_intrinsic_image_atomic_xor:
3969 case ir_intrinsic_image_atomic_exchange:
3970 case ir_intrinsic_image_atomic_comp_swap:
3971 case ir_intrinsic_image_size:
3972 case ir_intrinsic_image_samples:
3973 visit_image_intrinsic(ir);
3974 return;
3975
3976 case ir_intrinsic_shader_clock: {
3977 ir->return_deref->accept(this);
3978
3979 st_dst_reg dst = st_dst_reg(this->result);
3980 dst.writemask = TGSI_WRITEMASK_XY;
3981
3982 emit_asm(ir, TGSI_OPCODE_CLOCK, dst);
3983 return;
3984 }
3985
3986 case ir_intrinsic_invalid:
3987 case ir_intrinsic_generic_load:
3988 case ir_intrinsic_generic_store:
3989 case ir_intrinsic_generic_atomic_add:
3990 case ir_intrinsic_generic_atomic_and:
3991 case ir_intrinsic_generic_atomic_or:
3992 case ir_intrinsic_generic_atomic_xor:
3993 case ir_intrinsic_generic_atomic_min:
3994 case ir_intrinsic_generic_atomic_max:
3995 case ir_intrinsic_generic_atomic_exchange:
3996 case ir_intrinsic_generic_atomic_comp_swap:
3997 unreachable("Invalid intrinsic");
3998 }
3999 }
4000
4001 void
4002 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
4003 unsigned *array_elements,
4004 uint16_t *index,
4005 st_src_reg *indirect,
4006 unsigned *location)
4007 {
4008 switch (tail->ir_type) {
4009 case ir_type_dereference_record: {
4010 ir_dereference_record *deref_record = tail->as_dereference_record();
4011 const glsl_type *struct_type = deref_record->record->type;
4012 int field_index = deref_record->record->type->field_index(deref_record->field);
4013
4014 calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
4015
4016 assert(field_index >= 0);
4017 *location += struct_type->record_location_offset(field_index);
4018 break;
4019 }
4020
4021 case ir_type_dereference_array: {
4022 ir_dereference_array *deref_arr = tail->as_dereference_array();
4023 ir_constant *array_index = deref_arr->array_index->constant_expression_value();
4024
4025 if (!array_index) {
4026 st_src_reg temp_reg;
4027 st_dst_reg temp_dst;
4028
4029 temp_reg = get_temp(glsl_type::uint_type);
4030 temp_dst = st_dst_reg(temp_reg);
4031 temp_dst.writemask = 1;
4032
4033 deref_arr->array_index->accept(this);
4034 if (*array_elements != 1)
4035 emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
4036 else
4037 emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
4038
4039 if (indirect->file == PROGRAM_UNDEFINED)
4040 *indirect = temp_reg;
4041 else {
4042 temp_dst = st_dst_reg(*indirect);
4043 temp_dst.writemask = 1;
4044 emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
4045 }
4046 } else
4047 *index += array_index->value.u[0] * *array_elements;
4048
4049 *array_elements *= deref_arr->array->type->length;
4050
4051 calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
4052 break;
4053 }
4054 default:
4055 break;
4056 }
4057 }
4058
4059 void
4060 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
4061 unsigned *array_size,
4062 unsigned *base,
4063 uint16_t *index,
4064 st_src_reg *reladdr,
4065 bool opaque)
4066 {
4067 GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
4068 unsigned location = 0;
4069 ir_variable *var = ir->variable_referenced();
4070
4071 memset(reladdr, 0, sizeof(*reladdr));
4072 reladdr->file = PROGRAM_UNDEFINED;
4073
4074 *base = 0;
4075 *array_size = 1;
4076
4077 assert(var);
4078 location = var->data.location;
4079 calc_deref_offsets(ir, array_size, index, reladdr, &location);
4080
4081 /*
4082 * If we end up with no indirect then adjust the base to the index,
4083 * and set the array size to 1.
4084 */
4085 if (reladdr->file == PROGRAM_UNDEFINED) {
4086 *base = *index;
4087 *array_size = 1;
4088 }
4089
4090 if (opaque) {
4091 assert(location != 0xffffffff);
4092 *base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4093 *index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4094 }
4095 }
4096
4097 st_src_reg
4098 glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
4099 {
4100 if (offset.reladdr || offset.reladdr2) {
4101 st_src_reg tmp = get_temp(glsl_type::ivec2_type);
4102 st_dst_reg tmp_dst = st_dst_reg(tmp);
4103 tmp_dst.writemask = WRITEMASK_XY;
4104 emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
4105 return tmp;
4106 }
4107
4108 return offset;
4109 }
4110
4111 void
4112 glsl_to_tgsi_visitor::visit(ir_texture *ir)
4113 {
4114 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
4115 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
4116 st_src_reg levels_src, reladdr;
4117 st_dst_reg result_dst, coord_dst, cube_sc_dst;
4118 glsl_to_tgsi_instruction *inst = NULL;
4119 unsigned opcode = TGSI_OPCODE_NOP;
4120 const glsl_type *sampler_type = ir->sampler->type;
4121 unsigned sampler_array_size = 1, sampler_base = 0;
4122 uint16_t sampler_index = 0;
4123 bool is_cube_array = false, is_cube_shadow = false;
4124 unsigned i;
4125
4126 /* if we are a cube array sampler or a cube shadow */
4127 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4128 is_cube_array = sampler_type->sampler_array;
4129 is_cube_shadow = sampler_type->sampler_shadow;
4130 }
4131
4132 if (ir->coordinate) {
4133 ir->coordinate->accept(this);
4134
4135 /* Put our coords in a temp. We'll need to modify them for shadow,
4136 * projection, or LOD, so the only case we'd use it as-is is if
4137 * we're doing plain old texturing. The optimization passes on
4138 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
4139 */
4140 coord = get_temp(glsl_type::vec4_type);
4141 coord_dst = st_dst_reg(coord);
4142 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
4143 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4144 }
4145
4146 if (ir->projector) {
4147 ir->projector->accept(this);
4148 projector = this->result;
4149 }
4150
4151 /* Storage for our result. Ideally for an assignment we'd be using
4152 * the actual storage for the result here, instead.
4153 */
4154 result_src = get_temp(ir->type);
4155 result_dst = st_dst_reg(result_src);
4156 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
4157
4158 switch (ir->op) {
4159 case ir_tex:
4160 opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
4161 if (ir->offset) {
4162 ir->offset->accept(this);
4163 offset[0] = this->result;
4164 }
4165 break;
4166 case ir_txb:
4167 if (is_cube_array || is_cube_shadow) {
4168 opcode = TGSI_OPCODE_TXB2;
4169 }
4170 else {
4171 opcode = TGSI_OPCODE_TXB;
4172 }
4173 ir->lod_info.bias->accept(this);
4174 lod_info = this->result;
4175 if (ir->offset) {
4176 ir->offset->accept(this);
4177 offset[0] = this->result;
4178 }
4179 break;
4180 case ir_txl:
4181 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4182 opcode = TGSI_OPCODE_TEX_LZ;
4183 } else {
4184 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
4185 ir->lod_info.lod->accept(this);
4186 lod_info = this->result;
4187 }
4188 if (ir->offset) {
4189 ir->offset->accept(this);
4190 offset[0] = this->result;
4191 }
4192 break;
4193 case ir_txd:
4194 opcode = TGSI_OPCODE_TXD;
4195 ir->lod_info.grad.dPdx->accept(this);
4196 dx = this->result;
4197 ir->lod_info.grad.dPdy->accept(this);
4198 dy = this->result;
4199 if (ir->offset) {
4200 ir->offset->accept(this);
4201 offset[0] = this->result;
4202 }
4203 break;
4204 case ir_txs:
4205 opcode = TGSI_OPCODE_TXQ;
4206 ir->lod_info.lod->accept(this);
4207 lod_info = this->result;
4208 break;
4209 case ir_query_levels:
4210 opcode = TGSI_OPCODE_TXQ;
4211 lod_info = undef_src;
4212 levels_src = get_temp(ir->type);
4213 break;
4214 case ir_txf:
4215 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4216 opcode = TGSI_OPCODE_TXF_LZ;
4217 } else {
4218 opcode = TGSI_OPCODE_TXF;
4219 ir->lod_info.lod->accept(this);
4220 lod_info = this->result;
4221 }
4222 if (ir->offset) {
4223 ir->offset->accept(this);
4224 offset[0] = this->result;
4225 }
4226 break;
4227 case ir_txf_ms:
4228 opcode = TGSI_OPCODE_TXF;
4229 ir->lod_info.sample_index->accept(this);
4230 sample_index = this->result;
4231 break;
4232 case ir_tg4:
4233 opcode = TGSI_OPCODE_TG4;
4234 ir->lod_info.component->accept(this);
4235 component = this->result;
4236 if (ir->offset) {
4237 ir->offset->accept(this);
4238 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
4239 const glsl_type *elt_type = ir->offset->type->fields.array;
4240 for (i = 0; i < ir->offset->type->length; i++) {
4241 offset[i] = this->result;
4242 offset[i].index += i * type_size(elt_type);
4243 offset[i].type = elt_type->base_type;
4244 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
4245 offset[i] = canonicalize_gather_offset(offset[i]);
4246 }
4247 } else {
4248 offset[0] = canonicalize_gather_offset(this->result);
4249 }
4250 }
4251 break;
4252 case ir_lod:
4253 opcode = TGSI_OPCODE_LODQ;
4254 break;
4255 case ir_texture_samples:
4256 opcode = TGSI_OPCODE_TXQS;
4257 break;
4258 case ir_samples_identical:
4259 unreachable("Unexpected ir_samples_identical opcode");
4260 }
4261
4262 if (ir->projector) {
4263 if (opcode == TGSI_OPCODE_TEX) {
4264 /* Slot the projector in as the last component of the coord. */
4265 coord_dst.writemask = WRITEMASK_W;
4266 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
4267 coord_dst.writemask = WRITEMASK_XYZW;
4268 opcode = TGSI_OPCODE_TXP;
4269 } else {
4270 st_src_reg coord_w = coord;
4271 coord_w.swizzle = SWIZZLE_WWWW;
4272
4273 /* For the other TEX opcodes there's no projective version
4274 * since the last slot is taken up by LOD info. Do the
4275 * projective divide now.
4276 */
4277 coord_dst.writemask = WRITEMASK_W;
4278 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
4279
4280 /* In the case where we have to project the coordinates "by hand,"
4281 * the shadow comparator value must also be projected.
4282 */
4283 st_src_reg tmp_src = coord;
4284 if (ir->shadow_comparator) {
4285 /* Slot the shadow value in as the second to last component of the
4286 * coord.
4287 */
4288 ir->shadow_comparator->accept(this);
4289
4290 tmp_src = get_temp(glsl_type::vec4_type);
4291 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
4292
4293 /* Projective division not allowed for array samplers. */
4294 assert(!sampler_type->sampler_array);
4295
4296 tmp_dst.writemask = WRITEMASK_Z;
4297 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
4298
4299 tmp_dst.writemask = WRITEMASK_XY;
4300 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
4301 }
4302
4303 coord_dst.writemask = WRITEMASK_XYZ;
4304 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
4305
4306 coord_dst.writemask = WRITEMASK_XYZW;
4307 coord.swizzle = SWIZZLE_XYZW;
4308 }
4309 }
4310
4311 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
4312 * comparator was put in the correct place (and projected) by the code,
4313 * above, that handles by-hand projection.
4314 */
4315 if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
4316 /* Slot the shadow value in as the second to last component of the
4317 * coord.
4318 */
4319 ir->shadow_comparator->accept(this);
4320
4321 if (is_cube_array) {
4322 cube_sc = get_temp(glsl_type::float_type);
4323 cube_sc_dst = st_dst_reg(cube_sc);
4324 cube_sc_dst.writemask = WRITEMASK_X;
4325 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
4326 cube_sc_dst.writemask = WRITEMASK_X;
4327 }
4328 else {
4329 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
4330 sampler_type->sampler_array) ||
4331 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4332 coord_dst.writemask = WRITEMASK_W;
4333 } else {
4334 coord_dst.writemask = WRITEMASK_Z;
4335 }
4336 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4337 coord_dst.writemask = WRITEMASK_XYZW;
4338 }
4339 }
4340
4341 if (ir->op == ir_txf_ms) {
4342 coord_dst.writemask = WRITEMASK_W;
4343 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
4344 coord_dst.writemask = WRITEMASK_XYZW;
4345 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
4346 opcode == TGSI_OPCODE_TXF) {
4347 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
4348 coord_dst.writemask = WRITEMASK_W;
4349 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
4350 coord_dst.writemask = WRITEMASK_XYZW;
4351 }
4352
4353 get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
4354 &sampler_index, &reladdr, true);
4355 if (reladdr.file != PROGRAM_UNDEFINED)
4356 emit_arl(ir, sampler_reladdr, reladdr);
4357
4358 if (opcode == TGSI_OPCODE_TXD)
4359 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
4360 else if (opcode == TGSI_OPCODE_TXQ) {
4361 if (ir->op == ir_query_levels) {
4362 /* the level is stored in W */
4363 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
4364 result_dst.writemask = WRITEMASK_X;
4365 levels_src.swizzle = SWIZZLE_WWWW;
4366 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
4367 } else
4368 inst = emit_asm(ir, opcode, result_dst, lod_info);
4369 } else if (opcode == TGSI_OPCODE_TXQS) {
4370 inst = emit_asm(ir, opcode, result_dst);
4371 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
4372 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
4373 } else if (opcode == TGSI_OPCODE_TEX2) {
4374 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4375 } else if (opcode == TGSI_OPCODE_TG4) {
4376 if (is_cube_array && ir->shadow_comparator) {
4377 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4378 } else {
4379 inst = emit_asm(ir, opcode, result_dst, coord, component);
4380 }
4381 } else
4382 inst = emit_asm(ir, opcode, result_dst, coord);
4383
4384 if (ir->shadow_comparator)
4385 inst->tex_shadow = GL_TRUE;
4386
4387 inst->resource.index = sampler_index;
4388 inst->sampler_array_size = sampler_array_size;
4389 inst->sampler_base = sampler_base;
4390
4391 if (reladdr.file != PROGRAM_UNDEFINED) {
4392 inst->resource.reladdr = ralloc(mem_ctx, st_src_reg);
4393 memcpy(inst->resource.reladdr, &reladdr, sizeof(reladdr));
4394 }
4395
4396 if (ir->offset) {
4397 if (!inst->tex_offsets)
4398 inst->tex_offsets = rzalloc_array(inst, st_src_reg, MAX_GLSL_TEXTURE_OFFSET);
4399
4400 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
4401 inst->tex_offsets[i] = offset[i];
4402 inst->tex_offset_num_offset = i;
4403 }
4404
4405 inst->tex_target = sampler_type->sampler_index();
4406 inst->tex_type = ir->type->base_type;
4407
4408 this->result = result_src;
4409 }
4410
4411 void
4412 glsl_to_tgsi_visitor::visit(ir_return *ir)
4413 {
4414 assert(!ir->get_value());
4415
4416 emit_asm(ir, TGSI_OPCODE_RET);
4417 }
4418
4419 void
4420 glsl_to_tgsi_visitor::visit(ir_discard *ir)
4421 {
4422 if (ir->condition) {
4423 ir->condition->accept(this);
4424 st_src_reg condition = this->result;
4425
4426 /* Convert the bool condition to a float so we can negate. */
4427 if (native_integers) {
4428 st_src_reg temp = get_temp(ir->condition->type);
4429 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
4430 condition, st_src_reg_for_float(1.0));
4431 condition = temp;
4432 }
4433
4434 condition.negate = ~condition.negate;
4435 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
4436 } else {
4437 /* unconditional kil */
4438 emit_asm(ir, TGSI_OPCODE_KILL);
4439 }
4440 }
4441
4442 void
4443 glsl_to_tgsi_visitor::visit(ir_if *ir)
4444 {
4445 unsigned if_opcode;
4446 glsl_to_tgsi_instruction *if_inst;
4447
4448 ir->condition->accept(this);
4449 assert(this->result.file != PROGRAM_UNDEFINED);
4450
4451 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
4452
4453 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
4454
4455 this->instructions.push_tail(if_inst);
4456
4457 visit_exec_list(&ir->then_instructions, this);
4458
4459 if (!ir->else_instructions.is_empty()) {
4460 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
4461 visit_exec_list(&ir->else_instructions, this);
4462 }
4463
4464 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
4465 }
4466
4467
4468 void
4469 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
4470 {
4471 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4472
4473 ir->stream->accept(this);
4474 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
4475 }
4476
4477 void
4478 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
4479 {
4480 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4481
4482 ir->stream->accept(this);
4483 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
4484 }
4485
4486 void
4487 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
4488 {
4489 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
4490 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
4491
4492 emit_asm(ir, TGSI_OPCODE_BARRIER);
4493 }
4494
4495 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
4496 {
4497 STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
4498
4499 result.file = PROGRAM_UNDEFINED;
4500 next_temp = 1;
4501 array_sizes = NULL;
4502 max_num_arrays = 0;
4503 next_array = 0;
4504 num_inputs = 0;
4505 num_outputs = 0;
4506 num_input_arrays = 0;
4507 num_output_arrays = 0;
4508 num_immediates = 0;
4509 num_address_regs = 0;
4510 samplers_used = 0;
4511 buffers_used = 0;
4512 images_used = 0;
4513 indirect_addr_consts = false;
4514 wpos_transform_const = -1;
4515 glsl_version = 0;
4516 native_integers = false;
4517 mem_ctx = ralloc_context(NULL);
4518 ctx = NULL;
4519 prog = NULL;
4520 shader_program = NULL;
4521 shader = NULL;
4522 options = NULL;
4523 have_sqrt = false;
4524 have_fma = false;
4525 use_shared_memory = false;
4526 has_tex_txf_lz = false;
4527 }
4528
4529 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
4530 {
4531 free(array_sizes);
4532 ralloc_free(mem_ctx);
4533 }
4534
4535 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
4536 {
4537 delete v;
4538 }
4539
4540
4541 /**
4542 * Count resources used by the given gpu program (number of texture
4543 * samplers, etc).
4544 */
4545 static void
4546 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
4547 {
4548 v->samplers_used = 0;
4549 v->buffers_used = 0;
4550 v->images_used = 0;
4551
4552 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
4553 if (inst->info->is_tex) {
4554 for (int i = 0; i < inst->sampler_array_size; i++) {
4555 unsigned idx = inst->sampler_base + i;
4556 v->samplers_used |= 1u << idx;
4557
4558 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
4559 v->sampler_types[idx] = inst->tex_type;
4560 v->sampler_targets[idx] =
4561 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4562
4563 if (inst->tex_shadow) {
4564 prog->ShadowSamplers |= 1 << (inst->resource.index + i);
4565 }
4566 }
4567 }
4568
4569 if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
4570 prog->ExternalSamplersUsed |= 1 << inst->resource.index;
4571
4572 if (inst->resource.file != PROGRAM_UNDEFINED && (
4573 is_resource_instruction(inst->op) ||
4574 inst->op == TGSI_OPCODE_STORE)) {
4575 if (inst->resource.file == PROGRAM_BUFFER) {
4576 v->buffers_used |= 1 << inst->resource.index;
4577 } else if (inst->resource.file == PROGRAM_MEMORY) {
4578 v->use_shared_memory = true;
4579 } else {
4580 assert(inst->resource.file == PROGRAM_IMAGE);
4581 for (int i = 0; i < inst->sampler_array_size; i++) {
4582 unsigned idx = inst->sampler_base + i;
4583 v->images_used |= 1 << idx;
4584 v->image_targets[idx] =
4585 st_translate_texture_target(inst->tex_target, false);
4586 v->image_formats[idx] = inst->image_format;
4587 }
4588 }
4589 }
4590 }
4591 prog->SamplersUsed = v->samplers_used;
4592
4593 if (v->shader_program != NULL)
4594 _mesa_update_shader_textures_used(v->shader_program, prog);
4595 }
4596
4597 /**
4598 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
4599 * are read from the given src in this instruction
4600 */
4601 static int
4602 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
4603 {
4604 int read_mask = 0, comp;
4605
4606 /* Now, given the src swizzle and the written channels, find which
4607 * components are actually read
4608 */
4609 for (comp = 0; comp < 4; ++comp) {
4610 const unsigned coord = GET_SWZ(src.swizzle, comp);
4611 assert(coord < 4);
4612 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
4613 read_mask |= 1 << coord;
4614 }
4615
4616 return read_mask;
4617 }
4618
4619 /**
4620 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
4621 * instruction is the first instruction to write to register T0. There are
4622 * several lowering passes done in GLSL IR (e.g. branches and
4623 * relative addressing) that create a large number of conditional assignments
4624 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
4625 *
4626 * Here is why this conversion is safe:
4627 * CMP T0, T1 T2 T0 can be expanded to:
4628 * if (T1 < 0.0)
4629 * MOV T0, T2;
4630 * else
4631 * MOV T0, T0;
4632 *
4633 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
4634 * as the original program. If (T1 < 0.0) evaluates to false, executing
4635 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
4636 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
4637 * because any instruction that was going to read from T0 after this was going
4638 * to read a garbage value anyway.
4639 */
4640 void
4641 glsl_to_tgsi_visitor::simplify_cmp(void)
4642 {
4643 int tempWritesSize = 0;
4644 unsigned *tempWrites = NULL;
4645 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
4646
4647 memset(outputWrites, 0, sizeof(outputWrites));
4648
4649 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4650 unsigned prevWriteMask = 0;
4651
4652 /* Give up if we encounter relative addressing or flow control. */
4653 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
4654 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
4655 tgsi_get_opcode_info(inst->op)->is_branch ||
4656 inst->op == TGSI_OPCODE_CONT ||
4657 inst->op == TGSI_OPCODE_END ||
4658 inst->op == TGSI_OPCODE_RET) {
4659 break;
4660 }
4661
4662 if (inst->dst[0].file == PROGRAM_OUTPUT) {
4663 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
4664 prevWriteMask = outputWrites[inst->dst[0].index];
4665 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4666 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
4667 if (inst->dst[0].index >= tempWritesSize) {
4668 const int inc = 4096;
4669
4670 tempWrites = (unsigned*)
4671 realloc(tempWrites,
4672 (tempWritesSize + inc) * sizeof(unsigned));
4673 if (!tempWrites)
4674 return;
4675
4676 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
4677 tempWritesSize += inc;
4678 }
4679
4680 prevWriteMask = tempWrites[inst->dst[0].index];
4681 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4682 } else
4683 continue;
4684
4685 /* For a CMP to be considered a conditional write, the destination
4686 * register and source register two must be the same. */
4687 if (inst->op == TGSI_OPCODE_CMP
4688 && !(inst->dst[0].writemask & prevWriteMask)
4689 && inst->src[2].file == inst->dst[0].file
4690 && inst->src[2].index == inst->dst[0].index
4691 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
4692
4693 inst->op = TGSI_OPCODE_MOV;
4694 inst->info = tgsi_get_opcode_info(inst->op);
4695 inst->src[0] = inst->src[1];
4696 }
4697 }
4698
4699 free(tempWrites);
4700 }
4701
4702 /* Replaces all references to a temporary register index with another index. */
4703 void
4704 glsl_to_tgsi_visitor::rename_temp_registers(int num_renames, struct rename_reg_pair *renames)
4705 {
4706 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4707 unsigned j;
4708 int k;
4709 for (j = 0; j < num_inst_src_regs(inst); j++) {
4710 if (inst->src[j].file == PROGRAM_TEMPORARY)
4711 for (k = 0; k < num_renames; k++)
4712 if (inst->src[j].index == renames[k].old_reg)
4713 inst->src[j].index = renames[k].new_reg;
4714 }
4715
4716 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4717 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4718 for (k = 0; k < num_renames; k++)
4719 if (inst->tex_offsets[j].index == renames[k].old_reg)
4720 inst->tex_offsets[j].index = renames[k].new_reg;
4721 }
4722
4723 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4724 if (inst->dst[j].file == PROGRAM_TEMPORARY)
4725 for (k = 0; k < num_renames; k++)
4726 if (inst->dst[j].index == renames[k].old_reg)
4727 inst->dst[j].index = renames[k].new_reg;
4728 }
4729 }
4730 }
4731
4732 void
4733 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
4734 {
4735 int depth = 0; /* loop depth */
4736 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4737 unsigned i = 0, j;
4738
4739 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4740 for (j = 0; j < num_inst_src_regs(inst); j++) {
4741 if (inst->src[j].file == PROGRAM_TEMPORARY) {
4742 if (first_reads[inst->src[j].index] == -1)
4743 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
4744 }
4745 }
4746 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4747 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
4748 if (first_reads[inst->tex_offsets[j].index] == -1)
4749 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
4750 }
4751 }
4752 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4753 if(depth++ == 0)
4754 loop_start = i;
4755 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4756 if (--depth == 0)
4757 loop_start = -1;
4758 }
4759 assert(depth >= 0);
4760 i++;
4761 }
4762 }
4763
4764 void
4765 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
4766 {
4767 int depth = 0; /* loop depth */
4768 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4769 unsigned i = 0, j;
4770 int k;
4771 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4772 for (j = 0; j < num_inst_src_regs(inst); j++) {
4773 if (inst->src[j].file == PROGRAM_TEMPORARY)
4774 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
4775 }
4776 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4777 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4778 if (first_writes[inst->dst[j].index] == -1)
4779 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4780 last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
4781 }
4782 }
4783 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4784 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4785 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
4786 }
4787 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4788 if(depth++ == 0)
4789 loop_start = i;
4790 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4791 if (--depth == 0) {
4792 loop_start = -1;
4793 for (k = 0; k < this->next_temp; k++) {
4794 if (last_reads[k] == -2) {
4795 last_reads[k] = i;
4796 }
4797 }
4798 }
4799 }
4800 assert(depth >= 0);
4801 i++;
4802 }
4803 }
4804
4805 void
4806 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
4807 {
4808 int depth = 0; /* loop depth */
4809 int i = 0, k;
4810 unsigned j;
4811
4812 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4813 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4814 if (inst->dst[j].file == PROGRAM_TEMPORARY)
4815 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
4816 }
4817
4818 if (inst->op == TGSI_OPCODE_BGNLOOP)
4819 depth++;
4820 else if (inst->op == TGSI_OPCODE_ENDLOOP)
4821 if (--depth == 0) {
4822 for (k = 0; k < this->next_temp; k++) {
4823 if (last_writes[k] == -2) {
4824 last_writes[k] = i;
4825 }
4826 }
4827 }
4828 assert(depth >= 0);
4829 i++;
4830 }
4831 }
4832
4833 /*
4834 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
4835 * channels for copy propagation and updates following instructions to
4836 * use the original versions.
4837 *
4838 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4839 * will occur. As an example, a TXP production before this pass:
4840 *
4841 * 0: MOV TEMP[1], INPUT[4].xyyy;
4842 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4843 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
4844 *
4845 * and after:
4846 *
4847 * 0: MOV TEMP[1], INPUT[4].xyyy;
4848 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4849 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4850 *
4851 * which allows for dead code elimination on TEMP[1]'s writes.
4852 */
4853 void
4854 glsl_to_tgsi_visitor::copy_propagate(void)
4855 {
4856 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
4857 glsl_to_tgsi_instruction *,
4858 this->next_temp * 4);
4859 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4860 int level = 0;
4861
4862 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4863 assert(inst->dst[0].file != PROGRAM_TEMPORARY
4864 || inst->dst[0].index < this->next_temp);
4865
4866 /* First, do any copy propagation possible into the src regs. */
4867 for (int r = 0; r < 3; r++) {
4868 glsl_to_tgsi_instruction *first = NULL;
4869 bool good = true;
4870 int acp_base = inst->src[r].index * 4;
4871
4872 if (inst->src[r].file != PROGRAM_TEMPORARY ||
4873 inst->src[r].reladdr ||
4874 inst->src[r].reladdr2)
4875 continue;
4876
4877 /* See if we can find entries in the ACP consisting of MOVs
4878 * from the same src register for all the swizzled channels
4879 * of this src register reference.
4880 */
4881 for (int i = 0; i < 4; i++) {
4882 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4883 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
4884
4885 if (!copy_chan) {
4886 good = false;
4887 break;
4888 }
4889
4890 assert(acp_level[acp_base + src_chan] <= level);
4891
4892 if (!first) {
4893 first = copy_chan;
4894 } else {
4895 if (first->src[0].file != copy_chan->src[0].file ||
4896 first->src[0].index != copy_chan->src[0].index ||
4897 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
4898 first->src[0].index2D != copy_chan->src[0].index2D) {
4899 good = false;
4900 break;
4901 }
4902 }
4903 }
4904
4905 if (good) {
4906 /* We've now validated that we can copy-propagate to
4907 * replace this src register reference. Do it.
4908 */
4909 inst->src[r].file = first->src[0].file;
4910 inst->src[r].index = first->src[0].index;
4911 inst->src[r].index2D = first->src[0].index2D;
4912 inst->src[r].has_index2 = first->src[0].has_index2;
4913 inst->src[r].double_reg2 = first->src[0].double_reg2;
4914 inst->src[r].array_id = first->src[0].array_id;
4915
4916 int swizzle = 0;
4917 for (int i = 0; i < 4; i++) {
4918 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4919 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
4920 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
4921 }
4922 inst->src[r].swizzle = swizzle;
4923 }
4924 }
4925
4926 switch (inst->op) {
4927 case TGSI_OPCODE_BGNLOOP:
4928 case TGSI_OPCODE_ENDLOOP:
4929 /* End of a basic block, clear the ACP entirely. */
4930 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4931 break;
4932
4933 case TGSI_OPCODE_IF:
4934 case TGSI_OPCODE_UIF:
4935 ++level;
4936 break;
4937
4938 case TGSI_OPCODE_ENDIF:
4939 case TGSI_OPCODE_ELSE:
4940 /* Clear all channels written inside the block from the ACP, but
4941 * leaving those that were not touched.
4942 */
4943 for (int r = 0; r < this->next_temp; r++) {
4944 for (int c = 0; c < 4; c++) {
4945 if (!acp[4 * r + c])
4946 continue;
4947
4948 if (acp_level[4 * r + c] >= level)
4949 acp[4 * r + c] = NULL;
4950 }
4951 }
4952 if (inst->op == TGSI_OPCODE_ENDIF)
4953 --level;
4954 break;
4955
4956 default:
4957 /* Continuing the block, clear any written channels from
4958 * the ACP.
4959 */
4960 for (int d = 0; d < 2; d++) {
4961 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
4962 /* Any temporary might be written, so no copy propagation
4963 * across this instruction.
4964 */
4965 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4966 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
4967 inst->dst[d].reladdr) {
4968 /* Any output might be written, so no copy propagation
4969 * from outputs across this instruction.
4970 */
4971 for (int r = 0; r < this->next_temp; r++) {
4972 for (int c = 0; c < 4; c++) {
4973 if (!acp[4 * r + c])
4974 continue;
4975
4976 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
4977 acp[4 * r + c] = NULL;
4978 }
4979 }
4980 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
4981 inst->dst[d].file == PROGRAM_OUTPUT) {
4982 /* Clear where it's used as dst. */
4983 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
4984 for (int c = 0; c < 4; c++) {
4985 if (inst->dst[d].writemask & (1 << c))
4986 acp[4 * inst->dst[d].index + c] = NULL;
4987 }
4988 }
4989
4990 /* Clear where it's used as src. */
4991 for (int r = 0; r < this->next_temp; r++) {
4992 for (int c = 0; c < 4; c++) {
4993 if (!acp[4 * r + c])
4994 continue;
4995
4996 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
4997
4998 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
4999 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
5000 inst->dst[d].writemask & (1 << src_chan)) {
5001 acp[4 * r + c] = NULL;
5002 }
5003 }
5004 }
5005 }
5006 }
5007 break;
5008 }
5009
5010 /* If this is a copy, add it to the ACP. */
5011 if (inst->op == TGSI_OPCODE_MOV &&
5012 inst->dst[0].file == PROGRAM_TEMPORARY &&
5013 !(inst->dst[0].file == inst->src[0].file &&
5014 inst->dst[0].index == inst->src[0].index) &&
5015 !inst->dst[0].reladdr &&
5016 !inst->dst[0].reladdr2 &&
5017 !inst->saturate &&
5018 inst->src[0].file != PROGRAM_ARRAY &&
5019 !inst->src[0].reladdr &&
5020 !inst->src[0].reladdr2 &&
5021 !inst->src[0].negate &&
5022 !inst->src[0].abs) {
5023 for (int i = 0; i < 4; i++) {
5024 if (inst->dst[0].writemask & (1 << i)) {
5025 acp[4 * inst->dst[0].index + i] = inst;
5026 acp_level[4 * inst->dst[0].index + i] = level;
5027 }
5028 }
5029 }
5030 }
5031
5032 ralloc_free(acp_level);
5033 ralloc_free(acp);
5034 }
5035
5036 /*
5037 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
5038 * code elimination.
5039 *
5040 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5041 * will occur. As an example, a TXP production after copy propagation but
5042 * before this pass:
5043 *
5044 * 0: MOV TEMP[1], INPUT[4].xyyy;
5045 * 1: MOV TEMP[1].w, INPUT[4].wwww;
5046 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5047 *
5048 * and after this pass:
5049 *
5050 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5051 */
5052 int
5053 glsl_to_tgsi_visitor::eliminate_dead_code(void)
5054 {
5055 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
5056 glsl_to_tgsi_instruction *,
5057 this->next_temp * 4);
5058 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5059 int level = 0;
5060 int removed = 0;
5061
5062 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5063 assert(inst->dst[0].file != PROGRAM_TEMPORARY
5064 || inst->dst[0].index < this->next_temp);
5065
5066 switch (inst->op) {
5067 case TGSI_OPCODE_BGNLOOP:
5068 case TGSI_OPCODE_ENDLOOP:
5069 case TGSI_OPCODE_CONT:
5070 case TGSI_OPCODE_BRK:
5071 /* End of a basic block, clear the write array entirely.
5072 *
5073 * This keeps us from killing dead code when the writes are
5074 * on either side of a loop, even when the register isn't touched
5075 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
5076 * dead code of this type, so it shouldn't make a difference as long as
5077 * the dead code elimination pass in the GLSL compiler does its job.
5078 */
5079 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5080 break;
5081
5082 case TGSI_OPCODE_ENDIF:
5083 case TGSI_OPCODE_ELSE:
5084 /* Promote the recorded level of all channels written inside the
5085 * preceding if or else block to the level above the if/else block.
5086 */
5087 for (int r = 0; r < this->next_temp; r++) {
5088 for (int c = 0; c < 4; c++) {
5089 if (!writes[4 * r + c])
5090 continue;
5091
5092 if (write_level[4 * r + c] == level)
5093 write_level[4 * r + c] = level-1;
5094 }
5095 }
5096 if(inst->op == TGSI_OPCODE_ENDIF)
5097 --level;
5098 break;
5099
5100 case TGSI_OPCODE_IF:
5101 case TGSI_OPCODE_UIF:
5102 ++level;
5103 /* fallthrough to default case to mark the condition as read */
5104 default:
5105 /* Continuing the block, clear any channels from the write array that
5106 * are read by this instruction.
5107 */
5108 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
5109 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
5110 /* Any temporary might be read, so no dead code elimination
5111 * across this instruction.
5112 */
5113 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5114 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
5115 /* Clear where it's used as src. */
5116 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
5117 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
5118 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
5119 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
5120
5121 for (int c = 0; c < 4; c++) {
5122 if (src_chans & (1 << c))
5123 writes[4 * inst->src[i].index + c] = NULL;
5124 }
5125 }
5126 }
5127 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
5128 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
5129 /* Any temporary might be read, so no dead code elimination
5130 * across this instruction.
5131 */
5132 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5133 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
5134 /* Clear where it's used as src. */
5135 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
5136 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
5137 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
5138 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
5139
5140 for (int c = 0; c < 4; c++) {
5141 if (src_chans & (1 << c))
5142 writes[4 * inst->tex_offsets[i].index + c] = NULL;
5143 }
5144 }
5145 }
5146 break;
5147 }
5148
5149 /* If this instruction writes to a temporary, add it to the write array.
5150 * If there is already an instruction in the write array for one or more
5151 * of the channels, flag that channel write as dead.
5152 */
5153 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5154 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
5155 !inst->dst[i].reladdr) {
5156 for (int c = 0; c < 4; c++) {
5157 if (inst->dst[i].writemask & (1 << c)) {
5158 if (writes[4 * inst->dst[i].index + c]) {
5159 if (write_level[4 * inst->dst[i].index + c] < level)
5160 continue;
5161 else
5162 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
5163 }
5164 writes[4 * inst->dst[i].index + c] = inst;
5165 write_level[4 * inst->dst[i].index + c] = level;
5166 }
5167 }
5168 }
5169 }
5170 }
5171
5172 /* Anything still in the write array at this point is dead code. */
5173 for (int r = 0; r < this->next_temp; r++) {
5174 for (int c = 0; c < 4; c++) {
5175 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
5176 if (inst)
5177 inst->dead_mask |= (1 << c);
5178 }
5179 }
5180
5181 /* Now actually remove the instructions that are completely dead and update
5182 * the writemask of other instructions with dead channels.
5183 */
5184 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5185 if (!inst->dead_mask || !inst->dst[0].writemask)
5186 continue;
5187 /* No amount of dead masks should remove memory stores */
5188 if (inst->info->is_store)
5189 continue;
5190
5191 if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
5192 inst->remove();
5193 delete inst;
5194 removed++;
5195 } else {
5196 if (glsl_base_type_is_64bit(inst->dst[0].type)) {
5197 if (inst->dead_mask == WRITEMASK_XY ||
5198 inst->dead_mask == WRITEMASK_ZW)
5199 inst->dst[0].writemask &= ~(inst->dead_mask);
5200 } else
5201 inst->dst[0].writemask &= ~(inst->dead_mask);
5202 }
5203 }
5204
5205 ralloc_free(write_level);
5206 ralloc_free(writes);
5207
5208 return removed;
5209 }
5210
5211 /* merge DFRACEXP instructions into one. */
5212 void
5213 glsl_to_tgsi_visitor::merge_two_dsts(void)
5214 {
5215 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5216 glsl_to_tgsi_instruction *inst2;
5217 bool merged;
5218 if (num_inst_dst_regs(inst) != 2)
5219 continue;
5220
5221 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
5222 inst->dst[1].file != PROGRAM_UNDEFINED)
5223 continue;
5224
5225 inst2 = (glsl_to_tgsi_instruction *) inst->next;
5226 do {
5227
5228 if (inst->src[0].file == inst2->src[0].file &&
5229 inst->src[0].index == inst2->src[0].index &&
5230 inst->src[0].type == inst2->src[0].type &&
5231 inst->src[0].swizzle == inst2->src[0].swizzle)
5232 break;
5233 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
5234 } while (inst2);
5235
5236 if (!inst2)
5237 continue;
5238 merged = false;
5239 if (inst->dst[0].file == PROGRAM_UNDEFINED) {
5240 merged = true;
5241 inst->dst[0] = inst2->dst[0];
5242 } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
5243 inst->dst[1] = inst2->dst[1];
5244 merged = true;
5245 }
5246
5247 if (merged) {
5248 inst2->remove();
5249 delete inst2;
5250 }
5251 }
5252 }
5253
5254 /* Merges temporary registers together where possible to reduce the number of
5255 * registers needed to run a program.
5256 *
5257 * Produces optimal code only after copy propagation and dead code elimination
5258 * have been run. */
5259 void
5260 glsl_to_tgsi_visitor::merge_registers(void)
5261 {
5262 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
5263 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
5264 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5265 int i, j;
5266 int num_renames = 0;
5267
5268 /* Read the indices of the last read and first write to each temp register
5269 * into an array so that we don't have to traverse the instruction list as
5270 * much. */
5271 for (i = 0; i < this->next_temp; i++) {
5272 last_reads[i] = -1;
5273 first_writes[i] = -1;
5274 }
5275 get_last_temp_read_first_temp_write(last_reads, first_writes);
5276
5277 /* Start looking for registers with non-overlapping usages that can be
5278 * merged together. */
5279 for (i = 0; i < this->next_temp; i++) {
5280 /* Don't touch unused registers. */
5281 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
5282
5283 for (j = 0; j < this->next_temp; j++) {
5284 /* Don't touch unused registers. */
5285 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
5286
5287 /* We can merge the two registers if the first write to j is after or
5288 * in the same instruction as the last read from i. Note that the
5289 * register at index i will always be used earlier or at the same time
5290 * as the register at index j. */
5291 if (first_writes[i] <= first_writes[j] &&
5292 last_reads[i] <= first_writes[j]) {
5293 renames[num_renames].old_reg = j;
5294 renames[num_renames].new_reg = i;
5295 num_renames++;
5296
5297 /* Update the first_writes and last_reads arrays with the new
5298 * values for the merged register index, and mark the newly unused
5299 * register index as such. */
5300 assert(last_reads[j] >= last_reads[i]);
5301 last_reads[i] = last_reads[j];
5302 first_writes[j] = -1;
5303 last_reads[j] = -1;
5304 }
5305 }
5306 }
5307
5308 rename_temp_registers(num_renames, renames);
5309 ralloc_free(renames);
5310 ralloc_free(last_reads);
5311 ralloc_free(first_writes);
5312 }
5313
5314 /* Reassign indices to temporary registers by reusing unused indices created
5315 * by optimization passes. */
5316 void
5317 glsl_to_tgsi_visitor::renumber_registers(void)
5318 {
5319 int i = 0;
5320 int new_index = 0;
5321 int *first_reads = rzalloc_array(mem_ctx, int, this->next_temp);
5322 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5323 int num_renames = 0;
5324 for (i = 0; i < this->next_temp; i++) {
5325 first_reads[i] = -1;
5326 }
5327 get_first_temp_read(first_reads);
5328
5329 for (i = 0; i < this->next_temp; i++) {
5330 if (first_reads[i] < 0) continue;
5331 if (i != new_index) {
5332 renames[num_renames].old_reg = i;
5333 renames[num_renames].new_reg = new_index;
5334 num_renames++;
5335 }
5336 new_index++;
5337 }
5338
5339 rename_temp_registers(num_renames, renames);
5340 this->next_temp = new_index;
5341 ralloc_free(renames);
5342 ralloc_free(first_reads);
5343 }
5344
5345 /* ------------------------- TGSI conversion stuff -------------------------- */
5346
5347 /**
5348 * Intermediate state used during shader translation.
5349 */
5350 struct st_translate {
5351 struct ureg_program *ureg;
5352
5353 unsigned temps_size;
5354 struct ureg_dst *temps;
5355
5356 struct ureg_dst *arrays;
5357 unsigned num_temp_arrays;
5358 struct ureg_src *constants;
5359 int num_constants;
5360 struct ureg_src *immediates;
5361 int num_immediates;
5362 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
5363 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
5364 struct ureg_dst address[3];
5365 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
5366 struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
5367 struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
5368 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
5369 struct ureg_src shared_memory;
5370 unsigned *array_sizes;
5371 struct inout_decl *input_decls;
5372 unsigned num_input_decls;
5373 struct inout_decl *output_decls;
5374 unsigned num_output_decls;
5375
5376 const GLuint *inputMapping;
5377 const GLuint *outputMapping;
5378
5379 unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
5380 };
5381
5382 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
5383 unsigned
5384 _mesa_sysval_to_semantic(unsigned sysval)
5385 {
5386 switch (sysval) {
5387 /* Vertex shader */
5388 case SYSTEM_VALUE_VERTEX_ID:
5389 return TGSI_SEMANTIC_VERTEXID;
5390 case SYSTEM_VALUE_INSTANCE_ID:
5391 return TGSI_SEMANTIC_INSTANCEID;
5392 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
5393 return TGSI_SEMANTIC_VERTEXID_NOBASE;
5394 case SYSTEM_VALUE_BASE_VERTEX:
5395 return TGSI_SEMANTIC_BASEVERTEX;
5396 case SYSTEM_VALUE_BASE_INSTANCE:
5397 return TGSI_SEMANTIC_BASEINSTANCE;
5398 case SYSTEM_VALUE_DRAW_ID:
5399 return TGSI_SEMANTIC_DRAWID;
5400
5401 /* Geometry shader */
5402 case SYSTEM_VALUE_INVOCATION_ID:
5403 return TGSI_SEMANTIC_INVOCATIONID;
5404
5405 /* Fragment shader */
5406 case SYSTEM_VALUE_FRAG_COORD:
5407 return TGSI_SEMANTIC_POSITION;
5408 case SYSTEM_VALUE_FRONT_FACE:
5409 return TGSI_SEMANTIC_FACE;
5410 case SYSTEM_VALUE_SAMPLE_ID:
5411 return TGSI_SEMANTIC_SAMPLEID;
5412 case SYSTEM_VALUE_SAMPLE_POS:
5413 return TGSI_SEMANTIC_SAMPLEPOS;
5414 case SYSTEM_VALUE_SAMPLE_MASK_IN:
5415 return TGSI_SEMANTIC_SAMPLEMASK;
5416 case SYSTEM_VALUE_HELPER_INVOCATION:
5417 return TGSI_SEMANTIC_HELPER_INVOCATION;
5418
5419 /* Tessellation shader */
5420 case SYSTEM_VALUE_TESS_COORD:
5421 return TGSI_SEMANTIC_TESSCOORD;
5422 case SYSTEM_VALUE_VERTICES_IN:
5423 return TGSI_SEMANTIC_VERTICESIN;
5424 case SYSTEM_VALUE_PRIMITIVE_ID:
5425 return TGSI_SEMANTIC_PRIMID;
5426 case SYSTEM_VALUE_TESS_LEVEL_OUTER:
5427 return TGSI_SEMANTIC_TESSOUTER;
5428 case SYSTEM_VALUE_TESS_LEVEL_INNER:
5429 return TGSI_SEMANTIC_TESSINNER;
5430
5431 /* Compute shader */
5432 case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
5433 return TGSI_SEMANTIC_THREAD_ID;
5434 case SYSTEM_VALUE_WORK_GROUP_ID:
5435 return TGSI_SEMANTIC_BLOCK_ID;
5436 case SYSTEM_VALUE_NUM_WORK_GROUPS:
5437 return TGSI_SEMANTIC_GRID_SIZE;
5438 case SYSTEM_VALUE_LOCAL_GROUP_SIZE:
5439 return TGSI_SEMANTIC_BLOCK_SIZE;
5440
5441 /* Unhandled */
5442 case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
5443 case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
5444 case SYSTEM_VALUE_VERTEX_CNT:
5445 default:
5446 assert(!"Unexpected SYSTEM_VALUE_ enum");
5447 return TGSI_SEMANTIC_COUNT;
5448 }
5449 }
5450
5451 /**
5452 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
5453 */
5454 static struct ureg_src
5455 emit_immediate(struct st_translate *t,
5456 gl_constant_value values[4],
5457 int type, int size)
5458 {
5459 struct ureg_program *ureg = t->ureg;
5460
5461 switch(type)
5462 {
5463 case GL_FLOAT:
5464 return ureg_DECL_immediate(ureg, &values[0].f, size);
5465 case GL_DOUBLE:
5466 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
5467 case GL_INT64_ARB:
5468 return ureg_DECL_immediate_int64(ureg, (int64_t *)&values[0].f, size);
5469 case GL_UNSIGNED_INT64_ARB:
5470 return ureg_DECL_immediate_uint64(ureg, (uint64_t *)&values[0].f, size);
5471 case GL_INT:
5472 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
5473 case GL_UNSIGNED_INT:
5474 case GL_BOOL:
5475 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
5476 default:
5477 assert(!"should not get here - type must be float, int, uint, or bool");
5478 return ureg_src_undef();
5479 }
5480 }
5481
5482 /**
5483 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
5484 */
5485 static struct ureg_dst
5486 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
5487 unsigned array_id)
5488 {
5489 unsigned array;
5490
5491 switch(file) {
5492 case PROGRAM_UNDEFINED:
5493 return ureg_dst_undef();
5494
5495 case PROGRAM_TEMPORARY:
5496 /* Allocate space for temporaries on demand. */
5497 if (index >= t->temps_size) {
5498 const int inc = align(index - t->temps_size + 1, 4096);
5499
5500 t->temps = (struct ureg_dst*)
5501 realloc(t->temps,
5502 (t->temps_size + inc) * sizeof(struct ureg_dst));
5503 if (!t->temps)
5504 return ureg_dst_undef();
5505
5506 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
5507 t->temps_size += inc;
5508 }
5509
5510 if (ureg_dst_is_undef(t->temps[index]))
5511 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
5512
5513 return t->temps[index];
5514
5515 case PROGRAM_ARRAY:
5516 assert(array_id && array_id <= t->num_temp_arrays);
5517 array = array_id - 1;
5518
5519 if (ureg_dst_is_undef(t->arrays[array]))
5520 t->arrays[array] = ureg_DECL_array_temporary(
5521 t->ureg, t->array_sizes[array], TRUE);
5522
5523 return ureg_dst_array_offset(t->arrays[array], index);
5524
5525 case PROGRAM_OUTPUT:
5526 if (!array_id) {
5527 if (t->procType == PIPE_SHADER_FRAGMENT)
5528 assert(index < 2 * FRAG_RESULT_MAX);
5529 else if (t->procType == PIPE_SHADER_TESS_CTRL ||
5530 t->procType == PIPE_SHADER_TESS_EVAL)
5531 assert(index < VARYING_SLOT_TESS_MAX);
5532 else
5533 assert(index < VARYING_SLOT_MAX);
5534
5535 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
5536 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
5537 return t->outputs[t->outputMapping[index]];
5538 }
5539 else {
5540 struct inout_decl *decl = find_inout_array(t->output_decls, t->num_output_decls, array_id);
5541 unsigned mesa_index = decl->mesa_index;
5542 int slot = t->outputMapping[mesa_index];
5543
5544 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
5545
5546 struct ureg_dst dst = t->outputs[slot];
5547 dst.ArrayID = array_id;
5548 return ureg_dst_array_offset(dst, index - mesa_index);
5549 }
5550
5551 case PROGRAM_ADDRESS:
5552 return t->address[index];
5553
5554 default:
5555 assert(!"unknown dst register file");
5556 return ureg_dst_undef();
5557 }
5558 }
5559
5560 /**
5561 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
5562 */
5563 static struct ureg_src
5564 src_register(struct st_translate *t, const st_src_reg *reg)
5565 {
5566 int index = reg->index;
5567 int double_reg2 = reg->double_reg2 ? 1 : 0;
5568
5569 switch(reg->file) {
5570 case PROGRAM_UNDEFINED:
5571 return ureg_imm4f(t->ureg, 0, 0, 0, 0);
5572
5573 case PROGRAM_TEMPORARY:
5574 case PROGRAM_ARRAY:
5575 return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
5576
5577 case PROGRAM_OUTPUT: {
5578 struct ureg_dst dst = dst_register(t, reg->file, reg->index, reg->array_id);
5579 assert(dst.WriteMask != 0);
5580 unsigned shift = ffs(dst.WriteMask) - 1;
5581 return ureg_swizzle(ureg_src(dst),
5582 shift,
5583 MIN2(shift + 1, 3),
5584 MIN2(shift + 2, 3),
5585 MIN2(shift + 3, 3));
5586 }
5587
5588 case PROGRAM_UNIFORM:
5589 assert(reg->index >= 0);
5590 return reg->index < t->num_constants ?
5591 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5592 case PROGRAM_STATE_VAR:
5593 case PROGRAM_CONSTANT: /* ie, immediate */
5594 if (reg->has_index2)
5595 return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
5596 else
5597 return reg->index >= 0 && reg->index < t->num_constants ?
5598 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5599
5600 case PROGRAM_IMMEDIATE:
5601 assert(reg->index >= 0 && reg->index < t->num_immediates);
5602 return t->immediates[reg->index];
5603
5604 case PROGRAM_INPUT:
5605 /* GLSL inputs are 64-bit containers, so we have to
5606 * map back to the original index and add the offset after
5607 * mapping. */
5608 index -= double_reg2;
5609 if (!reg->array_id) {
5610 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
5611 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
5612 return t->inputs[t->inputMapping[index] + double_reg2];
5613 }
5614 else {
5615 struct inout_decl *decl = find_inout_array(t->input_decls, t->num_input_decls, reg->array_id);
5616 unsigned mesa_index = decl->mesa_index;
5617 int slot = t->inputMapping[mesa_index];
5618
5619 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
5620
5621 struct ureg_src src = t->inputs[slot];
5622 src.ArrayID = reg->array_id;
5623 return ureg_src_array_offset(src, index + double_reg2 - mesa_index);
5624 }
5625
5626 case PROGRAM_ADDRESS:
5627 return ureg_src(t->address[reg->index]);
5628
5629 case PROGRAM_SYSTEM_VALUE:
5630 assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
5631 return t->systemValues[reg->index];
5632
5633 default:
5634 assert(!"unknown src register file");
5635 return ureg_src_undef();
5636 }
5637 }
5638
5639 /**
5640 * Create a TGSI ureg_dst register from an st_dst_reg.
5641 */
5642 static struct ureg_dst
5643 translate_dst(struct st_translate *t,
5644 const st_dst_reg *dst_reg,
5645 bool saturate)
5646 {
5647 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
5648 dst_reg->array_id);
5649
5650 if (dst.File == TGSI_FILE_NULL)
5651 return dst;
5652
5653 dst = ureg_writemask(dst, dst_reg->writemask);
5654
5655 if (saturate)
5656 dst = ureg_saturate(dst);
5657
5658 if (dst_reg->reladdr != NULL) {
5659 assert(dst_reg->file != PROGRAM_TEMPORARY);
5660 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
5661 }
5662
5663 if (dst_reg->has_index2) {
5664 if (dst_reg->reladdr2)
5665 dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
5666 dst_reg->index2D);
5667 else
5668 dst = ureg_dst_dimension(dst, dst_reg->index2D);
5669 }
5670
5671 return dst;
5672 }
5673
5674 /**
5675 * Create a TGSI ureg_src register from an st_src_reg.
5676 */
5677 static struct ureg_src
5678 translate_src(struct st_translate *t, const st_src_reg *src_reg)
5679 {
5680 struct ureg_src src = src_register(t, src_reg);
5681
5682 if (src_reg->has_index2) {
5683 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
5684 * and UBO constant buffers (buffer, position).
5685 */
5686 if (src_reg->reladdr2)
5687 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
5688 src_reg->index2D);
5689 else
5690 src = ureg_src_dimension(src, src_reg->index2D);
5691 }
5692
5693 src = ureg_swizzle(src,
5694 GET_SWZ(src_reg->swizzle, 0) & 0x3,
5695 GET_SWZ(src_reg->swizzle, 1) & 0x3,
5696 GET_SWZ(src_reg->swizzle, 2) & 0x3,
5697 GET_SWZ(src_reg->swizzle, 3) & 0x3);
5698
5699 if (src_reg->abs)
5700 src = ureg_abs(src);
5701
5702 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
5703 src = ureg_negate(src);
5704
5705 if (src_reg->reladdr != NULL) {
5706 assert(src_reg->file != PROGRAM_TEMPORARY);
5707 src = ureg_src_indirect(src, ureg_src(t->address[0]));
5708 }
5709
5710 return src;
5711 }
5712
5713 static struct tgsi_texture_offset
5714 translate_tex_offset(struct st_translate *t,
5715 const st_src_reg *in_offset)
5716 {
5717 struct tgsi_texture_offset offset;
5718 struct ureg_src src = translate_src(t, in_offset);
5719
5720 offset.File = src.File;
5721 offset.Index = src.Index;
5722 offset.SwizzleX = src.SwizzleX;
5723 offset.SwizzleY = src.SwizzleY;
5724 offset.SwizzleZ = src.SwizzleZ;
5725 offset.Padding = 0;
5726
5727 assert(!src.Indirect);
5728 assert(!src.DimIndirect);
5729 assert(!src.Dimension);
5730 assert(!src.Absolute); /* those shouldn't be used with integers anyway */
5731 assert(!src.Negate);
5732
5733 return offset;
5734 }
5735
5736 static void
5737 compile_tgsi_instruction(struct st_translate *t,
5738 const glsl_to_tgsi_instruction *inst)
5739 {
5740 struct ureg_program *ureg = t->ureg;
5741 int i;
5742 struct ureg_dst dst[2];
5743 struct ureg_src src[4];
5744 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
5745
5746 int num_dst;
5747 int num_src;
5748 unsigned tex_target = 0;
5749
5750 num_dst = num_inst_dst_regs(inst);
5751 num_src = num_inst_src_regs(inst);
5752
5753 for (i = 0; i < num_dst; i++)
5754 dst[i] = translate_dst(t,
5755 &inst->dst[i],
5756 inst->saturate);
5757
5758 for (i = 0; i < num_src; i++)
5759 src[i] = translate_src(t, &inst->src[i]);
5760
5761 switch(inst->op) {
5762 case TGSI_OPCODE_BGNLOOP:
5763 case TGSI_OPCODE_ELSE:
5764 case TGSI_OPCODE_ENDLOOP:
5765 case TGSI_OPCODE_IF:
5766 case TGSI_OPCODE_UIF:
5767 assert(num_dst == 0);
5768 ureg_insn(ureg, inst->op, NULL, 0, src, num_src);
5769 return;
5770
5771 case TGSI_OPCODE_TEX:
5772 case TGSI_OPCODE_TEX_LZ:
5773 case TGSI_OPCODE_TXB:
5774 case TGSI_OPCODE_TXD:
5775 case TGSI_OPCODE_TXL:
5776 case TGSI_OPCODE_TXP:
5777 case TGSI_OPCODE_TXQ:
5778 case TGSI_OPCODE_TXQS:
5779 case TGSI_OPCODE_TXF:
5780 case TGSI_OPCODE_TXF_LZ:
5781 case TGSI_OPCODE_TEX2:
5782 case TGSI_OPCODE_TXB2:
5783 case TGSI_OPCODE_TXL2:
5784 case TGSI_OPCODE_TG4:
5785 case TGSI_OPCODE_LODQ:
5786 src[num_src] = t->samplers[inst->resource.index];
5787 assert(src[num_src].File != TGSI_FILE_NULL);
5788 if (inst->resource.reladdr)
5789 src[num_src] =
5790 ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
5791 num_src++;
5792 for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
5793 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
5794 }
5795 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5796
5797 ureg_tex_insn(ureg,
5798 inst->op,
5799 dst, num_dst,
5800 tex_target,
5801 texoffsets, inst->tex_offset_num_offset,
5802 src, num_src);
5803 return;
5804
5805 case TGSI_OPCODE_RESQ:
5806 case TGSI_OPCODE_LOAD:
5807 case TGSI_OPCODE_ATOMUADD:
5808 case TGSI_OPCODE_ATOMXCHG:
5809 case TGSI_OPCODE_ATOMCAS:
5810 case TGSI_OPCODE_ATOMAND:
5811 case TGSI_OPCODE_ATOMOR:
5812 case TGSI_OPCODE_ATOMXOR:
5813 case TGSI_OPCODE_ATOMUMIN:
5814 case TGSI_OPCODE_ATOMUMAX:
5815 case TGSI_OPCODE_ATOMIMIN:
5816 case TGSI_OPCODE_ATOMIMAX:
5817 for (i = num_src - 1; i >= 0; i--)
5818 src[i + 1] = src[i];
5819 num_src++;
5820 if (inst->resource.file == PROGRAM_MEMORY) {
5821 src[0] = t->shared_memory;
5822 } else if (inst->resource.file == PROGRAM_BUFFER) {
5823 src[0] = t->buffers[inst->resource.index];
5824 } else {
5825 src[0] = t->images[inst->resource.index];
5826 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5827 }
5828 if (inst->resource.reladdr)
5829 src[0] = ureg_src_indirect(src[0], ureg_src(t->address[2]));
5830 assert(src[0].File != TGSI_FILE_NULL);
5831 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5832 inst->buffer_access,
5833 tex_target, inst->image_format);
5834 break;
5835
5836 case TGSI_OPCODE_STORE:
5837 if (inst->resource.file == PROGRAM_MEMORY) {
5838 dst[0] = ureg_dst(t->shared_memory);
5839 } else if (inst->resource.file == PROGRAM_BUFFER) {
5840 dst[0] = ureg_dst(t->buffers[inst->resource.index]);
5841 } else {
5842 dst[0] = ureg_dst(t->images[inst->resource.index]);
5843 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5844 }
5845 dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
5846 if (inst->resource.reladdr)
5847 dst[0] = ureg_dst_indirect(dst[0], ureg_src(t->address[2]));
5848 assert(dst[0].File != TGSI_FILE_NULL);
5849 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5850 inst->buffer_access,
5851 tex_target, inst->image_format);
5852 break;
5853
5854 case TGSI_OPCODE_SCS:
5855 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
5856 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
5857 break;
5858
5859 default:
5860 ureg_insn(ureg,
5861 inst->op,
5862 dst, num_dst,
5863 src, num_src);
5864 break;
5865 }
5866 }
5867
5868 /**
5869 * Emit the TGSI instructions for inverting and adjusting WPOS.
5870 * This code is unavoidable because it also depends on whether
5871 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
5872 */
5873 static void
5874 emit_wpos_adjustment(struct gl_context *ctx,
5875 struct st_translate *t,
5876 int wpos_transform_const,
5877 boolean invert,
5878 GLfloat adjX, GLfloat adjY[2])
5879 {
5880 struct ureg_program *ureg = t->ureg;
5881
5882 assert(wpos_transform_const >= 0);
5883
5884 /* Fragment program uses fragment position input.
5885 * Need to replace instances of INPUT[WPOS] with temp T
5886 * where T = INPUT[WPOS] is inverted by Y.
5887 */
5888 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
5889 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
5890 struct ureg_src *wpos =
5891 ctx->Const.GLSLFragCoordIsSysVal ?
5892 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
5893 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
5894 struct ureg_src wpos_input = *wpos;
5895
5896 /* First, apply the coordinate shift: */
5897 if (adjX || adjY[0] || adjY[1]) {
5898 if (adjY[0] != adjY[1]) {
5899 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
5900 * depending on whether inversion is actually going to be applied
5901 * or not, which is determined by testing against the inversion
5902 * state variable used below, which will be either +1 or -1.
5903 */
5904 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
5905
5906 ureg_CMP(ureg, adj_temp,
5907 ureg_scalar(wpostrans, invert ? 2 : 0),
5908 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
5909 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
5910 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
5911 } else {
5912 ureg_ADD(ureg, wpos_temp, wpos_input,
5913 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
5914 }
5915 wpos_input = ureg_src(wpos_temp);
5916 } else {
5917 /* MOV wpos_temp, input[wpos]
5918 */
5919 ureg_MOV( ureg, wpos_temp, wpos_input );
5920 }
5921
5922 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
5923 * inversion/identity, or the other way around if we're drawing to an FBO.
5924 */
5925 if (invert) {
5926 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
5927 */
5928 ureg_MAD( ureg,
5929 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5930 wpos_input,
5931 ureg_scalar(wpostrans, 0),
5932 ureg_scalar(wpostrans, 1));
5933 } else {
5934 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
5935 */
5936 ureg_MAD( ureg,
5937 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5938 wpos_input,
5939 ureg_scalar(wpostrans, 2),
5940 ureg_scalar(wpostrans, 3));
5941 }
5942
5943 /* Use wpos_temp as position input from here on:
5944 */
5945 *wpos = ureg_src(wpos_temp);
5946 }
5947
5948
5949 /**
5950 * Emit fragment position/ooordinate code.
5951 */
5952 static void
5953 emit_wpos(struct st_context *st,
5954 struct st_translate *t,
5955 const struct gl_program *program,
5956 struct ureg_program *ureg,
5957 int wpos_transform_const)
5958 {
5959 struct pipe_screen *pscreen = st->pipe->screen;
5960 GLfloat adjX = 0.0f;
5961 GLfloat adjY[2] = { 0.0f, 0.0f };
5962 boolean invert = FALSE;
5963
5964 /* Query the pixel center conventions supported by the pipe driver and set
5965 * adjX, adjY to help out if it cannot handle the requested one internally.
5966 *
5967 * The bias of the y-coordinate depends on whether y-inversion takes place
5968 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
5969 * drawing to an FBO (causes additional inversion), and whether the pipe
5970 * driver origin and the requested origin differ (the latter condition is
5971 * stored in the 'invert' variable).
5972 *
5973 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
5974 *
5975 * center shift only:
5976 * i -> h: +0.5
5977 * h -> i: -0.5
5978 *
5979 * inversion only:
5980 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
5981 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
5982 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
5983 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
5984 *
5985 * inversion and center shift:
5986 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
5987 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
5988 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
5989 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
5990 */
5991 if (program->OriginUpperLeft) {
5992 /* Fragment shader wants origin in upper-left */
5993 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
5994 /* the driver supports upper-left origin */
5995 }
5996 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
5997 /* the driver supports lower-left origin, need to invert Y */
5998 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
5999 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6000 invert = TRUE;
6001 }
6002 else
6003 assert(0);
6004 }
6005 else {
6006 /* Fragment shader wants origin in lower-left */
6007 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
6008 /* the driver supports lower-left origin */
6009 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6010 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6011 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
6012 /* the driver supports upper-left origin, need to invert Y */
6013 invert = TRUE;
6014 else
6015 assert(0);
6016 }
6017
6018 if (program->PixelCenterInteger) {
6019 /* Fragment shader wants pixel center integer */
6020 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6021 /* the driver supports pixel center integer */
6022 adjY[1] = 1.0f;
6023 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6024 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6025 }
6026 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6027 /* the driver supports pixel center half integer, need to bias X,Y */
6028 adjX = -0.5f;
6029 adjY[0] = -0.5f;
6030 adjY[1] = 0.5f;
6031 }
6032 else
6033 assert(0);
6034 }
6035 else {
6036 /* Fragment shader wants pixel center half integer */
6037 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6038 /* the driver supports pixel center half integer */
6039 }
6040 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6041 /* the driver supports pixel center integer, need to bias X,Y */
6042 adjX = adjY[0] = adjY[1] = 0.5f;
6043 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6044 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6045 }
6046 else
6047 assert(0);
6048 }
6049
6050 /* we invert after adjustment so that we avoid the MOV to temporary,
6051 * and reuse the adjustment ADD instead */
6052 emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
6053 }
6054
6055 /**
6056 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
6057 * TGSI uses +1 for front, -1 for back.
6058 * This function converts the TGSI value to the GL value. Simply clamping/
6059 * saturating the value to [0,1] does the job.
6060 */
6061 static void
6062 emit_face_var(struct gl_context *ctx, struct st_translate *t)
6063 {
6064 struct ureg_program *ureg = t->ureg;
6065 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
6066 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
6067
6068 if (ctx->Const.NativeIntegers) {
6069 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
6070 }
6071 else {
6072 /* MOV_SAT face_temp, input[face] */
6073 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
6074 }
6075
6076 /* Use face_temp as face input from here on: */
6077 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
6078 }
6079
6080 static void
6081 emit_compute_block_size(const struct gl_program *prog,
6082 struct ureg_program *ureg) {
6083 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
6084 prog->info.cs.local_size[0]);
6085 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
6086 prog->info.cs.local_size[1]);
6087 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
6088 prog->info.cs.local_size[2]);
6089 }
6090
6091 struct sort_inout_decls {
6092 bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
6093 return mapping[a.mesa_index] < mapping[b.mesa_index];
6094 }
6095
6096 const GLuint *mapping;
6097 };
6098
6099 /* Sort the given array of decls by the corresponding slot (TGSI file index).
6100 *
6101 * This is for the benefit of older drivers which are broken when the
6102 * declarations aren't sorted in this way.
6103 */
6104 static void
6105 sort_inout_decls_by_slot(struct inout_decl *decls,
6106 unsigned count,
6107 const GLuint mapping[])
6108 {
6109 sort_inout_decls sorter;
6110 sorter.mapping = mapping;
6111 std::sort(decls, decls + count, sorter);
6112 }
6113
6114 static unsigned
6115 st_translate_interp(enum glsl_interp_mode glsl_qual, GLuint varying)
6116 {
6117 switch (glsl_qual) {
6118 case INTERP_MODE_NONE:
6119 if (varying == VARYING_SLOT_COL0 || varying == VARYING_SLOT_COL1)
6120 return TGSI_INTERPOLATE_COLOR;
6121 return TGSI_INTERPOLATE_PERSPECTIVE;
6122 case INTERP_MODE_SMOOTH:
6123 return TGSI_INTERPOLATE_PERSPECTIVE;
6124 case INTERP_MODE_FLAT:
6125 return TGSI_INTERPOLATE_CONSTANT;
6126 case INTERP_MODE_NOPERSPECTIVE:
6127 return TGSI_INTERPOLATE_LINEAR;
6128 default:
6129 assert(0 && "unexpected interp mode in st_translate_interp()");
6130 return TGSI_INTERPOLATE_PERSPECTIVE;
6131 }
6132 }
6133
6134 /**
6135 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
6136 * \param program the program to translate
6137 * \param numInputs number of input registers used
6138 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
6139 * input indexes
6140 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
6141 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
6142 * each input
6143 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
6144 * \param numOutputs number of output registers used
6145 * \param outputMapping maps Mesa fragment program outputs to TGSI
6146 * generic outputs
6147 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
6148 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
6149 * each output
6150 *
6151 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
6152 */
6153 extern "C" enum pipe_error
6154 st_translate_program(
6155 struct gl_context *ctx,
6156 uint procType,
6157 struct ureg_program *ureg,
6158 glsl_to_tgsi_visitor *program,
6159 const struct gl_program *proginfo,
6160 GLuint numInputs,
6161 const GLuint inputMapping[],
6162 const GLuint inputSlotToAttr[],
6163 const ubyte inputSemanticName[],
6164 const ubyte inputSemanticIndex[],
6165 const GLuint interpMode[],
6166 GLuint numOutputs,
6167 const GLuint outputMapping[],
6168 const GLuint outputSlotToAttr[],
6169 const ubyte outputSemanticName[],
6170 const ubyte outputSemanticIndex[])
6171 {
6172 struct st_translate *t;
6173 unsigned i;
6174 struct gl_program_constants *frag_const =
6175 &ctx->Const.Program[MESA_SHADER_FRAGMENT];
6176 enum pipe_error ret = PIPE_OK;
6177
6178 assert(numInputs <= ARRAY_SIZE(t->inputs));
6179 assert(numOutputs <= ARRAY_SIZE(t->outputs));
6180
6181 t = CALLOC_STRUCT(st_translate);
6182 if (!t) {
6183 ret = PIPE_ERROR_OUT_OF_MEMORY;
6184 goto out;
6185 }
6186
6187 t->procType = procType;
6188 t->inputMapping = inputMapping;
6189 t->outputMapping = outputMapping;
6190 t->ureg = ureg;
6191 t->num_temp_arrays = program->next_array;
6192 if (t->num_temp_arrays)
6193 t->arrays = (struct ureg_dst*)
6194 calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
6195
6196 /*
6197 * Declare input attributes.
6198 */
6199 switch (procType) {
6200 case PIPE_SHADER_FRAGMENT:
6201 case PIPE_SHADER_GEOMETRY:
6202 case PIPE_SHADER_TESS_EVAL:
6203 case PIPE_SHADER_TESS_CTRL:
6204 sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
6205
6206 for (i = 0; i < program->num_inputs; ++i) {
6207 struct inout_decl *decl = &program->inputs[i];
6208 unsigned slot = inputMapping[decl->mesa_index];
6209 struct ureg_src src;
6210 ubyte tgsi_usage_mask = decl->usage_mask;
6211
6212 if (glsl_base_type_is_64bit(decl->base_type)) {
6213 if (tgsi_usage_mask == 1)
6214 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6215 else if (tgsi_usage_mask == 2)
6216 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6217 else
6218 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6219 }
6220
6221 unsigned interp_mode = 0;
6222 unsigned interp_location = 0;
6223 if (procType == PIPE_SHADER_FRAGMENT) {
6224 assert(interpMode);
6225 interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
6226 interpMode[slot] :
6227 st_translate_interp(decl->interp, inputSlotToAttr[slot]);
6228
6229 interp_location = decl->interp_loc;
6230 }
6231
6232 src = ureg_DECL_fs_input_cyl_centroid_layout(ureg,
6233 inputSemanticName[slot], inputSemanticIndex[slot],
6234 interp_mode, 0, interp_location, slot, tgsi_usage_mask,
6235 decl->array_id, decl->size);
6236
6237 for (unsigned j = 0; j < decl->size; ++j) {
6238 if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
6239 /* The ArrayID is set up in dst_register */
6240 t->inputs[slot + j] = src;
6241 t->inputs[slot + j].ArrayID = 0;
6242 t->inputs[slot + j].Index += j;
6243 }
6244 }
6245 }
6246 break;
6247 case PIPE_SHADER_VERTEX:
6248 for (i = 0; i < numInputs; i++) {
6249 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
6250 }
6251 break;
6252 case PIPE_SHADER_COMPUTE:
6253 break;
6254 default:
6255 assert(0);
6256 }
6257
6258 /*
6259 * Declare output attributes.
6260 */
6261 switch (procType) {
6262 case PIPE_SHADER_FRAGMENT:
6263 case PIPE_SHADER_COMPUTE:
6264 break;
6265 case PIPE_SHADER_GEOMETRY:
6266 case PIPE_SHADER_TESS_EVAL:
6267 case PIPE_SHADER_TESS_CTRL:
6268 case PIPE_SHADER_VERTEX:
6269 sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
6270
6271 for (i = 0; i < program->num_outputs; ++i) {
6272 struct inout_decl *decl = &program->outputs[i];
6273 unsigned slot = outputMapping[decl->mesa_index];
6274 struct ureg_dst dst;
6275 ubyte tgsi_usage_mask = decl->usage_mask;
6276
6277 if (glsl_base_type_is_64bit(decl->base_type)) {
6278 if (tgsi_usage_mask == 1)
6279 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6280 else if (tgsi_usage_mask == 2)
6281 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6282 else
6283 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6284 }
6285
6286 dst = ureg_DECL_output_layout(ureg,
6287 outputSemanticName[slot], outputSemanticIndex[slot],
6288 decl->gs_out_streams,
6289 slot, tgsi_usage_mask, decl->array_id, decl->size);
6290
6291 for (unsigned j = 0; j < decl->size; ++j) {
6292 if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
6293 /* The ArrayID is set up in dst_register */
6294 t->outputs[slot + j] = dst;
6295 t->outputs[slot + j].ArrayID = 0;
6296 t->outputs[slot + j].Index += j;
6297 }
6298 }
6299 }
6300 break;
6301 default:
6302 assert(0);
6303 }
6304
6305 if (procType == PIPE_SHADER_FRAGMENT) {
6306 if (program->shader->Program->info.fs.early_fragment_tests)
6307 ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
6308
6309 if (proginfo->info.inputs_read & VARYING_BIT_POS) {
6310 /* Must do this after setting up t->inputs. */
6311 emit_wpos(st_context(ctx), t, proginfo, ureg,
6312 program->wpos_transform_const);
6313 }
6314
6315 if (proginfo->info.inputs_read & VARYING_BIT_FACE)
6316 emit_face_var(ctx, t);
6317
6318 for (i = 0; i < numOutputs; i++) {
6319 switch (outputSemanticName[i]) {
6320 case TGSI_SEMANTIC_POSITION:
6321 t->outputs[i] = ureg_DECL_output(ureg,
6322 TGSI_SEMANTIC_POSITION, /* Z/Depth */
6323 outputSemanticIndex[i]);
6324 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
6325 break;
6326 case TGSI_SEMANTIC_STENCIL:
6327 t->outputs[i] = ureg_DECL_output(ureg,
6328 TGSI_SEMANTIC_STENCIL, /* Stencil */
6329 outputSemanticIndex[i]);
6330 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
6331 break;
6332 case TGSI_SEMANTIC_COLOR:
6333 t->outputs[i] = ureg_DECL_output(ureg,
6334 TGSI_SEMANTIC_COLOR,
6335 outputSemanticIndex[i]);
6336 break;
6337 case TGSI_SEMANTIC_SAMPLEMASK:
6338 t->outputs[i] = ureg_DECL_output(ureg,
6339 TGSI_SEMANTIC_SAMPLEMASK,
6340 outputSemanticIndex[i]);
6341 /* TODO: If we ever support more than 32 samples, this will have
6342 * to become an array.
6343 */
6344 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6345 break;
6346 default:
6347 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
6348 ret = PIPE_ERROR_BAD_INPUT;
6349 goto out;
6350 }
6351 }
6352 }
6353 else if (procType == PIPE_SHADER_VERTEX) {
6354 for (i = 0; i < numOutputs; i++) {
6355 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
6356 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
6357 ureg_MOV(ureg,
6358 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
6359 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
6360 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6361 }
6362 }
6363 }
6364
6365 if (procType == PIPE_SHADER_COMPUTE) {
6366 emit_compute_block_size(proginfo, ureg);
6367 }
6368
6369 /* Declare address register.
6370 */
6371 if (program->num_address_regs > 0) {
6372 assert(program->num_address_regs <= 3);
6373 for (int i = 0; i < program->num_address_regs; i++)
6374 t->address[i] = ureg_DECL_address(ureg);
6375 }
6376
6377 /* Declare misc input registers
6378 */
6379 {
6380 GLbitfield sysInputs = proginfo->info.system_values_read;
6381
6382 for (i = 0; sysInputs; i++) {
6383 if (sysInputs & (1 << i)) {
6384 unsigned semName = _mesa_sysval_to_semantic(i);
6385
6386 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
6387
6388 if (semName == TGSI_SEMANTIC_INSTANCEID ||
6389 semName == TGSI_SEMANTIC_VERTEXID) {
6390 /* From Gallium perspective, these system values are always
6391 * integer, and require native integer support. However, if
6392 * native integer is supported on the vertex stage but not the
6393 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
6394 * assumes these system values are floats. To resolve the
6395 * inconsistency, we insert a U2F.
6396 */
6397 struct st_context *st = st_context(ctx);
6398 struct pipe_screen *pscreen = st->pipe->screen;
6399 assert(procType == PIPE_SHADER_VERTEX);
6400 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
6401 (void) pscreen;
6402 if (!ctx->Const.NativeIntegers) {
6403 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
6404 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
6405 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
6406 }
6407 }
6408
6409 if (procType == PIPE_SHADER_FRAGMENT &&
6410 semName == TGSI_SEMANTIC_POSITION)
6411 emit_wpos(st_context(ctx), t, proginfo, ureg,
6412 program->wpos_transform_const);
6413
6414 sysInputs &= ~(1 << i);
6415 }
6416 }
6417 }
6418
6419 t->array_sizes = program->array_sizes;
6420 t->input_decls = program->inputs;
6421 t->num_input_decls = program->num_inputs;
6422 t->output_decls = program->outputs;
6423 t->num_output_decls = program->num_outputs;
6424
6425 /* Emit constants and uniforms. TGSI uses a single index space for these,
6426 * so we put all the translated regs in t->constants.
6427 */
6428 if (proginfo->Parameters) {
6429 t->constants = (struct ureg_src *)
6430 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
6431 if (t->constants == NULL) {
6432 ret = PIPE_ERROR_OUT_OF_MEMORY;
6433 goto out;
6434 }
6435 t->num_constants = proginfo->Parameters->NumParameters;
6436
6437 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
6438 switch (proginfo->Parameters->Parameters[i].Type) {
6439 case PROGRAM_STATE_VAR:
6440 case PROGRAM_UNIFORM:
6441 t->constants[i] = ureg_DECL_constant(ureg, i);
6442 break;
6443
6444 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
6445 * addressing of the const buffer.
6446 * FIXME: Be smarter and recognize param arrays:
6447 * indirect addressing is only valid within the referenced
6448 * array.
6449 */
6450 case PROGRAM_CONSTANT:
6451 if (program->indirect_addr_consts)
6452 t->constants[i] = ureg_DECL_constant(ureg, i);
6453 else
6454 t->constants[i] = emit_immediate(t,
6455 proginfo->Parameters->ParameterValues[i],
6456 proginfo->Parameters->Parameters[i].DataType,
6457 4);
6458 break;
6459 default:
6460 break;
6461 }
6462 }
6463 }
6464
6465 for (i = 0; i < proginfo->info.num_ubos; i++) {
6466 unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
6467 unsigned num_const_vecs = (size + 15) / 16;
6468 unsigned first, last;
6469 assert(num_const_vecs > 0);
6470 first = 0;
6471 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
6472 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
6473 }
6474
6475 /* Emit immediate values.
6476 */
6477 t->immediates = (struct ureg_src *)
6478 calloc(program->num_immediates, sizeof(struct ureg_src));
6479 if (t->immediates == NULL) {
6480 ret = PIPE_ERROR_OUT_OF_MEMORY;
6481 goto out;
6482 }
6483 t->num_immediates = program->num_immediates;
6484
6485 i = 0;
6486 foreach_in_list(immediate_storage, imm, &program->immediates) {
6487 assert(i < program->num_immediates);
6488 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
6489 }
6490 assert(i == program->num_immediates);
6491
6492 /* texture samplers */
6493 for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
6494 if (program->samplers_used & (1u << i)) {
6495 unsigned type;
6496
6497 t->samplers[i] = ureg_DECL_sampler(ureg, i);
6498
6499 switch (program->sampler_types[i]) {
6500 case GLSL_TYPE_INT:
6501 type = TGSI_RETURN_TYPE_SINT;
6502 break;
6503 case GLSL_TYPE_UINT:
6504 type = TGSI_RETURN_TYPE_UINT;
6505 break;
6506 case GLSL_TYPE_FLOAT:
6507 type = TGSI_RETURN_TYPE_FLOAT;
6508 break;
6509 default:
6510 unreachable("not reached");
6511 }
6512
6513 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
6514 type, type, type, type );
6515 }
6516 }
6517
6518 for (i = 0; i < frag_const->MaxAtomicBuffers; i++) {
6519 if (program->buffers_used & (1 << i)) {
6520 t->buffers[i] = ureg_DECL_buffer(ureg, i, true);
6521 }
6522 }
6523
6524 for (; i < frag_const->MaxAtomicBuffers + frag_const->MaxShaderStorageBlocks;
6525 i++) {
6526 if (program->buffers_used & (1 << i)) {
6527 t->buffers[i] = ureg_DECL_buffer(ureg, i, false);
6528 }
6529 }
6530
6531 if (program->use_shared_memory)
6532 t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
6533
6534 for (i = 0; i < program->shader->Program->info.num_images; i++) {
6535 if (program->images_used & (1 << i)) {
6536 t->images[i] = ureg_DECL_image(ureg, i,
6537 program->image_targets[i],
6538 program->image_formats[i],
6539 true, false);
6540 }
6541 }
6542
6543 /* Emit each instruction in turn:
6544 */
6545 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
6546 compile_tgsi_instruction(t, inst);
6547
6548 /* Set the next shader stage hint for VS and TES. */
6549 switch (procType) {
6550 case PIPE_SHADER_VERTEX:
6551 case PIPE_SHADER_TESS_EVAL:
6552 if (program->shader_program->SeparateShader)
6553 break;
6554
6555 for (i = program->shader->Stage+1; i <= MESA_SHADER_FRAGMENT; i++) {
6556 if (program->shader_program->_LinkedShaders[i]) {
6557 unsigned next;
6558
6559 switch (i) {
6560 case MESA_SHADER_TESS_CTRL:
6561 next = PIPE_SHADER_TESS_CTRL;
6562 break;
6563 case MESA_SHADER_TESS_EVAL:
6564 next = PIPE_SHADER_TESS_EVAL;
6565 break;
6566 case MESA_SHADER_GEOMETRY:
6567 next = PIPE_SHADER_GEOMETRY;
6568 break;
6569 case MESA_SHADER_FRAGMENT:
6570 next = PIPE_SHADER_FRAGMENT;
6571 break;
6572 default:
6573 assert(0);
6574 continue;
6575 }
6576
6577 ureg_set_next_shader_processor(ureg, next);
6578 break;
6579 }
6580 }
6581 break;
6582 }
6583
6584 out:
6585 if (t) {
6586 free(t->arrays);
6587 free(t->temps);
6588 free(t->constants);
6589 t->num_constants = 0;
6590 free(t->immediates);
6591 t->num_immediates = 0;
6592 FREE(t);
6593 }
6594
6595 return ret;
6596 }
6597 /* ----------------------------- End TGSI code ------------------------------ */
6598
6599
6600 /**
6601 * Convert a shader's GLSL IR into a Mesa gl_program, although without
6602 * generating Mesa IR.
6603 */
6604 static struct gl_program *
6605 get_mesa_program_tgsi(struct gl_context *ctx,
6606 struct gl_shader_program *shader_program,
6607 struct gl_linked_shader *shader)
6608 {
6609 glsl_to_tgsi_visitor* v;
6610 struct gl_program *prog;
6611 struct gl_shader_compiler_options *options =
6612 &ctx->Const.ShaderCompilerOptions[shader->Stage];
6613 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6614 enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(shader->Stage);
6615
6616 validate_ir_tree(shader->ir);
6617
6618 prog = shader->Program;
6619
6620 prog->Parameters = _mesa_new_parameter_list();
6621 v = new glsl_to_tgsi_visitor();
6622 v->ctx = ctx;
6623 v->prog = prog;
6624 v->shader_program = shader_program;
6625 v->shader = shader;
6626 v->options = options;
6627 v->glsl_version = ctx->Const.GLSLVersion;
6628 v->native_integers = ctx->Const.NativeIntegers;
6629
6630 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
6631 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
6632 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
6633 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
6634 v->has_tex_txf_lz = pscreen->get_param(pscreen,
6635 PIPE_CAP_TGSI_TEX_TXF_LZ);
6636
6637 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
6638 prog->Parameters);
6639
6640 /* Remove reads from output registers. */
6641 if (!pscreen->get_param(pscreen, PIPE_CAP_TGSI_CAN_READ_OUTPUTS))
6642 lower_output_reads(shader->Stage, shader->ir);
6643
6644 /* Emit intermediate IR for main(). */
6645 visit_exec_list(shader->ir, v);
6646
6647 #if 0
6648 /* Print out some information (for debugging purposes) used by the
6649 * optimization passes. */
6650 {
6651 int i;
6652 int *first_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
6653 int *first_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
6654 int *last_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
6655 int *last_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
6656
6657 for (i = 0; i < v->next_temp; i++) {
6658 first_writes[i] = -1;
6659 first_reads[i] = -1;
6660 last_writes[i] = -1;
6661 last_reads[i] = -1;
6662 }
6663 v->get_first_temp_read(first_reads);
6664 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
6665 v->get_last_temp_write(last_writes);
6666 for (i = 0; i < v->next_temp; i++)
6667 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
6668 first_writes[i],
6669 last_reads[i],
6670 last_writes[i]);
6671 ralloc_free(first_writes);
6672 ralloc_free(first_reads);
6673 ralloc_free(last_writes);
6674 ralloc_free(last_reads);
6675 }
6676 #endif
6677
6678 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
6679 v->simplify_cmp();
6680
6681 if (shader->Stage != MESA_SHADER_TESS_CTRL &&
6682 shader->Stage != MESA_SHADER_TESS_EVAL)
6683 v->copy_propagate();
6684
6685 while (v->eliminate_dead_code());
6686
6687 v->merge_two_dsts();
6688 v->merge_registers();
6689 v->renumber_registers();
6690
6691 /* Write the END instruction. */
6692 v->emit_asm(NULL, TGSI_OPCODE_END);
6693
6694 if (ctx->_Shader->Flags & GLSL_DUMP) {
6695 _mesa_log("\n");
6696 _mesa_log("GLSL IR for linked %s program %d:\n",
6697 _mesa_shader_stage_to_string(shader->Stage),
6698 shader_program->Name);
6699 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
6700 _mesa_log("\n\n");
6701 }
6702
6703 do_set_program_inouts(shader->ir, prog, shader->Stage);
6704 _mesa_copy_linked_program_data(shader_program, shader);
6705 shrink_array_declarations(v->inputs, v->num_inputs,
6706 &prog->info.inputs_read,
6707 prog->info.double_inputs_read,
6708 &prog->info.patch_inputs_read);
6709 shrink_array_declarations(v->outputs, v->num_outputs,
6710 &prog->info.outputs_written, 0ULL,
6711 &prog->info.patch_outputs_written);
6712 count_resources(v, prog);
6713
6714 /* The GLSL IR won't be needed anymore. */
6715 ralloc_free(shader->ir);
6716 shader->ir = NULL;
6717
6718 /* This must be done before the uniform storage is associated. */
6719 if (shader->Stage == MESA_SHADER_FRAGMENT &&
6720 (prog->info.inputs_read & VARYING_BIT_POS ||
6721 prog->info.system_values_read & (1 << SYSTEM_VALUE_FRAG_COORD))) {
6722 static const gl_state_index wposTransformState[STATE_LENGTH] = {
6723 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
6724 };
6725
6726 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
6727 wposTransformState);
6728 }
6729
6730 /* Avoid reallocation of the program parameter list, because the uniform
6731 * storage is only associated with the original parameter list.
6732 * This should be enough for Bitmap and DrawPixels constants.
6733 */
6734 _mesa_reserve_parameter_storage(prog->Parameters, 8);
6735
6736 /* This has to be done last. Any operation the can cause
6737 * prog->ParameterValues to get reallocated (e.g., anything that adds a
6738 * program constant) has to happen before creating this linkage.
6739 */
6740 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters,
6741 true);
6742 if (!shader_program->data->LinkStatus) {
6743 free_glsl_to_tgsi_visitor(v);
6744 _mesa_reference_program(ctx, &shader->Program, NULL);
6745 return NULL;
6746 }
6747
6748 struct st_vertex_program *stvp;
6749 struct st_fragment_program *stfp;
6750 struct st_geometry_program *stgp;
6751 struct st_tessctrl_program *sttcp;
6752 struct st_tesseval_program *sttep;
6753 struct st_compute_program *stcp;
6754
6755 switch (shader->Stage) {
6756 case MESA_SHADER_VERTEX:
6757 stvp = (struct st_vertex_program *)prog;
6758 stvp->glsl_to_tgsi = v;
6759 break;
6760 case MESA_SHADER_FRAGMENT:
6761 stfp = (struct st_fragment_program *)prog;
6762 stfp->glsl_to_tgsi = v;
6763 break;
6764 case MESA_SHADER_GEOMETRY:
6765 stgp = (struct st_geometry_program *)prog;
6766 stgp->glsl_to_tgsi = v;
6767 break;
6768 case MESA_SHADER_TESS_CTRL:
6769 sttcp = (struct st_tessctrl_program *)prog;
6770 sttcp->glsl_to_tgsi = v;
6771 break;
6772 case MESA_SHADER_TESS_EVAL:
6773 sttep = (struct st_tesseval_program *)prog;
6774 sttep->glsl_to_tgsi = v;
6775 break;
6776 case MESA_SHADER_COMPUTE:
6777 stcp = (struct st_compute_program *)prog;
6778 stcp->glsl_to_tgsi = v;
6779 break;
6780 default:
6781 assert(!"should not be reached");
6782 return NULL;
6783 }
6784
6785 return prog;
6786 }
6787
6788 /* See if there are unsupported control flow statements. */
6789 class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
6790 private:
6791 const struct gl_shader_compiler_options *options;
6792 public:
6793 ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
6794 : options(options),
6795 unsupported(false)
6796 {
6797 }
6798
6799 virtual ir_visitor_status visit_enter(ir_function *ir)
6800 {
6801 /* Other functions are skipped (same as glsl_to_tgsi). */
6802 if (strcmp(ir->name, "main") == 0)
6803 return visit_continue;
6804
6805 return visit_continue_with_parent;
6806 }
6807
6808 virtual ir_visitor_status visit_enter(ir_call *ir)
6809 {
6810 if (!ir->callee->is_intrinsic()) {
6811 unsupported = true; /* it's a function call */
6812 return visit_stop;
6813 }
6814 return visit_continue;
6815 }
6816
6817 virtual ir_visitor_status visit_enter(ir_return *ir)
6818 {
6819 if (options->EmitNoMainReturn) {
6820 unsupported = true;
6821 return visit_stop;
6822 }
6823 return visit_continue;
6824 }
6825
6826 bool unsupported;
6827 };
6828
6829 static bool
6830 has_unsupported_control_flow(exec_list *ir,
6831 const struct gl_shader_compiler_options *options)
6832 {
6833 ir_control_flow_info_visitor visitor(options);
6834 visit_list_elements(&visitor, ir);
6835 return visitor.unsupported;
6836 }
6837
6838 extern "C" {
6839
6840 /**
6841 * Link a shader.
6842 * Called via ctx->Driver.LinkShader()
6843 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
6844 * with code lowering and other optimizations.
6845 */
6846 GLboolean
6847 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
6848 {
6849 /* Return early if we are loading the shader from on-disk cache */
6850 if (st_load_tgsi_from_disk_cache(ctx, prog)) {
6851 return GL_TRUE;
6852 }
6853
6854 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6855 assert(prog->data->LinkStatus);
6856
6857 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6858 if (prog->_LinkedShaders[i] == NULL)
6859 continue;
6860
6861 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
6862 exec_list *ir = shader->ir;
6863 gl_shader_stage stage = shader->Stage;
6864 const struct gl_shader_compiler_options *options =
6865 &ctx->Const.ShaderCompilerOptions[stage];
6866 enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(stage);
6867 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
6868 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
6869 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
6870 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
6871 unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
6872 PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
6873
6874 /* If there are forms of indirect addressing that the driver
6875 * cannot handle, perform the lowering pass.
6876 */
6877 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
6878 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
6879 lower_variable_index_to_cond_assign(stage, ir,
6880 options->EmitNoIndirectInput,
6881 options->EmitNoIndirectOutput,
6882 options->EmitNoIndirectTemp,
6883 options->EmitNoIndirectUniform);
6884 }
6885
6886 if (!pscreen->get_param(pscreen, PIPE_CAP_INT64_DIVMOD))
6887 lower_64bit_integer_instructions(ir, DIV64 | MOD64);
6888
6889 if (ctx->Extensions.ARB_shading_language_packing) {
6890 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
6891 LOWER_UNPACK_SNORM_2x16 |
6892 LOWER_PACK_UNORM_2x16 |
6893 LOWER_UNPACK_UNORM_2x16 |
6894 LOWER_PACK_SNORM_4x8 |
6895 LOWER_UNPACK_SNORM_4x8 |
6896 LOWER_UNPACK_UNORM_4x8 |
6897 LOWER_PACK_UNORM_4x8;
6898
6899 if (ctx->Extensions.ARB_gpu_shader5)
6900 lower_inst |= LOWER_PACK_USE_BFI |
6901 LOWER_PACK_USE_BFE;
6902 if (!ctx->st->has_half_float_packing)
6903 lower_inst |= LOWER_PACK_HALF_2x16 |
6904 LOWER_UNPACK_HALF_2x16;
6905
6906 lower_packing_builtins(ir, lower_inst);
6907 }
6908
6909 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
6910 lower_offset_arrays(ir);
6911 do_mat_op_to_vec(ir);
6912
6913 if (stage == MESA_SHADER_FRAGMENT)
6914 lower_blend_equation_advanced(shader);
6915
6916 lower_instructions(ir,
6917 MOD_TO_FLOOR |
6918 FDIV_TO_MUL_RCP |
6919 EXP_TO_EXP2 |
6920 LOG_TO_LOG2 |
6921 LDEXP_TO_ARITH |
6922 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
6923 CARRY_TO_ARITH |
6924 BORROW_TO_ARITH |
6925 (have_dround ? 0 : DOPS_TO_DFRAC) |
6926 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
6927 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
6928 (options->EmitNoSat ? SAT_TO_CLAMP : 0) |
6929 (ctx->Const.ForceGLSLAbsSqrt ? SQRT_TO_ABS_SQRT : 0) |
6930 /* Assume that if ARB_gpu_shader5 is not supported
6931 * then all of the extended integer functions need
6932 * lowering. It may be necessary to add some caps
6933 * for individual instructions.
6934 */
6935 (!ctx->Extensions.ARB_gpu_shader5
6936 ? BIT_COUNT_TO_MATH |
6937 EXTRACT_TO_SHIFTS |
6938 INSERT_TO_SHIFTS |
6939 REVERSE_TO_SHIFTS |
6940 FIND_LSB_TO_FLOAT_CAST |
6941 FIND_MSB_TO_FLOAT_CAST |
6942 IMUL_HIGH_TO_MUL
6943 : 0));
6944
6945 do_vec_index_to_cond_assign(ir);
6946 lower_vector_insert(ir, true);
6947 lower_quadop_vector(ir, false);
6948 lower_noise(ir);
6949 if (options->MaxIfDepth == 0) {
6950 lower_discard(ir);
6951 }
6952
6953 if (ctx->Const.GLSLOptimizeConservatively) {
6954 /* Do it once and repeat only if there's unsupported control flow. */
6955 do {
6956 do_common_optimization(ir, true, true, options,
6957 ctx->Const.NativeIntegers);
6958 lower_if_to_cond_assign((gl_shader_stage)i, ir,
6959 options->MaxIfDepth, if_threshold);
6960 } while (has_unsupported_control_flow(ir, options));
6961 } else {
6962 /* Repeat it until it stops making changes. */
6963 bool progress;
6964 do {
6965 progress = do_common_optimization(ir, true, true, options,
6966 ctx->Const.NativeIntegers);
6967 progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
6968 options->MaxIfDepth, if_threshold);
6969 } while (progress);
6970 }
6971
6972 validate_ir_tree(ir);
6973 }
6974
6975 build_program_resource_list(ctx, prog);
6976
6977 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6978 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
6979 if (shader == NULL)
6980 continue;
6981
6982 enum pipe_shader_type ptarget =
6983 st_shader_stage_to_ptarget(shader->Stage);
6984 enum pipe_shader_ir preferred_ir = (enum pipe_shader_ir)
6985 pscreen->get_shader_param(pscreen, ptarget,
6986 PIPE_SHADER_CAP_PREFERRED_IR);
6987
6988 struct gl_program *linked_prog = NULL;
6989 if (preferred_ir == PIPE_SHADER_IR_NIR) {
6990 /* TODO only for GLSL VS/FS for now: */
6991 switch (shader->Stage) {
6992 case MESA_SHADER_VERTEX:
6993 case MESA_SHADER_FRAGMENT:
6994 linked_prog = st_nir_get_mesa_program(ctx, prog, shader);
6995 default:
6996 break;
6997 }
6998 } else {
6999 linked_prog = get_mesa_program_tgsi(ctx, prog, shader);
7000 }
7001
7002 if (linked_prog) {
7003 st_set_prog_affected_state_flags(linked_prog);
7004 if (!ctx->Driver.ProgramStringNotify(ctx,
7005 _mesa_shader_stage_to_program(i),
7006 linked_prog)) {
7007 _mesa_reference_program(ctx, &shader->Program, NULL);
7008 return GL_FALSE;
7009 }
7010 }
7011 }
7012
7013 return GL_TRUE;
7014 }
7015
7016 void
7017 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
7018 const GLuint outputMapping[],
7019 struct pipe_stream_output_info *so)
7020 {
7021 if (!glsl_to_tgsi->shader_program->last_vert_prog)
7022 return;
7023
7024 struct gl_transform_feedback_info *info =
7025 glsl_to_tgsi->shader_program->last_vert_prog->sh.LinkedTransformFeedback;
7026 st_translate_stream_output_info2(info, outputMapping, so);
7027 }
7028
7029 void
7030 st_translate_stream_output_info2(struct gl_transform_feedback_info *info,
7031 const GLuint outputMapping[],
7032 struct pipe_stream_output_info *so)
7033 {
7034 unsigned i;
7035
7036 for (i = 0; i < info->NumOutputs; i++) {
7037 so->output[i].register_index =
7038 outputMapping[info->Outputs[i].OutputRegister];
7039 so->output[i].start_component = info->Outputs[i].ComponentOffset;
7040 so->output[i].num_components = info->Outputs[i].NumComponents;
7041 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
7042 so->output[i].dst_offset = info->Outputs[i].DstOffset;
7043 so->output[i].stream = info->Outputs[i].StreamId;
7044 }
7045
7046 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
7047 so->stride[i] = info->Buffers[i].Stride;
7048 }
7049 so->num_outputs = info->NumOutputs;
7050 }
7051
7052 } /* extern "C" */