gallium: remove TGSI_OPCODE_ABS
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
48
49
50 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
51 (1 << PROGRAM_CONSTANT) | \
52 (1 << PROGRAM_UNIFORM))
53
54 /**
55 * Intermediate state used during shader translation.
56 */
57 struct st_translate {
58 struct ureg_program *ureg;
59
60 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
61 struct ureg_src *constants;
62 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
63 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
64 struct ureg_dst address[1];
65 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
66 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
67
68 const GLuint *inputMapping;
69 const GLuint *outputMapping;
70
71 unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
72 };
73
74
75 /**
76 * Map a Mesa dst register to a TGSI ureg_dst register.
77 */
78 static struct ureg_dst
79 dst_register( struct st_translate *t,
80 gl_register_file file,
81 GLuint index )
82 {
83 switch( file ) {
84 case PROGRAM_UNDEFINED:
85 return ureg_dst_undef();
86
87 case PROGRAM_TEMPORARY:
88 if (ureg_dst_is_undef(t->temps[index]))
89 t->temps[index] = ureg_DECL_temporary( t->ureg );
90
91 return t->temps[index];
92
93 case PROGRAM_OUTPUT:
94 if (t->procType == PIPE_SHADER_VERTEX)
95 assert(index < VARYING_SLOT_MAX);
96 else if (t->procType == PIPE_SHADER_FRAGMENT)
97 assert(index < FRAG_RESULT_MAX);
98 else
99 assert(index < VARYING_SLOT_MAX);
100
101 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
102
103 return t->outputs[t->outputMapping[index]];
104
105 case PROGRAM_ADDRESS:
106 return t->address[index];
107
108 default:
109 debug_assert( 0 );
110 return ureg_dst_undef();
111 }
112 }
113
114
115 /**
116 * Map a Mesa src register to a TGSI ureg_src register.
117 */
118 static struct ureg_src
119 src_register( struct st_translate *t,
120 gl_register_file file,
121 GLint index )
122 {
123 switch( file ) {
124 case PROGRAM_UNDEFINED:
125 return ureg_src_undef();
126
127 case PROGRAM_TEMPORARY:
128 assert(index >= 0);
129 assert(index < ARRAY_SIZE(t->temps));
130 if (ureg_dst_is_undef(t->temps[index]))
131 t->temps[index] = ureg_DECL_temporary( t->ureg );
132 return ureg_src(t->temps[index]);
133
134 case PROGRAM_UNIFORM:
135 assert(index >= 0);
136 return t->constants[index];
137 case PROGRAM_STATE_VAR:
138 case PROGRAM_CONSTANT: /* ie, immediate */
139 if (index < 0)
140 return ureg_DECL_constant( t->ureg, 0 );
141 else
142 return t->constants[index];
143
144 case PROGRAM_INPUT:
145 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
146 return t->inputs[t->inputMapping[index]];
147
148 case PROGRAM_OUTPUT:
149 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
150 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
151
152 case PROGRAM_ADDRESS:
153 return ureg_src(t->address[index]);
154
155 case PROGRAM_SYSTEM_VALUE:
156 assert(index < ARRAY_SIZE(t->systemValues));
157 return t->systemValues[index];
158
159 default:
160 debug_assert( 0 );
161 return ureg_src_undef();
162 }
163 }
164
165
166 /**
167 * Map mesa texture target to TGSI texture target.
168 */
169 unsigned
170 st_translate_texture_target(GLuint textarget, GLboolean shadow)
171 {
172 if (shadow) {
173 switch (textarget) {
174 case TEXTURE_1D_INDEX:
175 return TGSI_TEXTURE_SHADOW1D;
176 case TEXTURE_2D_INDEX:
177 return TGSI_TEXTURE_SHADOW2D;
178 case TEXTURE_RECT_INDEX:
179 return TGSI_TEXTURE_SHADOWRECT;
180 case TEXTURE_1D_ARRAY_INDEX:
181 return TGSI_TEXTURE_SHADOW1D_ARRAY;
182 case TEXTURE_2D_ARRAY_INDEX:
183 return TGSI_TEXTURE_SHADOW2D_ARRAY;
184 case TEXTURE_CUBE_INDEX:
185 return TGSI_TEXTURE_SHADOWCUBE;
186 case TEXTURE_CUBE_ARRAY_INDEX:
187 return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
188 default:
189 break;
190 }
191 }
192
193 switch (textarget) {
194 case TEXTURE_2D_MULTISAMPLE_INDEX:
195 return TGSI_TEXTURE_2D_MSAA;
196 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
197 return TGSI_TEXTURE_2D_ARRAY_MSAA;
198 case TEXTURE_BUFFER_INDEX:
199 return TGSI_TEXTURE_BUFFER;
200 case TEXTURE_1D_INDEX:
201 return TGSI_TEXTURE_1D;
202 case TEXTURE_2D_INDEX:
203 return TGSI_TEXTURE_2D;
204 case TEXTURE_3D_INDEX:
205 return TGSI_TEXTURE_3D;
206 case TEXTURE_CUBE_INDEX:
207 return TGSI_TEXTURE_CUBE;
208 case TEXTURE_CUBE_ARRAY_INDEX:
209 return TGSI_TEXTURE_CUBE_ARRAY;
210 case TEXTURE_RECT_INDEX:
211 return TGSI_TEXTURE_RECT;
212 case TEXTURE_1D_ARRAY_INDEX:
213 return TGSI_TEXTURE_1D_ARRAY;
214 case TEXTURE_2D_ARRAY_INDEX:
215 return TGSI_TEXTURE_2D_ARRAY;
216 case TEXTURE_EXTERNAL_INDEX:
217 return TGSI_TEXTURE_2D;
218 default:
219 debug_assert(!"unexpected texture target index");
220 return TGSI_TEXTURE_1D;
221 }
222 }
223
224
225 /**
226 * Translate a (1 << TEXTURE_x_INDEX) bit into a TGSI_TEXTURE_x enum.
227 */
228 static unsigned
229 translate_texture_index(GLbitfield texBit, bool shadow)
230 {
231 int index = ffs(texBit);
232 assert(index > 0);
233 assert(index - 1 < NUM_TEXTURE_TARGETS);
234 return st_translate_texture_target(index - 1, shadow);
235 }
236
237
238 /**
239 * Create a TGSI ureg_dst register from a Mesa dest register.
240 */
241 static struct ureg_dst
242 translate_dst( struct st_translate *t,
243 const struct prog_dst_register *DstReg,
244 boolean saturate)
245 {
246 struct ureg_dst dst = dst_register( t,
247 DstReg->File,
248 DstReg->Index );
249
250 dst = ureg_writemask( dst,
251 DstReg->WriteMask );
252
253 if (saturate)
254 dst = ureg_saturate( dst );
255
256 if (DstReg->RelAddr)
257 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
258
259 return dst;
260 }
261
262
263 /**
264 * Create a TGSI ureg_src register from a Mesa src register.
265 */
266 static struct ureg_src
267 translate_src( struct st_translate *t,
268 const struct prog_src_register *SrcReg )
269 {
270 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
271
272 src = ureg_swizzle( src,
273 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
274 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
275 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
276 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
277
278 if (SrcReg->Negate == NEGATE_XYZW)
279 src = ureg_negate(src);
280
281 if (SrcReg->RelAddr) {
282 src = ureg_src_indirect( src, ureg_src(t->address[0]));
283 if (SrcReg->File != PROGRAM_INPUT &&
284 SrcReg->File != PROGRAM_OUTPUT) {
285 /* If SrcReg->Index was negative, it was set to zero in
286 * src_register(). Reassign it now. But don't do this
287 * for input/output regs since they get remapped while
288 * const buffers don't.
289 */
290 src.Index = SrcReg->Index;
291 }
292 }
293
294 return src;
295 }
296
297
298 static struct ureg_src swizzle_4v( struct ureg_src src,
299 const unsigned *swz )
300 {
301 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
302 }
303
304
305 /**
306 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
307 *
308 * SWZ dst, src.x-y10
309 *
310 * becomes:
311 *
312 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
313 */
314 static void emit_swz( struct st_translate *t,
315 struct ureg_dst dst,
316 const struct prog_src_register *SrcReg )
317 {
318 struct ureg_program *ureg = t->ureg;
319 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
320
321 unsigned negate_mask = SrcReg->Negate;
322
323 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
324 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
325 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
326 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
327
328 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
329 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
330 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
331 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
332
333 unsigned negative_one_mask = one_mask & negate_mask;
334 unsigned positive_one_mask = one_mask & ~negate_mask;
335
336 struct ureg_src imm;
337 unsigned i;
338 unsigned mul_swizzle[4] = {0,0,0,0};
339 unsigned add_swizzle[4] = {0,0,0,0};
340 unsigned src_swizzle[4] = {0,0,0,0};
341 boolean need_add = FALSE;
342 boolean need_mul = FALSE;
343
344 if (dst.WriteMask == 0)
345 return;
346
347 /* Is this just a MOV?
348 */
349 if (zero_mask == 0 &&
350 one_mask == 0 &&
351 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
352 {
353 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
354 return;
355 }
356
357 #define IMM_ZERO 0
358 #define IMM_ONE 1
359 #define IMM_NEG_ONE 2
360
361 imm = ureg_imm3f( ureg, 0, 1, -1 );
362
363 for (i = 0; i < 4; i++) {
364 unsigned bit = 1 << i;
365
366 if (dst.WriteMask & bit) {
367 if (positive_one_mask & bit) {
368 mul_swizzle[i] = IMM_ZERO;
369 add_swizzle[i] = IMM_ONE;
370 need_add = TRUE;
371 }
372 else if (negative_one_mask & bit) {
373 mul_swizzle[i] = IMM_ZERO;
374 add_swizzle[i] = IMM_NEG_ONE;
375 need_add = TRUE;
376 }
377 else if (zero_mask & bit) {
378 mul_swizzle[i] = IMM_ZERO;
379 add_swizzle[i] = IMM_ZERO;
380 need_add = TRUE;
381 }
382 else {
383 add_swizzle[i] = IMM_ZERO;
384 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
385 need_mul = TRUE;
386 if (negate_mask & bit) {
387 mul_swizzle[i] = IMM_NEG_ONE;
388 }
389 else {
390 mul_swizzle[i] = IMM_ONE;
391 }
392 }
393 }
394 }
395
396 if (need_mul && need_add) {
397 ureg_MAD( ureg,
398 dst,
399 swizzle_4v( src, src_swizzle ),
400 swizzle_4v( imm, mul_swizzle ),
401 swizzle_4v( imm, add_swizzle ) );
402 }
403 else if (need_mul) {
404 ureg_MUL( ureg,
405 dst,
406 swizzle_4v( src, src_swizzle ),
407 swizzle_4v( imm, mul_swizzle ) );
408 }
409 else if (need_add) {
410 ureg_MOV( ureg,
411 dst,
412 swizzle_4v( imm, add_swizzle ) );
413 }
414 else {
415 debug_assert(0);
416 }
417
418 #undef IMM_ZERO
419 #undef IMM_ONE
420 #undef IMM_NEG_ONE
421 }
422
423
424 static unsigned
425 translate_opcode( unsigned op )
426 {
427 switch( op ) {
428 case OPCODE_ARL:
429 return TGSI_OPCODE_ARL;
430 case OPCODE_ADD:
431 return TGSI_OPCODE_ADD;
432 case OPCODE_CMP:
433 return TGSI_OPCODE_CMP;
434 case OPCODE_COS:
435 return TGSI_OPCODE_COS;
436 case OPCODE_DP3:
437 return TGSI_OPCODE_DP3;
438 case OPCODE_DP4:
439 return TGSI_OPCODE_DP4;
440 case OPCODE_DPH:
441 return TGSI_OPCODE_DPH;
442 case OPCODE_DST:
443 return TGSI_OPCODE_DST;
444 case OPCODE_EX2:
445 return TGSI_OPCODE_EX2;
446 case OPCODE_EXP:
447 return TGSI_OPCODE_EXP;
448 case OPCODE_FLR:
449 return TGSI_OPCODE_FLR;
450 case OPCODE_FRC:
451 return TGSI_OPCODE_FRC;
452 case OPCODE_KIL:
453 return TGSI_OPCODE_KILL_IF;
454 case OPCODE_LG2:
455 return TGSI_OPCODE_LG2;
456 case OPCODE_LOG:
457 return TGSI_OPCODE_LOG;
458 case OPCODE_LIT:
459 return TGSI_OPCODE_LIT;
460 case OPCODE_LRP:
461 return TGSI_OPCODE_LRP;
462 case OPCODE_MAD:
463 return TGSI_OPCODE_MAD;
464 case OPCODE_MAX:
465 return TGSI_OPCODE_MAX;
466 case OPCODE_MIN:
467 return TGSI_OPCODE_MIN;
468 case OPCODE_MOV:
469 return TGSI_OPCODE_MOV;
470 case OPCODE_MUL:
471 return TGSI_OPCODE_MUL;
472 case OPCODE_POW:
473 return TGSI_OPCODE_POW;
474 case OPCODE_RCP:
475 return TGSI_OPCODE_RCP;
476 case OPCODE_SCS:
477 return TGSI_OPCODE_SCS;
478 case OPCODE_SGE:
479 return TGSI_OPCODE_SGE;
480 case OPCODE_SIN:
481 return TGSI_OPCODE_SIN;
482 case OPCODE_SLT:
483 return TGSI_OPCODE_SLT;
484 case OPCODE_SUB:
485 return TGSI_OPCODE_SUB;
486 case OPCODE_TEX:
487 return TGSI_OPCODE_TEX;
488 case OPCODE_TXB:
489 return TGSI_OPCODE_TXB;
490 case OPCODE_TXP:
491 return TGSI_OPCODE_TXP;
492 case OPCODE_XPD:
493 return TGSI_OPCODE_XPD;
494 case OPCODE_END:
495 return TGSI_OPCODE_END;
496 default:
497 debug_assert( 0 );
498 return TGSI_OPCODE_NOP;
499 }
500 }
501
502
503 static void
504 compile_instruction(
505 struct gl_context *ctx,
506 struct st_translate *t,
507 const struct prog_instruction *inst)
508 {
509 struct ureg_program *ureg = t->ureg;
510 GLuint i;
511 struct ureg_dst dst[1] = { { 0 } };
512 struct ureg_src src[4];
513 unsigned num_dst;
514 unsigned num_src;
515
516 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
517 num_src = _mesa_num_inst_src_regs( inst->Opcode );
518
519 if (num_dst)
520 dst[0] = translate_dst( t,
521 &inst->DstReg,
522 inst->Saturate);
523
524 for (i = 0; i < num_src; i++)
525 src[i] = translate_src( t, &inst->SrcReg[i] );
526
527 switch( inst->Opcode ) {
528 case OPCODE_SWZ:
529 emit_swz( t, dst[0], &inst->SrcReg[0] );
530 return;
531
532 case OPCODE_TEX:
533 case OPCODE_TXB:
534 case OPCODE_TXP:
535 src[num_src++] = t->samplers[inst->TexSrcUnit];
536 ureg_tex_insn( ureg,
537 translate_opcode( inst->Opcode ),
538 dst, num_dst,
539 st_translate_texture_target( inst->TexSrcTarget,
540 inst->TexShadow ),
541 NULL, 0,
542 src, num_src );
543 return;
544
545 case OPCODE_SCS:
546 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
547 ureg_insn( ureg,
548 translate_opcode( inst->Opcode ),
549 dst, num_dst,
550 src, num_src );
551 break;
552
553 case OPCODE_XPD:
554 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
555 ureg_insn( ureg,
556 translate_opcode( inst->Opcode ),
557 dst, num_dst,
558 src, num_src );
559 break;
560
561 case OPCODE_RSQ:
562 ureg_RSQ( ureg, dst[0], ureg_abs(src[0]) );
563 break;
564
565 case OPCODE_ABS:
566 ureg_MOV(ureg, dst[0], ureg_abs(src[0]));
567 break;
568
569 default:
570 ureg_insn( ureg,
571 translate_opcode( inst->Opcode ),
572 dst, num_dst,
573 src, num_src );
574 break;
575 }
576 }
577
578
579 /**
580 * Emit the TGSI instructions for inverting and adjusting WPOS.
581 * This code is unavoidable because it also depends on whether
582 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
583 */
584 static void
585 emit_wpos_adjustment(struct gl_context *ctx,
586 struct st_translate *t,
587 const struct gl_program *program,
588 boolean invert,
589 GLfloat adjX, GLfloat adjY[2])
590 {
591 struct ureg_program *ureg = t->ureg;
592
593 /* Fragment program uses fragment position input.
594 * Need to replace instances of INPUT[WPOS] with temp T
595 * where T = INPUT[WPOS] by y is inverted.
596 */
597 static const gl_state_index wposTransformState[STATE_LENGTH]
598 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
599
600 /* XXX: note we are modifying the incoming shader here! Need to
601 * do this before emitting the constant decls below, or this
602 * will be missed:
603 */
604 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
605 wposTransformState);
606
607 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
608 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
609 struct ureg_src *wpos =
610 ctx->Const.GLSLFragCoordIsSysVal ?
611 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
612 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
613 struct ureg_src wpos_input = *wpos;
614
615 /* First, apply the coordinate shift: */
616 if (adjX || adjY[0] || adjY[1]) {
617 if (adjY[0] != adjY[1]) {
618 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
619 * depending on whether inversion is actually going to be applied
620 * or not, which is determined by testing against the inversion
621 * state variable used below, which will be either +1 or -1.
622 */
623 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
624
625 ureg_CMP(ureg, adj_temp,
626 ureg_scalar(wpostrans, invert ? 2 : 0),
627 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
628 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
629 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
630 } else {
631 ureg_ADD(ureg, wpos_temp, wpos_input,
632 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
633 }
634 wpos_input = ureg_src(wpos_temp);
635 } else {
636 /* MOV wpos_temp, input[wpos]
637 */
638 ureg_MOV( ureg, wpos_temp, wpos_input );
639 }
640
641 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
642 * inversion/identity, or the other way around if we're drawing to an FBO.
643 */
644 if (invert) {
645 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
646 */
647 ureg_MAD( ureg,
648 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
649 wpos_input,
650 ureg_scalar(wpostrans, 0),
651 ureg_scalar(wpostrans, 1));
652 } else {
653 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
654 */
655 ureg_MAD( ureg,
656 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
657 wpos_input,
658 ureg_scalar(wpostrans, 2),
659 ureg_scalar(wpostrans, 3));
660 }
661
662 /* Use wpos_temp as position input from here on:
663 */
664 *wpos = ureg_src(wpos_temp);
665 }
666
667
668 /**
669 * Emit fragment position/coordinate code.
670 */
671 static void
672 emit_wpos(struct st_context *st,
673 struct st_translate *t,
674 const struct gl_program *program,
675 struct ureg_program *ureg)
676 {
677 struct pipe_screen *pscreen = st->pipe->screen;
678 GLfloat adjX = 0.0f;
679 GLfloat adjY[2] = { 0.0f, 0.0f };
680 boolean invert = FALSE;
681
682 /* Query the pixel center conventions supported by the pipe driver and set
683 * adjX, adjY to help out if it cannot handle the requested one internally.
684 *
685 * The bias of the y-coordinate depends on whether y-inversion takes place
686 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
687 * drawing to an FBO (causes additional inversion), and whether the pipe
688 * driver origin and the requested origin differ (the latter condition is
689 * stored in the 'invert' variable).
690 *
691 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
692 *
693 * center shift only:
694 * i -> h: +0.5
695 * h -> i: -0.5
696 *
697 * inversion only:
698 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
699 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
700 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
701 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
702 *
703 * inversion and center shift:
704 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
705 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
706 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
707 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
708 */
709 if (program->OriginUpperLeft) {
710 /* Fragment shader wants origin in upper-left */
711 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
712 /* the driver supports upper-left origin */
713 }
714 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
715 /* the driver supports lower-left origin, need to invert Y */
716 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
717 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
718 invert = TRUE;
719 }
720 else
721 assert(0);
722 }
723 else {
724 /* Fragment shader wants origin in lower-left */
725 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
726 /* the driver supports lower-left origin */
727 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
728 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
729 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
730 /* the driver supports upper-left origin, need to invert Y */
731 invert = TRUE;
732 else
733 assert(0);
734 }
735
736 if (program->PixelCenterInteger) {
737 /* Fragment shader wants pixel center integer */
738 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
739 /* the driver supports pixel center integer */
740 adjY[1] = 1.0f;
741 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
742 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
743 }
744 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
745 /* the driver supports pixel center half integer, need to bias X,Y */
746 adjX = -0.5f;
747 adjY[0] = -0.5f;
748 adjY[1] = 0.5f;
749 }
750 else
751 assert(0);
752 }
753 else {
754 /* Fragment shader wants pixel center half integer */
755 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
756 /* the driver supports pixel center half integer */
757 }
758 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
759 /* the driver supports pixel center integer, need to bias X,Y */
760 adjX = adjY[0] = adjY[1] = 0.5f;
761 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
762 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
763 }
764 else
765 assert(0);
766 }
767
768 /* we invert after adjustment so that we avoid the MOV to temporary,
769 * and reuse the adjustment ADD instead */
770 emit_wpos_adjustment(st->ctx, t, program, invert, adjX, adjY);
771 }
772
773
774 /**
775 * Translate Mesa program to TGSI format.
776 * \param program the program to translate
777 * \param numInputs number of input registers used
778 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
779 * input indexes
780 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
781 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
782 * each input
783 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
784 * \param numOutputs number of output registers used
785 * \param outputMapping maps Mesa fragment program outputs to TGSI
786 * generic outputs
787 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
788 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
789 * each output
790 *
791 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
792 */
793 enum pipe_error
794 st_translate_mesa_program(
795 struct gl_context *ctx,
796 uint procType,
797 struct ureg_program *ureg,
798 const struct gl_program *program,
799 GLuint numInputs,
800 const GLuint inputMapping[],
801 const ubyte inputSemanticName[],
802 const ubyte inputSemanticIndex[],
803 const GLuint interpMode[],
804 GLuint numOutputs,
805 const GLuint outputMapping[],
806 const ubyte outputSemanticName[],
807 const ubyte outputSemanticIndex[])
808 {
809 struct st_translate translate, *t;
810 unsigned i;
811 enum pipe_error ret = PIPE_OK;
812
813 assert(numInputs <= ARRAY_SIZE(t->inputs));
814 assert(numOutputs <= ARRAY_SIZE(t->outputs));
815
816 t = &translate;
817 memset(t, 0, sizeof *t);
818
819 t->procType = procType;
820 t->inputMapping = inputMapping;
821 t->outputMapping = outputMapping;
822 t->ureg = ureg;
823
824 /*_mesa_print_program(program);*/
825
826 /*
827 * Declare input attributes.
828 */
829 if (procType == PIPE_SHADER_FRAGMENT) {
830 for (i = 0; i < numInputs; i++) {
831 t->inputs[i] = ureg_DECL_fs_input(ureg,
832 inputSemanticName[i],
833 inputSemanticIndex[i],
834 interpMode[i]);
835 }
836
837 if (program->info.inputs_read & VARYING_BIT_POS) {
838 /* Must do this after setting up t->inputs, and before
839 * emitting constant references, below:
840 */
841 emit_wpos(st_context(ctx), t, program, ureg);
842 }
843
844 /*
845 * Declare output attributes.
846 */
847 for (i = 0; i < numOutputs; i++) {
848 switch (outputSemanticName[i]) {
849 case TGSI_SEMANTIC_POSITION:
850 t->outputs[i] = ureg_DECL_output( ureg,
851 TGSI_SEMANTIC_POSITION, /* Z / Depth */
852 outputSemanticIndex[i] );
853
854 t->outputs[i] = ureg_writemask( t->outputs[i],
855 TGSI_WRITEMASK_Z );
856 break;
857 case TGSI_SEMANTIC_STENCIL:
858 t->outputs[i] = ureg_DECL_output( ureg,
859 TGSI_SEMANTIC_STENCIL, /* Stencil */
860 outputSemanticIndex[i] );
861 t->outputs[i] = ureg_writemask( t->outputs[i],
862 TGSI_WRITEMASK_Y );
863 break;
864 case TGSI_SEMANTIC_COLOR:
865 t->outputs[i] = ureg_DECL_output( ureg,
866 TGSI_SEMANTIC_COLOR,
867 outputSemanticIndex[i] );
868 break;
869 default:
870 debug_assert(0);
871 return 0;
872 }
873 }
874 }
875 else if (procType == PIPE_SHADER_GEOMETRY) {
876 for (i = 0; i < numInputs; i++) {
877 t->inputs[i] = ureg_DECL_input(ureg,
878 inputSemanticName[i],
879 inputSemanticIndex[i], 0, 1);
880 }
881
882 for (i = 0; i < numOutputs; i++) {
883 t->outputs[i] = ureg_DECL_output( ureg,
884 outputSemanticName[i],
885 outputSemanticIndex[i] );
886 }
887 }
888 else {
889 assert(procType == PIPE_SHADER_VERTEX);
890
891 for (i = 0; i < numInputs; i++) {
892 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
893 }
894
895 for (i = 0; i < numOutputs; i++) {
896 t->outputs[i] = ureg_DECL_output( ureg,
897 outputSemanticName[i],
898 outputSemanticIndex[i] );
899 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
900 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
901 ureg_MOV(ureg,
902 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
903 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
904 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
905 }
906 }
907 }
908
909 /* Declare address register.
910 */
911 if (program->arb.NumAddressRegs > 0) {
912 debug_assert( program->arb.NumAddressRegs == 1 );
913 t->address[0] = ureg_DECL_address( ureg );
914 }
915
916 /* Declare misc input registers
917 */
918 {
919 GLbitfield sysInputs = program->info.system_values_read;
920
921 for (i = 0; sysInputs; i++) {
922 if (sysInputs & (1 << i)) {
923 unsigned semName = _mesa_sysval_to_semantic(i);
924
925 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
926
927 if (semName == TGSI_SEMANTIC_INSTANCEID ||
928 semName == TGSI_SEMANTIC_VERTEXID) {
929 /* From Gallium perspective, these system values are always
930 * integer, and require native integer support. However, if
931 * native integer is supported on the vertex stage but not the
932 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
933 * assumes these system values are floats. To resolve the
934 * inconsistency, we insert a U2F.
935 */
936 struct st_context *st = st_context(ctx);
937 struct pipe_screen *pscreen = st->pipe->screen;
938 assert(procType == PIPE_SHADER_VERTEX);
939 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
940 (void) pscreen; /* silence non-debug build warnings */
941 if (!ctx->Const.NativeIntegers) {
942 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
943 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
944 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
945 }
946 }
947
948 if (procType == PIPE_SHADER_FRAGMENT &&
949 semName == TGSI_SEMANTIC_POSITION)
950 emit_wpos(st_context(ctx), t, program, ureg);
951
952 sysInputs &= ~(1 << i);
953 }
954 }
955 }
956
957 if (program->arb.IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
958 /* If temps are accessed with indirect addressing, declare temporaries
959 * in sequential order. Else, we declare them on demand elsewhere.
960 */
961 for (i = 0; i < program->arb.NumTemporaries; i++) {
962 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
963 t->temps[i] = ureg_DECL_temporary( t->ureg );
964 }
965 }
966
967 /* Emit constants and immediates. Mesa uses a single index space
968 * for these, so we put all the translated regs in t->constants.
969 */
970 if (program->Parameters) {
971 t->constants = calloc( program->Parameters->NumParameters,
972 sizeof t->constants[0] );
973 if (t->constants == NULL) {
974 ret = PIPE_ERROR_OUT_OF_MEMORY;
975 goto out;
976 }
977
978 for (i = 0; i < program->Parameters->NumParameters; i++) {
979 switch (program->Parameters->Parameters[i].Type) {
980 case PROGRAM_STATE_VAR:
981 case PROGRAM_UNIFORM:
982 t->constants[i] = ureg_DECL_constant( ureg, i );
983 break;
984
985 /* Emit immediates only when there's no indirect addressing of
986 * the const buffer.
987 * FIXME: Be smarter and recognize param arrays:
988 * indirect addressing is only valid within the referenced
989 * array.
990 */
991 case PROGRAM_CONSTANT:
992 if (program->arb.IndirectRegisterFiles & PROGRAM_ANY_CONST)
993 t->constants[i] = ureg_DECL_constant( ureg, i );
994 else
995 t->constants[i] =
996 ureg_DECL_immediate( ureg,
997 (const float*) program->Parameters->ParameterValues[i],
998 4 );
999 break;
1000 default:
1001 break;
1002 }
1003 }
1004 }
1005
1006 /* texture samplers */
1007 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1008 if (program->SamplersUsed & (1u << i)) {
1009 unsigned target =
1010 translate_texture_index(program->TexturesUsed[i],
1011 !!(program->ShadowSamplers & (1 << i)));
1012 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1013 ureg_DECL_sampler_view(ureg, i, target,
1014 TGSI_RETURN_TYPE_FLOAT,
1015 TGSI_RETURN_TYPE_FLOAT,
1016 TGSI_RETURN_TYPE_FLOAT,
1017 TGSI_RETURN_TYPE_FLOAT);
1018
1019 }
1020 }
1021
1022 /* Emit each instruction in turn:
1023 */
1024 for (i = 0; i < program->arb.NumInstructions; i++)
1025 compile_instruction(ctx, t, &program->arb.Instructions[i]);
1026
1027 out:
1028 free(t->constants);
1029 return ret;
1030 }