st/mesa: add support for ARB_texture_cube_map_array (v2)
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47
48
49 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
50 (1 << PROGRAM_ENV_PARAM) | \
51 (1 << PROGRAM_STATE_VAR) | \
52 (1 << PROGRAM_CONSTANT) | \
53 (1 << PROGRAM_UNIFORM))
54
55
56 struct label {
57 unsigned branch_target;
58 unsigned token;
59 };
60
61
62 /**
63 * Intermediate state used during shader translation.
64 */
65 struct st_translate {
66 struct ureg_program *ureg;
67
68 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
69 struct ureg_src *constants;
70 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
71 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
72 struct ureg_dst address[1];
73 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
74 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
75
76 const GLuint *inputMapping;
77 const GLuint *outputMapping;
78
79 /* For every instruction that contains a label (eg CALL), keep
80 * details so that we can go back afterwards and emit the correct
81 * tgsi instruction number for each label.
82 */
83 struct label *labels;
84 unsigned labels_size;
85 unsigned labels_count;
86
87 /* Keep a record of the tgsi instruction number that each mesa
88 * instruction starts at, will be used to fix up labels after
89 * translation.
90 */
91 unsigned *insn;
92 unsigned insn_size;
93 unsigned insn_count;
94
95 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
96
97 boolean error;
98 };
99
100
101 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
102 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
103 TGSI_SEMANTIC_FACE,
104 TGSI_SEMANTIC_VERTEXID,
105 TGSI_SEMANTIC_INSTANCEID
106 };
107
108
109 /**
110 * Make note of a branch to a label in the TGSI code.
111 * After we've emitted all instructions, we'll go over the list
112 * of labels built here and patch the TGSI code with the actual
113 * location of each label.
114 */
115 static unsigned *get_label( struct st_translate *t,
116 unsigned branch_target )
117 {
118 unsigned i;
119
120 if (t->labels_count + 1 >= t->labels_size) {
121 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
122 t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
123 if (t->labels == NULL) {
124 static unsigned dummy;
125 t->error = TRUE;
126 return &dummy;
127 }
128 }
129
130 i = t->labels_count++;
131 t->labels[i].branch_target = branch_target;
132 return &t->labels[i].token;
133 }
134
135
136 /**
137 * Called prior to emitting the TGSI code for each Mesa instruction.
138 * Allocate additional space for instructions if needed.
139 * Update the insn[] array so the next Mesa instruction points to
140 * the next TGSI instruction.
141 */
142 static void set_insn_start( struct st_translate *t,
143 unsigned start )
144 {
145 if (t->insn_count + 1 >= t->insn_size) {
146 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
147 t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
148 if (t->insn == NULL) {
149 t->error = TRUE;
150 return;
151 }
152 }
153
154 t->insn[t->insn_count++] = start;
155 }
156
157
158 /**
159 * Map a Mesa dst register to a TGSI ureg_dst register.
160 */
161 static struct ureg_dst
162 dst_register( struct st_translate *t,
163 gl_register_file file,
164 GLuint index )
165 {
166 switch( file ) {
167 case PROGRAM_UNDEFINED:
168 return ureg_dst_undef();
169
170 case PROGRAM_TEMPORARY:
171 if (ureg_dst_is_undef(t->temps[index]))
172 t->temps[index] = ureg_DECL_temporary( t->ureg );
173
174 return t->temps[index];
175
176 case PROGRAM_OUTPUT:
177 if (t->procType == TGSI_PROCESSOR_VERTEX)
178 assert(index < VERT_RESULT_MAX);
179 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
180 assert(index < FRAG_RESULT_MAX);
181 else
182 assert(index < GEOM_RESULT_MAX);
183
184 assert(t->outputMapping[index] < Elements(t->outputs));
185
186 return t->outputs[t->outputMapping[index]];
187
188 case PROGRAM_ADDRESS:
189 return t->address[index];
190
191 default:
192 debug_assert( 0 );
193 return ureg_dst_undef();
194 }
195 }
196
197
198 /**
199 * Map a Mesa src register to a TGSI ureg_src register.
200 */
201 static struct ureg_src
202 src_register( struct st_translate *t,
203 gl_register_file file,
204 GLint index )
205 {
206 switch( file ) {
207 case PROGRAM_UNDEFINED:
208 return ureg_src_undef();
209
210 case PROGRAM_TEMPORARY:
211 assert(index >= 0);
212 assert(index < Elements(t->temps));
213 if (ureg_dst_is_undef(t->temps[index]))
214 t->temps[index] = ureg_DECL_temporary( t->ureg );
215 return ureg_src(t->temps[index]);
216
217 case PROGRAM_ENV_PARAM:
218 case PROGRAM_LOCAL_PARAM:
219 case PROGRAM_UNIFORM:
220 assert(index >= 0);
221 return t->constants[index];
222 case PROGRAM_STATE_VAR:
223 case PROGRAM_CONSTANT: /* ie, immediate */
224 if (index < 0)
225 return ureg_DECL_constant( t->ureg, 0 );
226 else
227 return t->constants[index];
228
229 case PROGRAM_INPUT:
230 assert(t->inputMapping[index] < Elements(t->inputs));
231 return t->inputs[t->inputMapping[index]];
232
233 case PROGRAM_OUTPUT:
234 assert(t->outputMapping[index] < Elements(t->outputs));
235 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
236
237 case PROGRAM_ADDRESS:
238 return ureg_src(t->address[index]);
239
240 case PROGRAM_SYSTEM_VALUE:
241 assert(index < Elements(t->systemValues));
242 return t->systemValues[index];
243
244 default:
245 debug_assert( 0 );
246 return ureg_src_undef();
247 }
248 }
249
250
251 /**
252 * Map mesa texture target to TGSI texture target.
253 */
254 unsigned
255 st_translate_texture_target( GLuint textarget,
256 GLboolean shadow )
257 {
258 if (shadow) {
259 switch( textarget ) {
260 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_SHADOW1D;
261 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_SHADOW2D;
262 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_SHADOWRECT;
263 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW1D_ARRAY;
264 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW2D_ARRAY;
265 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_SHADOWCUBE;
266 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
267 default: break;
268 }
269 }
270
271 switch( textarget ) {
272 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_1D;
273 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_2D;
274 case TEXTURE_3D_INDEX: return TGSI_TEXTURE_3D;
275 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_CUBE;
276 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_CUBE_ARRAY;
277 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_RECT;
278 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_1D_ARRAY;
279 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY;
280 case TEXTURE_EXTERNAL_INDEX: return TGSI_TEXTURE_2D;
281 default:
282 debug_assert( 0 );
283 return TGSI_TEXTURE_1D;
284 }
285 }
286
287
288 /**
289 * Create a TGSI ureg_dst register from a Mesa dest register.
290 */
291 static struct ureg_dst
292 translate_dst( struct st_translate *t,
293 const struct prog_dst_register *DstReg,
294 boolean saturate,
295 boolean clamp_color)
296 {
297 struct ureg_dst dst = dst_register( t,
298 DstReg->File,
299 DstReg->Index );
300
301 dst = ureg_writemask( dst,
302 DstReg->WriteMask );
303
304 if (saturate)
305 dst = ureg_saturate( dst );
306 else if (clamp_color && DstReg->File == PROGRAM_OUTPUT) {
307 /* Clamp colors for ARB_color_buffer_float. */
308 switch (t->procType) {
309 case TGSI_PROCESSOR_VERTEX:
310 /* XXX if the geometry shader is present, this must be done there
311 * instead of here. */
312 if (DstReg->Index == VERT_RESULT_COL0 ||
313 DstReg->Index == VERT_RESULT_COL1 ||
314 DstReg->Index == VERT_RESULT_BFC0 ||
315 DstReg->Index == VERT_RESULT_BFC1) {
316 dst = ureg_saturate(dst);
317 }
318 break;
319
320 case TGSI_PROCESSOR_FRAGMENT:
321 if (DstReg->Index >= FRAG_RESULT_COLOR) {
322 dst = ureg_saturate(dst);
323 }
324 break;
325 }
326 }
327
328 if (DstReg->RelAddr)
329 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
330
331 return dst;
332 }
333
334
335 /**
336 * Create a TGSI ureg_src register from a Mesa src register.
337 */
338 static struct ureg_src
339 translate_src( struct st_translate *t,
340 const struct prog_src_register *SrcReg )
341 {
342 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
343
344 if (t->procType == TGSI_PROCESSOR_GEOMETRY && SrcReg->HasIndex2) {
345 src = src_register( t, SrcReg->File, SrcReg->Index2 );
346 if (SrcReg->RelAddr2)
347 src = ureg_src_dimension_indirect( src, ureg_src(t->address[0]),
348 SrcReg->Index);
349 else
350 src = ureg_src_dimension( src, SrcReg->Index);
351 }
352
353 src = ureg_swizzle( src,
354 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
355 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
356 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
357 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
358
359 if (SrcReg->Negate == NEGATE_XYZW)
360 src = ureg_negate(src);
361
362 if (SrcReg->Abs)
363 src = ureg_abs(src);
364
365 if (SrcReg->RelAddr) {
366 src = ureg_src_indirect( src, ureg_src(t->address[0]));
367 if (SrcReg->File != PROGRAM_INPUT &&
368 SrcReg->File != PROGRAM_OUTPUT) {
369 /* If SrcReg->Index was negative, it was set to zero in
370 * src_register(). Reassign it now. But don't do this
371 * for input/output regs since they get remapped while
372 * const buffers don't.
373 */
374 src.Index = SrcReg->Index;
375 }
376 }
377
378 return src;
379 }
380
381
382 static struct ureg_src swizzle_4v( struct ureg_src src,
383 const unsigned *swz )
384 {
385 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
386 }
387
388
389 /**
390 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
391 *
392 * SWZ dst, src.x-y10
393 *
394 * becomes:
395 *
396 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
397 */
398 static void emit_swz( struct st_translate *t,
399 struct ureg_dst dst,
400 const struct prog_src_register *SrcReg )
401 {
402 struct ureg_program *ureg = t->ureg;
403 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
404
405 unsigned negate_mask = SrcReg->Negate;
406
407 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
408 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
409 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
410 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
411
412 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
413 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
414 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
415 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
416
417 unsigned negative_one_mask = one_mask & negate_mask;
418 unsigned positive_one_mask = one_mask & ~negate_mask;
419
420 struct ureg_src imm;
421 unsigned i;
422 unsigned mul_swizzle[4] = {0,0,0,0};
423 unsigned add_swizzle[4] = {0,0,0,0};
424 unsigned src_swizzle[4] = {0,0,0,0};
425 boolean need_add = FALSE;
426 boolean need_mul = FALSE;
427
428 if (dst.WriteMask == 0)
429 return;
430
431 /* Is this just a MOV?
432 */
433 if (zero_mask == 0 &&
434 one_mask == 0 &&
435 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
436 {
437 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
438 return;
439 }
440
441 #define IMM_ZERO 0
442 #define IMM_ONE 1
443 #define IMM_NEG_ONE 2
444
445 imm = ureg_imm3f( ureg, 0, 1, -1 );
446
447 for (i = 0; i < 4; i++) {
448 unsigned bit = 1 << i;
449
450 if (dst.WriteMask & bit) {
451 if (positive_one_mask & bit) {
452 mul_swizzle[i] = IMM_ZERO;
453 add_swizzle[i] = IMM_ONE;
454 need_add = TRUE;
455 }
456 else if (negative_one_mask & bit) {
457 mul_swizzle[i] = IMM_ZERO;
458 add_swizzle[i] = IMM_NEG_ONE;
459 need_add = TRUE;
460 }
461 else if (zero_mask & bit) {
462 mul_swizzle[i] = IMM_ZERO;
463 add_swizzle[i] = IMM_ZERO;
464 need_add = TRUE;
465 }
466 else {
467 add_swizzle[i] = IMM_ZERO;
468 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
469 need_mul = TRUE;
470 if (negate_mask & bit) {
471 mul_swizzle[i] = IMM_NEG_ONE;
472 }
473 else {
474 mul_swizzle[i] = IMM_ONE;
475 }
476 }
477 }
478 }
479
480 if (need_mul && need_add) {
481 ureg_MAD( ureg,
482 dst,
483 swizzle_4v( src, src_swizzle ),
484 swizzle_4v( imm, mul_swizzle ),
485 swizzle_4v( imm, add_swizzle ) );
486 }
487 else if (need_mul) {
488 ureg_MUL( ureg,
489 dst,
490 swizzle_4v( src, src_swizzle ),
491 swizzle_4v( imm, mul_swizzle ) );
492 }
493 else if (need_add) {
494 ureg_MOV( ureg,
495 dst,
496 swizzle_4v( imm, add_swizzle ) );
497 }
498 else {
499 debug_assert(0);
500 }
501
502 #undef IMM_ZERO
503 #undef IMM_ONE
504 #undef IMM_NEG_ONE
505 }
506
507
508 /**
509 * Negate the value of DDY to match GL semantics where (0,0) is the
510 * lower-left corner of the window.
511 * Note that the GL_ARB_fragment_coord_conventions extension will
512 * effect this someday.
513 */
514 static void emit_ddy( struct st_translate *t,
515 struct ureg_dst dst,
516 const struct prog_src_register *SrcReg )
517 {
518 struct ureg_program *ureg = t->ureg;
519 struct ureg_src src = translate_src( t, SrcReg );
520 src = ureg_negate( src );
521 ureg_DDY( ureg, dst, src );
522 }
523
524
525
526 static unsigned
527 translate_opcode( unsigned op )
528 {
529 switch( op ) {
530 case OPCODE_ARL:
531 return TGSI_OPCODE_ARL;
532 case OPCODE_ABS:
533 return TGSI_OPCODE_ABS;
534 case OPCODE_ADD:
535 return TGSI_OPCODE_ADD;
536 case OPCODE_BGNLOOP:
537 return TGSI_OPCODE_BGNLOOP;
538 case OPCODE_BGNSUB:
539 return TGSI_OPCODE_BGNSUB;
540 case OPCODE_BRK:
541 return TGSI_OPCODE_BRK;
542 case OPCODE_CAL:
543 return TGSI_OPCODE_CAL;
544 case OPCODE_CMP:
545 return TGSI_OPCODE_CMP;
546 case OPCODE_CONT:
547 return TGSI_OPCODE_CONT;
548 case OPCODE_COS:
549 return TGSI_OPCODE_COS;
550 case OPCODE_DDX:
551 return TGSI_OPCODE_DDX;
552 case OPCODE_DDY:
553 return TGSI_OPCODE_DDY;
554 case OPCODE_DP2:
555 return TGSI_OPCODE_DP2;
556 case OPCODE_DP2A:
557 return TGSI_OPCODE_DP2A;
558 case OPCODE_DP3:
559 return TGSI_OPCODE_DP3;
560 case OPCODE_DP4:
561 return TGSI_OPCODE_DP4;
562 case OPCODE_DPH:
563 return TGSI_OPCODE_DPH;
564 case OPCODE_DST:
565 return TGSI_OPCODE_DST;
566 case OPCODE_ELSE:
567 return TGSI_OPCODE_ELSE;
568 case OPCODE_ENDIF:
569 return TGSI_OPCODE_ENDIF;
570 case OPCODE_ENDLOOP:
571 return TGSI_OPCODE_ENDLOOP;
572 case OPCODE_ENDSUB:
573 return TGSI_OPCODE_ENDSUB;
574 case OPCODE_EX2:
575 return TGSI_OPCODE_EX2;
576 case OPCODE_EXP:
577 return TGSI_OPCODE_EXP;
578 case OPCODE_FLR:
579 return TGSI_OPCODE_FLR;
580 case OPCODE_FRC:
581 return TGSI_OPCODE_FRC;
582 case OPCODE_IF:
583 return TGSI_OPCODE_IF;
584 case OPCODE_TRUNC:
585 return TGSI_OPCODE_TRUNC;
586 case OPCODE_KIL:
587 return TGSI_OPCODE_KIL;
588 case OPCODE_KIL_NV:
589 return TGSI_OPCODE_KILP;
590 case OPCODE_LG2:
591 return TGSI_OPCODE_LG2;
592 case OPCODE_LOG:
593 return TGSI_OPCODE_LOG;
594 case OPCODE_LIT:
595 return TGSI_OPCODE_LIT;
596 case OPCODE_LRP:
597 return TGSI_OPCODE_LRP;
598 case OPCODE_MAD:
599 return TGSI_OPCODE_MAD;
600 case OPCODE_MAX:
601 return TGSI_OPCODE_MAX;
602 case OPCODE_MIN:
603 return TGSI_OPCODE_MIN;
604 case OPCODE_MOV:
605 return TGSI_OPCODE_MOV;
606 case OPCODE_MUL:
607 return TGSI_OPCODE_MUL;
608 case OPCODE_NOP:
609 return TGSI_OPCODE_NOP;
610 case OPCODE_NRM3:
611 return TGSI_OPCODE_NRM;
612 case OPCODE_NRM4:
613 return TGSI_OPCODE_NRM4;
614 case OPCODE_POW:
615 return TGSI_OPCODE_POW;
616 case OPCODE_RCP:
617 return TGSI_OPCODE_RCP;
618 case OPCODE_RET:
619 return TGSI_OPCODE_RET;
620 case OPCODE_RSQ:
621 return TGSI_OPCODE_RSQ;
622 case OPCODE_SCS:
623 return TGSI_OPCODE_SCS;
624 case OPCODE_SEQ:
625 return TGSI_OPCODE_SEQ;
626 case OPCODE_SGE:
627 return TGSI_OPCODE_SGE;
628 case OPCODE_SGT:
629 return TGSI_OPCODE_SGT;
630 case OPCODE_SIN:
631 return TGSI_OPCODE_SIN;
632 case OPCODE_SLE:
633 return TGSI_OPCODE_SLE;
634 case OPCODE_SLT:
635 return TGSI_OPCODE_SLT;
636 case OPCODE_SNE:
637 return TGSI_OPCODE_SNE;
638 case OPCODE_SSG:
639 return TGSI_OPCODE_SSG;
640 case OPCODE_SUB:
641 return TGSI_OPCODE_SUB;
642 case OPCODE_TEX:
643 return TGSI_OPCODE_TEX;
644 case OPCODE_TXB:
645 return TGSI_OPCODE_TXB;
646 case OPCODE_TXD:
647 return TGSI_OPCODE_TXD;
648 case OPCODE_TXL:
649 return TGSI_OPCODE_TXL;
650 case OPCODE_TXP:
651 return TGSI_OPCODE_TXP;
652 case OPCODE_XPD:
653 return TGSI_OPCODE_XPD;
654 case OPCODE_END:
655 return TGSI_OPCODE_END;
656 default:
657 debug_assert( 0 );
658 return TGSI_OPCODE_NOP;
659 }
660 }
661
662
663 static void
664 compile_instruction(
665 struct st_translate *t,
666 const struct prog_instruction *inst,
667 boolean clamp_dst_color_output)
668 {
669 struct ureg_program *ureg = t->ureg;
670 GLuint i;
671 struct ureg_dst dst[1] = { { 0 } };
672 struct ureg_src src[4];
673 unsigned num_dst;
674 unsigned num_src;
675
676 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
677 num_src = _mesa_num_inst_src_regs( inst->Opcode );
678
679 if (num_dst)
680 dst[0] = translate_dst( t,
681 &inst->DstReg,
682 inst->SaturateMode,
683 clamp_dst_color_output);
684
685 for (i = 0; i < num_src; i++)
686 src[i] = translate_src( t, &inst->SrcReg[i] );
687
688 switch( inst->Opcode ) {
689 case OPCODE_SWZ:
690 emit_swz( t, dst[0], &inst->SrcReg[0] );
691 return;
692
693 case OPCODE_BGNLOOP:
694 case OPCODE_CAL:
695 case OPCODE_ELSE:
696 case OPCODE_ENDLOOP:
697 case OPCODE_IF:
698 debug_assert(num_dst == 0);
699 ureg_label_insn( ureg,
700 translate_opcode( inst->Opcode ),
701 src, num_src,
702 get_label( t, inst->BranchTarget ));
703 return;
704
705 case OPCODE_TEX:
706 case OPCODE_TXB:
707 case OPCODE_TXD:
708 case OPCODE_TXL:
709 case OPCODE_TXP:
710 src[num_src++] = t->samplers[inst->TexSrcUnit];
711 ureg_tex_insn( ureg,
712 translate_opcode( inst->Opcode ),
713 dst, num_dst,
714 st_translate_texture_target( inst->TexSrcTarget,
715 inst->TexShadow ),
716 NULL, 0,
717 src, num_src );
718 return;
719
720 case OPCODE_SCS:
721 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
722 ureg_insn( ureg,
723 translate_opcode( inst->Opcode ),
724 dst, num_dst,
725 src, num_src );
726 break;
727
728 case OPCODE_XPD:
729 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
730 ureg_insn( ureg,
731 translate_opcode( inst->Opcode ),
732 dst, num_dst,
733 src, num_src );
734 break;
735
736 case OPCODE_NOISE1:
737 case OPCODE_NOISE2:
738 case OPCODE_NOISE3:
739 case OPCODE_NOISE4:
740 /* At some point, a motivated person could add a better
741 * implementation of noise. Currently not even the nvidia
742 * binary drivers do anything more than this. In any case, the
743 * place to do this is in the GL state tracker, not the poor
744 * driver.
745 */
746 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
747 break;
748
749 case OPCODE_DDY:
750 emit_ddy( t, dst[0], &inst->SrcReg[0] );
751 break;
752
753 default:
754 ureg_insn( ureg,
755 translate_opcode( inst->Opcode ),
756 dst, num_dst,
757 src, num_src );
758 break;
759 }
760 }
761
762
763 /**
764 * Emit the TGSI instructions for inverting and adjusting WPOS.
765 * This code is unavoidable because it also depends on whether
766 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
767 */
768 static void
769 emit_wpos_adjustment( struct st_translate *t,
770 const struct gl_program *program,
771 boolean invert,
772 GLfloat adjX, GLfloat adjY[2])
773 {
774 struct ureg_program *ureg = t->ureg;
775
776 /* Fragment program uses fragment position input.
777 * Need to replace instances of INPUT[WPOS] with temp T
778 * where T = INPUT[WPOS] by y is inverted.
779 */
780 static const gl_state_index wposTransformState[STATE_LENGTH]
781 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
782
783 /* XXX: note we are modifying the incoming shader here! Need to
784 * do this before emitting the constant decls below, or this
785 * will be missed:
786 */
787 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
788 wposTransformState);
789
790 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
791 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
792 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
793
794 /* First, apply the coordinate shift: */
795 if (adjX || adjY[0] || adjY[1]) {
796 if (adjY[0] != adjY[1]) {
797 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
798 * depending on whether inversion is actually going to be applied
799 * or not, which is determined by testing against the inversion
800 * state variable used below, which will be either +1 or -1.
801 */
802 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
803
804 ureg_CMP(ureg, adj_temp,
805 ureg_scalar(wpostrans, invert ? 2 : 0),
806 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
807 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
808 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
809 } else {
810 ureg_ADD(ureg, wpos_temp, wpos_input,
811 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
812 }
813 wpos_input = ureg_src(wpos_temp);
814 } else {
815 /* MOV wpos_temp, input[wpos]
816 */
817 ureg_MOV( ureg, wpos_temp, wpos_input );
818 }
819
820 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
821 * inversion/identity, or the other way around if we're drawing to an FBO.
822 */
823 if (invert) {
824 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
825 */
826 ureg_MAD( ureg,
827 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
828 wpos_input,
829 ureg_scalar(wpostrans, 0),
830 ureg_scalar(wpostrans, 1));
831 } else {
832 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
833 */
834 ureg_MAD( ureg,
835 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
836 wpos_input,
837 ureg_scalar(wpostrans, 2),
838 ureg_scalar(wpostrans, 3));
839 }
840
841 /* Use wpos_temp as position input from here on:
842 */
843 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
844 }
845
846
847 /**
848 * Emit fragment position/ooordinate code.
849 */
850 static void
851 emit_wpos(struct st_context *st,
852 struct st_translate *t,
853 const struct gl_program *program,
854 struct ureg_program *ureg)
855 {
856 const struct gl_fragment_program *fp =
857 (const struct gl_fragment_program *) program;
858 struct pipe_screen *pscreen = st->pipe->screen;
859 GLfloat adjX = 0.0f;
860 GLfloat adjY[2] = { 0.0f, 0.0f };
861 boolean invert = FALSE;
862
863 /* Query the pixel center conventions supported by the pipe driver and set
864 * adjX, adjY to help out if it cannot handle the requested one internally.
865 *
866 * The bias of the y-coordinate depends on whether y-inversion takes place
867 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
868 * drawing to an FBO (causes additional inversion), and whether the the pipe
869 * driver origin and the requested origin differ (the latter condition is
870 * stored in the 'invert' variable).
871 *
872 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
873 *
874 * center shift only:
875 * i -> h: +0.5
876 * h -> i: -0.5
877 *
878 * inversion only:
879 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
880 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
881 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
882 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
883 *
884 * inversion and center shift:
885 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
886 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
887 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
888 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
889 */
890 if (fp->OriginUpperLeft) {
891 /* Fragment shader wants origin in upper-left */
892 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
893 /* the driver supports upper-left origin */
894 }
895 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
896 /* the driver supports lower-left origin, need to invert Y */
897 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
898 invert = TRUE;
899 }
900 else
901 assert(0);
902 }
903 else {
904 /* Fragment shader wants origin in lower-left */
905 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
906 /* the driver supports lower-left origin */
907 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
908 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
909 /* the driver supports upper-left origin, need to invert Y */
910 invert = TRUE;
911 else
912 assert(0);
913 }
914
915 if (fp->PixelCenterInteger) {
916 /* Fragment shader wants pixel center integer */
917 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
918 /* the driver supports pixel center integer */
919 adjY[1] = 1.0f;
920 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
921 }
922 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
923 /* the driver supports pixel center half integer, need to bias X,Y */
924 adjX = -0.5f;
925 adjY[0] = -0.5f;
926 adjY[1] = 0.5f;
927 }
928 else
929 assert(0);
930 }
931 else {
932 /* Fragment shader wants pixel center half integer */
933 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
934 /* the driver supports pixel center half integer */
935 }
936 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
937 /* the driver supports pixel center integer, need to bias X,Y */
938 adjX = adjY[0] = adjY[1] = 0.5f;
939 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
940 }
941 else
942 assert(0);
943 }
944
945 /* we invert after adjustment so that we avoid the MOV to temporary,
946 * and reuse the adjustment ADD instead */
947 emit_wpos_adjustment(t, program, invert, adjX, adjY);
948 }
949
950
951 /**
952 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
953 * TGSI uses +1 for front, -1 for back.
954 * This function converts the TGSI value to the GL value. Simply clamping/
955 * saturating the value to [0,1] does the job.
956 */
957 static void
958 emit_face_var( struct st_translate *t,
959 const struct gl_program *program )
960 {
961 struct ureg_program *ureg = t->ureg;
962 struct ureg_dst face_temp = ureg_DECL_temporary( ureg );
963 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
964
965 /* MOV_SAT face_temp, input[face]
966 */
967 face_temp = ureg_saturate( face_temp );
968 ureg_MOV( ureg, face_temp, face_input );
969
970 /* Use face_temp as face input from here on:
971 */
972 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
973 }
974
975
976 static void
977 emit_edgeflags( struct st_translate *t,
978 const struct gl_program *program )
979 {
980 struct ureg_program *ureg = t->ureg;
981 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
982 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
983
984 ureg_MOV( ureg, edge_dst, edge_src );
985 }
986
987
988 /**
989 * Translate Mesa program to TGSI format.
990 * \param program the program to translate
991 * \param numInputs number of input registers used
992 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
993 * input indexes
994 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
995 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
996 * each input
997 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
998 * \param numOutputs number of output registers used
999 * \param outputMapping maps Mesa fragment program outputs to TGSI
1000 * generic outputs
1001 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
1002 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
1003 * each output
1004 *
1005 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
1006 */
1007 enum pipe_error
1008 st_translate_mesa_program(
1009 struct gl_context *ctx,
1010 uint procType,
1011 struct ureg_program *ureg,
1012 const struct gl_program *program,
1013 GLuint numInputs,
1014 const GLuint inputMapping[],
1015 const ubyte inputSemanticName[],
1016 const ubyte inputSemanticIndex[],
1017 const GLuint interpMode[],
1018 GLuint numOutputs,
1019 const GLuint outputMapping[],
1020 const ubyte outputSemanticName[],
1021 const ubyte outputSemanticIndex[],
1022 boolean passthrough_edgeflags,
1023 boolean clamp_color)
1024 {
1025 struct st_translate translate, *t;
1026 unsigned i;
1027 enum pipe_error ret = PIPE_OK;
1028
1029 assert(numInputs <= Elements(t->inputs));
1030 assert(numOutputs <= Elements(t->outputs));
1031
1032 t = &translate;
1033 memset(t, 0, sizeof *t);
1034
1035 t->procType = procType;
1036 t->inputMapping = inputMapping;
1037 t->outputMapping = outputMapping;
1038 t->ureg = ureg;
1039
1040 /*_mesa_print_program(program);*/
1041
1042 /*
1043 * Declare input attributes.
1044 */
1045 if (procType == TGSI_PROCESSOR_FRAGMENT) {
1046 for (i = 0; i < numInputs; i++) {
1047 t->inputs[i] = ureg_DECL_fs_input(ureg,
1048 inputSemanticName[i],
1049 inputSemanticIndex[i],
1050 interpMode[i]);
1051 }
1052
1053 if (program->InputsRead & FRAG_BIT_WPOS) {
1054 /* Must do this after setting up t->inputs, and before
1055 * emitting constant references, below:
1056 */
1057 emit_wpos(st_context(ctx), t, program, ureg);
1058 }
1059
1060 if (program->InputsRead & FRAG_BIT_FACE) {
1061 emit_face_var( t, program );
1062 }
1063
1064 /*
1065 * Declare output attributes.
1066 */
1067 for (i = 0; i < numOutputs; i++) {
1068 switch (outputSemanticName[i]) {
1069 case TGSI_SEMANTIC_POSITION:
1070 t->outputs[i] = ureg_DECL_output( ureg,
1071 TGSI_SEMANTIC_POSITION, /* Z / Depth */
1072 outputSemanticIndex[i] );
1073
1074 t->outputs[i] = ureg_writemask( t->outputs[i],
1075 TGSI_WRITEMASK_Z );
1076 break;
1077 case TGSI_SEMANTIC_STENCIL:
1078 t->outputs[i] = ureg_DECL_output( ureg,
1079 TGSI_SEMANTIC_STENCIL, /* Stencil */
1080 outputSemanticIndex[i] );
1081 t->outputs[i] = ureg_writemask( t->outputs[i],
1082 TGSI_WRITEMASK_Y );
1083 break;
1084 case TGSI_SEMANTIC_COLOR:
1085 t->outputs[i] = ureg_DECL_output( ureg,
1086 TGSI_SEMANTIC_COLOR,
1087 outputSemanticIndex[i] );
1088 break;
1089 default:
1090 debug_assert(0);
1091 return 0;
1092 }
1093 }
1094 }
1095 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
1096 for (i = 0; i < numInputs; i++) {
1097 t->inputs[i] = ureg_DECL_gs_input(ureg,
1098 i,
1099 inputSemanticName[i],
1100 inputSemanticIndex[i]);
1101 }
1102
1103 for (i = 0; i < numOutputs; i++) {
1104 t->outputs[i] = ureg_DECL_output( ureg,
1105 outputSemanticName[i],
1106 outputSemanticIndex[i] );
1107 }
1108 }
1109 else {
1110 assert(procType == TGSI_PROCESSOR_VERTEX);
1111
1112 for (i = 0; i < numInputs; i++) {
1113 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1114 }
1115
1116 for (i = 0; i < numOutputs; i++) {
1117 t->outputs[i] = ureg_DECL_output( ureg,
1118 outputSemanticName[i],
1119 outputSemanticIndex[i] );
1120 }
1121 if (passthrough_edgeflags)
1122 emit_edgeflags( t, program );
1123 }
1124
1125 /* Declare address register.
1126 */
1127 if (program->NumAddressRegs > 0) {
1128 debug_assert( program->NumAddressRegs == 1 );
1129 t->address[0] = ureg_DECL_address( ureg );
1130 }
1131
1132 /* Declare misc input registers
1133 */
1134 {
1135 GLbitfield sysInputs = program->SystemValuesRead;
1136 unsigned numSys = 0;
1137 for (i = 0; sysInputs; i++) {
1138 if (sysInputs & (1 << i)) {
1139 unsigned semName = mesa_sysval_to_semantic[i];
1140 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
1141 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1142 semName == TGSI_SEMANTIC_VERTEXID) {
1143 /* From Gallium perspective, these system values are always
1144 * integer, and require native integer support. However, if
1145 * native integer is supported on the vertex stage but not the
1146 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1147 * assumes these system values are floats. To resolve the
1148 * inconsistency, we insert a U2F.
1149 */
1150 struct st_context *st = st_context(ctx);
1151 struct pipe_screen *pscreen = st->pipe->screen;
1152 assert(procType == TGSI_PROCESSOR_VERTEX);
1153 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1154 (void) pscreen; /* silence non-debug build warnings */
1155 if (!ctx->Const.NativeIntegers) {
1156 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1157 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1158 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1159 }
1160 }
1161 numSys++;
1162 sysInputs &= ~(1 << i);
1163 }
1164 }
1165 }
1166
1167 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1168 /* If temps are accessed with indirect addressing, declare temporaries
1169 * in sequential order. Else, we declare them on demand elsewhere.
1170 */
1171 for (i = 0; i < program->NumTemporaries; i++) {
1172 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1173 t->temps[i] = ureg_DECL_temporary( t->ureg );
1174 }
1175 }
1176
1177 /* Emit constants and immediates. Mesa uses a single index space
1178 * for these, so we put all the translated regs in t->constants.
1179 */
1180 if (program->Parameters) {
1181 t->constants = calloc( program->Parameters->NumParameters,
1182 sizeof t->constants[0] );
1183 if (t->constants == NULL) {
1184 ret = PIPE_ERROR_OUT_OF_MEMORY;
1185 goto out;
1186 }
1187
1188 for (i = 0; i < program->Parameters->NumParameters; i++) {
1189 switch (program->Parameters->Parameters[i].Type) {
1190 case PROGRAM_ENV_PARAM:
1191 case PROGRAM_LOCAL_PARAM:
1192 case PROGRAM_STATE_VAR:
1193 case PROGRAM_UNIFORM:
1194 t->constants[i] = ureg_DECL_constant( ureg, i );
1195 break;
1196
1197 /* Emit immediates only when there's no indirect addressing of
1198 * the const buffer.
1199 * FIXME: Be smarter and recognize param arrays:
1200 * indirect addressing is only valid within the referenced
1201 * array.
1202 */
1203 case PROGRAM_CONSTANT:
1204 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1205 t->constants[i] = ureg_DECL_constant( ureg, i );
1206 else
1207 t->constants[i] =
1208 ureg_DECL_immediate( ureg,
1209 (const float*) program->Parameters->ParameterValues[i],
1210 4 );
1211 break;
1212 default:
1213 break;
1214 }
1215 }
1216 }
1217
1218 /* texture samplers */
1219 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
1220 if (program->SamplersUsed & (1 << i)) {
1221 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1222 }
1223 }
1224
1225 /* Emit each instruction in turn:
1226 */
1227 for (i = 0; i < program->NumInstructions; i++) {
1228 set_insn_start( t, ureg_get_instruction_number( ureg ));
1229 compile_instruction( t, &program->Instructions[i], clamp_color );
1230 }
1231
1232 /* Fix up all emitted labels:
1233 */
1234 for (i = 0; i < t->labels_count; i++) {
1235 ureg_fixup_label( ureg,
1236 t->labels[i].token,
1237 t->insn[t->labels[i].branch_target] );
1238 }
1239
1240 out:
1241 free(t->insn);
1242 free(t->labels);
1243 free(t->constants);
1244
1245 if (t->error) {
1246 debug_printf("%s: translate error flag set\n", __FUNCTION__);
1247 }
1248
1249 return ret;
1250 }
1251
1252
1253 /**
1254 * Tokens cannot be free with free otherwise the builtin gallium
1255 * malloc debugging will get confused.
1256 */
1257 void
1258 st_free_tokens(const struct tgsi_token *tokens)
1259 {
1260 ureg_free_tokens(tokens);
1261 }