mesa: move more format helper functions to glformats.c
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47
48
49 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
50 (1 << PROGRAM_ENV_PARAM) | \
51 (1 << PROGRAM_STATE_VAR) | \
52 (1 << PROGRAM_NAMED_PARAM) | \
53 (1 << PROGRAM_CONSTANT) | \
54 (1 << PROGRAM_UNIFORM))
55
56
57 struct label {
58 unsigned branch_target;
59 unsigned token;
60 };
61
62
63 /**
64 * Intermediate state used during shader translation.
65 */
66 struct st_translate {
67 struct ureg_program *ureg;
68
69 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
70 struct ureg_src *constants;
71 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
72 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
73 struct ureg_dst address[1];
74 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
75 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
76
77 const GLuint *inputMapping;
78 const GLuint *outputMapping;
79
80 /* For every instruction that contains a label (eg CALL), keep
81 * details so that we can go back afterwards and emit the correct
82 * tgsi instruction number for each label.
83 */
84 struct label *labels;
85 unsigned labels_size;
86 unsigned labels_count;
87
88 /* Keep a record of the tgsi instruction number that each mesa
89 * instruction starts at, will be used to fix up labels after
90 * translation.
91 */
92 unsigned *insn;
93 unsigned insn_size;
94 unsigned insn_count;
95
96 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
97
98 boolean error;
99 };
100
101
102 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
103 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
104 TGSI_SEMANTIC_FACE,
105 TGSI_SEMANTIC_VERTEXID,
106 TGSI_SEMANTIC_INSTANCEID
107 };
108
109
110 /**
111 * Make note of a branch to a label in the TGSI code.
112 * After we've emitted all instructions, we'll go over the list
113 * of labels built here and patch the TGSI code with the actual
114 * location of each label.
115 */
116 static unsigned *get_label( struct st_translate *t,
117 unsigned branch_target )
118 {
119 unsigned i;
120
121 if (t->labels_count + 1 >= t->labels_size) {
122 unsigned old_size = t->labels_size;
123 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
124 t->labels = REALLOC( t->labels,
125 old_size * sizeof t->labels[0],
126 t->labels_size * sizeof t->labels[0] );
127 if (t->labels == NULL) {
128 static unsigned dummy;
129 t->error = TRUE;
130 return &dummy;
131 }
132 }
133
134 i = t->labels_count++;
135 t->labels[i].branch_target = branch_target;
136 return &t->labels[i].token;
137 }
138
139
140 /**
141 * Called prior to emitting the TGSI code for each Mesa instruction.
142 * Allocate additional space for instructions if needed.
143 * Update the insn[] array so the next Mesa instruction points to
144 * the next TGSI instruction.
145 */
146 static void set_insn_start( struct st_translate *t,
147 unsigned start )
148 {
149 if (t->insn_count + 1 >= t->insn_size) {
150 unsigned old_size = t->insn_size;
151 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
152 t->insn = REALLOC( t->insn,
153 old_size * sizeof t->insn[0],
154 t->insn_size * sizeof t->insn[0] );
155 if (t->insn == NULL) {
156 t->error = TRUE;
157 return;
158 }
159 }
160
161 t->insn[t->insn_count++] = start;
162 }
163
164
165 /**
166 * Map a Mesa dst register to a TGSI ureg_dst register.
167 */
168 static struct ureg_dst
169 dst_register( struct st_translate *t,
170 gl_register_file file,
171 GLuint index )
172 {
173 switch( file ) {
174 case PROGRAM_UNDEFINED:
175 return ureg_dst_undef();
176
177 case PROGRAM_TEMPORARY:
178 if (ureg_dst_is_undef(t->temps[index]))
179 t->temps[index] = ureg_DECL_temporary( t->ureg );
180
181 return t->temps[index];
182
183 case PROGRAM_OUTPUT:
184 if (t->procType == TGSI_PROCESSOR_VERTEX)
185 assert(index < VERT_RESULT_MAX);
186 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
187 assert(index < FRAG_RESULT_MAX);
188 else
189 assert(index < GEOM_RESULT_MAX);
190
191 assert(t->outputMapping[index] < Elements(t->outputs));
192
193 return t->outputs[t->outputMapping[index]];
194
195 case PROGRAM_ADDRESS:
196 return t->address[index];
197
198 default:
199 debug_assert( 0 );
200 return ureg_dst_undef();
201 }
202 }
203
204
205 /**
206 * Map a Mesa src register to a TGSI ureg_src register.
207 */
208 static struct ureg_src
209 src_register( struct st_translate *t,
210 gl_register_file file,
211 GLint index )
212 {
213 switch( file ) {
214 case PROGRAM_UNDEFINED:
215 return ureg_src_undef();
216
217 case PROGRAM_TEMPORARY:
218 assert(index >= 0);
219 assert(index < Elements(t->temps));
220 if (ureg_dst_is_undef(t->temps[index]))
221 t->temps[index] = ureg_DECL_temporary( t->ureg );
222 return ureg_src(t->temps[index]);
223
224 case PROGRAM_NAMED_PARAM:
225 case PROGRAM_ENV_PARAM:
226 case PROGRAM_LOCAL_PARAM:
227 case PROGRAM_UNIFORM:
228 assert(index >= 0);
229 return t->constants[index];
230 case PROGRAM_STATE_VAR:
231 case PROGRAM_CONSTANT: /* ie, immediate */
232 if (index < 0)
233 return ureg_DECL_constant( t->ureg, 0 );
234 else
235 return t->constants[index];
236
237 case PROGRAM_INPUT:
238 assert(t->inputMapping[index] < Elements(t->inputs));
239 return t->inputs[t->inputMapping[index]];
240
241 case PROGRAM_OUTPUT:
242 assert(t->outputMapping[index] < Elements(t->outputs));
243 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
244
245 case PROGRAM_ADDRESS:
246 return ureg_src(t->address[index]);
247
248 case PROGRAM_SYSTEM_VALUE:
249 assert(index < Elements(t->systemValues));
250 return t->systemValues[index];
251
252 default:
253 debug_assert( 0 );
254 return ureg_src_undef();
255 }
256 }
257
258
259 /**
260 * Map mesa texture target to TGSI texture target.
261 */
262 unsigned
263 st_translate_texture_target( GLuint textarget,
264 GLboolean shadow )
265 {
266 if (shadow) {
267 switch( textarget ) {
268 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_SHADOW1D;
269 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_SHADOW2D;
270 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_SHADOWRECT;
271 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW1D_ARRAY;
272 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW2D_ARRAY;
273 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_SHADOWCUBE;
274 default: break;
275 }
276 }
277
278 switch( textarget ) {
279 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_1D;
280 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_2D;
281 case TEXTURE_3D_INDEX: return TGSI_TEXTURE_3D;
282 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_CUBE;
283 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_RECT;
284 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_1D_ARRAY;
285 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY;
286 case TEXTURE_EXTERNAL_INDEX: return TGSI_TEXTURE_2D;
287 default:
288 debug_assert( 0 );
289 return TGSI_TEXTURE_1D;
290 }
291 }
292
293
294 /**
295 * Create a TGSI ureg_dst register from a Mesa dest register.
296 */
297 static struct ureg_dst
298 translate_dst( struct st_translate *t,
299 const struct prog_dst_register *DstReg,
300 boolean saturate,
301 boolean clamp_color)
302 {
303 struct ureg_dst dst = dst_register( t,
304 DstReg->File,
305 DstReg->Index );
306
307 dst = ureg_writemask( dst,
308 DstReg->WriteMask );
309
310 if (saturate)
311 dst = ureg_saturate( dst );
312 else if (clamp_color && DstReg->File == PROGRAM_OUTPUT) {
313 /* Clamp colors for ARB_color_buffer_float. */
314 switch (t->procType) {
315 case TGSI_PROCESSOR_VERTEX:
316 /* XXX if the geometry shader is present, this must be done there
317 * instead of here. */
318 if (DstReg->Index == VERT_RESULT_COL0 ||
319 DstReg->Index == VERT_RESULT_COL1 ||
320 DstReg->Index == VERT_RESULT_BFC0 ||
321 DstReg->Index == VERT_RESULT_BFC1) {
322 dst = ureg_saturate(dst);
323 }
324 break;
325
326 case TGSI_PROCESSOR_FRAGMENT:
327 if (DstReg->Index >= FRAG_RESULT_COLOR) {
328 dst = ureg_saturate(dst);
329 }
330 break;
331 }
332 }
333
334 if (DstReg->RelAddr)
335 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
336
337 return dst;
338 }
339
340
341 /**
342 * Create a TGSI ureg_src register from a Mesa src register.
343 */
344 static struct ureg_src
345 translate_src( struct st_translate *t,
346 const struct prog_src_register *SrcReg )
347 {
348 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
349
350 if (t->procType == TGSI_PROCESSOR_GEOMETRY && SrcReg->HasIndex2) {
351 src = src_register( t, SrcReg->File, SrcReg->Index2 );
352 if (SrcReg->RelAddr2)
353 src = ureg_src_dimension_indirect( src, ureg_src(t->address[0]),
354 SrcReg->Index);
355 else
356 src = ureg_src_dimension( src, SrcReg->Index);
357 }
358
359 src = ureg_swizzle( src,
360 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
361 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
362 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
363 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
364
365 if (SrcReg->Negate == NEGATE_XYZW)
366 src = ureg_negate(src);
367
368 if (SrcReg->Abs)
369 src = ureg_abs(src);
370
371 if (SrcReg->RelAddr) {
372 src = ureg_src_indirect( src, ureg_src(t->address[0]));
373 if (SrcReg->File != PROGRAM_INPUT &&
374 SrcReg->File != PROGRAM_OUTPUT) {
375 /* If SrcReg->Index was negative, it was set to zero in
376 * src_register(). Reassign it now. But don't do this
377 * for input/output regs since they get remapped while
378 * const buffers don't.
379 */
380 src.Index = SrcReg->Index;
381 }
382 }
383
384 return src;
385 }
386
387
388 static struct ureg_src swizzle_4v( struct ureg_src src,
389 const unsigned *swz )
390 {
391 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
392 }
393
394
395 /**
396 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
397 *
398 * SWZ dst, src.x-y10
399 *
400 * becomes:
401 *
402 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
403 */
404 static void emit_swz( struct st_translate *t,
405 struct ureg_dst dst,
406 const struct prog_src_register *SrcReg )
407 {
408 struct ureg_program *ureg = t->ureg;
409 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
410
411 unsigned negate_mask = SrcReg->Negate;
412
413 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
414 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
415 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
416 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
417
418 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
419 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
420 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
421 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
422
423 unsigned negative_one_mask = one_mask & negate_mask;
424 unsigned positive_one_mask = one_mask & ~negate_mask;
425
426 struct ureg_src imm;
427 unsigned i;
428 unsigned mul_swizzle[4] = {0,0,0,0};
429 unsigned add_swizzle[4] = {0,0,0,0};
430 unsigned src_swizzle[4] = {0,0,0,0};
431 boolean need_add = FALSE;
432 boolean need_mul = FALSE;
433
434 if (dst.WriteMask == 0)
435 return;
436
437 /* Is this just a MOV?
438 */
439 if (zero_mask == 0 &&
440 one_mask == 0 &&
441 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
442 {
443 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
444 return;
445 }
446
447 #define IMM_ZERO 0
448 #define IMM_ONE 1
449 #define IMM_NEG_ONE 2
450
451 imm = ureg_imm3f( ureg, 0, 1, -1 );
452
453 for (i = 0; i < 4; i++) {
454 unsigned bit = 1 << i;
455
456 if (dst.WriteMask & bit) {
457 if (positive_one_mask & bit) {
458 mul_swizzle[i] = IMM_ZERO;
459 add_swizzle[i] = IMM_ONE;
460 need_add = TRUE;
461 }
462 else if (negative_one_mask & bit) {
463 mul_swizzle[i] = IMM_ZERO;
464 add_swizzle[i] = IMM_NEG_ONE;
465 need_add = TRUE;
466 }
467 else if (zero_mask & bit) {
468 mul_swizzle[i] = IMM_ZERO;
469 add_swizzle[i] = IMM_ZERO;
470 need_add = TRUE;
471 }
472 else {
473 add_swizzle[i] = IMM_ZERO;
474 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
475 need_mul = TRUE;
476 if (negate_mask & bit) {
477 mul_swizzle[i] = IMM_NEG_ONE;
478 }
479 else {
480 mul_swizzle[i] = IMM_ONE;
481 }
482 }
483 }
484 }
485
486 if (need_mul && need_add) {
487 ureg_MAD( ureg,
488 dst,
489 swizzle_4v( src, src_swizzle ),
490 swizzle_4v( imm, mul_swizzle ),
491 swizzle_4v( imm, add_swizzle ) );
492 }
493 else if (need_mul) {
494 ureg_MUL( ureg,
495 dst,
496 swizzle_4v( src, src_swizzle ),
497 swizzle_4v( imm, mul_swizzle ) );
498 }
499 else if (need_add) {
500 ureg_MOV( ureg,
501 dst,
502 swizzle_4v( imm, add_swizzle ) );
503 }
504 else {
505 debug_assert(0);
506 }
507
508 #undef IMM_ZERO
509 #undef IMM_ONE
510 #undef IMM_NEG_ONE
511 }
512
513
514 /**
515 * Negate the value of DDY to match GL semantics where (0,0) is the
516 * lower-left corner of the window.
517 * Note that the GL_ARB_fragment_coord_conventions extension will
518 * effect this someday.
519 */
520 static void emit_ddy( struct st_translate *t,
521 struct ureg_dst dst,
522 const struct prog_src_register *SrcReg )
523 {
524 struct ureg_program *ureg = t->ureg;
525 struct ureg_src src = translate_src( t, SrcReg );
526 src = ureg_negate( src );
527 ureg_DDY( ureg, dst, src );
528 }
529
530
531
532 static unsigned
533 translate_opcode( unsigned op )
534 {
535 switch( op ) {
536 case OPCODE_ARL:
537 return TGSI_OPCODE_ARL;
538 case OPCODE_ABS:
539 return TGSI_OPCODE_ABS;
540 case OPCODE_ADD:
541 return TGSI_OPCODE_ADD;
542 case OPCODE_BGNLOOP:
543 return TGSI_OPCODE_BGNLOOP;
544 case OPCODE_BGNSUB:
545 return TGSI_OPCODE_BGNSUB;
546 case OPCODE_BRA:
547 return TGSI_OPCODE_BRA;
548 case OPCODE_BRK:
549 return TGSI_OPCODE_BRK;
550 case OPCODE_CAL:
551 return TGSI_OPCODE_CAL;
552 case OPCODE_CMP:
553 return TGSI_OPCODE_CMP;
554 case OPCODE_CONT:
555 return TGSI_OPCODE_CONT;
556 case OPCODE_COS:
557 return TGSI_OPCODE_COS;
558 case OPCODE_DDX:
559 return TGSI_OPCODE_DDX;
560 case OPCODE_DDY:
561 return TGSI_OPCODE_DDY;
562 case OPCODE_DP2:
563 return TGSI_OPCODE_DP2;
564 case OPCODE_DP2A:
565 return TGSI_OPCODE_DP2A;
566 case OPCODE_DP3:
567 return TGSI_OPCODE_DP3;
568 case OPCODE_DP4:
569 return TGSI_OPCODE_DP4;
570 case OPCODE_DPH:
571 return TGSI_OPCODE_DPH;
572 case OPCODE_DST:
573 return TGSI_OPCODE_DST;
574 case OPCODE_ELSE:
575 return TGSI_OPCODE_ELSE;
576 case OPCODE_EMIT_VERTEX:
577 return TGSI_OPCODE_EMIT;
578 case OPCODE_END_PRIMITIVE:
579 return TGSI_OPCODE_ENDPRIM;
580 case OPCODE_ENDIF:
581 return TGSI_OPCODE_ENDIF;
582 case OPCODE_ENDLOOP:
583 return TGSI_OPCODE_ENDLOOP;
584 case OPCODE_ENDSUB:
585 return TGSI_OPCODE_ENDSUB;
586 case OPCODE_EX2:
587 return TGSI_OPCODE_EX2;
588 case OPCODE_EXP:
589 return TGSI_OPCODE_EXP;
590 case OPCODE_FLR:
591 return TGSI_OPCODE_FLR;
592 case OPCODE_FRC:
593 return TGSI_OPCODE_FRC;
594 case OPCODE_IF:
595 return TGSI_OPCODE_IF;
596 case OPCODE_TRUNC:
597 return TGSI_OPCODE_TRUNC;
598 case OPCODE_KIL:
599 return TGSI_OPCODE_KIL;
600 case OPCODE_KIL_NV:
601 return TGSI_OPCODE_KILP;
602 case OPCODE_LG2:
603 return TGSI_OPCODE_LG2;
604 case OPCODE_LOG:
605 return TGSI_OPCODE_LOG;
606 case OPCODE_LIT:
607 return TGSI_OPCODE_LIT;
608 case OPCODE_LRP:
609 return TGSI_OPCODE_LRP;
610 case OPCODE_MAD:
611 return TGSI_OPCODE_MAD;
612 case OPCODE_MAX:
613 return TGSI_OPCODE_MAX;
614 case OPCODE_MIN:
615 return TGSI_OPCODE_MIN;
616 case OPCODE_MOV:
617 return TGSI_OPCODE_MOV;
618 case OPCODE_MUL:
619 return TGSI_OPCODE_MUL;
620 case OPCODE_NOP:
621 return TGSI_OPCODE_NOP;
622 case OPCODE_NRM3:
623 return TGSI_OPCODE_NRM;
624 case OPCODE_NRM4:
625 return TGSI_OPCODE_NRM4;
626 case OPCODE_POW:
627 return TGSI_OPCODE_POW;
628 case OPCODE_RCP:
629 return TGSI_OPCODE_RCP;
630 case OPCODE_RET:
631 return TGSI_OPCODE_RET;
632 case OPCODE_RSQ:
633 return TGSI_OPCODE_RSQ;
634 case OPCODE_SCS:
635 return TGSI_OPCODE_SCS;
636 case OPCODE_SEQ:
637 return TGSI_OPCODE_SEQ;
638 case OPCODE_SGE:
639 return TGSI_OPCODE_SGE;
640 case OPCODE_SGT:
641 return TGSI_OPCODE_SGT;
642 case OPCODE_SIN:
643 return TGSI_OPCODE_SIN;
644 case OPCODE_SLE:
645 return TGSI_OPCODE_SLE;
646 case OPCODE_SLT:
647 return TGSI_OPCODE_SLT;
648 case OPCODE_SNE:
649 return TGSI_OPCODE_SNE;
650 case OPCODE_SSG:
651 return TGSI_OPCODE_SSG;
652 case OPCODE_SUB:
653 return TGSI_OPCODE_SUB;
654 case OPCODE_TEX:
655 return TGSI_OPCODE_TEX;
656 case OPCODE_TXB:
657 return TGSI_OPCODE_TXB;
658 case OPCODE_TXD:
659 return TGSI_OPCODE_TXD;
660 case OPCODE_TXL:
661 return TGSI_OPCODE_TXL;
662 case OPCODE_TXP:
663 return TGSI_OPCODE_TXP;
664 case OPCODE_XPD:
665 return TGSI_OPCODE_XPD;
666 case OPCODE_END:
667 return TGSI_OPCODE_END;
668 default:
669 debug_assert( 0 );
670 return TGSI_OPCODE_NOP;
671 }
672 }
673
674
675 static void
676 compile_instruction(
677 struct st_translate *t,
678 const struct prog_instruction *inst,
679 boolean clamp_dst_color_output)
680 {
681 struct ureg_program *ureg = t->ureg;
682 GLuint i;
683 struct ureg_dst dst[1];
684 struct ureg_src src[4];
685 unsigned num_dst;
686 unsigned num_src;
687
688 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
689 num_src = _mesa_num_inst_src_regs( inst->Opcode );
690
691 if (num_dst)
692 dst[0] = translate_dst( t,
693 &inst->DstReg,
694 inst->SaturateMode,
695 clamp_dst_color_output);
696
697 for (i = 0; i < num_src; i++)
698 src[i] = translate_src( t, &inst->SrcReg[i] );
699
700 switch( inst->Opcode ) {
701 case OPCODE_SWZ:
702 emit_swz( t, dst[0], &inst->SrcReg[0] );
703 return;
704
705 case OPCODE_BGNLOOP:
706 case OPCODE_CAL:
707 case OPCODE_ELSE:
708 case OPCODE_ENDLOOP:
709 case OPCODE_IF:
710 debug_assert(num_dst == 0);
711 ureg_label_insn( ureg,
712 translate_opcode( inst->Opcode ),
713 src, num_src,
714 get_label( t, inst->BranchTarget ));
715 return;
716
717 case OPCODE_TEX:
718 case OPCODE_TXB:
719 case OPCODE_TXD:
720 case OPCODE_TXL:
721 case OPCODE_TXP:
722 src[num_src++] = t->samplers[inst->TexSrcUnit];
723 ureg_tex_insn( ureg,
724 translate_opcode( inst->Opcode ),
725 dst, num_dst,
726 st_translate_texture_target( inst->TexSrcTarget,
727 inst->TexShadow ),
728 NULL, 0,
729 src, num_src );
730 return;
731
732 case OPCODE_SCS:
733 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
734 ureg_insn( ureg,
735 translate_opcode( inst->Opcode ),
736 dst, num_dst,
737 src, num_src );
738 break;
739
740 case OPCODE_XPD:
741 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
742 ureg_insn( ureg,
743 translate_opcode( inst->Opcode ),
744 dst, num_dst,
745 src, num_src );
746 break;
747
748 case OPCODE_NOISE1:
749 case OPCODE_NOISE2:
750 case OPCODE_NOISE3:
751 case OPCODE_NOISE4:
752 /* At some point, a motivated person could add a better
753 * implementation of noise. Currently not even the nvidia
754 * binary drivers do anything more than this. In any case, the
755 * place to do this is in the GL state tracker, not the poor
756 * driver.
757 */
758 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
759 break;
760
761 case OPCODE_DDY:
762 emit_ddy( t, dst[0], &inst->SrcReg[0] );
763 break;
764
765 default:
766 ureg_insn( ureg,
767 translate_opcode( inst->Opcode ),
768 dst, num_dst,
769 src, num_src );
770 break;
771 }
772 }
773
774
775 /**
776 * Emit the TGSI instructions for inverting and adjusting WPOS.
777 * This code is unavoidable because it also depends on whether
778 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
779 */
780 static void
781 emit_wpos_adjustment( struct st_translate *t,
782 const struct gl_program *program,
783 boolean invert,
784 GLfloat adjX, GLfloat adjY[2])
785 {
786 struct ureg_program *ureg = t->ureg;
787
788 /* Fragment program uses fragment position input.
789 * Need to replace instances of INPUT[WPOS] with temp T
790 * where T = INPUT[WPOS] by y is inverted.
791 */
792 static const gl_state_index wposTransformState[STATE_LENGTH]
793 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
794
795 /* XXX: note we are modifying the incoming shader here! Need to
796 * do this before emitting the constant decls below, or this
797 * will be missed:
798 */
799 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
800 wposTransformState);
801
802 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
803 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
804 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
805
806 /* First, apply the coordinate shift: */
807 if (adjX || adjY[0] || adjY[1]) {
808 if (adjY[0] != adjY[1]) {
809 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
810 * depending on whether inversion is actually going to be applied
811 * or not, which is determined by testing against the inversion
812 * state variable used below, which will be either +1 or -1.
813 */
814 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
815
816 ureg_CMP(ureg, adj_temp,
817 ureg_scalar(wpostrans, invert ? 2 : 0),
818 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
819 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
820 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
821 } else {
822 ureg_ADD(ureg, wpos_temp, wpos_input,
823 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
824 }
825 wpos_input = ureg_src(wpos_temp);
826 } else {
827 /* MOV wpos_temp, input[wpos]
828 */
829 ureg_MOV( ureg, wpos_temp, wpos_input );
830 }
831
832 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
833 * inversion/identity, or the other way around if we're drawing to an FBO.
834 */
835 if (invert) {
836 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
837 */
838 ureg_MAD( ureg,
839 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
840 wpos_input,
841 ureg_scalar(wpostrans, 0),
842 ureg_scalar(wpostrans, 1));
843 } else {
844 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
845 */
846 ureg_MAD( ureg,
847 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
848 wpos_input,
849 ureg_scalar(wpostrans, 2),
850 ureg_scalar(wpostrans, 3));
851 }
852
853 /* Use wpos_temp as position input from here on:
854 */
855 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
856 }
857
858
859 /**
860 * Emit fragment position/ooordinate code.
861 */
862 static void
863 emit_wpos(struct st_context *st,
864 struct st_translate *t,
865 const struct gl_program *program,
866 struct ureg_program *ureg)
867 {
868 const struct gl_fragment_program *fp =
869 (const struct gl_fragment_program *) program;
870 struct pipe_screen *pscreen = st->pipe->screen;
871 GLfloat adjX = 0.0f;
872 GLfloat adjY[2] = { 0.0f, 0.0f };
873 boolean invert = FALSE;
874
875 /* Query the pixel center conventions supported by the pipe driver and set
876 * adjX, adjY to help out if it cannot handle the requested one internally.
877 *
878 * The bias of the y-coordinate depends on whether y-inversion takes place
879 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
880 * drawing to an FBO (causes additional inversion), and whether the the pipe
881 * driver origin and the requested origin differ (the latter condition is
882 * stored in the 'invert' variable).
883 *
884 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
885 *
886 * center shift only:
887 * i -> h: +0.5
888 * h -> i: -0.5
889 *
890 * inversion only:
891 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
892 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
893 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
894 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
895 *
896 * inversion and center shift:
897 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
898 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
899 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
900 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
901 */
902 if (fp->OriginUpperLeft) {
903 /* Fragment shader wants origin in upper-left */
904 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
905 /* the driver supports upper-left origin */
906 }
907 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
908 /* the driver supports lower-left origin, need to invert Y */
909 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
910 invert = TRUE;
911 }
912 else
913 assert(0);
914 }
915 else {
916 /* Fragment shader wants origin in lower-left */
917 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
918 /* the driver supports lower-left origin */
919 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
920 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
921 /* the driver supports upper-left origin, need to invert Y */
922 invert = TRUE;
923 else
924 assert(0);
925 }
926
927 if (fp->PixelCenterInteger) {
928 /* Fragment shader wants pixel center integer */
929 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
930 /* the driver supports pixel center integer */
931 adjY[1] = 1.0f;
932 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
933 }
934 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
935 /* the driver supports pixel center half integer, need to bias X,Y */
936 adjX = -0.5f;
937 adjY[0] = -0.5f;
938 adjY[1] = 0.5f;
939 }
940 else
941 assert(0);
942 }
943 else {
944 /* Fragment shader wants pixel center half integer */
945 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
946 /* the driver supports pixel center half integer */
947 }
948 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
949 /* the driver supports pixel center integer, need to bias X,Y */
950 adjX = adjY[0] = adjY[1] = 0.5f;
951 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
952 }
953 else
954 assert(0);
955 }
956
957 /* we invert after adjustment so that we avoid the MOV to temporary,
958 * and reuse the adjustment ADD instead */
959 emit_wpos_adjustment(t, program, invert, adjX, adjY);
960 }
961
962
963 /**
964 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
965 * TGSI uses +1 for front, -1 for back.
966 * This function converts the TGSI value to the GL value. Simply clamping/
967 * saturating the value to [0,1] does the job.
968 */
969 static void
970 emit_face_var( struct st_translate *t,
971 const struct gl_program *program )
972 {
973 struct ureg_program *ureg = t->ureg;
974 struct ureg_dst face_temp = ureg_DECL_temporary( ureg );
975 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
976
977 /* MOV_SAT face_temp, input[face]
978 */
979 face_temp = ureg_saturate( face_temp );
980 ureg_MOV( ureg, face_temp, face_input );
981
982 /* Use face_temp as face input from here on:
983 */
984 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
985 }
986
987
988 static void
989 emit_edgeflags( struct st_translate *t,
990 const struct gl_program *program )
991 {
992 struct ureg_program *ureg = t->ureg;
993 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
994 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
995
996 ureg_MOV( ureg, edge_dst, edge_src );
997 }
998
999
1000 /**
1001 * Translate Mesa program to TGSI format.
1002 * \param program the program to translate
1003 * \param numInputs number of input registers used
1004 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
1005 * input indexes
1006 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
1007 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
1008 * each input
1009 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
1010 * \param numOutputs number of output registers used
1011 * \param outputMapping maps Mesa fragment program outputs to TGSI
1012 * generic outputs
1013 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
1014 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
1015 * each output
1016 *
1017 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
1018 */
1019 enum pipe_error
1020 st_translate_mesa_program(
1021 struct gl_context *ctx,
1022 uint procType,
1023 struct ureg_program *ureg,
1024 const struct gl_program *program,
1025 GLuint numInputs,
1026 const GLuint inputMapping[],
1027 const ubyte inputSemanticName[],
1028 const ubyte inputSemanticIndex[],
1029 const GLuint interpMode[],
1030 GLuint numOutputs,
1031 const GLuint outputMapping[],
1032 const ubyte outputSemanticName[],
1033 const ubyte outputSemanticIndex[],
1034 boolean passthrough_edgeflags,
1035 boolean clamp_color)
1036 {
1037 struct st_translate translate, *t;
1038 unsigned i;
1039 enum pipe_error ret = PIPE_OK;
1040
1041 assert(numInputs <= Elements(t->inputs));
1042 assert(numOutputs <= Elements(t->outputs));
1043
1044 t = &translate;
1045 memset(t, 0, sizeof *t);
1046
1047 t->procType = procType;
1048 t->inputMapping = inputMapping;
1049 t->outputMapping = outputMapping;
1050 t->ureg = ureg;
1051
1052 /*_mesa_print_program(program);*/
1053
1054 /*
1055 * Declare input attributes.
1056 */
1057 if (procType == TGSI_PROCESSOR_FRAGMENT) {
1058 for (i = 0; i < numInputs; i++) {
1059 if (program->InputFlags[0] & PROG_PARAM_BIT_CYL_WRAP) {
1060 t->inputs[i] = ureg_DECL_fs_input_cyl(ureg,
1061 inputSemanticName[i],
1062 inputSemanticIndex[i],
1063 interpMode[i],
1064 TGSI_CYLINDRICAL_WRAP_X);
1065 }
1066 else {
1067 t->inputs[i] = ureg_DECL_fs_input(ureg,
1068 inputSemanticName[i],
1069 inputSemanticIndex[i],
1070 interpMode[i]);
1071 }
1072 }
1073
1074 if (program->InputsRead & FRAG_BIT_WPOS) {
1075 /* Must do this after setting up t->inputs, and before
1076 * emitting constant references, below:
1077 */
1078 emit_wpos(st_context(ctx), t, program, ureg);
1079 }
1080
1081 if (program->InputsRead & FRAG_BIT_FACE) {
1082 emit_face_var( t, program );
1083 }
1084
1085 /*
1086 * Declare output attributes.
1087 */
1088 for (i = 0; i < numOutputs; i++) {
1089 switch (outputSemanticName[i]) {
1090 case TGSI_SEMANTIC_POSITION:
1091 t->outputs[i] = ureg_DECL_output( ureg,
1092 TGSI_SEMANTIC_POSITION, /* Z / Depth */
1093 outputSemanticIndex[i] );
1094
1095 t->outputs[i] = ureg_writemask( t->outputs[i],
1096 TGSI_WRITEMASK_Z );
1097 break;
1098 case TGSI_SEMANTIC_STENCIL:
1099 t->outputs[i] = ureg_DECL_output( ureg,
1100 TGSI_SEMANTIC_STENCIL, /* Stencil */
1101 outputSemanticIndex[i] );
1102 t->outputs[i] = ureg_writemask( t->outputs[i],
1103 TGSI_WRITEMASK_Y );
1104 break;
1105 case TGSI_SEMANTIC_COLOR:
1106 t->outputs[i] = ureg_DECL_output( ureg,
1107 TGSI_SEMANTIC_COLOR,
1108 outputSemanticIndex[i] );
1109 break;
1110 default:
1111 debug_assert(0);
1112 return 0;
1113 }
1114 }
1115 }
1116 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
1117 for (i = 0; i < numInputs; i++) {
1118 t->inputs[i] = ureg_DECL_gs_input(ureg,
1119 i,
1120 inputSemanticName[i],
1121 inputSemanticIndex[i]);
1122 }
1123
1124 for (i = 0; i < numOutputs; i++) {
1125 t->outputs[i] = ureg_DECL_output( ureg,
1126 outputSemanticName[i],
1127 outputSemanticIndex[i] );
1128 }
1129 }
1130 else {
1131 assert(procType == TGSI_PROCESSOR_VERTEX);
1132
1133 for (i = 0; i < numInputs; i++) {
1134 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1135 }
1136
1137 for (i = 0; i < numOutputs; i++) {
1138 t->outputs[i] = ureg_DECL_output( ureg,
1139 outputSemanticName[i],
1140 outputSemanticIndex[i] );
1141 }
1142 if (passthrough_edgeflags)
1143 emit_edgeflags( t, program );
1144 }
1145
1146 /* Declare address register.
1147 */
1148 if (program->NumAddressRegs > 0) {
1149 debug_assert( program->NumAddressRegs == 1 );
1150 t->address[0] = ureg_DECL_address( ureg );
1151 }
1152
1153 /* Declare misc input registers
1154 */
1155 {
1156 GLbitfield sysInputs = program->SystemValuesRead;
1157 unsigned numSys = 0;
1158 for (i = 0; sysInputs; i++) {
1159 if (sysInputs & (1 << i)) {
1160 unsigned semName = mesa_sysval_to_semantic[i];
1161 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
1162 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1163 semName == TGSI_SEMANTIC_VERTEXID) {
1164 /* From Gallium perspective, these system values are always
1165 * integer, and require native integer support. However, if
1166 * native integer is supported on the vertex stage but not the
1167 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1168 * assumes these system values are floats. To resolve the
1169 * inconsistency, we insert a U2F.
1170 */
1171 struct st_context *st = st_context(ctx);
1172 struct pipe_screen *pscreen = st->pipe->screen;
1173 assert(procType == TGSI_PROCESSOR_VERTEX);
1174 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1175 if (!ctx->Const.NativeIntegers) {
1176 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1177 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1178 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1179 }
1180 }
1181 numSys++;
1182 sysInputs &= ~(1 << i);
1183 }
1184 }
1185 }
1186
1187 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1188 /* If temps are accessed with indirect addressing, declare temporaries
1189 * in sequential order. Else, we declare them on demand elsewhere.
1190 */
1191 for (i = 0; i < program->NumTemporaries; i++) {
1192 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1193 t->temps[i] = ureg_DECL_temporary( t->ureg );
1194 }
1195 }
1196
1197 /* Emit constants and immediates. Mesa uses a single index space
1198 * for these, so we put all the translated regs in t->constants.
1199 */
1200 if (program->Parameters) {
1201 t->constants = CALLOC( program->Parameters->NumParameters,
1202 sizeof t->constants[0] );
1203 if (t->constants == NULL) {
1204 ret = PIPE_ERROR_OUT_OF_MEMORY;
1205 goto out;
1206 }
1207
1208 for (i = 0; i < program->Parameters->NumParameters; i++) {
1209 switch (program->Parameters->Parameters[i].Type) {
1210 case PROGRAM_ENV_PARAM:
1211 case PROGRAM_LOCAL_PARAM:
1212 case PROGRAM_STATE_VAR:
1213 case PROGRAM_NAMED_PARAM:
1214 case PROGRAM_UNIFORM:
1215 t->constants[i] = ureg_DECL_constant( ureg, i );
1216 break;
1217
1218 /* Emit immediates only when there's no indirect addressing of
1219 * the const buffer.
1220 * FIXME: Be smarter and recognize param arrays:
1221 * indirect addressing is only valid within the referenced
1222 * array.
1223 */
1224 case PROGRAM_CONSTANT:
1225 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1226 t->constants[i] = ureg_DECL_constant( ureg, i );
1227 else
1228 t->constants[i] =
1229 ureg_DECL_immediate( ureg,
1230 (const float*) program->Parameters->ParameterValues[i],
1231 4 );
1232 break;
1233 default:
1234 break;
1235 }
1236 }
1237 }
1238
1239 /* texture samplers */
1240 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
1241 if (program->SamplersUsed & (1 << i)) {
1242 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1243 }
1244 }
1245
1246 /* Emit each instruction in turn:
1247 */
1248 for (i = 0; i < program->NumInstructions; i++) {
1249 set_insn_start( t, ureg_get_instruction_number( ureg ));
1250 compile_instruction( t, &program->Instructions[i], clamp_color );
1251 }
1252
1253 /* Fix up all emitted labels:
1254 */
1255 for (i = 0; i < t->labels_count; i++) {
1256 ureg_fixup_label( ureg,
1257 t->labels[i].token,
1258 t->insn[t->labels[i].branch_target] );
1259 }
1260
1261 out:
1262 FREE(t->insn);
1263 FREE(t->labels);
1264 FREE(t->constants);
1265
1266 if (t->error) {
1267 debug_printf("%s: translate error flag set\n", __FUNCTION__);
1268 }
1269
1270 return ret;
1271 }
1272
1273
1274 /**
1275 * Tokens cannot be free with free otherwise the builtin gallium
1276 * malloc debugging will get confused.
1277 */
1278 void
1279 st_free_tokens(const struct tgsi_token *tokens)
1280 {
1281 FREE((void *)tokens);
1282 }