i965: Move load_interpolated_input/barycentric_* intrinsics to the top.
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
48
49
50 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
51 (1 << PROGRAM_CONSTANT) | \
52 (1 << PROGRAM_UNIFORM))
53
54
55 struct label {
56 unsigned branch_target;
57 unsigned token;
58 };
59
60
61 /**
62 * Intermediate state used during shader translation.
63 */
64 struct st_translate {
65 struct ureg_program *ureg;
66
67 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
68 struct ureg_src *constants;
69 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
70 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
71 struct ureg_dst address[1];
72 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
73 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
74
75 const GLuint *inputMapping;
76 const GLuint *outputMapping;
77
78 /* For every instruction that contains a label (eg CALL), keep
79 * details so that we can go back afterwards and emit the correct
80 * tgsi instruction number for each label.
81 */
82 struct label *labels;
83 unsigned labels_size;
84 unsigned labels_count;
85
86 /* Keep a record of the tgsi instruction number that each mesa
87 * instruction starts at, will be used to fix up labels after
88 * translation.
89 */
90 unsigned *insn;
91 unsigned insn_size;
92 unsigned insn_count;
93
94 unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
95
96 boolean error;
97 };
98
99
100 /**
101 * Make note of a branch to a label in the TGSI code.
102 * After we've emitted all instructions, we'll go over the list
103 * of labels built here and patch the TGSI code with the actual
104 * location of each label.
105 */
106 static unsigned *get_label( struct st_translate *t,
107 unsigned branch_target )
108 {
109 unsigned i;
110
111 if (t->labels_count + 1 >= t->labels_size) {
112 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
113 t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
114 if (t->labels == NULL) {
115 static unsigned dummy;
116 t->error = TRUE;
117 return &dummy;
118 }
119 }
120
121 i = t->labels_count++;
122 t->labels[i].branch_target = branch_target;
123 return &t->labels[i].token;
124 }
125
126
127 /**
128 * Called prior to emitting the TGSI code for each Mesa instruction.
129 * Allocate additional space for instructions if needed.
130 * Update the insn[] array so the next Mesa instruction points to
131 * the next TGSI instruction.
132 */
133 static void set_insn_start( struct st_translate *t,
134 unsigned start )
135 {
136 if (t->insn_count + 1 >= t->insn_size) {
137 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
138 t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
139 if (t->insn == NULL) {
140 t->error = TRUE;
141 return;
142 }
143 }
144
145 t->insn[t->insn_count++] = start;
146 }
147
148
149 /**
150 * Map a Mesa dst register to a TGSI ureg_dst register.
151 */
152 static struct ureg_dst
153 dst_register( struct st_translate *t,
154 gl_register_file file,
155 GLuint index )
156 {
157 switch( file ) {
158 case PROGRAM_UNDEFINED:
159 return ureg_dst_undef();
160
161 case PROGRAM_TEMPORARY:
162 if (ureg_dst_is_undef(t->temps[index]))
163 t->temps[index] = ureg_DECL_temporary( t->ureg );
164
165 return t->temps[index];
166
167 case PROGRAM_OUTPUT:
168 if (t->procType == PIPE_SHADER_VERTEX)
169 assert(index < VARYING_SLOT_MAX);
170 else if (t->procType == PIPE_SHADER_FRAGMENT)
171 assert(index < FRAG_RESULT_MAX);
172 else
173 assert(index < VARYING_SLOT_MAX);
174
175 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
176
177 return t->outputs[t->outputMapping[index]];
178
179 case PROGRAM_ADDRESS:
180 return t->address[index];
181
182 default:
183 debug_assert( 0 );
184 return ureg_dst_undef();
185 }
186 }
187
188
189 /**
190 * Map a Mesa src register to a TGSI ureg_src register.
191 */
192 static struct ureg_src
193 src_register( struct st_translate *t,
194 gl_register_file file,
195 GLint index )
196 {
197 switch( file ) {
198 case PROGRAM_UNDEFINED:
199 return ureg_src_undef();
200
201 case PROGRAM_TEMPORARY:
202 assert(index >= 0);
203 assert(index < ARRAY_SIZE(t->temps));
204 if (ureg_dst_is_undef(t->temps[index]))
205 t->temps[index] = ureg_DECL_temporary( t->ureg );
206 return ureg_src(t->temps[index]);
207
208 case PROGRAM_UNIFORM:
209 assert(index >= 0);
210 return t->constants[index];
211 case PROGRAM_STATE_VAR:
212 case PROGRAM_CONSTANT: /* ie, immediate */
213 if (index < 0)
214 return ureg_DECL_constant( t->ureg, 0 );
215 else
216 return t->constants[index];
217
218 case PROGRAM_INPUT:
219 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
220 return t->inputs[t->inputMapping[index]];
221
222 case PROGRAM_OUTPUT:
223 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
224 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
225
226 case PROGRAM_ADDRESS:
227 return ureg_src(t->address[index]);
228
229 case PROGRAM_SYSTEM_VALUE:
230 assert(index < ARRAY_SIZE(t->systemValues));
231 return t->systemValues[index];
232
233 default:
234 debug_assert( 0 );
235 return ureg_src_undef();
236 }
237 }
238
239
240 /**
241 * Map mesa texture target to TGSI texture target.
242 */
243 unsigned
244 st_translate_texture_target(GLuint textarget, GLboolean shadow)
245 {
246 if (shadow) {
247 switch (textarget) {
248 case TEXTURE_1D_INDEX:
249 return TGSI_TEXTURE_SHADOW1D;
250 case TEXTURE_2D_INDEX:
251 return TGSI_TEXTURE_SHADOW2D;
252 case TEXTURE_RECT_INDEX:
253 return TGSI_TEXTURE_SHADOWRECT;
254 case TEXTURE_1D_ARRAY_INDEX:
255 return TGSI_TEXTURE_SHADOW1D_ARRAY;
256 case TEXTURE_2D_ARRAY_INDEX:
257 return TGSI_TEXTURE_SHADOW2D_ARRAY;
258 case TEXTURE_CUBE_INDEX:
259 return TGSI_TEXTURE_SHADOWCUBE;
260 case TEXTURE_CUBE_ARRAY_INDEX:
261 return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
262 default:
263 break;
264 }
265 }
266
267 switch (textarget) {
268 case TEXTURE_2D_MULTISAMPLE_INDEX:
269 return TGSI_TEXTURE_2D_MSAA;
270 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
271 return TGSI_TEXTURE_2D_ARRAY_MSAA;
272 case TEXTURE_BUFFER_INDEX:
273 return TGSI_TEXTURE_BUFFER;
274 case TEXTURE_1D_INDEX:
275 return TGSI_TEXTURE_1D;
276 case TEXTURE_2D_INDEX:
277 return TGSI_TEXTURE_2D;
278 case TEXTURE_3D_INDEX:
279 return TGSI_TEXTURE_3D;
280 case TEXTURE_CUBE_INDEX:
281 return TGSI_TEXTURE_CUBE;
282 case TEXTURE_CUBE_ARRAY_INDEX:
283 return TGSI_TEXTURE_CUBE_ARRAY;
284 case TEXTURE_RECT_INDEX:
285 return TGSI_TEXTURE_RECT;
286 case TEXTURE_1D_ARRAY_INDEX:
287 return TGSI_TEXTURE_1D_ARRAY;
288 case TEXTURE_2D_ARRAY_INDEX:
289 return TGSI_TEXTURE_2D_ARRAY;
290 case TEXTURE_EXTERNAL_INDEX:
291 return TGSI_TEXTURE_2D;
292 default:
293 debug_assert(!"unexpected texture target index");
294 return TGSI_TEXTURE_1D;
295 }
296 }
297
298
299 /**
300 * Translate a (1 << TEXTURE_x_INDEX) bit into a TGSI_TEXTURE_x enum.
301 */
302 static unsigned
303 translate_texture_index(GLbitfield texBit, bool shadow)
304 {
305 int index = ffs(texBit);
306 assert(index > 0);
307 assert(index - 1 < NUM_TEXTURE_TARGETS);
308 return st_translate_texture_target(index - 1, shadow);
309 }
310
311
312 /**
313 * Create a TGSI ureg_dst register from a Mesa dest register.
314 */
315 static struct ureg_dst
316 translate_dst( struct st_translate *t,
317 const struct prog_dst_register *DstReg,
318 boolean saturate)
319 {
320 struct ureg_dst dst = dst_register( t,
321 DstReg->File,
322 DstReg->Index );
323
324 dst = ureg_writemask( dst,
325 DstReg->WriteMask );
326
327 if (saturate)
328 dst = ureg_saturate( dst );
329
330 if (DstReg->RelAddr)
331 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
332
333 return dst;
334 }
335
336
337 /**
338 * Create a TGSI ureg_src register from a Mesa src register.
339 */
340 static struct ureg_src
341 translate_src( struct st_translate *t,
342 const struct prog_src_register *SrcReg )
343 {
344 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
345
346 src = ureg_swizzle( src,
347 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
348 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
349 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
350 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
351
352 if (SrcReg->Negate == NEGATE_XYZW)
353 src = ureg_negate(src);
354
355 if (SrcReg->RelAddr) {
356 src = ureg_src_indirect( src, ureg_src(t->address[0]));
357 if (SrcReg->File != PROGRAM_INPUT &&
358 SrcReg->File != PROGRAM_OUTPUT) {
359 /* If SrcReg->Index was negative, it was set to zero in
360 * src_register(). Reassign it now. But don't do this
361 * for input/output regs since they get remapped while
362 * const buffers don't.
363 */
364 src.Index = SrcReg->Index;
365 }
366 }
367
368 return src;
369 }
370
371
372 static struct ureg_src swizzle_4v( struct ureg_src src,
373 const unsigned *swz )
374 {
375 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
376 }
377
378
379 /**
380 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
381 *
382 * SWZ dst, src.x-y10
383 *
384 * becomes:
385 *
386 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
387 */
388 static void emit_swz( struct st_translate *t,
389 struct ureg_dst dst,
390 const struct prog_src_register *SrcReg )
391 {
392 struct ureg_program *ureg = t->ureg;
393 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
394
395 unsigned negate_mask = SrcReg->Negate;
396
397 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
398 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
399 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
400 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
401
402 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
403 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
404 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
405 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
406
407 unsigned negative_one_mask = one_mask & negate_mask;
408 unsigned positive_one_mask = one_mask & ~negate_mask;
409
410 struct ureg_src imm;
411 unsigned i;
412 unsigned mul_swizzle[4] = {0,0,0,0};
413 unsigned add_swizzle[4] = {0,0,0,0};
414 unsigned src_swizzle[4] = {0,0,0,0};
415 boolean need_add = FALSE;
416 boolean need_mul = FALSE;
417
418 if (dst.WriteMask == 0)
419 return;
420
421 /* Is this just a MOV?
422 */
423 if (zero_mask == 0 &&
424 one_mask == 0 &&
425 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
426 {
427 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
428 return;
429 }
430
431 #define IMM_ZERO 0
432 #define IMM_ONE 1
433 #define IMM_NEG_ONE 2
434
435 imm = ureg_imm3f( ureg, 0, 1, -1 );
436
437 for (i = 0; i < 4; i++) {
438 unsigned bit = 1 << i;
439
440 if (dst.WriteMask & bit) {
441 if (positive_one_mask & bit) {
442 mul_swizzle[i] = IMM_ZERO;
443 add_swizzle[i] = IMM_ONE;
444 need_add = TRUE;
445 }
446 else if (negative_one_mask & bit) {
447 mul_swizzle[i] = IMM_ZERO;
448 add_swizzle[i] = IMM_NEG_ONE;
449 need_add = TRUE;
450 }
451 else if (zero_mask & bit) {
452 mul_swizzle[i] = IMM_ZERO;
453 add_swizzle[i] = IMM_ZERO;
454 need_add = TRUE;
455 }
456 else {
457 add_swizzle[i] = IMM_ZERO;
458 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
459 need_mul = TRUE;
460 if (negate_mask & bit) {
461 mul_swizzle[i] = IMM_NEG_ONE;
462 }
463 else {
464 mul_swizzle[i] = IMM_ONE;
465 }
466 }
467 }
468 }
469
470 if (need_mul && need_add) {
471 ureg_MAD( ureg,
472 dst,
473 swizzle_4v( src, src_swizzle ),
474 swizzle_4v( imm, mul_swizzle ),
475 swizzle_4v( imm, add_swizzle ) );
476 }
477 else if (need_mul) {
478 ureg_MUL( ureg,
479 dst,
480 swizzle_4v( src, src_swizzle ),
481 swizzle_4v( imm, mul_swizzle ) );
482 }
483 else if (need_add) {
484 ureg_MOV( ureg,
485 dst,
486 swizzle_4v( imm, add_swizzle ) );
487 }
488 else {
489 debug_assert(0);
490 }
491
492 #undef IMM_ZERO
493 #undef IMM_ONE
494 #undef IMM_NEG_ONE
495 }
496
497
498 static unsigned
499 translate_opcode( unsigned op )
500 {
501 switch( op ) {
502 case OPCODE_ARL:
503 return TGSI_OPCODE_ARL;
504 case OPCODE_ABS:
505 return TGSI_OPCODE_ABS;
506 case OPCODE_ADD:
507 return TGSI_OPCODE_ADD;
508 case OPCODE_BGNLOOP:
509 return TGSI_OPCODE_BGNLOOP;
510 case OPCODE_BGNSUB:
511 return TGSI_OPCODE_BGNSUB;
512 case OPCODE_BRK:
513 return TGSI_OPCODE_BRK;
514 case OPCODE_CAL:
515 return TGSI_OPCODE_CAL;
516 case OPCODE_CMP:
517 return TGSI_OPCODE_CMP;
518 case OPCODE_CONT:
519 return TGSI_OPCODE_CONT;
520 case OPCODE_COS:
521 return TGSI_OPCODE_COS;
522 case OPCODE_DDX:
523 return TGSI_OPCODE_DDX;
524 case OPCODE_DDY:
525 return TGSI_OPCODE_DDY;
526 case OPCODE_DP2:
527 return TGSI_OPCODE_DP2;
528 case OPCODE_DP3:
529 return TGSI_OPCODE_DP3;
530 case OPCODE_DP4:
531 return TGSI_OPCODE_DP4;
532 case OPCODE_DPH:
533 return TGSI_OPCODE_DPH;
534 case OPCODE_DST:
535 return TGSI_OPCODE_DST;
536 case OPCODE_ELSE:
537 return TGSI_OPCODE_ELSE;
538 case OPCODE_ENDIF:
539 return TGSI_OPCODE_ENDIF;
540 case OPCODE_ENDLOOP:
541 return TGSI_OPCODE_ENDLOOP;
542 case OPCODE_ENDSUB:
543 return TGSI_OPCODE_ENDSUB;
544 case OPCODE_EX2:
545 return TGSI_OPCODE_EX2;
546 case OPCODE_EXP:
547 return TGSI_OPCODE_EXP;
548 case OPCODE_FLR:
549 return TGSI_OPCODE_FLR;
550 case OPCODE_FRC:
551 return TGSI_OPCODE_FRC;
552 case OPCODE_IF:
553 return TGSI_OPCODE_IF;
554 case OPCODE_TRUNC:
555 return TGSI_OPCODE_TRUNC;
556 case OPCODE_KIL:
557 return TGSI_OPCODE_KILL_IF;
558 case OPCODE_LG2:
559 return TGSI_OPCODE_LG2;
560 case OPCODE_LOG:
561 return TGSI_OPCODE_LOG;
562 case OPCODE_LIT:
563 return TGSI_OPCODE_LIT;
564 case OPCODE_LRP:
565 return TGSI_OPCODE_LRP;
566 case OPCODE_MAD:
567 return TGSI_OPCODE_MAD;
568 case OPCODE_MAX:
569 return TGSI_OPCODE_MAX;
570 case OPCODE_MIN:
571 return TGSI_OPCODE_MIN;
572 case OPCODE_MOV:
573 return TGSI_OPCODE_MOV;
574 case OPCODE_MUL:
575 return TGSI_OPCODE_MUL;
576 case OPCODE_NOP:
577 return TGSI_OPCODE_NOP;
578 case OPCODE_POW:
579 return TGSI_OPCODE_POW;
580 case OPCODE_RCP:
581 return TGSI_OPCODE_RCP;
582 case OPCODE_RET:
583 return TGSI_OPCODE_RET;
584 case OPCODE_SCS:
585 return TGSI_OPCODE_SCS;
586 case OPCODE_SGE:
587 return TGSI_OPCODE_SGE;
588 case OPCODE_SIN:
589 return TGSI_OPCODE_SIN;
590 case OPCODE_SLT:
591 return TGSI_OPCODE_SLT;
592 case OPCODE_SSG:
593 return TGSI_OPCODE_SSG;
594 case OPCODE_SUB:
595 return TGSI_OPCODE_SUB;
596 case OPCODE_TEX:
597 return TGSI_OPCODE_TEX;
598 case OPCODE_TXB:
599 return TGSI_OPCODE_TXB;
600 case OPCODE_TXD:
601 return TGSI_OPCODE_TXD;
602 case OPCODE_TXL:
603 return TGSI_OPCODE_TXL;
604 case OPCODE_TXP:
605 return TGSI_OPCODE_TXP;
606 case OPCODE_XPD:
607 return TGSI_OPCODE_XPD;
608 case OPCODE_END:
609 return TGSI_OPCODE_END;
610 default:
611 debug_assert( 0 );
612 return TGSI_OPCODE_NOP;
613 }
614 }
615
616
617 static void
618 compile_instruction(
619 struct gl_context *ctx,
620 struct st_translate *t,
621 const struct prog_instruction *inst)
622 {
623 struct ureg_program *ureg = t->ureg;
624 GLuint i;
625 struct ureg_dst dst[1] = { { 0 } };
626 struct ureg_src src[4];
627 unsigned num_dst;
628 unsigned num_src;
629
630 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
631 num_src = _mesa_num_inst_src_regs( inst->Opcode );
632
633 if (num_dst)
634 dst[0] = translate_dst( t,
635 &inst->DstReg,
636 inst->Saturate);
637
638 for (i = 0; i < num_src; i++)
639 src[i] = translate_src( t, &inst->SrcReg[i] );
640
641 switch( inst->Opcode ) {
642 case OPCODE_SWZ:
643 emit_swz( t, dst[0], &inst->SrcReg[0] );
644 return;
645
646 case OPCODE_BGNLOOP:
647 case OPCODE_CAL:
648 case OPCODE_ELSE:
649 case OPCODE_ENDLOOP:
650 debug_assert(num_dst == 0);
651 ureg_label_insn( ureg,
652 translate_opcode( inst->Opcode ),
653 src, num_src,
654 get_label( t, inst->BranchTarget ));
655 return;
656
657 case OPCODE_IF:
658 debug_assert(num_dst == 0);
659 ureg_label_insn( ureg,
660 ctx->Const.NativeIntegers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF,
661 src, num_src,
662 get_label( t, inst->BranchTarget ));
663 return;
664
665 case OPCODE_TEX:
666 case OPCODE_TXB:
667 case OPCODE_TXD:
668 case OPCODE_TXL:
669 case OPCODE_TXP:
670 src[num_src++] = t->samplers[inst->TexSrcUnit];
671 ureg_tex_insn( ureg,
672 translate_opcode( inst->Opcode ),
673 dst, num_dst,
674 st_translate_texture_target( inst->TexSrcTarget,
675 inst->TexShadow ),
676 NULL, 0,
677 src, num_src );
678 return;
679
680 case OPCODE_SCS:
681 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
682 ureg_insn( ureg,
683 translate_opcode( inst->Opcode ),
684 dst, num_dst,
685 src, num_src );
686 break;
687
688 case OPCODE_XPD:
689 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
690 ureg_insn( ureg,
691 translate_opcode( inst->Opcode ),
692 dst, num_dst,
693 src, num_src );
694 break;
695
696 case OPCODE_NOISE1:
697 case OPCODE_NOISE2:
698 case OPCODE_NOISE3:
699 case OPCODE_NOISE4:
700 /* At some point, a motivated person could add a better
701 * implementation of noise. Currently not even the nvidia
702 * binary drivers do anything more than this. In any case, the
703 * place to do this is in the GL state tracker, not the poor
704 * driver.
705 */
706 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
707 break;
708
709 case OPCODE_RSQ:
710 ureg_RSQ( ureg, dst[0], ureg_abs(src[0]) );
711 break;
712
713 default:
714 ureg_insn( ureg,
715 translate_opcode( inst->Opcode ),
716 dst, num_dst,
717 src, num_src );
718 break;
719 }
720 }
721
722
723 /**
724 * Emit the TGSI instructions for inverting and adjusting WPOS.
725 * This code is unavoidable because it also depends on whether
726 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
727 */
728 static void
729 emit_wpos_adjustment(struct gl_context *ctx,
730 struct st_translate *t,
731 const struct gl_program *program,
732 boolean invert,
733 GLfloat adjX, GLfloat adjY[2])
734 {
735 struct ureg_program *ureg = t->ureg;
736
737 /* Fragment program uses fragment position input.
738 * Need to replace instances of INPUT[WPOS] with temp T
739 * where T = INPUT[WPOS] by y is inverted.
740 */
741 static const gl_state_index wposTransformState[STATE_LENGTH]
742 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
743
744 /* XXX: note we are modifying the incoming shader here! Need to
745 * do this before emitting the constant decls below, or this
746 * will be missed:
747 */
748 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
749 wposTransformState);
750
751 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
752 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
753 struct ureg_src *wpos =
754 ctx->Const.GLSLFragCoordIsSysVal ?
755 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
756 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
757 struct ureg_src wpos_input = *wpos;
758
759 /* First, apply the coordinate shift: */
760 if (adjX || adjY[0] || adjY[1]) {
761 if (adjY[0] != adjY[1]) {
762 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
763 * depending on whether inversion is actually going to be applied
764 * or not, which is determined by testing against the inversion
765 * state variable used below, which will be either +1 or -1.
766 */
767 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
768
769 ureg_CMP(ureg, adj_temp,
770 ureg_scalar(wpostrans, invert ? 2 : 0),
771 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
772 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
773 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
774 } else {
775 ureg_ADD(ureg, wpos_temp, wpos_input,
776 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
777 }
778 wpos_input = ureg_src(wpos_temp);
779 } else {
780 /* MOV wpos_temp, input[wpos]
781 */
782 ureg_MOV( ureg, wpos_temp, wpos_input );
783 }
784
785 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
786 * inversion/identity, or the other way around if we're drawing to an FBO.
787 */
788 if (invert) {
789 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
790 */
791 ureg_MAD( ureg,
792 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
793 wpos_input,
794 ureg_scalar(wpostrans, 0),
795 ureg_scalar(wpostrans, 1));
796 } else {
797 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
798 */
799 ureg_MAD( ureg,
800 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
801 wpos_input,
802 ureg_scalar(wpostrans, 2),
803 ureg_scalar(wpostrans, 3));
804 }
805
806 /* Use wpos_temp as position input from here on:
807 */
808 *wpos = ureg_src(wpos_temp);
809 }
810
811
812 /**
813 * Emit fragment position/coordinate code.
814 */
815 static void
816 emit_wpos(struct st_context *st,
817 struct st_translate *t,
818 const struct gl_program *program,
819 struct ureg_program *ureg)
820 {
821 const struct gl_fragment_program *fp =
822 (const struct gl_fragment_program *) program;
823 struct pipe_screen *pscreen = st->pipe->screen;
824 GLfloat adjX = 0.0f;
825 GLfloat adjY[2] = { 0.0f, 0.0f };
826 boolean invert = FALSE;
827
828 /* Query the pixel center conventions supported by the pipe driver and set
829 * adjX, adjY to help out if it cannot handle the requested one internally.
830 *
831 * The bias of the y-coordinate depends on whether y-inversion takes place
832 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
833 * drawing to an FBO (causes additional inversion), and whether the pipe
834 * driver origin and the requested origin differ (the latter condition is
835 * stored in the 'invert' variable).
836 *
837 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
838 *
839 * center shift only:
840 * i -> h: +0.5
841 * h -> i: -0.5
842 *
843 * inversion only:
844 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
845 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
846 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
847 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
848 *
849 * inversion and center shift:
850 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
851 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
852 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
853 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
854 */
855 if (fp->OriginUpperLeft) {
856 /* Fragment shader wants origin in upper-left */
857 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
858 /* the driver supports upper-left origin */
859 }
860 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
861 /* the driver supports lower-left origin, need to invert Y */
862 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
863 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
864 invert = TRUE;
865 }
866 else
867 assert(0);
868 }
869 else {
870 /* Fragment shader wants origin in lower-left */
871 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
872 /* the driver supports lower-left origin */
873 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
874 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
875 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
876 /* the driver supports upper-left origin, need to invert Y */
877 invert = TRUE;
878 else
879 assert(0);
880 }
881
882 if (fp->PixelCenterInteger) {
883 /* Fragment shader wants pixel center integer */
884 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
885 /* the driver supports pixel center integer */
886 adjY[1] = 1.0f;
887 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
888 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
889 }
890 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
891 /* the driver supports pixel center half integer, need to bias X,Y */
892 adjX = -0.5f;
893 adjY[0] = -0.5f;
894 adjY[1] = 0.5f;
895 }
896 else
897 assert(0);
898 }
899 else {
900 /* Fragment shader wants pixel center half integer */
901 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
902 /* the driver supports pixel center half integer */
903 }
904 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
905 /* the driver supports pixel center integer, need to bias X,Y */
906 adjX = adjY[0] = adjY[1] = 0.5f;
907 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
908 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
909 }
910 else
911 assert(0);
912 }
913
914 /* we invert after adjustment so that we avoid the MOV to temporary,
915 * and reuse the adjustment ADD instead */
916 emit_wpos_adjustment(st->ctx, t, program, invert, adjX, adjY);
917 }
918
919
920 /**
921 * Translate Mesa program to TGSI format.
922 * \param program the program to translate
923 * \param numInputs number of input registers used
924 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
925 * input indexes
926 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
927 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
928 * each input
929 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
930 * \param numOutputs number of output registers used
931 * \param outputMapping maps Mesa fragment program outputs to TGSI
932 * generic outputs
933 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
934 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
935 * each output
936 *
937 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
938 */
939 enum pipe_error
940 st_translate_mesa_program(
941 struct gl_context *ctx,
942 uint procType,
943 struct ureg_program *ureg,
944 const struct gl_program *program,
945 GLuint numInputs,
946 const GLuint inputMapping[],
947 const ubyte inputSemanticName[],
948 const ubyte inputSemanticIndex[],
949 const GLuint interpMode[],
950 GLuint numOutputs,
951 const GLuint outputMapping[],
952 const ubyte outputSemanticName[],
953 const ubyte outputSemanticIndex[])
954 {
955 struct st_translate translate, *t;
956 unsigned i;
957 enum pipe_error ret = PIPE_OK;
958
959 assert(numInputs <= ARRAY_SIZE(t->inputs));
960 assert(numOutputs <= ARRAY_SIZE(t->outputs));
961
962 t = &translate;
963 memset(t, 0, sizeof *t);
964
965 t->procType = procType;
966 t->inputMapping = inputMapping;
967 t->outputMapping = outputMapping;
968 t->ureg = ureg;
969
970 /*_mesa_print_program(program);*/
971
972 /*
973 * Declare input attributes.
974 */
975 if (procType == PIPE_SHADER_FRAGMENT) {
976 for (i = 0; i < numInputs; i++) {
977 t->inputs[i] = ureg_DECL_fs_input(ureg,
978 inputSemanticName[i],
979 inputSemanticIndex[i],
980 interpMode[i]);
981 }
982
983 if (program->InputsRead & VARYING_BIT_POS) {
984 /* Must do this after setting up t->inputs, and before
985 * emitting constant references, below:
986 */
987 emit_wpos(st_context(ctx), t, program, ureg);
988 }
989
990 /*
991 * Declare output attributes.
992 */
993 for (i = 0; i < numOutputs; i++) {
994 switch (outputSemanticName[i]) {
995 case TGSI_SEMANTIC_POSITION:
996 t->outputs[i] = ureg_DECL_output( ureg,
997 TGSI_SEMANTIC_POSITION, /* Z / Depth */
998 outputSemanticIndex[i] );
999
1000 t->outputs[i] = ureg_writemask( t->outputs[i],
1001 TGSI_WRITEMASK_Z );
1002 break;
1003 case TGSI_SEMANTIC_STENCIL:
1004 t->outputs[i] = ureg_DECL_output( ureg,
1005 TGSI_SEMANTIC_STENCIL, /* Stencil */
1006 outputSemanticIndex[i] );
1007 t->outputs[i] = ureg_writemask( t->outputs[i],
1008 TGSI_WRITEMASK_Y );
1009 break;
1010 case TGSI_SEMANTIC_COLOR:
1011 t->outputs[i] = ureg_DECL_output( ureg,
1012 TGSI_SEMANTIC_COLOR,
1013 outputSemanticIndex[i] );
1014 break;
1015 default:
1016 debug_assert(0);
1017 return 0;
1018 }
1019 }
1020 }
1021 else if (procType == PIPE_SHADER_GEOMETRY) {
1022 for (i = 0; i < numInputs; i++) {
1023 t->inputs[i] = ureg_DECL_input(ureg,
1024 inputSemanticName[i],
1025 inputSemanticIndex[i], 0, 1);
1026 }
1027
1028 for (i = 0; i < numOutputs; i++) {
1029 t->outputs[i] = ureg_DECL_output( ureg,
1030 outputSemanticName[i],
1031 outputSemanticIndex[i] );
1032 }
1033 }
1034 else {
1035 assert(procType == PIPE_SHADER_VERTEX);
1036
1037 for (i = 0; i < numInputs; i++) {
1038 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1039 }
1040
1041 for (i = 0; i < numOutputs; i++) {
1042 t->outputs[i] = ureg_DECL_output( ureg,
1043 outputSemanticName[i],
1044 outputSemanticIndex[i] );
1045 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
1046 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
1047 ureg_MOV(ureg,
1048 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
1049 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
1050 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
1051 }
1052 }
1053 }
1054
1055 /* Declare address register.
1056 */
1057 if (program->NumAddressRegs > 0) {
1058 debug_assert( program->NumAddressRegs == 1 );
1059 t->address[0] = ureg_DECL_address( ureg );
1060 }
1061
1062 /* Declare misc input registers
1063 */
1064 {
1065 GLbitfield sysInputs = program->SystemValuesRead;
1066
1067 for (i = 0; sysInputs; i++) {
1068 if (sysInputs & (1 << i)) {
1069 unsigned semName = _mesa_sysval_to_semantic(i);
1070
1071 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
1072
1073 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1074 semName == TGSI_SEMANTIC_VERTEXID) {
1075 /* From Gallium perspective, these system values are always
1076 * integer, and require native integer support. However, if
1077 * native integer is supported on the vertex stage but not the
1078 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1079 * assumes these system values are floats. To resolve the
1080 * inconsistency, we insert a U2F.
1081 */
1082 struct st_context *st = st_context(ctx);
1083 struct pipe_screen *pscreen = st->pipe->screen;
1084 assert(procType == PIPE_SHADER_VERTEX);
1085 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1086 (void) pscreen; /* silence non-debug build warnings */
1087 if (!ctx->Const.NativeIntegers) {
1088 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1089 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1090 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1091 }
1092 }
1093
1094 if (procType == PIPE_SHADER_FRAGMENT &&
1095 semName == TGSI_SEMANTIC_POSITION)
1096 emit_wpos(st_context(ctx), t, program, ureg);
1097
1098 sysInputs &= ~(1 << i);
1099 }
1100 }
1101 }
1102
1103 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1104 /* If temps are accessed with indirect addressing, declare temporaries
1105 * in sequential order. Else, we declare them on demand elsewhere.
1106 */
1107 for (i = 0; i < program->NumTemporaries; i++) {
1108 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1109 t->temps[i] = ureg_DECL_temporary( t->ureg );
1110 }
1111 }
1112
1113 /* Emit constants and immediates. Mesa uses a single index space
1114 * for these, so we put all the translated regs in t->constants.
1115 */
1116 if (program->Parameters) {
1117 t->constants = calloc( program->Parameters->NumParameters,
1118 sizeof t->constants[0] );
1119 if (t->constants == NULL) {
1120 ret = PIPE_ERROR_OUT_OF_MEMORY;
1121 goto out;
1122 }
1123
1124 for (i = 0; i < program->Parameters->NumParameters; i++) {
1125 switch (program->Parameters->Parameters[i].Type) {
1126 case PROGRAM_STATE_VAR:
1127 case PROGRAM_UNIFORM:
1128 t->constants[i] = ureg_DECL_constant( ureg, i );
1129 break;
1130
1131 /* Emit immediates only when there's no indirect addressing of
1132 * the const buffer.
1133 * FIXME: Be smarter and recognize param arrays:
1134 * indirect addressing is only valid within the referenced
1135 * array.
1136 */
1137 case PROGRAM_CONSTANT:
1138 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1139 t->constants[i] = ureg_DECL_constant( ureg, i );
1140 else
1141 t->constants[i] =
1142 ureg_DECL_immediate( ureg,
1143 (const float*) program->Parameters->ParameterValues[i],
1144 4 );
1145 break;
1146 default:
1147 break;
1148 }
1149 }
1150 }
1151
1152 /* texture samplers */
1153 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1154 if (program->SamplersUsed & (1u << i)) {
1155 unsigned target =
1156 translate_texture_index(program->TexturesUsed[i],
1157 !!(program->ShadowSamplers & (1 << i)));
1158 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1159 ureg_DECL_sampler_view(ureg, i, target,
1160 TGSI_RETURN_TYPE_FLOAT,
1161 TGSI_RETURN_TYPE_FLOAT,
1162 TGSI_RETURN_TYPE_FLOAT,
1163 TGSI_RETURN_TYPE_FLOAT);
1164
1165 }
1166 }
1167
1168 /* Emit each instruction in turn:
1169 */
1170 for (i = 0; i < program->NumInstructions; i++) {
1171 set_insn_start( t, ureg_get_instruction_number( ureg ));
1172 compile_instruction(ctx, t, &program->Instructions[i]);
1173 }
1174
1175 /* Fix up all emitted labels:
1176 */
1177 for (i = 0; i < t->labels_count; i++) {
1178 ureg_fixup_label( ureg,
1179 t->labels[i].token,
1180 t->insn[t->labels[i].branch_target] );
1181 }
1182
1183 out:
1184 free(t->insn);
1185 free(t->labels);
1186 free(t->constants);
1187
1188 if (t->error) {
1189 debug_printf("%s: translate error flag set\n", __func__);
1190 }
1191
1192 return ret;
1193 }