st/mesa: emit sampler view declarations for ARB vert/frag programs
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
48
49
50 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
51 (1 << PROGRAM_CONSTANT) | \
52 (1 << PROGRAM_UNIFORM))
53
54
55 struct label {
56 unsigned branch_target;
57 unsigned token;
58 };
59
60
61 /**
62 * Intermediate state used during shader translation.
63 */
64 struct st_translate {
65 struct ureg_program *ureg;
66
67 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
68 struct ureg_src *constants;
69 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
70 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
71 struct ureg_dst address[1];
72 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
73 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
74
75 const GLuint *inputMapping;
76 const GLuint *outputMapping;
77
78 /* For every instruction that contains a label (eg CALL), keep
79 * details so that we can go back afterwards and emit the correct
80 * tgsi instruction number for each label.
81 */
82 struct label *labels;
83 unsigned labels_size;
84 unsigned labels_count;
85
86 /* Keep a record of the tgsi instruction number that each mesa
87 * instruction starts at, will be used to fix up labels after
88 * translation.
89 */
90 unsigned *insn;
91 unsigned insn_size;
92 unsigned insn_count;
93
94 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
95
96 boolean error;
97 };
98
99
100 /**
101 * Make note of a branch to a label in the TGSI code.
102 * After we've emitted all instructions, we'll go over the list
103 * of labels built here and patch the TGSI code with the actual
104 * location of each label.
105 */
106 static unsigned *get_label( struct st_translate *t,
107 unsigned branch_target )
108 {
109 unsigned i;
110
111 if (t->labels_count + 1 >= t->labels_size) {
112 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
113 t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
114 if (t->labels == NULL) {
115 static unsigned dummy;
116 t->error = TRUE;
117 return &dummy;
118 }
119 }
120
121 i = t->labels_count++;
122 t->labels[i].branch_target = branch_target;
123 return &t->labels[i].token;
124 }
125
126
127 /**
128 * Called prior to emitting the TGSI code for each Mesa instruction.
129 * Allocate additional space for instructions if needed.
130 * Update the insn[] array so the next Mesa instruction points to
131 * the next TGSI instruction.
132 */
133 static void set_insn_start( struct st_translate *t,
134 unsigned start )
135 {
136 if (t->insn_count + 1 >= t->insn_size) {
137 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
138 t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
139 if (t->insn == NULL) {
140 t->error = TRUE;
141 return;
142 }
143 }
144
145 t->insn[t->insn_count++] = start;
146 }
147
148
149 /**
150 * Map a Mesa dst register to a TGSI ureg_dst register.
151 */
152 static struct ureg_dst
153 dst_register( struct st_translate *t,
154 gl_register_file file,
155 GLuint index )
156 {
157 switch( file ) {
158 case PROGRAM_UNDEFINED:
159 return ureg_dst_undef();
160
161 case PROGRAM_TEMPORARY:
162 if (ureg_dst_is_undef(t->temps[index]))
163 t->temps[index] = ureg_DECL_temporary( t->ureg );
164
165 return t->temps[index];
166
167 case PROGRAM_OUTPUT:
168 if (t->procType == TGSI_PROCESSOR_VERTEX)
169 assert(index < VARYING_SLOT_MAX);
170 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
171 assert(index < FRAG_RESULT_MAX);
172 else
173 assert(index < VARYING_SLOT_MAX);
174
175 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
176
177 return t->outputs[t->outputMapping[index]];
178
179 case PROGRAM_ADDRESS:
180 return t->address[index];
181
182 default:
183 debug_assert( 0 );
184 return ureg_dst_undef();
185 }
186 }
187
188
189 /**
190 * Map a Mesa src register to a TGSI ureg_src register.
191 */
192 static struct ureg_src
193 src_register( struct st_translate *t,
194 gl_register_file file,
195 GLint index )
196 {
197 switch( file ) {
198 case PROGRAM_UNDEFINED:
199 return ureg_src_undef();
200
201 case PROGRAM_TEMPORARY:
202 assert(index >= 0);
203 assert(index < ARRAY_SIZE(t->temps));
204 if (ureg_dst_is_undef(t->temps[index]))
205 t->temps[index] = ureg_DECL_temporary( t->ureg );
206 return ureg_src(t->temps[index]);
207
208 case PROGRAM_UNIFORM:
209 assert(index >= 0);
210 return t->constants[index];
211 case PROGRAM_STATE_VAR:
212 case PROGRAM_CONSTANT: /* ie, immediate */
213 if (index < 0)
214 return ureg_DECL_constant( t->ureg, 0 );
215 else
216 return t->constants[index];
217
218 case PROGRAM_INPUT:
219 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
220 return t->inputs[t->inputMapping[index]];
221
222 case PROGRAM_OUTPUT:
223 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
224 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
225
226 case PROGRAM_ADDRESS:
227 return ureg_src(t->address[index]);
228
229 case PROGRAM_SYSTEM_VALUE:
230 assert(index < ARRAY_SIZE(t->systemValues));
231 return t->systemValues[index];
232
233 default:
234 debug_assert( 0 );
235 return ureg_src_undef();
236 }
237 }
238
239
240 /**
241 * Map mesa texture target to TGSI texture target.
242 */
243 unsigned
244 st_translate_texture_target(GLuint textarget, GLboolean shadow)
245 {
246 if (shadow) {
247 switch (textarget) {
248 case TEXTURE_1D_INDEX:
249 return TGSI_TEXTURE_SHADOW1D;
250 case TEXTURE_2D_INDEX:
251 return TGSI_TEXTURE_SHADOW2D;
252 case TEXTURE_RECT_INDEX:
253 return TGSI_TEXTURE_SHADOWRECT;
254 case TEXTURE_1D_ARRAY_INDEX:
255 return TGSI_TEXTURE_SHADOW1D_ARRAY;
256 case TEXTURE_2D_ARRAY_INDEX:
257 return TGSI_TEXTURE_SHADOW2D_ARRAY;
258 case TEXTURE_CUBE_INDEX:
259 return TGSI_TEXTURE_SHADOWCUBE;
260 case TEXTURE_CUBE_ARRAY_INDEX:
261 return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
262 default:
263 break;
264 }
265 }
266
267 switch (textarget) {
268 case TEXTURE_2D_MULTISAMPLE_INDEX:
269 return TGSI_TEXTURE_2D_MSAA;
270 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
271 return TGSI_TEXTURE_2D_ARRAY_MSAA;
272 case TEXTURE_BUFFER_INDEX:
273 return TGSI_TEXTURE_BUFFER;
274 case TEXTURE_1D_INDEX:
275 return TGSI_TEXTURE_1D;
276 case TEXTURE_2D_INDEX:
277 return TGSI_TEXTURE_2D;
278 case TEXTURE_3D_INDEX:
279 return TGSI_TEXTURE_3D;
280 case TEXTURE_CUBE_INDEX:
281 return TGSI_TEXTURE_CUBE;
282 case TEXTURE_CUBE_ARRAY_INDEX:
283 return TGSI_TEXTURE_CUBE_ARRAY;
284 case TEXTURE_RECT_INDEX:
285 return TGSI_TEXTURE_RECT;
286 case TEXTURE_1D_ARRAY_INDEX:
287 return TGSI_TEXTURE_1D_ARRAY;
288 case TEXTURE_2D_ARRAY_INDEX:
289 return TGSI_TEXTURE_2D_ARRAY;
290 case TEXTURE_EXTERNAL_INDEX:
291 return TGSI_TEXTURE_2D;
292 default:
293 debug_assert(!"unexpected texture target index");
294 return TGSI_TEXTURE_1D;
295 }
296 }
297
298
299 /**
300 * Translate a (1 << TEXTURE_x_INDEX) bit into a TGSI_TEXTURE_x enum.
301 */
302 static unsigned
303 translate_texture_index(GLbitfield texBit, bool shadow)
304 {
305 int index = ffs(texBit);
306 assert(index > 0);
307 assert(index - 1 < NUM_TEXTURE_TARGETS);
308 return st_translate_texture_target(index - 1, shadow);
309 }
310
311
312 /**
313 * Create a TGSI ureg_dst register from a Mesa dest register.
314 */
315 static struct ureg_dst
316 translate_dst( struct st_translate *t,
317 const struct prog_dst_register *DstReg,
318 boolean saturate)
319 {
320 struct ureg_dst dst = dst_register( t,
321 DstReg->File,
322 DstReg->Index );
323
324 dst = ureg_writemask( dst,
325 DstReg->WriteMask );
326
327 if (saturate)
328 dst = ureg_saturate( dst );
329
330 if (DstReg->RelAddr)
331 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
332
333 return dst;
334 }
335
336
337 /**
338 * Create a TGSI ureg_src register from a Mesa src register.
339 */
340 static struct ureg_src
341 translate_src( struct st_translate *t,
342 const struct prog_src_register *SrcReg )
343 {
344 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
345
346 src = ureg_swizzle( src,
347 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
348 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
349 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
350 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
351
352 if (SrcReg->Negate == NEGATE_XYZW)
353 src = ureg_negate(src);
354
355 if (SrcReg->RelAddr) {
356 src = ureg_src_indirect( src, ureg_src(t->address[0]));
357 if (SrcReg->File != PROGRAM_INPUT &&
358 SrcReg->File != PROGRAM_OUTPUT) {
359 /* If SrcReg->Index was negative, it was set to zero in
360 * src_register(). Reassign it now. But don't do this
361 * for input/output regs since they get remapped while
362 * const buffers don't.
363 */
364 src.Index = SrcReg->Index;
365 }
366 }
367
368 return src;
369 }
370
371
372 static struct ureg_src swizzle_4v( struct ureg_src src,
373 const unsigned *swz )
374 {
375 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
376 }
377
378
379 /**
380 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
381 *
382 * SWZ dst, src.x-y10
383 *
384 * becomes:
385 *
386 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
387 */
388 static void emit_swz( struct st_translate *t,
389 struct ureg_dst dst,
390 const struct prog_src_register *SrcReg )
391 {
392 struct ureg_program *ureg = t->ureg;
393 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
394
395 unsigned negate_mask = SrcReg->Negate;
396
397 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
398 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
399 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
400 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
401
402 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
403 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
404 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
405 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
406
407 unsigned negative_one_mask = one_mask & negate_mask;
408 unsigned positive_one_mask = one_mask & ~negate_mask;
409
410 struct ureg_src imm;
411 unsigned i;
412 unsigned mul_swizzle[4] = {0,0,0,0};
413 unsigned add_swizzle[4] = {0,0,0,0};
414 unsigned src_swizzle[4] = {0,0,0,0};
415 boolean need_add = FALSE;
416 boolean need_mul = FALSE;
417
418 if (dst.WriteMask == 0)
419 return;
420
421 /* Is this just a MOV?
422 */
423 if (zero_mask == 0 &&
424 one_mask == 0 &&
425 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
426 {
427 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
428 return;
429 }
430
431 #define IMM_ZERO 0
432 #define IMM_ONE 1
433 #define IMM_NEG_ONE 2
434
435 imm = ureg_imm3f( ureg, 0, 1, -1 );
436
437 for (i = 0; i < 4; i++) {
438 unsigned bit = 1 << i;
439
440 if (dst.WriteMask & bit) {
441 if (positive_one_mask & bit) {
442 mul_swizzle[i] = IMM_ZERO;
443 add_swizzle[i] = IMM_ONE;
444 need_add = TRUE;
445 }
446 else if (negative_one_mask & bit) {
447 mul_swizzle[i] = IMM_ZERO;
448 add_swizzle[i] = IMM_NEG_ONE;
449 need_add = TRUE;
450 }
451 else if (zero_mask & bit) {
452 mul_swizzle[i] = IMM_ZERO;
453 add_swizzle[i] = IMM_ZERO;
454 need_add = TRUE;
455 }
456 else {
457 add_swizzle[i] = IMM_ZERO;
458 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
459 need_mul = TRUE;
460 if (negate_mask & bit) {
461 mul_swizzle[i] = IMM_NEG_ONE;
462 }
463 else {
464 mul_swizzle[i] = IMM_ONE;
465 }
466 }
467 }
468 }
469
470 if (need_mul && need_add) {
471 ureg_MAD( ureg,
472 dst,
473 swizzle_4v( src, src_swizzle ),
474 swizzle_4v( imm, mul_swizzle ),
475 swizzle_4v( imm, add_swizzle ) );
476 }
477 else if (need_mul) {
478 ureg_MUL( ureg,
479 dst,
480 swizzle_4v( src, src_swizzle ),
481 swizzle_4v( imm, mul_swizzle ) );
482 }
483 else if (need_add) {
484 ureg_MOV( ureg,
485 dst,
486 swizzle_4v( imm, add_swizzle ) );
487 }
488 else {
489 debug_assert(0);
490 }
491
492 #undef IMM_ZERO
493 #undef IMM_ONE
494 #undef IMM_NEG_ONE
495 }
496
497
498 static unsigned
499 translate_opcode( unsigned op )
500 {
501 switch( op ) {
502 case OPCODE_ARL:
503 return TGSI_OPCODE_ARL;
504 case OPCODE_ABS:
505 return TGSI_OPCODE_ABS;
506 case OPCODE_ADD:
507 return TGSI_OPCODE_ADD;
508 case OPCODE_BGNLOOP:
509 return TGSI_OPCODE_BGNLOOP;
510 case OPCODE_BGNSUB:
511 return TGSI_OPCODE_BGNSUB;
512 case OPCODE_BRK:
513 return TGSI_OPCODE_BRK;
514 case OPCODE_CAL:
515 return TGSI_OPCODE_CAL;
516 case OPCODE_CMP:
517 return TGSI_OPCODE_CMP;
518 case OPCODE_CONT:
519 return TGSI_OPCODE_CONT;
520 case OPCODE_COS:
521 return TGSI_OPCODE_COS;
522 case OPCODE_DDX:
523 return TGSI_OPCODE_DDX;
524 case OPCODE_DDY:
525 return TGSI_OPCODE_DDY;
526 case OPCODE_DP2:
527 return TGSI_OPCODE_DP2;
528 case OPCODE_DP3:
529 return TGSI_OPCODE_DP3;
530 case OPCODE_DP4:
531 return TGSI_OPCODE_DP4;
532 case OPCODE_DPH:
533 return TGSI_OPCODE_DPH;
534 case OPCODE_DST:
535 return TGSI_OPCODE_DST;
536 case OPCODE_ELSE:
537 return TGSI_OPCODE_ELSE;
538 case OPCODE_ENDIF:
539 return TGSI_OPCODE_ENDIF;
540 case OPCODE_ENDLOOP:
541 return TGSI_OPCODE_ENDLOOP;
542 case OPCODE_ENDSUB:
543 return TGSI_OPCODE_ENDSUB;
544 case OPCODE_EX2:
545 return TGSI_OPCODE_EX2;
546 case OPCODE_EXP:
547 return TGSI_OPCODE_EXP;
548 case OPCODE_FLR:
549 return TGSI_OPCODE_FLR;
550 case OPCODE_FRC:
551 return TGSI_OPCODE_FRC;
552 case OPCODE_IF:
553 return TGSI_OPCODE_IF;
554 case OPCODE_TRUNC:
555 return TGSI_OPCODE_TRUNC;
556 case OPCODE_KIL:
557 return TGSI_OPCODE_KILL_IF;
558 case OPCODE_LG2:
559 return TGSI_OPCODE_LG2;
560 case OPCODE_LOG:
561 return TGSI_OPCODE_LOG;
562 case OPCODE_LIT:
563 return TGSI_OPCODE_LIT;
564 case OPCODE_LRP:
565 return TGSI_OPCODE_LRP;
566 case OPCODE_MAD:
567 return TGSI_OPCODE_MAD;
568 case OPCODE_MAX:
569 return TGSI_OPCODE_MAX;
570 case OPCODE_MIN:
571 return TGSI_OPCODE_MIN;
572 case OPCODE_MOV:
573 return TGSI_OPCODE_MOV;
574 case OPCODE_MUL:
575 return TGSI_OPCODE_MUL;
576 case OPCODE_NOP:
577 return TGSI_OPCODE_NOP;
578 case OPCODE_POW:
579 return TGSI_OPCODE_POW;
580 case OPCODE_RCP:
581 return TGSI_OPCODE_RCP;
582 case OPCODE_RET:
583 return TGSI_OPCODE_RET;
584 case OPCODE_SCS:
585 return TGSI_OPCODE_SCS;
586 case OPCODE_SEQ:
587 return TGSI_OPCODE_SEQ;
588 case OPCODE_SGE:
589 return TGSI_OPCODE_SGE;
590 case OPCODE_SGT:
591 return TGSI_OPCODE_SGT;
592 case OPCODE_SIN:
593 return TGSI_OPCODE_SIN;
594 case OPCODE_SLE:
595 return TGSI_OPCODE_SLE;
596 case OPCODE_SLT:
597 return TGSI_OPCODE_SLT;
598 case OPCODE_SNE:
599 return TGSI_OPCODE_SNE;
600 case OPCODE_SSG:
601 return TGSI_OPCODE_SSG;
602 case OPCODE_SUB:
603 return TGSI_OPCODE_SUB;
604 case OPCODE_TEX:
605 return TGSI_OPCODE_TEX;
606 case OPCODE_TXB:
607 return TGSI_OPCODE_TXB;
608 case OPCODE_TXD:
609 return TGSI_OPCODE_TXD;
610 case OPCODE_TXL:
611 return TGSI_OPCODE_TXL;
612 case OPCODE_TXP:
613 return TGSI_OPCODE_TXP;
614 case OPCODE_XPD:
615 return TGSI_OPCODE_XPD;
616 case OPCODE_END:
617 return TGSI_OPCODE_END;
618 default:
619 debug_assert( 0 );
620 return TGSI_OPCODE_NOP;
621 }
622 }
623
624
625 static void
626 compile_instruction(
627 struct gl_context *ctx,
628 struct st_translate *t,
629 const struct prog_instruction *inst)
630 {
631 struct ureg_program *ureg = t->ureg;
632 GLuint i;
633 struct ureg_dst dst[1] = { { 0 } };
634 struct ureg_src src[4];
635 unsigned num_dst;
636 unsigned num_src;
637
638 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
639 num_src = _mesa_num_inst_src_regs( inst->Opcode );
640
641 if (num_dst)
642 dst[0] = translate_dst( t,
643 &inst->DstReg,
644 inst->Saturate);
645
646 for (i = 0; i < num_src; i++)
647 src[i] = translate_src( t, &inst->SrcReg[i] );
648
649 switch( inst->Opcode ) {
650 case OPCODE_SWZ:
651 emit_swz( t, dst[0], &inst->SrcReg[0] );
652 return;
653
654 case OPCODE_BGNLOOP:
655 case OPCODE_CAL:
656 case OPCODE_ELSE:
657 case OPCODE_ENDLOOP:
658 debug_assert(num_dst == 0);
659 ureg_label_insn( ureg,
660 translate_opcode( inst->Opcode ),
661 src, num_src,
662 get_label( t, inst->BranchTarget ));
663 return;
664
665 case OPCODE_IF:
666 debug_assert(num_dst == 0);
667 ureg_label_insn( ureg,
668 ctx->Const.NativeIntegers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF,
669 src, num_src,
670 get_label( t, inst->BranchTarget ));
671 return;
672
673 case OPCODE_TEX:
674 case OPCODE_TXB:
675 case OPCODE_TXD:
676 case OPCODE_TXL:
677 case OPCODE_TXP:
678 src[num_src++] = t->samplers[inst->TexSrcUnit];
679 ureg_tex_insn( ureg,
680 translate_opcode( inst->Opcode ),
681 dst, num_dst,
682 st_translate_texture_target( inst->TexSrcTarget,
683 inst->TexShadow ),
684 NULL, 0,
685 src, num_src );
686 return;
687
688 case OPCODE_SCS:
689 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
690 ureg_insn( ureg,
691 translate_opcode( inst->Opcode ),
692 dst, num_dst,
693 src, num_src );
694 break;
695
696 case OPCODE_XPD:
697 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
698 ureg_insn( ureg,
699 translate_opcode( inst->Opcode ),
700 dst, num_dst,
701 src, num_src );
702 break;
703
704 case OPCODE_NOISE1:
705 case OPCODE_NOISE2:
706 case OPCODE_NOISE3:
707 case OPCODE_NOISE4:
708 /* At some point, a motivated person could add a better
709 * implementation of noise. Currently not even the nvidia
710 * binary drivers do anything more than this. In any case, the
711 * place to do this is in the GL state tracker, not the poor
712 * driver.
713 */
714 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
715 break;
716
717 case OPCODE_RSQ:
718 ureg_RSQ( ureg, dst[0], ureg_abs(src[0]) );
719 break;
720
721 default:
722 ureg_insn( ureg,
723 translate_opcode( inst->Opcode ),
724 dst, num_dst,
725 src, num_src );
726 break;
727 }
728 }
729
730
731 /**
732 * Emit the TGSI instructions for inverting and adjusting WPOS.
733 * This code is unavoidable because it also depends on whether
734 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
735 */
736 static void
737 emit_wpos_adjustment(struct gl_context *ctx,
738 struct st_translate *t,
739 const struct gl_program *program,
740 boolean invert,
741 GLfloat adjX, GLfloat adjY[2])
742 {
743 struct ureg_program *ureg = t->ureg;
744
745 /* Fragment program uses fragment position input.
746 * Need to replace instances of INPUT[WPOS] with temp T
747 * where T = INPUT[WPOS] by y is inverted.
748 */
749 static const gl_state_index wposTransformState[STATE_LENGTH]
750 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
751
752 /* XXX: note we are modifying the incoming shader here! Need to
753 * do this before emitting the constant decls below, or this
754 * will be missed:
755 */
756 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
757 wposTransformState);
758
759 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
760 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
761 struct ureg_src *wpos =
762 ctx->Const.GLSLFragCoordIsSysVal ?
763 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
764 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
765 struct ureg_src wpos_input = *wpos;
766
767 /* First, apply the coordinate shift: */
768 if (adjX || adjY[0] || adjY[1]) {
769 if (adjY[0] != adjY[1]) {
770 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
771 * depending on whether inversion is actually going to be applied
772 * or not, which is determined by testing against the inversion
773 * state variable used below, which will be either +1 or -1.
774 */
775 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
776
777 ureg_CMP(ureg, adj_temp,
778 ureg_scalar(wpostrans, invert ? 2 : 0),
779 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
780 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
781 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
782 } else {
783 ureg_ADD(ureg, wpos_temp, wpos_input,
784 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
785 }
786 wpos_input = ureg_src(wpos_temp);
787 } else {
788 /* MOV wpos_temp, input[wpos]
789 */
790 ureg_MOV( ureg, wpos_temp, wpos_input );
791 }
792
793 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
794 * inversion/identity, or the other way around if we're drawing to an FBO.
795 */
796 if (invert) {
797 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
798 */
799 ureg_MAD( ureg,
800 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
801 wpos_input,
802 ureg_scalar(wpostrans, 0),
803 ureg_scalar(wpostrans, 1));
804 } else {
805 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
806 */
807 ureg_MAD( ureg,
808 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
809 wpos_input,
810 ureg_scalar(wpostrans, 2),
811 ureg_scalar(wpostrans, 3));
812 }
813
814 /* Use wpos_temp as position input from here on:
815 */
816 *wpos = ureg_src(wpos_temp);
817 }
818
819
820 /**
821 * Emit fragment position/coordinate code.
822 */
823 static void
824 emit_wpos(struct st_context *st,
825 struct st_translate *t,
826 const struct gl_program *program,
827 struct ureg_program *ureg)
828 {
829 const struct gl_fragment_program *fp =
830 (const struct gl_fragment_program *) program;
831 struct pipe_screen *pscreen = st->pipe->screen;
832 GLfloat adjX = 0.0f;
833 GLfloat adjY[2] = { 0.0f, 0.0f };
834 boolean invert = FALSE;
835
836 /* Query the pixel center conventions supported by the pipe driver and set
837 * adjX, adjY to help out if it cannot handle the requested one internally.
838 *
839 * The bias of the y-coordinate depends on whether y-inversion takes place
840 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
841 * drawing to an FBO (causes additional inversion), and whether the the pipe
842 * driver origin and the requested origin differ (the latter condition is
843 * stored in the 'invert' variable).
844 *
845 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
846 *
847 * center shift only:
848 * i -> h: +0.5
849 * h -> i: -0.5
850 *
851 * inversion only:
852 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
853 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
854 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
855 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
856 *
857 * inversion and center shift:
858 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
859 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
860 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
861 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
862 */
863 if (fp->OriginUpperLeft) {
864 /* Fragment shader wants origin in upper-left */
865 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
866 /* the driver supports upper-left origin */
867 }
868 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
869 /* the driver supports lower-left origin, need to invert Y */
870 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
871 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
872 invert = TRUE;
873 }
874 else
875 assert(0);
876 }
877 else {
878 /* Fragment shader wants origin in lower-left */
879 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
880 /* the driver supports lower-left origin */
881 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
882 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
883 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
884 /* the driver supports upper-left origin, need to invert Y */
885 invert = TRUE;
886 else
887 assert(0);
888 }
889
890 if (fp->PixelCenterInteger) {
891 /* Fragment shader wants pixel center integer */
892 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
893 /* the driver supports pixel center integer */
894 adjY[1] = 1.0f;
895 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
896 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
897 }
898 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
899 /* the driver supports pixel center half integer, need to bias X,Y */
900 adjX = -0.5f;
901 adjY[0] = -0.5f;
902 adjY[1] = 0.5f;
903 }
904 else
905 assert(0);
906 }
907 else {
908 /* Fragment shader wants pixel center half integer */
909 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
910 /* the driver supports pixel center half integer */
911 }
912 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
913 /* the driver supports pixel center integer, need to bias X,Y */
914 adjX = adjY[0] = adjY[1] = 0.5f;
915 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
916 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
917 }
918 else
919 assert(0);
920 }
921
922 /* we invert after adjustment so that we avoid the MOV to temporary,
923 * and reuse the adjustment ADD instead */
924 emit_wpos_adjustment(st->ctx, t, program, invert, adjX, adjY);
925 }
926
927
928 /**
929 * Translate Mesa program to TGSI format.
930 * \param program the program to translate
931 * \param numInputs number of input registers used
932 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
933 * input indexes
934 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
935 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
936 * each input
937 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
938 * \param numOutputs number of output registers used
939 * \param outputMapping maps Mesa fragment program outputs to TGSI
940 * generic outputs
941 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
942 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
943 * each output
944 *
945 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
946 */
947 enum pipe_error
948 st_translate_mesa_program(
949 struct gl_context *ctx,
950 uint procType,
951 struct ureg_program *ureg,
952 const struct gl_program *program,
953 GLuint numInputs,
954 const GLuint inputMapping[],
955 const ubyte inputSemanticName[],
956 const ubyte inputSemanticIndex[],
957 const GLuint interpMode[],
958 GLuint numOutputs,
959 const GLuint outputMapping[],
960 const ubyte outputSemanticName[],
961 const ubyte outputSemanticIndex[])
962 {
963 struct st_translate translate, *t;
964 unsigned i;
965 enum pipe_error ret = PIPE_OK;
966
967 assert(numInputs <= ARRAY_SIZE(t->inputs));
968 assert(numOutputs <= ARRAY_SIZE(t->outputs));
969
970 t = &translate;
971 memset(t, 0, sizeof *t);
972
973 t->procType = procType;
974 t->inputMapping = inputMapping;
975 t->outputMapping = outputMapping;
976 t->ureg = ureg;
977
978 /*_mesa_print_program(program);*/
979
980 /*
981 * Declare input attributes.
982 */
983 if (procType == TGSI_PROCESSOR_FRAGMENT) {
984 for (i = 0; i < numInputs; i++) {
985 t->inputs[i] = ureg_DECL_fs_input(ureg,
986 inputSemanticName[i],
987 inputSemanticIndex[i],
988 interpMode[i]);
989 }
990
991 if (program->InputsRead & VARYING_BIT_POS) {
992 /* Must do this after setting up t->inputs, and before
993 * emitting constant references, below:
994 */
995 emit_wpos(st_context(ctx), t, program, ureg);
996 }
997
998 /*
999 * Declare output attributes.
1000 */
1001 for (i = 0; i < numOutputs; i++) {
1002 switch (outputSemanticName[i]) {
1003 case TGSI_SEMANTIC_POSITION:
1004 t->outputs[i] = ureg_DECL_output( ureg,
1005 TGSI_SEMANTIC_POSITION, /* Z / Depth */
1006 outputSemanticIndex[i] );
1007
1008 t->outputs[i] = ureg_writemask( t->outputs[i],
1009 TGSI_WRITEMASK_Z );
1010 break;
1011 case TGSI_SEMANTIC_STENCIL:
1012 t->outputs[i] = ureg_DECL_output( ureg,
1013 TGSI_SEMANTIC_STENCIL, /* Stencil */
1014 outputSemanticIndex[i] );
1015 t->outputs[i] = ureg_writemask( t->outputs[i],
1016 TGSI_WRITEMASK_Y );
1017 break;
1018 case TGSI_SEMANTIC_COLOR:
1019 t->outputs[i] = ureg_DECL_output( ureg,
1020 TGSI_SEMANTIC_COLOR,
1021 outputSemanticIndex[i] );
1022 break;
1023 default:
1024 debug_assert(0);
1025 return 0;
1026 }
1027 }
1028 }
1029 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
1030 for (i = 0; i < numInputs; i++) {
1031 t->inputs[i] = ureg_DECL_input(ureg,
1032 inputSemanticName[i],
1033 inputSemanticIndex[i], 0, 1);
1034 }
1035
1036 for (i = 0; i < numOutputs; i++) {
1037 t->outputs[i] = ureg_DECL_output( ureg,
1038 outputSemanticName[i],
1039 outputSemanticIndex[i] );
1040 }
1041 }
1042 else {
1043 assert(procType == TGSI_PROCESSOR_VERTEX);
1044
1045 for (i = 0; i < numInputs; i++) {
1046 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1047 }
1048
1049 for (i = 0; i < numOutputs; i++) {
1050 t->outputs[i] = ureg_DECL_output( ureg,
1051 outputSemanticName[i],
1052 outputSemanticIndex[i] );
1053 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
1054 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
1055 ureg_MOV(ureg,
1056 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
1057 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
1058 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
1059 }
1060 }
1061 }
1062
1063 /* Declare address register.
1064 */
1065 if (program->NumAddressRegs > 0) {
1066 debug_assert( program->NumAddressRegs == 1 );
1067 t->address[0] = ureg_DECL_address( ureg );
1068 }
1069
1070 /* Declare misc input registers
1071 */
1072 {
1073 GLbitfield sysInputs = program->SystemValuesRead;
1074
1075 for (i = 0; sysInputs; i++) {
1076 if (sysInputs & (1 << i)) {
1077 unsigned semName = _mesa_sysval_to_semantic[i];
1078
1079 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
1080
1081 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1082 semName == TGSI_SEMANTIC_VERTEXID) {
1083 /* From Gallium perspective, these system values are always
1084 * integer, and require native integer support. However, if
1085 * native integer is supported on the vertex stage but not the
1086 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1087 * assumes these system values are floats. To resolve the
1088 * inconsistency, we insert a U2F.
1089 */
1090 struct st_context *st = st_context(ctx);
1091 struct pipe_screen *pscreen = st->pipe->screen;
1092 assert(procType == TGSI_PROCESSOR_VERTEX);
1093 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1094 (void) pscreen; /* silence non-debug build warnings */
1095 if (!ctx->Const.NativeIntegers) {
1096 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1097 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1098 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1099 }
1100 }
1101
1102 if (procType == TGSI_PROCESSOR_FRAGMENT &&
1103 semName == TGSI_SEMANTIC_POSITION)
1104 emit_wpos(st_context(ctx), t, program, ureg);
1105
1106 sysInputs &= ~(1 << i);
1107 }
1108 }
1109 }
1110
1111 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1112 /* If temps are accessed with indirect addressing, declare temporaries
1113 * in sequential order. Else, we declare them on demand elsewhere.
1114 */
1115 for (i = 0; i < program->NumTemporaries; i++) {
1116 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1117 t->temps[i] = ureg_DECL_temporary( t->ureg );
1118 }
1119 }
1120
1121 /* Emit constants and immediates. Mesa uses a single index space
1122 * for these, so we put all the translated regs in t->constants.
1123 */
1124 if (program->Parameters) {
1125 t->constants = calloc( program->Parameters->NumParameters,
1126 sizeof t->constants[0] );
1127 if (t->constants == NULL) {
1128 ret = PIPE_ERROR_OUT_OF_MEMORY;
1129 goto out;
1130 }
1131
1132 for (i = 0; i < program->Parameters->NumParameters; i++) {
1133 switch (program->Parameters->Parameters[i].Type) {
1134 case PROGRAM_STATE_VAR:
1135 case PROGRAM_UNIFORM:
1136 t->constants[i] = ureg_DECL_constant( ureg, i );
1137 break;
1138
1139 /* Emit immediates only when there's no indirect addressing of
1140 * the const buffer.
1141 * FIXME: Be smarter and recognize param arrays:
1142 * indirect addressing is only valid within the referenced
1143 * array.
1144 */
1145 case PROGRAM_CONSTANT:
1146 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1147 t->constants[i] = ureg_DECL_constant( ureg, i );
1148 else
1149 t->constants[i] =
1150 ureg_DECL_immediate( ureg,
1151 (const float*) program->Parameters->ParameterValues[i],
1152 4 );
1153 break;
1154 default:
1155 break;
1156 }
1157 }
1158 }
1159
1160 /* texture samplers */
1161 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1162 if (program->SamplersUsed & (1 << i)) {
1163 unsigned target =
1164 translate_texture_index(program->TexturesUsed[i],
1165 !!(program->ShadowSamplers & (1 << i)));
1166 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1167 ureg_DECL_sampler_view(ureg, i, target,
1168 TGSI_RETURN_TYPE_FLOAT,
1169 TGSI_RETURN_TYPE_FLOAT,
1170 TGSI_RETURN_TYPE_FLOAT,
1171 TGSI_RETURN_TYPE_FLOAT);
1172
1173 }
1174 }
1175
1176 /* Emit each instruction in turn:
1177 */
1178 for (i = 0; i < program->NumInstructions; i++) {
1179 set_insn_start( t, ureg_get_instruction_number( ureg ));
1180 compile_instruction(ctx, t, &program->Instructions[i]);
1181 }
1182
1183 /* Fix up all emitted labels:
1184 */
1185 for (i = 0; i < t->labels_count; i++) {
1186 ureg_fixup_label( ureg,
1187 t->labels[i].token,
1188 t->insn[t->labels[i].branch_target] );
1189 }
1190
1191 out:
1192 free(t->insn);
1193 free(t->labels);
1194 free(t->constants);
1195
1196 if (t->error) {
1197 debug_printf("%s: translate error flag set\n", __func__);
1198 }
1199
1200 return ret;
1201 }