Merge remote-tracking branch 'jekstrand/wip/i965-uniforms' into vulkan
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
48
49
50 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
51 (1 << PROGRAM_CONSTANT) | \
52 (1 << PROGRAM_UNIFORM))
53
54
55 struct label {
56 unsigned branch_target;
57 unsigned token;
58 };
59
60
61 /**
62 * Intermediate state used during shader translation.
63 */
64 struct st_translate {
65 struct ureg_program *ureg;
66
67 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
68 struct ureg_src *constants;
69 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
70 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
71 struct ureg_dst address[1];
72 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
73 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
74
75 const GLuint *inputMapping;
76 const GLuint *outputMapping;
77
78 /* For every instruction that contains a label (eg CALL), keep
79 * details so that we can go back afterwards and emit the correct
80 * tgsi instruction number for each label.
81 */
82 struct label *labels;
83 unsigned labels_size;
84 unsigned labels_count;
85
86 /* Keep a record of the tgsi instruction number that each mesa
87 * instruction starts at, will be used to fix up labels after
88 * translation.
89 */
90 unsigned *insn;
91 unsigned insn_size;
92 unsigned insn_count;
93
94 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
95
96 boolean error;
97 };
98
99
100 /**
101 * Make note of a branch to a label in the TGSI code.
102 * After we've emitted all instructions, we'll go over the list
103 * of labels built here and patch the TGSI code with the actual
104 * location of each label.
105 */
106 static unsigned *get_label( struct st_translate *t,
107 unsigned branch_target )
108 {
109 unsigned i;
110
111 if (t->labels_count + 1 >= t->labels_size) {
112 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
113 t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
114 if (t->labels == NULL) {
115 static unsigned dummy;
116 t->error = TRUE;
117 return &dummy;
118 }
119 }
120
121 i = t->labels_count++;
122 t->labels[i].branch_target = branch_target;
123 return &t->labels[i].token;
124 }
125
126
127 /**
128 * Called prior to emitting the TGSI code for each Mesa instruction.
129 * Allocate additional space for instructions if needed.
130 * Update the insn[] array so the next Mesa instruction points to
131 * the next TGSI instruction.
132 */
133 static void set_insn_start( struct st_translate *t,
134 unsigned start )
135 {
136 if (t->insn_count + 1 >= t->insn_size) {
137 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
138 t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
139 if (t->insn == NULL) {
140 t->error = TRUE;
141 return;
142 }
143 }
144
145 t->insn[t->insn_count++] = start;
146 }
147
148
149 /**
150 * Map a Mesa dst register to a TGSI ureg_dst register.
151 */
152 static struct ureg_dst
153 dst_register( struct st_translate *t,
154 gl_register_file file,
155 GLuint index )
156 {
157 switch( file ) {
158 case PROGRAM_UNDEFINED:
159 return ureg_dst_undef();
160
161 case PROGRAM_TEMPORARY:
162 if (ureg_dst_is_undef(t->temps[index]))
163 t->temps[index] = ureg_DECL_temporary( t->ureg );
164
165 return t->temps[index];
166
167 case PROGRAM_OUTPUT:
168 if (t->procType == TGSI_PROCESSOR_VERTEX)
169 assert(index < VARYING_SLOT_MAX);
170 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
171 assert(index < FRAG_RESULT_MAX);
172 else
173 assert(index < VARYING_SLOT_MAX);
174
175 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
176
177 return t->outputs[t->outputMapping[index]];
178
179 case PROGRAM_ADDRESS:
180 return t->address[index];
181
182 default:
183 debug_assert( 0 );
184 return ureg_dst_undef();
185 }
186 }
187
188
189 /**
190 * Map a Mesa src register to a TGSI ureg_src register.
191 */
192 static struct ureg_src
193 src_register( struct st_translate *t,
194 gl_register_file file,
195 GLint index )
196 {
197 switch( file ) {
198 case PROGRAM_UNDEFINED:
199 return ureg_src_undef();
200
201 case PROGRAM_TEMPORARY:
202 assert(index >= 0);
203 assert(index < ARRAY_SIZE(t->temps));
204 if (ureg_dst_is_undef(t->temps[index]))
205 t->temps[index] = ureg_DECL_temporary( t->ureg );
206 return ureg_src(t->temps[index]);
207
208 case PROGRAM_UNIFORM:
209 assert(index >= 0);
210 return t->constants[index];
211 case PROGRAM_STATE_VAR:
212 case PROGRAM_CONSTANT: /* ie, immediate */
213 if (index < 0)
214 return ureg_DECL_constant( t->ureg, 0 );
215 else
216 return t->constants[index];
217
218 case PROGRAM_INPUT:
219 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
220 return t->inputs[t->inputMapping[index]];
221
222 case PROGRAM_OUTPUT:
223 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
224 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
225
226 case PROGRAM_ADDRESS:
227 return ureg_src(t->address[index]);
228
229 case PROGRAM_SYSTEM_VALUE:
230 assert(index < ARRAY_SIZE(t->systemValues));
231 return t->systemValues[index];
232
233 default:
234 debug_assert( 0 );
235 return ureg_src_undef();
236 }
237 }
238
239
240 /**
241 * Map mesa texture target to TGSI texture target.
242 */
243 unsigned
244 st_translate_texture_target( GLuint textarget,
245 GLboolean shadow )
246 {
247 if (shadow) {
248 switch( textarget ) {
249 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_SHADOW1D;
250 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_SHADOW2D;
251 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_SHADOWRECT;
252 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW1D_ARRAY;
253 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW2D_ARRAY;
254 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_SHADOWCUBE;
255 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
256 default: break;
257 }
258 }
259
260 switch( textarget ) {
261 case TEXTURE_2D_MULTISAMPLE_INDEX: return TGSI_TEXTURE_2D_MSAA;
262 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY_MSAA;
263 case TEXTURE_BUFFER_INDEX: return TGSI_TEXTURE_BUFFER;
264 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_1D;
265 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_2D;
266 case TEXTURE_3D_INDEX: return TGSI_TEXTURE_3D;
267 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_CUBE;
268 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_CUBE_ARRAY;
269 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_RECT;
270 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_1D_ARRAY;
271 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY;
272 case TEXTURE_EXTERNAL_INDEX: return TGSI_TEXTURE_2D;
273 default:
274 debug_assert( 0 );
275 return TGSI_TEXTURE_1D;
276 }
277 }
278
279
280 /**
281 * Create a TGSI ureg_dst register from a Mesa dest register.
282 */
283 static struct ureg_dst
284 translate_dst( struct st_translate *t,
285 const struct prog_dst_register *DstReg,
286 boolean saturate)
287 {
288 struct ureg_dst dst = dst_register( t,
289 DstReg->File,
290 DstReg->Index );
291
292 dst = ureg_writemask( dst,
293 DstReg->WriteMask );
294
295 if (saturate)
296 dst = ureg_saturate( dst );
297
298 if (DstReg->RelAddr)
299 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
300
301 return dst;
302 }
303
304
305 /**
306 * Create a TGSI ureg_src register from a Mesa src register.
307 */
308 static struct ureg_src
309 translate_src( struct st_translate *t,
310 const struct prog_src_register *SrcReg )
311 {
312 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
313
314 if (t->procType == TGSI_PROCESSOR_GEOMETRY && SrcReg->HasIndex2) {
315 src = src_register( t, SrcReg->File, SrcReg->Index2 );
316 if (SrcReg->RelAddr2)
317 src = ureg_src_dimension_indirect( src, ureg_src(t->address[0]),
318 SrcReg->Index);
319 else
320 src = ureg_src_dimension( src, SrcReg->Index);
321 }
322
323 src = ureg_swizzle( src,
324 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
325 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
326 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
327 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
328
329 if (SrcReg->Negate == NEGATE_XYZW)
330 src = ureg_negate(src);
331
332 if (SrcReg->Abs)
333 src = ureg_abs(src);
334
335 if (SrcReg->RelAddr) {
336 src = ureg_src_indirect( src, ureg_src(t->address[0]));
337 if (SrcReg->File != PROGRAM_INPUT &&
338 SrcReg->File != PROGRAM_OUTPUT) {
339 /* If SrcReg->Index was negative, it was set to zero in
340 * src_register(). Reassign it now. But don't do this
341 * for input/output regs since they get remapped while
342 * const buffers don't.
343 */
344 src.Index = SrcReg->Index;
345 }
346 }
347
348 return src;
349 }
350
351
352 static struct ureg_src swizzle_4v( struct ureg_src src,
353 const unsigned *swz )
354 {
355 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
356 }
357
358
359 /**
360 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
361 *
362 * SWZ dst, src.x-y10
363 *
364 * becomes:
365 *
366 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
367 */
368 static void emit_swz( struct st_translate *t,
369 struct ureg_dst dst,
370 const struct prog_src_register *SrcReg )
371 {
372 struct ureg_program *ureg = t->ureg;
373 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
374
375 unsigned negate_mask = SrcReg->Negate;
376
377 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
378 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
379 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
380 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
381
382 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
383 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
384 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
385 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
386
387 unsigned negative_one_mask = one_mask & negate_mask;
388 unsigned positive_one_mask = one_mask & ~negate_mask;
389
390 struct ureg_src imm;
391 unsigned i;
392 unsigned mul_swizzle[4] = {0,0,0,0};
393 unsigned add_swizzle[4] = {0,0,0,0};
394 unsigned src_swizzle[4] = {0,0,0,0};
395 boolean need_add = FALSE;
396 boolean need_mul = FALSE;
397
398 if (dst.WriteMask == 0)
399 return;
400
401 /* Is this just a MOV?
402 */
403 if (zero_mask == 0 &&
404 one_mask == 0 &&
405 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
406 {
407 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
408 return;
409 }
410
411 #define IMM_ZERO 0
412 #define IMM_ONE 1
413 #define IMM_NEG_ONE 2
414
415 imm = ureg_imm3f( ureg, 0, 1, -1 );
416
417 for (i = 0; i < 4; i++) {
418 unsigned bit = 1 << i;
419
420 if (dst.WriteMask & bit) {
421 if (positive_one_mask & bit) {
422 mul_swizzle[i] = IMM_ZERO;
423 add_swizzle[i] = IMM_ONE;
424 need_add = TRUE;
425 }
426 else if (negative_one_mask & bit) {
427 mul_swizzle[i] = IMM_ZERO;
428 add_swizzle[i] = IMM_NEG_ONE;
429 need_add = TRUE;
430 }
431 else if (zero_mask & bit) {
432 mul_swizzle[i] = IMM_ZERO;
433 add_swizzle[i] = IMM_ZERO;
434 need_add = TRUE;
435 }
436 else {
437 add_swizzle[i] = IMM_ZERO;
438 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
439 need_mul = TRUE;
440 if (negate_mask & bit) {
441 mul_swizzle[i] = IMM_NEG_ONE;
442 }
443 else {
444 mul_swizzle[i] = IMM_ONE;
445 }
446 }
447 }
448 }
449
450 if (need_mul && need_add) {
451 ureg_MAD( ureg,
452 dst,
453 swizzle_4v( src, src_swizzle ),
454 swizzle_4v( imm, mul_swizzle ),
455 swizzle_4v( imm, add_swizzle ) );
456 }
457 else if (need_mul) {
458 ureg_MUL( ureg,
459 dst,
460 swizzle_4v( src, src_swizzle ),
461 swizzle_4v( imm, mul_swizzle ) );
462 }
463 else if (need_add) {
464 ureg_MOV( ureg,
465 dst,
466 swizzle_4v( imm, add_swizzle ) );
467 }
468 else {
469 debug_assert(0);
470 }
471
472 #undef IMM_ZERO
473 #undef IMM_ONE
474 #undef IMM_NEG_ONE
475 }
476
477
478 static unsigned
479 translate_opcode( unsigned op )
480 {
481 switch( op ) {
482 case OPCODE_ARL:
483 return TGSI_OPCODE_ARL;
484 case OPCODE_ABS:
485 return TGSI_OPCODE_ABS;
486 case OPCODE_ADD:
487 return TGSI_OPCODE_ADD;
488 case OPCODE_BGNLOOP:
489 return TGSI_OPCODE_BGNLOOP;
490 case OPCODE_BGNSUB:
491 return TGSI_OPCODE_BGNSUB;
492 case OPCODE_BRK:
493 return TGSI_OPCODE_BRK;
494 case OPCODE_CAL:
495 return TGSI_OPCODE_CAL;
496 case OPCODE_CMP:
497 return TGSI_OPCODE_CMP;
498 case OPCODE_CONT:
499 return TGSI_OPCODE_CONT;
500 case OPCODE_COS:
501 return TGSI_OPCODE_COS;
502 case OPCODE_DDX:
503 return TGSI_OPCODE_DDX;
504 case OPCODE_DDY:
505 return TGSI_OPCODE_DDY;
506 case OPCODE_DP2:
507 return TGSI_OPCODE_DP2;
508 case OPCODE_DP3:
509 return TGSI_OPCODE_DP3;
510 case OPCODE_DP4:
511 return TGSI_OPCODE_DP4;
512 case OPCODE_DPH:
513 return TGSI_OPCODE_DPH;
514 case OPCODE_DST:
515 return TGSI_OPCODE_DST;
516 case OPCODE_ELSE:
517 return TGSI_OPCODE_ELSE;
518 case OPCODE_ENDIF:
519 return TGSI_OPCODE_ENDIF;
520 case OPCODE_ENDLOOP:
521 return TGSI_OPCODE_ENDLOOP;
522 case OPCODE_ENDSUB:
523 return TGSI_OPCODE_ENDSUB;
524 case OPCODE_EX2:
525 return TGSI_OPCODE_EX2;
526 case OPCODE_EXP:
527 return TGSI_OPCODE_EXP;
528 case OPCODE_FLR:
529 return TGSI_OPCODE_FLR;
530 case OPCODE_FRC:
531 return TGSI_OPCODE_FRC;
532 case OPCODE_IF:
533 return TGSI_OPCODE_IF;
534 case OPCODE_TRUNC:
535 return TGSI_OPCODE_TRUNC;
536 case OPCODE_KIL:
537 return TGSI_OPCODE_KILL_IF;
538 case OPCODE_KIL_NV:
539 /* XXX we don't support condition codes in TGSI */
540 return TGSI_OPCODE_KILL;
541 case OPCODE_LG2:
542 return TGSI_OPCODE_LG2;
543 case OPCODE_LOG:
544 return TGSI_OPCODE_LOG;
545 case OPCODE_LIT:
546 return TGSI_OPCODE_LIT;
547 case OPCODE_LRP:
548 return TGSI_OPCODE_LRP;
549 case OPCODE_MAD:
550 return TGSI_OPCODE_MAD;
551 case OPCODE_MAX:
552 return TGSI_OPCODE_MAX;
553 case OPCODE_MIN:
554 return TGSI_OPCODE_MIN;
555 case OPCODE_MOV:
556 return TGSI_OPCODE_MOV;
557 case OPCODE_MUL:
558 return TGSI_OPCODE_MUL;
559 case OPCODE_NOP:
560 return TGSI_OPCODE_NOP;
561 case OPCODE_POW:
562 return TGSI_OPCODE_POW;
563 case OPCODE_RCP:
564 return TGSI_OPCODE_RCP;
565 case OPCODE_RET:
566 return TGSI_OPCODE_RET;
567 case OPCODE_SCS:
568 return TGSI_OPCODE_SCS;
569 case OPCODE_SEQ:
570 return TGSI_OPCODE_SEQ;
571 case OPCODE_SGE:
572 return TGSI_OPCODE_SGE;
573 case OPCODE_SGT:
574 return TGSI_OPCODE_SGT;
575 case OPCODE_SIN:
576 return TGSI_OPCODE_SIN;
577 case OPCODE_SLE:
578 return TGSI_OPCODE_SLE;
579 case OPCODE_SLT:
580 return TGSI_OPCODE_SLT;
581 case OPCODE_SNE:
582 return TGSI_OPCODE_SNE;
583 case OPCODE_SSG:
584 return TGSI_OPCODE_SSG;
585 case OPCODE_SUB:
586 return TGSI_OPCODE_SUB;
587 case OPCODE_TEX:
588 return TGSI_OPCODE_TEX;
589 case OPCODE_TXB:
590 return TGSI_OPCODE_TXB;
591 case OPCODE_TXD:
592 return TGSI_OPCODE_TXD;
593 case OPCODE_TXL:
594 return TGSI_OPCODE_TXL;
595 case OPCODE_TXP:
596 return TGSI_OPCODE_TXP;
597 case OPCODE_XPD:
598 return TGSI_OPCODE_XPD;
599 case OPCODE_END:
600 return TGSI_OPCODE_END;
601 default:
602 debug_assert( 0 );
603 return TGSI_OPCODE_NOP;
604 }
605 }
606
607
608 static void
609 compile_instruction(
610 struct gl_context *ctx,
611 struct st_translate *t,
612 const struct prog_instruction *inst)
613 {
614 struct ureg_program *ureg = t->ureg;
615 GLuint i;
616 struct ureg_dst dst[1] = { { 0 } };
617 struct ureg_src src[4];
618 unsigned num_dst;
619 unsigned num_src;
620
621 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
622 num_src = _mesa_num_inst_src_regs( inst->Opcode );
623
624 if (num_dst)
625 dst[0] = translate_dst( t,
626 &inst->DstReg,
627 inst->Saturate);
628
629 for (i = 0; i < num_src; i++)
630 src[i] = translate_src( t, &inst->SrcReg[i] );
631
632 switch( inst->Opcode ) {
633 case OPCODE_SWZ:
634 emit_swz( t, dst[0], &inst->SrcReg[0] );
635 return;
636
637 case OPCODE_BGNLOOP:
638 case OPCODE_CAL:
639 case OPCODE_ELSE:
640 case OPCODE_ENDLOOP:
641 debug_assert(num_dst == 0);
642 ureg_label_insn( ureg,
643 translate_opcode( inst->Opcode ),
644 src, num_src,
645 get_label( t, inst->BranchTarget ));
646 return;
647
648 case OPCODE_IF:
649 debug_assert(num_dst == 0);
650 ureg_label_insn( ureg,
651 ctx->Const.NativeIntegers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF,
652 src, num_src,
653 get_label( t, inst->BranchTarget ));
654 return;
655
656 case OPCODE_TEX:
657 case OPCODE_TXB:
658 case OPCODE_TXD:
659 case OPCODE_TXL:
660 case OPCODE_TXP:
661 src[num_src++] = t->samplers[inst->TexSrcUnit];
662 ureg_tex_insn( ureg,
663 translate_opcode( inst->Opcode ),
664 dst, num_dst,
665 st_translate_texture_target( inst->TexSrcTarget,
666 inst->TexShadow ),
667 NULL, 0,
668 src, num_src );
669 return;
670
671 case OPCODE_SCS:
672 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
673 ureg_insn( ureg,
674 translate_opcode( inst->Opcode ),
675 dst, num_dst,
676 src, num_src );
677 break;
678
679 case OPCODE_XPD:
680 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
681 ureg_insn( ureg,
682 translate_opcode( inst->Opcode ),
683 dst, num_dst,
684 src, num_src );
685 break;
686
687 case OPCODE_NOISE1:
688 case OPCODE_NOISE2:
689 case OPCODE_NOISE3:
690 case OPCODE_NOISE4:
691 /* At some point, a motivated person could add a better
692 * implementation of noise. Currently not even the nvidia
693 * binary drivers do anything more than this. In any case, the
694 * place to do this is in the GL state tracker, not the poor
695 * driver.
696 */
697 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
698 break;
699
700 case OPCODE_RSQ:
701 ureg_RSQ( ureg, dst[0], ureg_abs(src[0]) );
702 break;
703
704 default:
705 ureg_insn( ureg,
706 translate_opcode( inst->Opcode ),
707 dst, num_dst,
708 src, num_src );
709 break;
710 }
711 }
712
713
714 /**
715 * Emit the TGSI instructions for inverting and adjusting WPOS.
716 * This code is unavoidable because it also depends on whether
717 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
718 */
719 static void
720 emit_wpos_adjustment(struct gl_context *ctx,
721 struct st_translate *t,
722 const struct gl_program *program,
723 boolean invert,
724 GLfloat adjX, GLfloat adjY[2])
725 {
726 struct ureg_program *ureg = t->ureg;
727
728 /* Fragment program uses fragment position input.
729 * Need to replace instances of INPUT[WPOS] with temp T
730 * where T = INPUT[WPOS] by y is inverted.
731 */
732 static const gl_state_index wposTransformState[STATE_LENGTH]
733 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
734
735 /* XXX: note we are modifying the incoming shader here! Need to
736 * do this before emitting the constant decls below, or this
737 * will be missed:
738 */
739 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
740 wposTransformState);
741
742 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
743 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
744 struct ureg_src *wpos =
745 ctx->Const.GLSLFragCoordIsSysVal ?
746 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
747 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
748 struct ureg_src wpos_input = *wpos;
749
750 /* First, apply the coordinate shift: */
751 if (adjX || adjY[0] || adjY[1]) {
752 if (adjY[0] != adjY[1]) {
753 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
754 * depending on whether inversion is actually going to be applied
755 * or not, which is determined by testing against the inversion
756 * state variable used below, which will be either +1 or -1.
757 */
758 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
759
760 ureg_CMP(ureg, adj_temp,
761 ureg_scalar(wpostrans, invert ? 2 : 0),
762 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
763 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
764 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
765 } else {
766 ureg_ADD(ureg, wpos_temp, wpos_input,
767 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
768 }
769 wpos_input = ureg_src(wpos_temp);
770 } else {
771 /* MOV wpos_temp, input[wpos]
772 */
773 ureg_MOV( ureg, wpos_temp, wpos_input );
774 }
775
776 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
777 * inversion/identity, or the other way around if we're drawing to an FBO.
778 */
779 if (invert) {
780 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
781 */
782 ureg_MAD( ureg,
783 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
784 wpos_input,
785 ureg_scalar(wpostrans, 0),
786 ureg_scalar(wpostrans, 1));
787 } else {
788 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
789 */
790 ureg_MAD( ureg,
791 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
792 wpos_input,
793 ureg_scalar(wpostrans, 2),
794 ureg_scalar(wpostrans, 3));
795 }
796
797 /* Use wpos_temp as position input from here on:
798 */
799 *wpos = ureg_src(wpos_temp);
800 }
801
802
803 /**
804 * Emit fragment position/coordinate code.
805 */
806 static void
807 emit_wpos(struct st_context *st,
808 struct st_translate *t,
809 const struct gl_program *program,
810 struct ureg_program *ureg)
811 {
812 const struct gl_fragment_program *fp =
813 (const struct gl_fragment_program *) program;
814 struct pipe_screen *pscreen = st->pipe->screen;
815 GLfloat adjX = 0.0f;
816 GLfloat adjY[2] = { 0.0f, 0.0f };
817 boolean invert = FALSE;
818
819 /* Query the pixel center conventions supported by the pipe driver and set
820 * adjX, adjY to help out if it cannot handle the requested one internally.
821 *
822 * The bias of the y-coordinate depends on whether y-inversion takes place
823 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
824 * drawing to an FBO (causes additional inversion), and whether the the pipe
825 * driver origin and the requested origin differ (the latter condition is
826 * stored in the 'invert' variable).
827 *
828 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
829 *
830 * center shift only:
831 * i -> h: +0.5
832 * h -> i: -0.5
833 *
834 * inversion only:
835 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
836 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
837 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
838 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
839 *
840 * inversion and center shift:
841 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
842 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
843 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
844 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
845 */
846 if (fp->OriginUpperLeft) {
847 /* Fragment shader wants origin in upper-left */
848 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
849 /* the driver supports upper-left origin */
850 }
851 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
852 /* the driver supports lower-left origin, need to invert Y */
853 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
854 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
855 invert = TRUE;
856 }
857 else
858 assert(0);
859 }
860 else {
861 /* Fragment shader wants origin in lower-left */
862 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
863 /* the driver supports lower-left origin */
864 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
865 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
866 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
867 /* the driver supports upper-left origin, need to invert Y */
868 invert = TRUE;
869 else
870 assert(0);
871 }
872
873 if (fp->PixelCenterInteger) {
874 /* Fragment shader wants pixel center integer */
875 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
876 /* the driver supports pixel center integer */
877 adjY[1] = 1.0f;
878 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
879 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
880 }
881 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
882 /* the driver supports pixel center half integer, need to bias X,Y */
883 adjX = -0.5f;
884 adjY[0] = -0.5f;
885 adjY[1] = 0.5f;
886 }
887 else
888 assert(0);
889 }
890 else {
891 /* Fragment shader wants pixel center half integer */
892 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
893 /* the driver supports pixel center half integer */
894 }
895 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
896 /* the driver supports pixel center integer, need to bias X,Y */
897 adjX = adjY[0] = adjY[1] = 0.5f;
898 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
899 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
900 }
901 else
902 assert(0);
903 }
904
905 /* we invert after adjustment so that we avoid the MOV to temporary,
906 * and reuse the adjustment ADD instead */
907 emit_wpos_adjustment(st->ctx, t, program, invert, adjX, adjY);
908 }
909
910
911 /**
912 * Translate Mesa program to TGSI format.
913 * \param program the program to translate
914 * \param numInputs number of input registers used
915 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
916 * input indexes
917 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
918 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
919 * each input
920 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
921 * \param numOutputs number of output registers used
922 * \param outputMapping maps Mesa fragment program outputs to TGSI
923 * generic outputs
924 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
925 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
926 * each output
927 *
928 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
929 */
930 enum pipe_error
931 st_translate_mesa_program(
932 struct gl_context *ctx,
933 uint procType,
934 struct ureg_program *ureg,
935 const struct gl_program *program,
936 GLuint numInputs,
937 const GLuint inputMapping[],
938 const ubyte inputSemanticName[],
939 const ubyte inputSemanticIndex[],
940 const GLuint interpMode[],
941 GLuint numOutputs,
942 const GLuint outputMapping[],
943 const ubyte outputSemanticName[],
944 const ubyte outputSemanticIndex[])
945 {
946 struct st_translate translate, *t;
947 unsigned i;
948 enum pipe_error ret = PIPE_OK;
949
950 assert(numInputs <= ARRAY_SIZE(t->inputs));
951 assert(numOutputs <= ARRAY_SIZE(t->outputs));
952
953 t = &translate;
954 memset(t, 0, sizeof *t);
955
956 t->procType = procType;
957 t->inputMapping = inputMapping;
958 t->outputMapping = outputMapping;
959 t->ureg = ureg;
960
961 /*_mesa_print_program(program);*/
962
963 /*
964 * Declare input attributes.
965 */
966 if (procType == TGSI_PROCESSOR_FRAGMENT) {
967 for (i = 0; i < numInputs; i++) {
968 t->inputs[i] = ureg_DECL_fs_input(ureg,
969 inputSemanticName[i],
970 inputSemanticIndex[i],
971 interpMode[i]);
972 }
973
974 if (program->InputsRead & VARYING_BIT_POS) {
975 /* Must do this after setting up t->inputs, and before
976 * emitting constant references, below:
977 */
978 emit_wpos(st_context(ctx), t, program, ureg);
979 }
980
981 /*
982 * Declare output attributes.
983 */
984 for (i = 0; i < numOutputs; i++) {
985 switch (outputSemanticName[i]) {
986 case TGSI_SEMANTIC_POSITION:
987 t->outputs[i] = ureg_DECL_output( ureg,
988 TGSI_SEMANTIC_POSITION, /* Z / Depth */
989 outputSemanticIndex[i] );
990
991 t->outputs[i] = ureg_writemask( t->outputs[i],
992 TGSI_WRITEMASK_Z );
993 break;
994 case TGSI_SEMANTIC_STENCIL:
995 t->outputs[i] = ureg_DECL_output( ureg,
996 TGSI_SEMANTIC_STENCIL, /* Stencil */
997 outputSemanticIndex[i] );
998 t->outputs[i] = ureg_writemask( t->outputs[i],
999 TGSI_WRITEMASK_Y );
1000 break;
1001 case TGSI_SEMANTIC_COLOR:
1002 t->outputs[i] = ureg_DECL_output( ureg,
1003 TGSI_SEMANTIC_COLOR,
1004 outputSemanticIndex[i] );
1005 break;
1006 default:
1007 debug_assert(0);
1008 return 0;
1009 }
1010 }
1011 }
1012 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
1013 for (i = 0; i < numInputs; i++) {
1014 t->inputs[i] = ureg_DECL_input(ureg,
1015 inputSemanticName[i],
1016 inputSemanticIndex[i], 0, 1);
1017 }
1018
1019 for (i = 0; i < numOutputs; i++) {
1020 t->outputs[i] = ureg_DECL_output( ureg,
1021 outputSemanticName[i],
1022 outputSemanticIndex[i] );
1023 }
1024 }
1025 else {
1026 assert(procType == TGSI_PROCESSOR_VERTEX);
1027
1028 for (i = 0; i < numInputs; i++) {
1029 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1030 }
1031
1032 for (i = 0; i < numOutputs; i++) {
1033 t->outputs[i] = ureg_DECL_output( ureg,
1034 outputSemanticName[i],
1035 outputSemanticIndex[i] );
1036 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
1037 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
1038 ureg_MOV(ureg,
1039 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
1040 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
1041 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
1042 }
1043 }
1044 }
1045
1046 /* Declare address register.
1047 */
1048 if (program->NumAddressRegs > 0) {
1049 debug_assert( program->NumAddressRegs == 1 );
1050 t->address[0] = ureg_DECL_address( ureg );
1051 }
1052
1053 /* Declare misc input registers
1054 */
1055 {
1056 GLbitfield sysInputs = program->SystemValuesRead;
1057
1058 for (i = 0; sysInputs; i++) {
1059 if (sysInputs & (1 << i)) {
1060 unsigned semName = _mesa_sysval_to_semantic[i];
1061
1062 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
1063
1064 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1065 semName == TGSI_SEMANTIC_VERTEXID) {
1066 /* From Gallium perspective, these system values are always
1067 * integer, and require native integer support. However, if
1068 * native integer is supported on the vertex stage but not the
1069 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1070 * assumes these system values are floats. To resolve the
1071 * inconsistency, we insert a U2F.
1072 */
1073 struct st_context *st = st_context(ctx);
1074 struct pipe_screen *pscreen = st->pipe->screen;
1075 assert(procType == TGSI_PROCESSOR_VERTEX);
1076 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1077 (void) pscreen; /* silence non-debug build warnings */
1078 if (!ctx->Const.NativeIntegers) {
1079 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1080 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1081 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1082 }
1083 }
1084
1085 if (procType == TGSI_PROCESSOR_FRAGMENT &&
1086 semName == TGSI_SEMANTIC_POSITION)
1087 emit_wpos(st_context(ctx), t, program, ureg);
1088
1089 sysInputs &= ~(1 << i);
1090 }
1091 }
1092 }
1093
1094 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1095 /* If temps are accessed with indirect addressing, declare temporaries
1096 * in sequential order. Else, we declare them on demand elsewhere.
1097 */
1098 for (i = 0; i < program->NumTemporaries; i++) {
1099 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1100 t->temps[i] = ureg_DECL_temporary( t->ureg );
1101 }
1102 }
1103
1104 /* Emit constants and immediates. Mesa uses a single index space
1105 * for these, so we put all the translated regs in t->constants.
1106 */
1107 if (program->Parameters) {
1108 t->constants = calloc( program->Parameters->NumParameters,
1109 sizeof t->constants[0] );
1110 if (t->constants == NULL) {
1111 ret = PIPE_ERROR_OUT_OF_MEMORY;
1112 goto out;
1113 }
1114
1115 for (i = 0; i < program->Parameters->NumParameters; i++) {
1116 switch (program->Parameters->Parameters[i].Type) {
1117 case PROGRAM_STATE_VAR:
1118 case PROGRAM_UNIFORM:
1119 t->constants[i] = ureg_DECL_constant( ureg, i );
1120 break;
1121
1122 /* Emit immediates only when there's no indirect addressing of
1123 * the const buffer.
1124 * FIXME: Be smarter and recognize param arrays:
1125 * indirect addressing is only valid within the referenced
1126 * array.
1127 */
1128 case PROGRAM_CONSTANT:
1129 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1130 t->constants[i] = ureg_DECL_constant( ureg, i );
1131 else
1132 t->constants[i] =
1133 ureg_DECL_immediate( ureg,
1134 (const float*) program->Parameters->ParameterValues[i],
1135 4 );
1136 break;
1137 default:
1138 break;
1139 }
1140 }
1141 }
1142
1143 /* texture samplers */
1144 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1145 if (program->SamplersUsed & (1 << i)) {
1146 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1147 }
1148 }
1149
1150 /* Emit each instruction in turn:
1151 */
1152 for (i = 0; i < program->NumInstructions; i++) {
1153 set_insn_start( t, ureg_get_instruction_number( ureg ));
1154 compile_instruction(ctx, t, &program->Instructions[i]);
1155 }
1156
1157 /* Fix up all emitted labels:
1158 */
1159 for (i = 0; i < t->labels_count; i++) {
1160 ureg_fixup_label( ureg,
1161 t->labels[i].token,
1162 t->insn[t->labels[i].branch_target] );
1163 }
1164
1165 out:
1166 free(t->insn);
1167 free(t->labels);
1168 free(t->constants);
1169
1170 if (t->error) {
1171 debug_printf("%s: translate error flag set\n", __func__);
1172 }
1173
1174 return ret;
1175 }