Merge remote-tracking branch 'origin/master' into vulkan
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
48
49
50 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
51 (1 << PROGRAM_CONSTANT) | \
52 (1 << PROGRAM_UNIFORM))
53
54
55 struct label {
56 unsigned branch_target;
57 unsigned token;
58 };
59
60
61 /**
62 * Intermediate state used during shader translation.
63 */
64 struct st_translate {
65 struct ureg_program *ureg;
66
67 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
68 struct ureg_src *constants;
69 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
70 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
71 struct ureg_dst address[1];
72 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
73 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
74
75 const GLuint *inputMapping;
76 const GLuint *outputMapping;
77
78 /* For every instruction that contains a label (eg CALL), keep
79 * details so that we can go back afterwards and emit the correct
80 * tgsi instruction number for each label.
81 */
82 struct label *labels;
83 unsigned labels_size;
84 unsigned labels_count;
85
86 /* Keep a record of the tgsi instruction number that each mesa
87 * instruction starts at, will be used to fix up labels after
88 * translation.
89 */
90 unsigned *insn;
91 unsigned insn_size;
92 unsigned insn_count;
93
94 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
95
96 boolean error;
97 };
98
99
100 /**
101 * Make note of a branch to a label in the TGSI code.
102 * After we've emitted all instructions, we'll go over the list
103 * of labels built here and patch the TGSI code with the actual
104 * location of each label.
105 */
106 static unsigned *get_label( struct st_translate *t,
107 unsigned branch_target )
108 {
109 unsigned i;
110
111 if (t->labels_count + 1 >= t->labels_size) {
112 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
113 t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
114 if (t->labels == NULL) {
115 static unsigned dummy;
116 t->error = TRUE;
117 return &dummy;
118 }
119 }
120
121 i = t->labels_count++;
122 t->labels[i].branch_target = branch_target;
123 return &t->labels[i].token;
124 }
125
126
127 /**
128 * Called prior to emitting the TGSI code for each Mesa instruction.
129 * Allocate additional space for instructions if needed.
130 * Update the insn[] array so the next Mesa instruction points to
131 * the next TGSI instruction.
132 */
133 static void set_insn_start( struct st_translate *t,
134 unsigned start )
135 {
136 if (t->insn_count + 1 >= t->insn_size) {
137 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
138 t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
139 if (t->insn == NULL) {
140 t->error = TRUE;
141 return;
142 }
143 }
144
145 t->insn[t->insn_count++] = start;
146 }
147
148
149 /**
150 * Map a Mesa dst register to a TGSI ureg_dst register.
151 */
152 static struct ureg_dst
153 dst_register( struct st_translate *t,
154 gl_register_file file,
155 GLuint index )
156 {
157 switch( file ) {
158 case PROGRAM_UNDEFINED:
159 return ureg_dst_undef();
160
161 case PROGRAM_TEMPORARY:
162 if (ureg_dst_is_undef(t->temps[index]))
163 t->temps[index] = ureg_DECL_temporary( t->ureg );
164
165 return t->temps[index];
166
167 case PROGRAM_OUTPUT:
168 if (t->procType == TGSI_PROCESSOR_VERTEX)
169 assert(index < VARYING_SLOT_MAX);
170 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
171 assert(index < FRAG_RESULT_MAX);
172 else
173 assert(index < VARYING_SLOT_MAX);
174
175 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
176
177 return t->outputs[t->outputMapping[index]];
178
179 case PROGRAM_ADDRESS:
180 return t->address[index];
181
182 default:
183 debug_assert( 0 );
184 return ureg_dst_undef();
185 }
186 }
187
188
189 /**
190 * Map a Mesa src register to a TGSI ureg_src register.
191 */
192 static struct ureg_src
193 src_register( struct st_translate *t,
194 gl_register_file file,
195 GLint index )
196 {
197 switch( file ) {
198 case PROGRAM_UNDEFINED:
199 return ureg_src_undef();
200
201 case PROGRAM_TEMPORARY:
202 assert(index >= 0);
203 assert(index < ARRAY_SIZE(t->temps));
204 if (ureg_dst_is_undef(t->temps[index]))
205 t->temps[index] = ureg_DECL_temporary( t->ureg );
206 return ureg_src(t->temps[index]);
207
208 case PROGRAM_UNIFORM:
209 assert(index >= 0);
210 return t->constants[index];
211 case PROGRAM_STATE_VAR:
212 case PROGRAM_CONSTANT: /* ie, immediate */
213 if (index < 0)
214 return ureg_DECL_constant( t->ureg, 0 );
215 else
216 return t->constants[index];
217
218 case PROGRAM_INPUT:
219 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
220 return t->inputs[t->inputMapping[index]];
221
222 case PROGRAM_OUTPUT:
223 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
224 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
225
226 case PROGRAM_ADDRESS:
227 return ureg_src(t->address[index]);
228
229 case PROGRAM_SYSTEM_VALUE:
230 assert(index < ARRAY_SIZE(t->systemValues));
231 return t->systemValues[index];
232
233 default:
234 debug_assert( 0 );
235 return ureg_src_undef();
236 }
237 }
238
239
240 /**
241 * Map mesa texture target to TGSI texture target.
242 */
243 unsigned
244 st_translate_texture_target( GLuint textarget,
245 GLboolean shadow )
246 {
247 if (shadow) {
248 switch( textarget ) {
249 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_SHADOW1D;
250 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_SHADOW2D;
251 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_SHADOWRECT;
252 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW1D_ARRAY;
253 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW2D_ARRAY;
254 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_SHADOWCUBE;
255 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
256 default: break;
257 }
258 }
259
260 switch( textarget ) {
261 case TEXTURE_2D_MULTISAMPLE_INDEX: return TGSI_TEXTURE_2D_MSAA;
262 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY_MSAA;
263 case TEXTURE_BUFFER_INDEX: return TGSI_TEXTURE_BUFFER;
264 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_1D;
265 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_2D;
266 case TEXTURE_3D_INDEX: return TGSI_TEXTURE_3D;
267 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_CUBE;
268 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_CUBE_ARRAY;
269 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_RECT;
270 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_1D_ARRAY;
271 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY;
272 case TEXTURE_EXTERNAL_INDEX: return TGSI_TEXTURE_2D;
273 default:
274 debug_assert( 0 );
275 return TGSI_TEXTURE_1D;
276 }
277 }
278
279
280 /**
281 * Create a TGSI ureg_dst register from a Mesa dest register.
282 */
283 static struct ureg_dst
284 translate_dst( struct st_translate *t,
285 const struct prog_dst_register *DstReg,
286 boolean saturate)
287 {
288 struct ureg_dst dst = dst_register( t,
289 DstReg->File,
290 DstReg->Index );
291
292 dst = ureg_writemask( dst,
293 DstReg->WriteMask );
294
295 if (saturate)
296 dst = ureg_saturate( dst );
297
298 if (DstReg->RelAddr)
299 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
300
301 return dst;
302 }
303
304
305 /**
306 * Create a TGSI ureg_src register from a Mesa src register.
307 */
308 static struct ureg_src
309 translate_src( struct st_translate *t,
310 const struct prog_src_register *SrcReg )
311 {
312 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
313
314 src = ureg_swizzle( src,
315 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
316 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
317 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
318 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
319
320 if (SrcReg->Negate == NEGATE_XYZW)
321 src = ureg_negate(src);
322
323 if (SrcReg->RelAddr) {
324 src = ureg_src_indirect( src, ureg_src(t->address[0]));
325 if (SrcReg->File != PROGRAM_INPUT &&
326 SrcReg->File != PROGRAM_OUTPUT) {
327 /* If SrcReg->Index was negative, it was set to zero in
328 * src_register(). Reassign it now. But don't do this
329 * for input/output regs since they get remapped while
330 * const buffers don't.
331 */
332 src.Index = SrcReg->Index;
333 }
334 }
335
336 return src;
337 }
338
339
340 static struct ureg_src swizzle_4v( struct ureg_src src,
341 const unsigned *swz )
342 {
343 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
344 }
345
346
347 /**
348 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
349 *
350 * SWZ dst, src.x-y10
351 *
352 * becomes:
353 *
354 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
355 */
356 static void emit_swz( struct st_translate *t,
357 struct ureg_dst dst,
358 const struct prog_src_register *SrcReg )
359 {
360 struct ureg_program *ureg = t->ureg;
361 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
362
363 unsigned negate_mask = SrcReg->Negate;
364
365 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
366 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
367 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
368 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
369
370 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
371 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
372 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
373 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
374
375 unsigned negative_one_mask = one_mask & negate_mask;
376 unsigned positive_one_mask = one_mask & ~negate_mask;
377
378 struct ureg_src imm;
379 unsigned i;
380 unsigned mul_swizzle[4] = {0,0,0,0};
381 unsigned add_swizzle[4] = {0,0,0,0};
382 unsigned src_swizzle[4] = {0,0,0,0};
383 boolean need_add = FALSE;
384 boolean need_mul = FALSE;
385
386 if (dst.WriteMask == 0)
387 return;
388
389 /* Is this just a MOV?
390 */
391 if (zero_mask == 0 &&
392 one_mask == 0 &&
393 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
394 {
395 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
396 return;
397 }
398
399 #define IMM_ZERO 0
400 #define IMM_ONE 1
401 #define IMM_NEG_ONE 2
402
403 imm = ureg_imm3f( ureg, 0, 1, -1 );
404
405 for (i = 0; i < 4; i++) {
406 unsigned bit = 1 << i;
407
408 if (dst.WriteMask & bit) {
409 if (positive_one_mask & bit) {
410 mul_swizzle[i] = IMM_ZERO;
411 add_swizzle[i] = IMM_ONE;
412 need_add = TRUE;
413 }
414 else if (negative_one_mask & bit) {
415 mul_swizzle[i] = IMM_ZERO;
416 add_swizzle[i] = IMM_NEG_ONE;
417 need_add = TRUE;
418 }
419 else if (zero_mask & bit) {
420 mul_swizzle[i] = IMM_ZERO;
421 add_swizzle[i] = IMM_ZERO;
422 need_add = TRUE;
423 }
424 else {
425 add_swizzle[i] = IMM_ZERO;
426 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
427 need_mul = TRUE;
428 if (negate_mask & bit) {
429 mul_swizzle[i] = IMM_NEG_ONE;
430 }
431 else {
432 mul_swizzle[i] = IMM_ONE;
433 }
434 }
435 }
436 }
437
438 if (need_mul && need_add) {
439 ureg_MAD( ureg,
440 dst,
441 swizzle_4v( src, src_swizzle ),
442 swizzle_4v( imm, mul_swizzle ),
443 swizzle_4v( imm, add_swizzle ) );
444 }
445 else if (need_mul) {
446 ureg_MUL( ureg,
447 dst,
448 swizzle_4v( src, src_swizzle ),
449 swizzle_4v( imm, mul_swizzle ) );
450 }
451 else if (need_add) {
452 ureg_MOV( ureg,
453 dst,
454 swizzle_4v( imm, add_swizzle ) );
455 }
456 else {
457 debug_assert(0);
458 }
459
460 #undef IMM_ZERO
461 #undef IMM_ONE
462 #undef IMM_NEG_ONE
463 }
464
465
466 static unsigned
467 translate_opcode( unsigned op )
468 {
469 switch( op ) {
470 case OPCODE_ARL:
471 return TGSI_OPCODE_ARL;
472 case OPCODE_ABS:
473 return TGSI_OPCODE_ABS;
474 case OPCODE_ADD:
475 return TGSI_OPCODE_ADD;
476 case OPCODE_BGNLOOP:
477 return TGSI_OPCODE_BGNLOOP;
478 case OPCODE_BGNSUB:
479 return TGSI_OPCODE_BGNSUB;
480 case OPCODE_BRK:
481 return TGSI_OPCODE_BRK;
482 case OPCODE_CAL:
483 return TGSI_OPCODE_CAL;
484 case OPCODE_CMP:
485 return TGSI_OPCODE_CMP;
486 case OPCODE_CONT:
487 return TGSI_OPCODE_CONT;
488 case OPCODE_COS:
489 return TGSI_OPCODE_COS;
490 case OPCODE_DDX:
491 return TGSI_OPCODE_DDX;
492 case OPCODE_DDY:
493 return TGSI_OPCODE_DDY;
494 case OPCODE_DP2:
495 return TGSI_OPCODE_DP2;
496 case OPCODE_DP3:
497 return TGSI_OPCODE_DP3;
498 case OPCODE_DP4:
499 return TGSI_OPCODE_DP4;
500 case OPCODE_DPH:
501 return TGSI_OPCODE_DPH;
502 case OPCODE_DST:
503 return TGSI_OPCODE_DST;
504 case OPCODE_ELSE:
505 return TGSI_OPCODE_ELSE;
506 case OPCODE_ENDIF:
507 return TGSI_OPCODE_ENDIF;
508 case OPCODE_ENDLOOP:
509 return TGSI_OPCODE_ENDLOOP;
510 case OPCODE_ENDSUB:
511 return TGSI_OPCODE_ENDSUB;
512 case OPCODE_EX2:
513 return TGSI_OPCODE_EX2;
514 case OPCODE_EXP:
515 return TGSI_OPCODE_EXP;
516 case OPCODE_FLR:
517 return TGSI_OPCODE_FLR;
518 case OPCODE_FRC:
519 return TGSI_OPCODE_FRC;
520 case OPCODE_IF:
521 return TGSI_OPCODE_IF;
522 case OPCODE_TRUNC:
523 return TGSI_OPCODE_TRUNC;
524 case OPCODE_KIL:
525 return TGSI_OPCODE_KILL_IF;
526 case OPCODE_LG2:
527 return TGSI_OPCODE_LG2;
528 case OPCODE_LOG:
529 return TGSI_OPCODE_LOG;
530 case OPCODE_LIT:
531 return TGSI_OPCODE_LIT;
532 case OPCODE_LRP:
533 return TGSI_OPCODE_LRP;
534 case OPCODE_MAD:
535 return TGSI_OPCODE_MAD;
536 case OPCODE_MAX:
537 return TGSI_OPCODE_MAX;
538 case OPCODE_MIN:
539 return TGSI_OPCODE_MIN;
540 case OPCODE_MOV:
541 return TGSI_OPCODE_MOV;
542 case OPCODE_MUL:
543 return TGSI_OPCODE_MUL;
544 case OPCODE_NOP:
545 return TGSI_OPCODE_NOP;
546 case OPCODE_POW:
547 return TGSI_OPCODE_POW;
548 case OPCODE_RCP:
549 return TGSI_OPCODE_RCP;
550 case OPCODE_RET:
551 return TGSI_OPCODE_RET;
552 case OPCODE_SCS:
553 return TGSI_OPCODE_SCS;
554 case OPCODE_SEQ:
555 return TGSI_OPCODE_SEQ;
556 case OPCODE_SGE:
557 return TGSI_OPCODE_SGE;
558 case OPCODE_SGT:
559 return TGSI_OPCODE_SGT;
560 case OPCODE_SIN:
561 return TGSI_OPCODE_SIN;
562 case OPCODE_SLE:
563 return TGSI_OPCODE_SLE;
564 case OPCODE_SLT:
565 return TGSI_OPCODE_SLT;
566 case OPCODE_SNE:
567 return TGSI_OPCODE_SNE;
568 case OPCODE_SSG:
569 return TGSI_OPCODE_SSG;
570 case OPCODE_SUB:
571 return TGSI_OPCODE_SUB;
572 case OPCODE_TEX:
573 return TGSI_OPCODE_TEX;
574 case OPCODE_TXB:
575 return TGSI_OPCODE_TXB;
576 case OPCODE_TXD:
577 return TGSI_OPCODE_TXD;
578 case OPCODE_TXL:
579 return TGSI_OPCODE_TXL;
580 case OPCODE_TXP:
581 return TGSI_OPCODE_TXP;
582 case OPCODE_XPD:
583 return TGSI_OPCODE_XPD;
584 case OPCODE_END:
585 return TGSI_OPCODE_END;
586 default:
587 debug_assert( 0 );
588 return TGSI_OPCODE_NOP;
589 }
590 }
591
592
593 static void
594 compile_instruction(
595 struct gl_context *ctx,
596 struct st_translate *t,
597 const struct prog_instruction *inst)
598 {
599 struct ureg_program *ureg = t->ureg;
600 GLuint i;
601 struct ureg_dst dst[1] = { { 0 } };
602 struct ureg_src src[4];
603 unsigned num_dst;
604 unsigned num_src;
605
606 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
607 num_src = _mesa_num_inst_src_regs( inst->Opcode );
608
609 if (num_dst)
610 dst[0] = translate_dst( t,
611 &inst->DstReg,
612 inst->Saturate);
613
614 for (i = 0; i < num_src; i++)
615 src[i] = translate_src( t, &inst->SrcReg[i] );
616
617 switch( inst->Opcode ) {
618 case OPCODE_SWZ:
619 emit_swz( t, dst[0], &inst->SrcReg[0] );
620 return;
621
622 case OPCODE_BGNLOOP:
623 case OPCODE_CAL:
624 case OPCODE_ELSE:
625 case OPCODE_ENDLOOP:
626 debug_assert(num_dst == 0);
627 ureg_label_insn( ureg,
628 translate_opcode( inst->Opcode ),
629 src, num_src,
630 get_label( t, inst->BranchTarget ));
631 return;
632
633 case OPCODE_IF:
634 debug_assert(num_dst == 0);
635 ureg_label_insn( ureg,
636 ctx->Const.NativeIntegers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF,
637 src, num_src,
638 get_label( t, inst->BranchTarget ));
639 return;
640
641 case OPCODE_TEX:
642 case OPCODE_TXB:
643 case OPCODE_TXD:
644 case OPCODE_TXL:
645 case OPCODE_TXP:
646 src[num_src++] = t->samplers[inst->TexSrcUnit];
647 ureg_tex_insn( ureg,
648 translate_opcode( inst->Opcode ),
649 dst, num_dst,
650 st_translate_texture_target( inst->TexSrcTarget,
651 inst->TexShadow ),
652 NULL, 0,
653 src, num_src );
654 return;
655
656 case OPCODE_SCS:
657 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
658 ureg_insn( ureg,
659 translate_opcode( inst->Opcode ),
660 dst, num_dst,
661 src, num_src );
662 break;
663
664 case OPCODE_XPD:
665 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
666 ureg_insn( ureg,
667 translate_opcode( inst->Opcode ),
668 dst, num_dst,
669 src, num_src );
670 break;
671
672 case OPCODE_NOISE1:
673 case OPCODE_NOISE2:
674 case OPCODE_NOISE3:
675 case OPCODE_NOISE4:
676 /* At some point, a motivated person could add a better
677 * implementation of noise. Currently not even the nvidia
678 * binary drivers do anything more than this. In any case, the
679 * place to do this is in the GL state tracker, not the poor
680 * driver.
681 */
682 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
683 break;
684
685 case OPCODE_RSQ:
686 ureg_RSQ( ureg, dst[0], ureg_abs(src[0]) );
687 break;
688
689 default:
690 ureg_insn( ureg,
691 translate_opcode( inst->Opcode ),
692 dst, num_dst,
693 src, num_src );
694 break;
695 }
696 }
697
698
699 /**
700 * Emit the TGSI instructions for inverting and adjusting WPOS.
701 * This code is unavoidable because it also depends on whether
702 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
703 */
704 static void
705 emit_wpos_adjustment(struct gl_context *ctx,
706 struct st_translate *t,
707 const struct gl_program *program,
708 boolean invert,
709 GLfloat adjX, GLfloat adjY[2])
710 {
711 struct ureg_program *ureg = t->ureg;
712
713 /* Fragment program uses fragment position input.
714 * Need to replace instances of INPUT[WPOS] with temp T
715 * where T = INPUT[WPOS] by y is inverted.
716 */
717 static const gl_state_index wposTransformState[STATE_LENGTH]
718 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
719
720 /* XXX: note we are modifying the incoming shader here! Need to
721 * do this before emitting the constant decls below, or this
722 * will be missed:
723 */
724 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
725 wposTransformState);
726
727 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
728 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
729 struct ureg_src *wpos =
730 ctx->Const.GLSLFragCoordIsSysVal ?
731 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
732 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
733 struct ureg_src wpos_input = *wpos;
734
735 /* First, apply the coordinate shift: */
736 if (adjX || adjY[0] || adjY[1]) {
737 if (adjY[0] != adjY[1]) {
738 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
739 * depending on whether inversion is actually going to be applied
740 * or not, which is determined by testing against the inversion
741 * state variable used below, which will be either +1 or -1.
742 */
743 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
744
745 ureg_CMP(ureg, adj_temp,
746 ureg_scalar(wpostrans, invert ? 2 : 0),
747 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
748 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
749 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
750 } else {
751 ureg_ADD(ureg, wpos_temp, wpos_input,
752 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
753 }
754 wpos_input = ureg_src(wpos_temp);
755 } else {
756 /* MOV wpos_temp, input[wpos]
757 */
758 ureg_MOV( ureg, wpos_temp, wpos_input );
759 }
760
761 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
762 * inversion/identity, or the other way around if we're drawing to an FBO.
763 */
764 if (invert) {
765 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
766 */
767 ureg_MAD( ureg,
768 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
769 wpos_input,
770 ureg_scalar(wpostrans, 0),
771 ureg_scalar(wpostrans, 1));
772 } else {
773 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
774 */
775 ureg_MAD( ureg,
776 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
777 wpos_input,
778 ureg_scalar(wpostrans, 2),
779 ureg_scalar(wpostrans, 3));
780 }
781
782 /* Use wpos_temp as position input from here on:
783 */
784 *wpos = ureg_src(wpos_temp);
785 }
786
787
788 /**
789 * Emit fragment position/coordinate code.
790 */
791 static void
792 emit_wpos(struct st_context *st,
793 struct st_translate *t,
794 const struct gl_program *program,
795 struct ureg_program *ureg)
796 {
797 const struct gl_fragment_program *fp =
798 (const struct gl_fragment_program *) program;
799 struct pipe_screen *pscreen = st->pipe->screen;
800 GLfloat adjX = 0.0f;
801 GLfloat adjY[2] = { 0.0f, 0.0f };
802 boolean invert = FALSE;
803
804 /* Query the pixel center conventions supported by the pipe driver and set
805 * adjX, adjY to help out if it cannot handle the requested one internally.
806 *
807 * The bias of the y-coordinate depends on whether y-inversion takes place
808 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
809 * drawing to an FBO (causes additional inversion), and whether the the pipe
810 * driver origin and the requested origin differ (the latter condition is
811 * stored in the 'invert' variable).
812 *
813 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
814 *
815 * center shift only:
816 * i -> h: +0.5
817 * h -> i: -0.5
818 *
819 * inversion only:
820 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
821 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
822 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
823 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
824 *
825 * inversion and center shift:
826 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
827 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
828 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
829 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
830 */
831 if (fp->OriginUpperLeft) {
832 /* Fragment shader wants origin in upper-left */
833 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
834 /* the driver supports upper-left origin */
835 }
836 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
837 /* the driver supports lower-left origin, need to invert Y */
838 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
839 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
840 invert = TRUE;
841 }
842 else
843 assert(0);
844 }
845 else {
846 /* Fragment shader wants origin in lower-left */
847 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
848 /* the driver supports lower-left origin */
849 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
850 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
851 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
852 /* the driver supports upper-left origin, need to invert Y */
853 invert = TRUE;
854 else
855 assert(0);
856 }
857
858 if (fp->PixelCenterInteger) {
859 /* Fragment shader wants pixel center integer */
860 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
861 /* the driver supports pixel center integer */
862 adjY[1] = 1.0f;
863 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
864 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
865 }
866 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
867 /* the driver supports pixel center half integer, need to bias X,Y */
868 adjX = -0.5f;
869 adjY[0] = -0.5f;
870 adjY[1] = 0.5f;
871 }
872 else
873 assert(0);
874 }
875 else {
876 /* Fragment shader wants pixel center half integer */
877 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
878 /* the driver supports pixel center half integer */
879 }
880 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
881 /* the driver supports pixel center integer, need to bias X,Y */
882 adjX = adjY[0] = adjY[1] = 0.5f;
883 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
884 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
885 }
886 else
887 assert(0);
888 }
889
890 /* we invert after adjustment so that we avoid the MOV to temporary,
891 * and reuse the adjustment ADD instead */
892 emit_wpos_adjustment(st->ctx, t, program, invert, adjX, adjY);
893 }
894
895
896 /**
897 * Translate Mesa program to TGSI format.
898 * \param program the program to translate
899 * \param numInputs number of input registers used
900 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
901 * input indexes
902 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
903 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
904 * each input
905 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
906 * \param numOutputs number of output registers used
907 * \param outputMapping maps Mesa fragment program outputs to TGSI
908 * generic outputs
909 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
910 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
911 * each output
912 *
913 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
914 */
915 enum pipe_error
916 st_translate_mesa_program(
917 struct gl_context *ctx,
918 uint procType,
919 struct ureg_program *ureg,
920 const struct gl_program *program,
921 GLuint numInputs,
922 const GLuint inputMapping[],
923 const ubyte inputSemanticName[],
924 const ubyte inputSemanticIndex[],
925 const GLuint interpMode[],
926 GLuint numOutputs,
927 const GLuint outputMapping[],
928 const ubyte outputSemanticName[],
929 const ubyte outputSemanticIndex[])
930 {
931 struct st_translate translate, *t;
932 unsigned i;
933 enum pipe_error ret = PIPE_OK;
934
935 assert(numInputs <= ARRAY_SIZE(t->inputs));
936 assert(numOutputs <= ARRAY_SIZE(t->outputs));
937
938 t = &translate;
939 memset(t, 0, sizeof *t);
940
941 t->procType = procType;
942 t->inputMapping = inputMapping;
943 t->outputMapping = outputMapping;
944 t->ureg = ureg;
945
946 /*_mesa_print_program(program);*/
947
948 /*
949 * Declare input attributes.
950 */
951 if (procType == TGSI_PROCESSOR_FRAGMENT) {
952 for (i = 0; i < numInputs; i++) {
953 t->inputs[i] = ureg_DECL_fs_input(ureg,
954 inputSemanticName[i],
955 inputSemanticIndex[i],
956 interpMode[i]);
957 }
958
959 if (program->InputsRead & VARYING_BIT_POS) {
960 /* Must do this after setting up t->inputs, and before
961 * emitting constant references, below:
962 */
963 emit_wpos(st_context(ctx), t, program, ureg);
964 }
965
966 /*
967 * Declare output attributes.
968 */
969 for (i = 0; i < numOutputs; i++) {
970 switch (outputSemanticName[i]) {
971 case TGSI_SEMANTIC_POSITION:
972 t->outputs[i] = ureg_DECL_output( ureg,
973 TGSI_SEMANTIC_POSITION, /* Z / Depth */
974 outputSemanticIndex[i] );
975
976 t->outputs[i] = ureg_writemask( t->outputs[i],
977 TGSI_WRITEMASK_Z );
978 break;
979 case TGSI_SEMANTIC_STENCIL:
980 t->outputs[i] = ureg_DECL_output( ureg,
981 TGSI_SEMANTIC_STENCIL, /* Stencil */
982 outputSemanticIndex[i] );
983 t->outputs[i] = ureg_writemask( t->outputs[i],
984 TGSI_WRITEMASK_Y );
985 break;
986 case TGSI_SEMANTIC_COLOR:
987 t->outputs[i] = ureg_DECL_output( ureg,
988 TGSI_SEMANTIC_COLOR,
989 outputSemanticIndex[i] );
990 break;
991 default:
992 debug_assert(0);
993 return 0;
994 }
995 }
996 }
997 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
998 for (i = 0; i < numInputs; i++) {
999 t->inputs[i] = ureg_DECL_input(ureg,
1000 inputSemanticName[i],
1001 inputSemanticIndex[i], 0, 1);
1002 }
1003
1004 for (i = 0; i < numOutputs; i++) {
1005 t->outputs[i] = ureg_DECL_output( ureg,
1006 outputSemanticName[i],
1007 outputSemanticIndex[i] );
1008 }
1009 }
1010 else {
1011 assert(procType == TGSI_PROCESSOR_VERTEX);
1012
1013 for (i = 0; i < numInputs; i++) {
1014 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1015 }
1016
1017 for (i = 0; i < numOutputs; i++) {
1018 t->outputs[i] = ureg_DECL_output( ureg,
1019 outputSemanticName[i],
1020 outputSemanticIndex[i] );
1021 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
1022 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
1023 ureg_MOV(ureg,
1024 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
1025 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
1026 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
1027 }
1028 }
1029 }
1030
1031 /* Declare address register.
1032 */
1033 if (program->NumAddressRegs > 0) {
1034 debug_assert( program->NumAddressRegs == 1 );
1035 t->address[0] = ureg_DECL_address( ureg );
1036 }
1037
1038 /* Declare misc input registers
1039 */
1040 {
1041 GLbitfield sysInputs = program->SystemValuesRead;
1042
1043 for (i = 0; sysInputs; i++) {
1044 if (sysInputs & (1 << i)) {
1045 unsigned semName = _mesa_sysval_to_semantic[i];
1046
1047 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
1048
1049 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1050 semName == TGSI_SEMANTIC_VERTEXID) {
1051 /* From Gallium perspective, these system values are always
1052 * integer, and require native integer support. However, if
1053 * native integer is supported on the vertex stage but not the
1054 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1055 * assumes these system values are floats. To resolve the
1056 * inconsistency, we insert a U2F.
1057 */
1058 struct st_context *st = st_context(ctx);
1059 struct pipe_screen *pscreen = st->pipe->screen;
1060 assert(procType == TGSI_PROCESSOR_VERTEX);
1061 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1062 (void) pscreen; /* silence non-debug build warnings */
1063 if (!ctx->Const.NativeIntegers) {
1064 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1065 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1066 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1067 }
1068 }
1069
1070 if (procType == TGSI_PROCESSOR_FRAGMENT &&
1071 semName == TGSI_SEMANTIC_POSITION)
1072 emit_wpos(st_context(ctx), t, program, ureg);
1073
1074 sysInputs &= ~(1 << i);
1075 }
1076 }
1077 }
1078
1079 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1080 /* If temps are accessed with indirect addressing, declare temporaries
1081 * in sequential order. Else, we declare them on demand elsewhere.
1082 */
1083 for (i = 0; i < program->NumTemporaries; i++) {
1084 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1085 t->temps[i] = ureg_DECL_temporary( t->ureg );
1086 }
1087 }
1088
1089 /* Emit constants and immediates. Mesa uses a single index space
1090 * for these, so we put all the translated regs in t->constants.
1091 */
1092 if (program->Parameters) {
1093 t->constants = calloc( program->Parameters->NumParameters,
1094 sizeof t->constants[0] );
1095 if (t->constants == NULL) {
1096 ret = PIPE_ERROR_OUT_OF_MEMORY;
1097 goto out;
1098 }
1099
1100 for (i = 0; i < program->Parameters->NumParameters; i++) {
1101 switch (program->Parameters->Parameters[i].Type) {
1102 case PROGRAM_STATE_VAR:
1103 case PROGRAM_UNIFORM:
1104 t->constants[i] = ureg_DECL_constant( ureg, i );
1105 break;
1106
1107 /* Emit immediates only when there's no indirect addressing of
1108 * the const buffer.
1109 * FIXME: Be smarter and recognize param arrays:
1110 * indirect addressing is only valid within the referenced
1111 * array.
1112 */
1113 case PROGRAM_CONSTANT:
1114 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1115 t->constants[i] = ureg_DECL_constant( ureg, i );
1116 else
1117 t->constants[i] =
1118 ureg_DECL_immediate( ureg,
1119 (const float*) program->Parameters->ParameterValues[i],
1120 4 );
1121 break;
1122 default:
1123 break;
1124 }
1125 }
1126 }
1127
1128 /* texture samplers */
1129 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1130 if (program->SamplersUsed & (1 << i)) {
1131 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1132 }
1133 }
1134
1135 /* Emit each instruction in turn:
1136 */
1137 for (i = 0; i < program->NumInstructions; i++) {
1138 set_insn_start( t, ureg_get_instruction_number( ureg ));
1139 compile_instruction(ctx, t, &program->Instructions[i]);
1140 }
1141
1142 /* Fix up all emitted labels:
1143 */
1144 for (i = 0; i < t->labels_count; i++) {
1145 ureg_fixup_label( ureg,
1146 t->labels[i].token,
1147 t->insn[t->labels[i].branch_target] );
1148 }
1149
1150 out:
1151 free(t->insn);
1152 free(t->labels);
1153 free(t->constants);
1154
1155 if (t->error) {
1156 debug_printf("%s: translate error flag set\n", __func__);
1157 }
1158
1159 return ret;
1160 }