st/mesa: clean up st_translate_texture_target()
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
48
49
50 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
51 (1 << PROGRAM_CONSTANT) | \
52 (1 << PROGRAM_UNIFORM))
53
54
55 struct label {
56 unsigned branch_target;
57 unsigned token;
58 };
59
60
61 /**
62 * Intermediate state used during shader translation.
63 */
64 struct st_translate {
65 struct ureg_program *ureg;
66
67 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
68 struct ureg_src *constants;
69 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
70 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
71 struct ureg_dst address[1];
72 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
73 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
74
75 const GLuint *inputMapping;
76 const GLuint *outputMapping;
77
78 /* For every instruction that contains a label (eg CALL), keep
79 * details so that we can go back afterwards and emit the correct
80 * tgsi instruction number for each label.
81 */
82 struct label *labels;
83 unsigned labels_size;
84 unsigned labels_count;
85
86 /* Keep a record of the tgsi instruction number that each mesa
87 * instruction starts at, will be used to fix up labels after
88 * translation.
89 */
90 unsigned *insn;
91 unsigned insn_size;
92 unsigned insn_count;
93
94 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
95
96 boolean error;
97 };
98
99
100 /**
101 * Make note of a branch to a label in the TGSI code.
102 * After we've emitted all instructions, we'll go over the list
103 * of labels built here and patch the TGSI code with the actual
104 * location of each label.
105 */
106 static unsigned *get_label( struct st_translate *t,
107 unsigned branch_target )
108 {
109 unsigned i;
110
111 if (t->labels_count + 1 >= t->labels_size) {
112 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
113 t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
114 if (t->labels == NULL) {
115 static unsigned dummy;
116 t->error = TRUE;
117 return &dummy;
118 }
119 }
120
121 i = t->labels_count++;
122 t->labels[i].branch_target = branch_target;
123 return &t->labels[i].token;
124 }
125
126
127 /**
128 * Called prior to emitting the TGSI code for each Mesa instruction.
129 * Allocate additional space for instructions if needed.
130 * Update the insn[] array so the next Mesa instruction points to
131 * the next TGSI instruction.
132 */
133 static void set_insn_start( struct st_translate *t,
134 unsigned start )
135 {
136 if (t->insn_count + 1 >= t->insn_size) {
137 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
138 t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
139 if (t->insn == NULL) {
140 t->error = TRUE;
141 return;
142 }
143 }
144
145 t->insn[t->insn_count++] = start;
146 }
147
148
149 /**
150 * Map a Mesa dst register to a TGSI ureg_dst register.
151 */
152 static struct ureg_dst
153 dst_register( struct st_translate *t,
154 gl_register_file file,
155 GLuint index )
156 {
157 switch( file ) {
158 case PROGRAM_UNDEFINED:
159 return ureg_dst_undef();
160
161 case PROGRAM_TEMPORARY:
162 if (ureg_dst_is_undef(t->temps[index]))
163 t->temps[index] = ureg_DECL_temporary( t->ureg );
164
165 return t->temps[index];
166
167 case PROGRAM_OUTPUT:
168 if (t->procType == TGSI_PROCESSOR_VERTEX)
169 assert(index < VARYING_SLOT_MAX);
170 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
171 assert(index < FRAG_RESULT_MAX);
172 else
173 assert(index < VARYING_SLOT_MAX);
174
175 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
176
177 return t->outputs[t->outputMapping[index]];
178
179 case PROGRAM_ADDRESS:
180 return t->address[index];
181
182 default:
183 debug_assert( 0 );
184 return ureg_dst_undef();
185 }
186 }
187
188
189 /**
190 * Map a Mesa src register to a TGSI ureg_src register.
191 */
192 static struct ureg_src
193 src_register( struct st_translate *t,
194 gl_register_file file,
195 GLint index )
196 {
197 switch( file ) {
198 case PROGRAM_UNDEFINED:
199 return ureg_src_undef();
200
201 case PROGRAM_TEMPORARY:
202 assert(index >= 0);
203 assert(index < ARRAY_SIZE(t->temps));
204 if (ureg_dst_is_undef(t->temps[index]))
205 t->temps[index] = ureg_DECL_temporary( t->ureg );
206 return ureg_src(t->temps[index]);
207
208 case PROGRAM_UNIFORM:
209 assert(index >= 0);
210 return t->constants[index];
211 case PROGRAM_STATE_VAR:
212 case PROGRAM_CONSTANT: /* ie, immediate */
213 if (index < 0)
214 return ureg_DECL_constant( t->ureg, 0 );
215 else
216 return t->constants[index];
217
218 case PROGRAM_INPUT:
219 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
220 return t->inputs[t->inputMapping[index]];
221
222 case PROGRAM_OUTPUT:
223 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
224 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
225
226 case PROGRAM_ADDRESS:
227 return ureg_src(t->address[index]);
228
229 case PROGRAM_SYSTEM_VALUE:
230 assert(index < ARRAY_SIZE(t->systemValues));
231 return t->systemValues[index];
232
233 default:
234 debug_assert( 0 );
235 return ureg_src_undef();
236 }
237 }
238
239
240 /**
241 * Map mesa texture target to TGSI texture target.
242 */
243 unsigned
244 st_translate_texture_target(GLuint textarget, GLboolean shadow)
245 {
246 if (shadow) {
247 switch (textarget) {
248 case TEXTURE_1D_INDEX:
249 return TGSI_TEXTURE_SHADOW1D;
250 case TEXTURE_2D_INDEX:
251 return TGSI_TEXTURE_SHADOW2D;
252 case TEXTURE_RECT_INDEX:
253 return TGSI_TEXTURE_SHADOWRECT;
254 case TEXTURE_1D_ARRAY_INDEX:
255 return TGSI_TEXTURE_SHADOW1D_ARRAY;
256 case TEXTURE_2D_ARRAY_INDEX:
257 return TGSI_TEXTURE_SHADOW2D_ARRAY;
258 case TEXTURE_CUBE_INDEX:
259 return TGSI_TEXTURE_SHADOWCUBE;
260 case TEXTURE_CUBE_ARRAY_INDEX:
261 return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
262 default:
263 break;
264 }
265 }
266
267 switch (textarget) {
268 case TEXTURE_2D_MULTISAMPLE_INDEX:
269 return TGSI_TEXTURE_2D_MSAA;
270 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
271 return TGSI_TEXTURE_2D_ARRAY_MSAA;
272 case TEXTURE_BUFFER_INDEX:
273 return TGSI_TEXTURE_BUFFER;
274 case TEXTURE_1D_INDEX:
275 return TGSI_TEXTURE_1D;
276 case TEXTURE_2D_INDEX:
277 return TGSI_TEXTURE_2D;
278 case TEXTURE_3D_INDEX:
279 return TGSI_TEXTURE_3D;
280 case TEXTURE_CUBE_INDEX:
281 return TGSI_TEXTURE_CUBE;
282 case TEXTURE_CUBE_ARRAY_INDEX:
283 return TGSI_TEXTURE_CUBE_ARRAY;
284 case TEXTURE_RECT_INDEX:
285 return TGSI_TEXTURE_RECT;
286 case TEXTURE_1D_ARRAY_INDEX:
287 return TGSI_TEXTURE_1D_ARRAY;
288 case TEXTURE_2D_ARRAY_INDEX:
289 return TGSI_TEXTURE_2D_ARRAY;
290 case TEXTURE_EXTERNAL_INDEX:
291 return TGSI_TEXTURE_2D;
292 default:
293 debug_assert(!"unexpected texture target index");
294 return TGSI_TEXTURE_1D;
295 }
296 }
297
298
299 /**
300 * Create a TGSI ureg_dst register from a Mesa dest register.
301 */
302 static struct ureg_dst
303 translate_dst( struct st_translate *t,
304 const struct prog_dst_register *DstReg,
305 boolean saturate)
306 {
307 struct ureg_dst dst = dst_register( t,
308 DstReg->File,
309 DstReg->Index );
310
311 dst = ureg_writemask( dst,
312 DstReg->WriteMask );
313
314 if (saturate)
315 dst = ureg_saturate( dst );
316
317 if (DstReg->RelAddr)
318 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
319
320 return dst;
321 }
322
323
324 /**
325 * Create a TGSI ureg_src register from a Mesa src register.
326 */
327 static struct ureg_src
328 translate_src( struct st_translate *t,
329 const struct prog_src_register *SrcReg )
330 {
331 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
332
333 src = ureg_swizzle( src,
334 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
335 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
336 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
337 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
338
339 if (SrcReg->Negate == NEGATE_XYZW)
340 src = ureg_negate(src);
341
342 if (SrcReg->RelAddr) {
343 src = ureg_src_indirect( src, ureg_src(t->address[0]));
344 if (SrcReg->File != PROGRAM_INPUT &&
345 SrcReg->File != PROGRAM_OUTPUT) {
346 /* If SrcReg->Index was negative, it was set to zero in
347 * src_register(). Reassign it now. But don't do this
348 * for input/output regs since they get remapped while
349 * const buffers don't.
350 */
351 src.Index = SrcReg->Index;
352 }
353 }
354
355 return src;
356 }
357
358
359 static struct ureg_src swizzle_4v( struct ureg_src src,
360 const unsigned *swz )
361 {
362 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
363 }
364
365
366 /**
367 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
368 *
369 * SWZ dst, src.x-y10
370 *
371 * becomes:
372 *
373 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
374 */
375 static void emit_swz( struct st_translate *t,
376 struct ureg_dst dst,
377 const struct prog_src_register *SrcReg )
378 {
379 struct ureg_program *ureg = t->ureg;
380 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
381
382 unsigned negate_mask = SrcReg->Negate;
383
384 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
385 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
386 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
387 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
388
389 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
390 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
391 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
392 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
393
394 unsigned negative_one_mask = one_mask & negate_mask;
395 unsigned positive_one_mask = one_mask & ~negate_mask;
396
397 struct ureg_src imm;
398 unsigned i;
399 unsigned mul_swizzle[4] = {0,0,0,0};
400 unsigned add_swizzle[4] = {0,0,0,0};
401 unsigned src_swizzle[4] = {0,0,0,0};
402 boolean need_add = FALSE;
403 boolean need_mul = FALSE;
404
405 if (dst.WriteMask == 0)
406 return;
407
408 /* Is this just a MOV?
409 */
410 if (zero_mask == 0 &&
411 one_mask == 0 &&
412 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
413 {
414 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
415 return;
416 }
417
418 #define IMM_ZERO 0
419 #define IMM_ONE 1
420 #define IMM_NEG_ONE 2
421
422 imm = ureg_imm3f( ureg, 0, 1, -1 );
423
424 for (i = 0; i < 4; i++) {
425 unsigned bit = 1 << i;
426
427 if (dst.WriteMask & bit) {
428 if (positive_one_mask & bit) {
429 mul_swizzle[i] = IMM_ZERO;
430 add_swizzle[i] = IMM_ONE;
431 need_add = TRUE;
432 }
433 else if (negative_one_mask & bit) {
434 mul_swizzle[i] = IMM_ZERO;
435 add_swizzle[i] = IMM_NEG_ONE;
436 need_add = TRUE;
437 }
438 else if (zero_mask & bit) {
439 mul_swizzle[i] = IMM_ZERO;
440 add_swizzle[i] = IMM_ZERO;
441 need_add = TRUE;
442 }
443 else {
444 add_swizzle[i] = IMM_ZERO;
445 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
446 need_mul = TRUE;
447 if (negate_mask & bit) {
448 mul_swizzle[i] = IMM_NEG_ONE;
449 }
450 else {
451 mul_swizzle[i] = IMM_ONE;
452 }
453 }
454 }
455 }
456
457 if (need_mul && need_add) {
458 ureg_MAD( ureg,
459 dst,
460 swizzle_4v( src, src_swizzle ),
461 swizzle_4v( imm, mul_swizzle ),
462 swizzle_4v( imm, add_swizzle ) );
463 }
464 else if (need_mul) {
465 ureg_MUL( ureg,
466 dst,
467 swizzle_4v( src, src_swizzle ),
468 swizzle_4v( imm, mul_swizzle ) );
469 }
470 else if (need_add) {
471 ureg_MOV( ureg,
472 dst,
473 swizzle_4v( imm, add_swizzle ) );
474 }
475 else {
476 debug_assert(0);
477 }
478
479 #undef IMM_ZERO
480 #undef IMM_ONE
481 #undef IMM_NEG_ONE
482 }
483
484
485 static unsigned
486 translate_opcode( unsigned op )
487 {
488 switch( op ) {
489 case OPCODE_ARL:
490 return TGSI_OPCODE_ARL;
491 case OPCODE_ABS:
492 return TGSI_OPCODE_ABS;
493 case OPCODE_ADD:
494 return TGSI_OPCODE_ADD;
495 case OPCODE_BGNLOOP:
496 return TGSI_OPCODE_BGNLOOP;
497 case OPCODE_BGNSUB:
498 return TGSI_OPCODE_BGNSUB;
499 case OPCODE_BRK:
500 return TGSI_OPCODE_BRK;
501 case OPCODE_CAL:
502 return TGSI_OPCODE_CAL;
503 case OPCODE_CMP:
504 return TGSI_OPCODE_CMP;
505 case OPCODE_CONT:
506 return TGSI_OPCODE_CONT;
507 case OPCODE_COS:
508 return TGSI_OPCODE_COS;
509 case OPCODE_DDX:
510 return TGSI_OPCODE_DDX;
511 case OPCODE_DDY:
512 return TGSI_OPCODE_DDY;
513 case OPCODE_DP2:
514 return TGSI_OPCODE_DP2;
515 case OPCODE_DP3:
516 return TGSI_OPCODE_DP3;
517 case OPCODE_DP4:
518 return TGSI_OPCODE_DP4;
519 case OPCODE_DPH:
520 return TGSI_OPCODE_DPH;
521 case OPCODE_DST:
522 return TGSI_OPCODE_DST;
523 case OPCODE_ELSE:
524 return TGSI_OPCODE_ELSE;
525 case OPCODE_ENDIF:
526 return TGSI_OPCODE_ENDIF;
527 case OPCODE_ENDLOOP:
528 return TGSI_OPCODE_ENDLOOP;
529 case OPCODE_ENDSUB:
530 return TGSI_OPCODE_ENDSUB;
531 case OPCODE_EX2:
532 return TGSI_OPCODE_EX2;
533 case OPCODE_EXP:
534 return TGSI_OPCODE_EXP;
535 case OPCODE_FLR:
536 return TGSI_OPCODE_FLR;
537 case OPCODE_FRC:
538 return TGSI_OPCODE_FRC;
539 case OPCODE_IF:
540 return TGSI_OPCODE_IF;
541 case OPCODE_TRUNC:
542 return TGSI_OPCODE_TRUNC;
543 case OPCODE_KIL:
544 return TGSI_OPCODE_KILL_IF;
545 case OPCODE_LG2:
546 return TGSI_OPCODE_LG2;
547 case OPCODE_LOG:
548 return TGSI_OPCODE_LOG;
549 case OPCODE_LIT:
550 return TGSI_OPCODE_LIT;
551 case OPCODE_LRP:
552 return TGSI_OPCODE_LRP;
553 case OPCODE_MAD:
554 return TGSI_OPCODE_MAD;
555 case OPCODE_MAX:
556 return TGSI_OPCODE_MAX;
557 case OPCODE_MIN:
558 return TGSI_OPCODE_MIN;
559 case OPCODE_MOV:
560 return TGSI_OPCODE_MOV;
561 case OPCODE_MUL:
562 return TGSI_OPCODE_MUL;
563 case OPCODE_NOP:
564 return TGSI_OPCODE_NOP;
565 case OPCODE_POW:
566 return TGSI_OPCODE_POW;
567 case OPCODE_RCP:
568 return TGSI_OPCODE_RCP;
569 case OPCODE_RET:
570 return TGSI_OPCODE_RET;
571 case OPCODE_SCS:
572 return TGSI_OPCODE_SCS;
573 case OPCODE_SEQ:
574 return TGSI_OPCODE_SEQ;
575 case OPCODE_SGE:
576 return TGSI_OPCODE_SGE;
577 case OPCODE_SGT:
578 return TGSI_OPCODE_SGT;
579 case OPCODE_SIN:
580 return TGSI_OPCODE_SIN;
581 case OPCODE_SLE:
582 return TGSI_OPCODE_SLE;
583 case OPCODE_SLT:
584 return TGSI_OPCODE_SLT;
585 case OPCODE_SNE:
586 return TGSI_OPCODE_SNE;
587 case OPCODE_SSG:
588 return TGSI_OPCODE_SSG;
589 case OPCODE_SUB:
590 return TGSI_OPCODE_SUB;
591 case OPCODE_TEX:
592 return TGSI_OPCODE_TEX;
593 case OPCODE_TXB:
594 return TGSI_OPCODE_TXB;
595 case OPCODE_TXD:
596 return TGSI_OPCODE_TXD;
597 case OPCODE_TXL:
598 return TGSI_OPCODE_TXL;
599 case OPCODE_TXP:
600 return TGSI_OPCODE_TXP;
601 case OPCODE_XPD:
602 return TGSI_OPCODE_XPD;
603 case OPCODE_END:
604 return TGSI_OPCODE_END;
605 default:
606 debug_assert( 0 );
607 return TGSI_OPCODE_NOP;
608 }
609 }
610
611
612 static void
613 compile_instruction(
614 struct gl_context *ctx,
615 struct st_translate *t,
616 const struct prog_instruction *inst)
617 {
618 struct ureg_program *ureg = t->ureg;
619 GLuint i;
620 struct ureg_dst dst[1] = { { 0 } };
621 struct ureg_src src[4];
622 unsigned num_dst;
623 unsigned num_src;
624
625 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
626 num_src = _mesa_num_inst_src_regs( inst->Opcode );
627
628 if (num_dst)
629 dst[0] = translate_dst( t,
630 &inst->DstReg,
631 inst->Saturate);
632
633 for (i = 0; i < num_src; i++)
634 src[i] = translate_src( t, &inst->SrcReg[i] );
635
636 switch( inst->Opcode ) {
637 case OPCODE_SWZ:
638 emit_swz( t, dst[0], &inst->SrcReg[0] );
639 return;
640
641 case OPCODE_BGNLOOP:
642 case OPCODE_CAL:
643 case OPCODE_ELSE:
644 case OPCODE_ENDLOOP:
645 debug_assert(num_dst == 0);
646 ureg_label_insn( ureg,
647 translate_opcode( inst->Opcode ),
648 src, num_src,
649 get_label( t, inst->BranchTarget ));
650 return;
651
652 case OPCODE_IF:
653 debug_assert(num_dst == 0);
654 ureg_label_insn( ureg,
655 ctx->Const.NativeIntegers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF,
656 src, num_src,
657 get_label( t, inst->BranchTarget ));
658 return;
659
660 case OPCODE_TEX:
661 case OPCODE_TXB:
662 case OPCODE_TXD:
663 case OPCODE_TXL:
664 case OPCODE_TXP:
665 src[num_src++] = t->samplers[inst->TexSrcUnit];
666 ureg_tex_insn( ureg,
667 translate_opcode( inst->Opcode ),
668 dst, num_dst,
669 st_translate_texture_target( inst->TexSrcTarget,
670 inst->TexShadow ),
671 NULL, 0,
672 src, num_src );
673 return;
674
675 case OPCODE_SCS:
676 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
677 ureg_insn( ureg,
678 translate_opcode( inst->Opcode ),
679 dst, num_dst,
680 src, num_src );
681 break;
682
683 case OPCODE_XPD:
684 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
685 ureg_insn( ureg,
686 translate_opcode( inst->Opcode ),
687 dst, num_dst,
688 src, num_src );
689 break;
690
691 case OPCODE_NOISE1:
692 case OPCODE_NOISE2:
693 case OPCODE_NOISE3:
694 case OPCODE_NOISE4:
695 /* At some point, a motivated person could add a better
696 * implementation of noise. Currently not even the nvidia
697 * binary drivers do anything more than this. In any case, the
698 * place to do this is in the GL state tracker, not the poor
699 * driver.
700 */
701 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
702 break;
703
704 case OPCODE_RSQ:
705 ureg_RSQ( ureg, dst[0], ureg_abs(src[0]) );
706 break;
707
708 default:
709 ureg_insn( ureg,
710 translate_opcode( inst->Opcode ),
711 dst, num_dst,
712 src, num_src );
713 break;
714 }
715 }
716
717
718 /**
719 * Emit the TGSI instructions for inverting and adjusting WPOS.
720 * This code is unavoidable because it also depends on whether
721 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
722 */
723 static void
724 emit_wpos_adjustment(struct gl_context *ctx,
725 struct st_translate *t,
726 const struct gl_program *program,
727 boolean invert,
728 GLfloat adjX, GLfloat adjY[2])
729 {
730 struct ureg_program *ureg = t->ureg;
731
732 /* Fragment program uses fragment position input.
733 * Need to replace instances of INPUT[WPOS] with temp T
734 * where T = INPUT[WPOS] by y is inverted.
735 */
736 static const gl_state_index wposTransformState[STATE_LENGTH]
737 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
738
739 /* XXX: note we are modifying the incoming shader here! Need to
740 * do this before emitting the constant decls below, or this
741 * will be missed:
742 */
743 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
744 wposTransformState);
745
746 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
747 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
748 struct ureg_src *wpos =
749 ctx->Const.GLSLFragCoordIsSysVal ?
750 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
751 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
752 struct ureg_src wpos_input = *wpos;
753
754 /* First, apply the coordinate shift: */
755 if (adjX || adjY[0] || adjY[1]) {
756 if (adjY[0] != adjY[1]) {
757 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
758 * depending on whether inversion is actually going to be applied
759 * or not, which is determined by testing against the inversion
760 * state variable used below, which will be either +1 or -1.
761 */
762 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
763
764 ureg_CMP(ureg, adj_temp,
765 ureg_scalar(wpostrans, invert ? 2 : 0),
766 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
767 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
768 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
769 } else {
770 ureg_ADD(ureg, wpos_temp, wpos_input,
771 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
772 }
773 wpos_input = ureg_src(wpos_temp);
774 } else {
775 /* MOV wpos_temp, input[wpos]
776 */
777 ureg_MOV( ureg, wpos_temp, wpos_input );
778 }
779
780 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
781 * inversion/identity, or the other way around if we're drawing to an FBO.
782 */
783 if (invert) {
784 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
785 */
786 ureg_MAD( ureg,
787 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
788 wpos_input,
789 ureg_scalar(wpostrans, 0),
790 ureg_scalar(wpostrans, 1));
791 } else {
792 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
793 */
794 ureg_MAD( ureg,
795 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
796 wpos_input,
797 ureg_scalar(wpostrans, 2),
798 ureg_scalar(wpostrans, 3));
799 }
800
801 /* Use wpos_temp as position input from here on:
802 */
803 *wpos = ureg_src(wpos_temp);
804 }
805
806
807 /**
808 * Emit fragment position/coordinate code.
809 */
810 static void
811 emit_wpos(struct st_context *st,
812 struct st_translate *t,
813 const struct gl_program *program,
814 struct ureg_program *ureg)
815 {
816 const struct gl_fragment_program *fp =
817 (const struct gl_fragment_program *) program;
818 struct pipe_screen *pscreen = st->pipe->screen;
819 GLfloat adjX = 0.0f;
820 GLfloat adjY[2] = { 0.0f, 0.0f };
821 boolean invert = FALSE;
822
823 /* Query the pixel center conventions supported by the pipe driver and set
824 * adjX, adjY to help out if it cannot handle the requested one internally.
825 *
826 * The bias of the y-coordinate depends on whether y-inversion takes place
827 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
828 * drawing to an FBO (causes additional inversion), and whether the the pipe
829 * driver origin and the requested origin differ (the latter condition is
830 * stored in the 'invert' variable).
831 *
832 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
833 *
834 * center shift only:
835 * i -> h: +0.5
836 * h -> i: -0.5
837 *
838 * inversion only:
839 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
840 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
841 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
842 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
843 *
844 * inversion and center shift:
845 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
846 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
847 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
848 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
849 */
850 if (fp->OriginUpperLeft) {
851 /* Fragment shader wants origin in upper-left */
852 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
853 /* the driver supports upper-left origin */
854 }
855 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
856 /* the driver supports lower-left origin, need to invert Y */
857 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
858 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
859 invert = TRUE;
860 }
861 else
862 assert(0);
863 }
864 else {
865 /* Fragment shader wants origin in lower-left */
866 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
867 /* the driver supports lower-left origin */
868 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
869 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
870 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
871 /* the driver supports upper-left origin, need to invert Y */
872 invert = TRUE;
873 else
874 assert(0);
875 }
876
877 if (fp->PixelCenterInteger) {
878 /* Fragment shader wants pixel center integer */
879 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
880 /* the driver supports pixel center integer */
881 adjY[1] = 1.0f;
882 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
883 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
884 }
885 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
886 /* the driver supports pixel center half integer, need to bias X,Y */
887 adjX = -0.5f;
888 adjY[0] = -0.5f;
889 adjY[1] = 0.5f;
890 }
891 else
892 assert(0);
893 }
894 else {
895 /* Fragment shader wants pixel center half integer */
896 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
897 /* the driver supports pixel center half integer */
898 }
899 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
900 /* the driver supports pixel center integer, need to bias X,Y */
901 adjX = adjY[0] = adjY[1] = 0.5f;
902 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
903 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
904 }
905 else
906 assert(0);
907 }
908
909 /* we invert after adjustment so that we avoid the MOV to temporary,
910 * and reuse the adjustment ADD instead */
911 emit_wpos_adjustment(st->ctx, t, program, invert, adjX, adjY);
912 }
913
914
915 /**
916 * Translate Mesa program to TGSI format.
917 * \param program the program to translate
918 * \param numInputs number of input registers used
919 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
920 * input indexes
921 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
922 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
923 * each input
924 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
925 * \param numOutputs number of output registers used
926 * \param outputMapping maps Mesa fragment program outputs to TGSI
927 * generic outputs
928 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
929 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
930 * each output
931 *
932 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
933 */
934 enum pipe_error
935 st_translate_mesa_program(
936 struct gl_context *ctx,
937 uint procType,
938 struct ureg_program *ureg,
939 const struct gl_program *program,
940 GLuint numInputs,
941 const GLuint inputMapping[],
942 const ubyte inputSemanticName[],
943 const ubyte inputSemanticIndex[],
944 const GLuint interpMode[],
945 GLuint numOutputs,
946 const GLuint outputMapping[],
947 const ubyte outputSemanticName[],
948 const ubyte outputSemanticIndex[])
949 {
950 struct st_translate translate, *t;
951 unsigned i;
952 enum pipe_error ret = PIPE_OK;
953
954 assert(numInputs <= ARRAY_SIZE(t->inputs));
955 assert(numOutputs <= ARRAY_SIZE(t->outputs));
956
957 t = &translate;
958 memset(t, 0, sizeof *t);
959
960 t->procType = procType;
961 t->inputMapping = inputMapping;
962 t->outputMapping = outputMapping;
963 t->ureg = ureg;
964
965 /*_mesa_print_program(program);*/
966
967 /*
968 * Declare input attributes.
969 */
970 if (procType == TGSI_PROCESSOR_FRAGMENT) {
971 for (i = 0; i < numInputs; i++) {
972 t->inputs[i] = ureg_DECL_fs_input(ureg,
973 inputSemanticName[i],
974 inputSemanticIndex[i],
975 interpMode[i]);
976 }
977
978 if (program->InputsRead & VARYING_BIT_POS) {
979 /* Must do this after setting up t->inputs, and before
980 * emitting constant references, below:
981 */
982 emit_wpos(st_context(ctx), t, program, ureg);
983 }
984
985 /*
986 * Declare output attributes.
987 */
988 for (i = 0; i < numOutputs; i++) {
989 switch (outputSemanticName[i]) {
990 case TGSI_SEMANTIC_POSITION:
991 t->outputs[i] = ureg_DECL_output( ureg,
992 TGSI_SEMANTIC_POSITION, /* Z / Depth */
993 outputSemanticIndex[i] );
994
995 t->outputs[i] = ureg_writemask( t->outputs[i],
996 TGSI_WRITEMASK_Z );
997 break;
998 case TGSI_SEMANTIC_STENCIL:
999 t->outputs[i] = ureg_DECL_output( ureg,
1000 TGSI_SEMANTIC_STENCIL, /* Stencil */
1001 outputSemanticIndex[i] );
1002 t->outputs[i] = ureg_writemask( t->outputs[i],
1003 TGSI_WRITEMASK_Y );
1004 break;
1005 case TGSI_SEMANTIC_COLOR:
1006 t->outputs[i] = ureg_DECL_output( ureg,
1007 TGSI_SEMANTIC_COLOR,
1008 outputSemanticIndex[i] );
1009 break;
1010 default:
1011 debug_assert(0);
1012 return 0;
1013 }
1014 }
1015 }
1016 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
1017 for (i = 0; i < numInputs; i++) {
1018 t->inputs[i] = ureg_DECL_input(ureg,
1019 inputSemanticName[i],
1020 inputSemanticIndex[i], 0, 1);
1021 }
1022
1023 for (i = 0; i < numOutputs; i++) {
1024 t->outputs[i] = ureg_DECL_output( ureg,
1025 outputSemanticName[i],
1026 outputSemanticIndex[i] );
1027 }
1028 }
1029 else {
1030 assert(procType == TGSI_PROCESSOR_VERTEX);
1031
1032 for (i = 0; i < numInputs; i++) {
1033 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1034 }
1035
1036 for (i = 0; i < numOutputs; i++) {
1037 t->outputs[i] = ureg_DECL_output( ureg,
1038 outputSemanticName[i],
1039 outputSemanticIndex[i] );
1040 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
1041 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
1042 ureg_MOV(ureg,
1043 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
1044 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
1045 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
1046 }
1047 }
1048 }
1049
1050 /* Declare address register.
1051 */
1052 if (program->NumAddressRegs > 0) {
1053 debug_assert( program->NumAddressRegs == 1 );
1054 t->address[0] = ureg_DECL_address( ureg );
1055 }
1056
1057 /* Declare misc input registers
1058 */
1059 {
1060 GLbitfield sysInputs = program->SystemValuesRead;
1061
1062 for (i = 0; sysInputs; i++) {
1063 if (sysInputs & (1 << i)) {
1064 unsigned semName = _mesa_sysval_to_semantic[i];
1065
1066 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
1067
1068 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1069 semName == TGSI_SEMANTIC_VERTEXID) {
1070 /* From Gallium perspective, these system values are always
1071 * integer, and require native integer support. However, if
1072 * native integer is supported on the vertex stage but not the
1073 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1074 * assumes these system values are floats. To resolve the
1075 * inconsistency, we insert a U2F.
1076 */
1077 struct st_context *st = st_context(ctx);
1078 struct pipe_screen *pscreen = st->pipe->screen;
1079 assert(procType == TGSI_PROCESSOR_VERTEX);
1080 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1081 (void) pscreen; /* silence non-debug build warnings */
1082 if (!ctx->Const.NativeIntegers) {
1083 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1084 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1085 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1086 }
1087 }
1088
1089 if (procType == TGSI_PROCESSOR_FRAGMENT &&
1090 semName == TGSI_SEMANTIC_POSITION)
1091 emit_wpos(st_context(ctx), t, program, ureg);
1092
1093 sysInputs &= ~(1 << i);
1094 }
1095 }
1096 }
1097
1098 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1099 /* If temps are accessed with indirect addressing, declare temporaries
1100 * in sequential order. Else, we declare them on demand elsewhere.
1101 */
1102 for (i = 0; i < program->NumTemporaries; i++) {
1103 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1104 t->temps[i] = ureg_DECL_temporary( t->ureg );
1105 }
1106 }
1107
1108 /* Emit constants and immediates. Mesa uses a single index space
1109 * for these, so we put all the translated regs in t->constants.
1110 */
1111 if (program->Parameters) {
1112 t->constants = calloc( program->Parameters->NumParameters,
1113 sizeof t->constants[0] );
1114 if (t->constants == NULL) {
1115 ret = PIPE_ERROR_OUT_OF_MEMORY;
1116 goto out;
1117 }
1118
1119 for (i = 0; i < program->Parameters->NumParameters; i++) {
1120 switch (program->Parameters->Parameters[i].Type) {
1121 case PROGRAM_STATE_VAR:
1122 case PROGRAM_UNIFORM:
1123 t->constants[i] = ureg_DECL_constant( ureg, i );
1124 break;
1125
1126 /* Emit immediates only when there's no indirect addressing of
1127 * the const buffer.
1128 * FIXME: Be smarter and recognize param arrays:
1129 * indirect addressing is only valid within the referenced
1130 * array.
1131 */
1132 case PROGRAM_CONSTANT:
1133 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1134 t->constants[i] = ureg_DECL_constant( ureg, i );
1135 else
1136 t->constants[i] =
1137 ureg_DECL_immediate( ureg,
1138 (const float*) program->Parameters->ParameterValues[i],
1139 4 );
1140 break;
1141 default:
1142 break;
1143 }
1144 }
1145 }
1146
1147 /* texture samplers */
1148 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1149 if (program->SamplersUsed & (1 << i)) {
1150 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1151 }
1152 }
1153
1154 /* Emit each instruction in turn:
1155 */
1156 for (i = 0; i < program->NumInstructions; i++) {
1157 set_insn_start( t, ureg_get_instruction_number( ureg ));
1158 compile_instruction(ctx, t, &program->Instructions[i]);
1159 }
1160
1161 /* Fix up all emitted labels:
1162 */
1163 for (i = 0; i < t->labels_count; i++) {
1164 ureg_fixup_label( ureg,
1165 t->labels[i].token,
1166 t->insn[t->labels[i].branch_target] );
1167 }
1168
1169 out:
1170 free(t->insn);
1171 free(t->labels);
1172 free(t->constants);
1173
1174 if (t->error) {
1175 debug_printf("%s: translate error flag set\n", __func__);
1176 }
1177
1178 return ret;
1179 }