st/mesa: inline st_free_tokens
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
48
49
50 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
51 (1 << PROGRAM_CONSTANT) | \
52 (1 << PROGRAM_UNIFORM))
53
54
55 struct label {
56 unsigned branch_target;
57 unsigned token;
58 };
59
60
61 /**
62 * Intermediate state used during shader translation.
63 */
64 struct st_translate {
65 struct ureg_program *ureg;
66
67 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
68 struct ureg_src *constants;
69 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
70 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
71 struct ureg_dst address[1];
72 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
73 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
74
75 const GLuint *inputMapping;
76 const GLuint *outputMapping;
77
78 /* For every instruction that contains a label (eg CALL), keep
79 * details so that we can go back afterwards and emit the correct
80 * tgsi instruction number for each label.
81 */
82 struct label *labels;
83 unsigned labels_size;
84 unsigned labels_count;
85
86 /* Keep a record of the tgsi instruction number that each mesa
87 * instruction starts at, will be used to fix up labels after
88 * translation.
89 */
90 unsigned *insn;
91 unsigned insn_size;
92 unsigned insn_count;
93
94 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
95
96 boolean error;
97 };
98
99
100 /**
101 * Make note of a branch to a label in the TGSI code.
102 * After we've emitted all instructions, we'll go over the list
103 * of labels built here and patch the TGSI code with the actual
104 * location of each label.
105 */
106 static unsigned *get_label( struct st_translate *t,
107 unsigned branch_target )
108 {
109 unsigned i;
110
111 if (t->labels_count + 1 >= t->labels_size) {
112 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
113 t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
114 if (t->labels == NULL) {
115 static unsigned dummy;
116 t->error = TRUE;
117 return &dummy;
118 }
119 }
120
121 i = t->labels_count++;
122 t->labels[i].branch_target = branch_target;
123 return &t->labels[i].token;
124 }
125
126
127 /**
128 * Called prior to emitting the TGSI code for each Mesa instruction.
129 * Allocate additional space for instructions if needed.
130 * Update the insn[] array so the next Mesa instruction points to
131 * the next TGSI instruction.
132 */
133 static void set_insn_start( struct st_translate *t,
134 unsigned start )
135 {
136 if (t->insn_count + 1 >= t->insn_size) {
137 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
138 t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
139 if (t->insn == NULL) {
140 t->error = TRUE;
141 return;
142 }
143 }
144
145 t->insn[t->insn_count++] = start;
146 }
147
148
149 /**
150 * Map a Mesa dst register to a TGSI ureg_dst register.
151 */
152 static struct ureg_dst
153 dst_register( struct st_translate *t,
154 gl_register_file file,
155 GLuint index )
156 {
157 switch( file ) {
158 case PROGRAM_UNDEFINED:
159 return ureg_dst_undef();
160
161 case PROGRAM_TEMPORARY:
162 if (ureg_dst_is_undef(t->temps[index]))
163 t->temps[index] = ureg_DECL_temporary( t->ureg );
164
165 return t->temps[index];
166
167 case PROGRAM_OUTPUT:
168 if (t->procType == TGSI_PROCESSOR_VERTEX)
169 assert(index < VARYING_SLOT_MAX);
170 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
171 assert(index < FRAG_RESULT_MAX);
172 else
173 assert(index < VARYING_SLOT_MAX);
174
175 assert(t->outputMapping[index] < Elements(t->outputs));
176
177 return t->outputs[t->outputMapping[index]];
178
179 case PROGRAM_ADDRESS:
180 return t->address[index];
181
182 default:
183 debug_assert( 0 );
184 return ureg_dst_undef();
185 }
186 }
187
188
189 /**
190 * Map a Mesa src register to a TGSI ureg_src register.
191 */
192 static struct ureg_src
193 src_register( struct st_translate *t,
194 gl_register_file file,
195 GLint index )
196 {
197 switch( file ) {
198 case PROGRAM_UNDEFINED:
199 return ureg_src_undef();
200
201 case PROGRAM_TEMPORARY:
202 assert(index >= 0);
203 assert(index < Elements(t->temps));
204 if (ureg_dst_is_undef(t->temps[index]))
205 t->temps[index] = ureg_DECL_temporary( t->ureg );
206 return ureg_src(t->temps[index]);
207
208 case PROGRAM_UNIFORM:
209 assert(index >= 0);
210 return t->constants[index];
211 case PROGRAM_STATE_VAR:
212 case PROGRAM_CONSTANT: /* ie, immediate */
213 if (index < 0)
214 return ureg_DECL_constant( t->ureg, 0 );
215 else
216 return t->constants[index];
217
218 case PROGRAM_INPUT:
219 assert(t->inputMapping[index] < Elements(t->inputs));
220 return t->inputs[t->inputMapping[index]];
221
222 case PROGRAM_OUTPUT:
223 assert(t->outputMapping[index] < Elements(t->outputs));
224 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
225
226 case PROGRAM_ADDRESS:
227 return ureg_src(t->address[index]);
228
229 case PROGRAM_SYSTEM_VALUE:
230 assert(index < Elements(t->systemValues));
231 return t->systemValues[index];
232
233 default:
234 debug_assert( 0 );
235 return ureg_src_undef();
236 }
237 }
238
239
240 /**
241 * Map mesa texture target to TGSI texture target.
242 */
243 unsigned
244 st_translate_texture_target( GLuint textarget,
245 GLboolean shadow )
246 {
247 if (shadow) {
248 switch( textarget ) {
249 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_SHADOW1D;
250 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_SHADOW2D;
251 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_SHADOWRECT;
252 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW1D_ARRAY;
253 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW2D_ARRAY;
254 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_SHADOWCUBE;
255 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
256 default: break;
257 }
258 }
259
260 switch( textarget ) {
261 case TEXTURE_2D_MULTISAMPLE_INDEX: return TGSI_TEXTURE_2D_MSAA;
262 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY_MSAA;
263 case TEXTURE_BUFFER_INDEX: return TGSI_TEXTURE_BUFFER;
264 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_1D;
265 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_2D;
266 case TEXTURE_3D_INDEX: return TGSI_TEXTURE_3D;
267 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_CUBE;
268 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_CUBE_ARRAY;
269 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_RECT;
270 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_1D_ARRAY;
271 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY;
272 case TEXTURE_EXTERNAL_INDEX: return TGSI_TEXTURE_2D;
273 default:
274 debug_assert( 0 );
275 return TGSI_TEXTURE_1D;
276 }
277 }
278
279
280 /**
281 * Create a TGSI ureg_dst register from a Mesa dest register.
282 */
283 static struct ureg_dst
284 translate_dst( struct st_translate *t,
285 const struct prog_dst_register *DstReg,
286 boolean saturate,
287 boolean clamp_color)
288 {
289 struct ureg_dst dst = dst_register( t,
290 DstReg->File,
291 DstReg->Index );
292
293 dst = ureg_writemask( dst,
294 DstReg->WriteMask );
295
296 if (saturate)
297 dst = ureg_saturate( dst );
298 else if (clamp_color && DstReg->File == PROGRAM_OUTPUT) {
299 /* Clamp colors for ARB_color_buffer_float. */
300 switch (t->procType) {
301 case TGSI_PROCESSOR_VERTEX:
302 /* This can only occur with a compatibility profile, which doesn't
303 * support geometry shaders. */
304 if (DstReg->Index == VARYING_SLOT_COL0 ||
305 DstReg->Index == VARYING_SLOT_COL1 ||
306 DstReg->Index == VARYING_SLOT_BFC0 ||
307 DstReg->Index == VARYING_SLOT_BFC1) {
308 dst = ureg_saturate(dst);
309 }
310 break;
311
312 case TGSI_PROCESSOR_FRAGMENT:
313 if (DstReg->Index >= FRAG_RESULT_COLOR) {
314 dst = ureg_saturate(dst);
315 }
316 break;
317 }
318 }
319
320 if (DstReg->RelAddr)
321 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
322
323 return dst;
324 }
325
326
327 /**
328 * Create a TGSI ureg_src register from a Mesa src register.
329 */
330 static struct ureg_src
331 translate_src( struct st_translate *t,
332 const struct prog_src_register *SrcReg )
333 {
334 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
335
336 if (t->procType == TGSI_PROCESSOR_GEOMETRY && SrcReg->HasIndex2) {
337 src = src_register( t, SrcReg->File, SrcReg->Index2 );
338 if (SrcReg->RelAddr2)
339 src = ureg_src_dimension_indirect( src, ureg_src(t->address[0]),
340 SrcReg->Index);
341 else
342 src = ureg_src_dimension( src, SrcReg->Index);
343 }
344
345 src = ureg_swizzle( src,
346 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
347 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
348 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
349 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
350
351 if (SrcReg->Negate == NEGATE_XYZW)
352 src = ureg_negate(src);
353
354 if (SrcReg->Abs)
355 src = ureg_abs(src);
356
357 if (SrcReg->RelAddr) {
358 src = ureg_src_indirect( src, ureg_src(t->address[0]));
359 if (SrcReg->File != PROGRAM_INPUT &&
360 SrcReg->File != PROGRAM_OUTPUT) {
361 /* If SrcReg->Index was negative, it was set to zero in
362 * src_register(). Reassign it now. But don't do this
363 * for input/output regs since they get remapped while
364 * const buffers don't.
365 */
366 src.Index = SrcReg->Index;
367 }
368 }
369
370 return src;
371 }
372
373
374 static struct ureg_src swizzle_4v( struct ureg_src src,
375 const unsigned *swz )
376 {
377 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
378 }
379
380
381 /**
382 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
383 *
384 * SWZ dst, src.x-y10
385 *
386 * becomes:
387 *
388 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
389 */
390 static void emit_swz( struct st_translate *t,
391 struct ureg_dst dst,
392 const struct prog_src_register *SrcReg )
393 {
394 struct ureg_program *ureg = t->ureg;
395 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
396
397 unsigned negate_mask = SrcReg->Negate;
398
399 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
400 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
401 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
402 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
403
404 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
405 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
406 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
407 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
408
409 unsigned negative_one_mask = one_mask & negate_mask;
410 unsigned positive_one_mask = one_mask & ~negate_mask;
411
412 struct ureg_src imm;
413 unsigned i;
414 unsigned mul_swizzle[4] = {0,0,0,0};
415 unsigned add_swizzle[4] = {0,0,0,0};
416 unsigned src_swizzle[4] = {0,0,0,0};
417 boolean need_add = FALSE;
418 boolean need_mul = FALSE;
419
420 if (dst.WriteMask == 0)
421 return;
422
423 /* Is this just a MOV?
424 */
425 if (zero_mask == 0 &&
426 one_mask == 0 &&
427 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
428 {
429 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
430 return;
431 }
432
433 #define IMM_ZERO 0
434 #define IMM_ONE 1
435 #define IMM_NEG_ONE 2
436
437 imm = ureg_imm3f( ureg, 0, 1, -1 );
438
439 for (i = 0; i < 4; i++) {
440 unsigned bit = 1 << i;
441
442 if (dst.WriteMask & bit) {
443 if (positive_one_mask & bit) {
444 mul_swizzle[i] = IMM_ZERO;
445 add_swizzle[i] = IMM_ONE;
446 need_add = TRUE;
447 }
448 else if (negative_one_mask & bit) {
449 mul_swizzle[i] = IMM_ZERO;
450 add_swizzle[i] = IMM_NEG_ONE;
451 need_add = TRUE;
452 }
453 else if (zero_mask & bit) {
454 mul_swizzle[i] = IMM_ZERO;
455 add_swizzle[i] = IMM_ZERO;
456 need_add = TRUE;
457 }
458 else {
459 add_swizzle[i] = IMM_ZERO;
460 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
461 need_mul = TRUE;
462 if (negate_mask & bit) {
463 mul_swizzle[i] = IMM_NEG_ONE;
464 }
465 else {
466 mul_swizzle[i] = IMM_ONE;
467 }
468 }
469 }
470 }
471
472 if (need_mul && need_add) {
473 ureg_MAD( ureg,
474 dst,
475 swizzle_4v( src, src_swizzle ),
476 swizzle_4v( imm, mul_swizzle ),
477 swizzle_4v( imm, add_swizzle ) );
478 }
479 else if (need_mul) {
480 ureg_MUL( ureg,
481 dst,
482 swizzle_4v( src, src_swizzle ),
483 swizzle_4v( imm, mul_swizzle ) );
484 }
485 else if (need_add) {
486 ureg_MOV( ureg,
487 dst,
488 swizzle_4v( imm, add_swizzle ) );
489 }
490 else {
491 debug_assert(0);
492 }
493
494 #undef IMM_ZERO
495 #undef IMM_ONE
496 #undef IMM_NEG_ONE
497 }
498
499
500 /**
501 * Negate the value of DDY to match GL semantics where (0,0) is the
502 * lower-left corner of the window.
503 * Note that the GL_ARB_fragment_coord_conventions extension will
504 * effect this someday.
505 */
506 static void emit_ddy( struct st_translate *t,
507 struct ureg_dst dst,
508 const struct prog_src_register *SrcReg )
509 {
510 struct ureg_program *ureg = t->ureg;
511 struct ureg_src src = translate_src( t, SrcReg );
512 src = ureg_negate( src );
513 ureg_DDY( ureg, dst, src );
514 }
515
516
517
518 static unsigned
519 translate_opcode( unsigned op )
520 {
521 switch( op ) {
522 case OPCODE_ARL:
523 return TGSI_OPCODE_ARL;
524 case OPCODE_ABS:
525 return TGSI_OPCODE_ABS;
526 case OPCODE_ADD:
527 return TGSI_OPCODE_ADD;
528 case OPCODE_BGNLOOP:
529 return TGSI_OPCODE_BGNLOOP;
530 case OPCODE_BGNSUB:
531 return TGSI_OPCODE_BGNSUB;
532 case OPCODE_BRK:
533 return TGSI_OPCODE_BRK;
534 case OPCODE_CAL:
535 return TGSI_OPCODE_CAL;
536 case OPCODE_CMP:
537 return TGSI_OPCODE_CMP;
538 case OPCODE_CONT:
539 return TGSI_OPCODE_CONT;
540 case OPCODE_COS:
541 return TGSI_OPCODE_COS;
542 case OPCODE_DDX:
543 return TGSI_OPCODE_DDX;
544 case OPCODE_DDY:
545 return TGSI_OPCODE_DDY;
546 case OPCODE_DP2:
547 return TGSI_OPCODE_DP2;
548 case OPCODE_DP3:
549 return TGSI_OPCODE_DP3;
550 case OPCODE_DP4:
551 return TGSI_OPCODE_DP4;
552 case OPCODE_DPH:
553 return TGSI_OPCODE_DPH;
554 case OPCODE_DST:
555 return TGSI_OPCODE_DST;
556 case OPCODE_ELSE:
557 return TGSI_OPCODE_ELSE;
558 case OPCODE_ENDIF:
559 return TGSI_OPCODE_ENDIF;
560 case OPCODE_ENDLOOP:
561 return TGSI_OPCODE_ENDLOOP;
562 case OPCODE_ENDSUB:
563 return TGSI_OPCODE_ENDSUB;
564 case OPCODE_EX2:
565 return TGSI_OPCODE_EX2;
566 case OPCODE_EXP:
567 return TGSI_OPCODE_EXP;
568 case OPCODE_FLR:
569 return TGSI_OPCODE_FLR;
570 case OPCODE_FRC:
571 return TGSI_OPCODE_FRC;
572 case OPCODE_IF:
573 return TGSI_OPCODE_IF;
574 case OPCODE_TRUNC:
575 return TGSI_OPCODE_TRUNC;
576 case OPCODE_KIL:
577 return TGSI_OPCODE_KILL_IF;
578 case OPCODE_KIL_NV:
579 /* XXX we don't support condition codes in TGSI */
580 return TGSI_OPCODE_KILL;
581 case OPCODE_LG2:
582 return TGSI_OPCODE_LG2;
583 case OPCODE_LOG:
584 return TGSI_OPCODE_LOG;
585 case OPCODE_LIT:
586 return TGSI_OPCODE_LIT;
587 case OPCODE_LRP:
588 return TGSI_OPCODE_LRP;
589 case OPCODE_MAD:
590 return TGSI_OPCODE_MAD;
591 case OPCODE_MAX:
592 return TGSI_OPCODE_MAX;
593 case OPCODE_MIN:
594 return TGSI_OPCODE_MIN;
595 case OPCODE_MOV:
596 return TGSI_OPCODE_MOV;
597 case OPCODE_MUL:
598 return TGSI_OPCODE_MUL;
599 case OPCODE_NOP:
600 return TGSI_OPCODE_NOP;
601 case OPCODE_POW:
602 return TGSI_OPCODE_POW;
603 case OPCODE_RCP:
604 return TGSI_OPCODE_RCP;
605 case OPCODE_RET:
606 return TGSI_OPCODE_RET;
607 case OPCODE_SCS:
608 return TGSI_OPCODE_SCS;
609 case OPCODE_SEQ:
610 return TGSI_OPCODE_SEQ;
611 case OPCODE_SGE:
612 return TGSI_OPCODE_SGE;
613 case OPCODE_SGT:
614 return TGSI_OPCODE_SGT;
615 case OPCODE_SIN:
616 return TGSI_OPCODE_SIN;
617 case OPCODE_SLE:
618 return TGSI_OPCODE_SLE;
619 case OPCODE_SLT:
620 return TGSI_OPCODE_SLT;
621 case OPCODE_SNE:
622 return TGSI_OPCODE_SNE;
623 case OPCODE_SSG:
624 return TGSI_OPCODE_SSG;
625 case OPCODE_SUB:
626 return TGSI_OPCODE_SUB;
627 case OPCODE_TEX:
628 return TGSI_OPCODE_TEX;
629 case OPCODE_TXB:
630 return TGSI_OPCODE_TXB;
631 case OPCODE_TXD:
632 return TGSI_OPCODE_TXD;
633 case OPCODE_TXL:
634 return TGSI_OPCODE_TXL;
635 case OPCODE_TXP:
636 return TGSI_OPCODE_TXP;
637 case OPCODE_XPD:
638 return TGSI_OPCODE_XPD;
639 case OPCODE_END:
640 return TGSI_OPCODE_END;
641 default:
642 debug_assert( 0 );
643 return TGSI_OPCODE_NOP;
644 }
645 }
646
647
648 static void
649 compile_instruction(
650 struct gl_context *ctx,
651 struct st_translate *t,
652 const struct prog_instruction *inst,
653 boolean clamp_dst_color_output)
654 {
655 struct ureg_program *ureg = t->ureg;
656 GLuint i;
657 struct ureg_dst dst[1] = { { 0 } };
658 struct ureg_src src[4];
659 unsigned num_dst;
660 unsigned num_src;
661
662 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
663 num_src = _mesa_num_inst_src_regs( inst->Opcode );
664
665 if (num_dst)
666 dst[0] = translate_dst( t,
667 &inst->DstReg,
668 inst->SaturateMode,
669 clamp_dst_color_output);
670
671 for (i = 0; i < num_src; i++)
672 src[i] = translate_src( t, &inst->SrcReg[i] );
673
674 switch( inst->Opcode ) {
675 case OPCODE_SWZ:
676 emit_swz( t, dst[0], &inst->SrcReg[0] );
677 return;
678
679 case OPCODE_BGNLOOP:
680 case OPCODE_CAL:
681 case OPCODE_ELSE:
682 case OPCODE_ENDLOOP:
683 debug_assert(num_dst == 0);
684 ureg_label_insn( ureg,
685 translate_opcode( inst->Opcode ),
686 src, num_src,
687 get_label( t, inst->BranchTarget ));
688 return;
689
690 case OPCODE_IF:
691 debug_assert(num_dst == 0);
692 ureg_label_insn( ureg,
693 ctx->Const.NativeIntegers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF,
694 src, num_src,
695 get_label( t, inst->BranchTarget ));
696 return;
697
698 case OPCODE_TEX:
699 case OPCODE_TXB:
700 case OPCODE_TXD:
701 case OPCODE_TXL:
702 case OPCODE_TXP:
703 src[num_src++] = t->samplers[inst->TexSrcUnit];
704 ureg_tex_insn( ureg,
705 translate_opcode( inst->Opcode ),
706 dst, num_dst,
707 st_translate_texture_target( inst->TexSrcTarget,
708 inst->TexShadow ),
709 NULL, 0,
710 src, num_src );
711 return;
712
713 case OPCODE_SCS:
714 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
715 ureg_insn( ureg,
716 translate_opcode( inst->Opcode ),
717 dst, num_dst,
718 src, num_src );
719 break;
720
721 case OPCODE_XPD:
722 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
723 ureg_insn( ureg,
724 translate_opcode( inst->Opcode ),
725 dst, num_dst,
726 src, num_src );
727 break;
728
729 case OPCODE_NOISE1:
730 case OPCODE_NOISE2:
731 case OPCODE_NOISE3:
732 case OPCODE_NOISE4:
733 /* At some point, a motivated person could add a better
734 * implementation of noise. Currently not even the nvidia
735 * binary drivers do anything more than this. In any case, the
736 * place to do this is in the GL state tracker, not the poor
737 * driver.
738 */
739 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
740 break;
741
742 case OPCODE_DDY:
743 emit_ddy( t, dst[0], &inst->SrcReg[0] );
744 break;
745
746 case OPCODE_RSQ:
747 ureg_RSQ( ureg, dst[0], ureg_abs(src[0]) );
748 break;
749
750 default:
751 ureg_insn( ureg,
752 translate_opcode( inst->Opcode ),
753 dst, num_dst,
754 src, num_src );
755 break;
756 }
757 }
758
759
760 /**
761 * Emit the TGSI instructions for inverting and adjusting WPOS.
762 * This code is unavoidable because it also depends on whether
763 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
764 */
765 static void
766 emit_wpos_adjustment( struct st_translate *t,
767 const struct gl_program *program,
768 boolean invert,
769 GLfloat adjX, GLfloat adjY[2])
770 {
771 struct ureg_program *ureg = t->ureg;
772
773 /* Fragment program uses fragment position input.
774 * Need to replace instances of INPUT[WPOS] with temp T
775 * where T = INPUT[WPOS] by y is inverted.
776 */
777 static const gl_state_index wposTransformState[STATE_LENGTH]
778 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
779
780 /* XXX: note we are modifying the incoming shader here! Need to
781 * do this before emitting the constant decls below, or this
782 * will be missed:
783 */
784 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
785 wposTransformState);
786
787 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
788 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
789 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
790
791 /* First, apply the coordinate shift: */
792 if (adjX || adjY[0] || adjY[1]) {
793 if (adjY[0] != adjY[1]) {
794 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
795 * depending on whether inversion is actually going to be applied
796 * or not, which is determined by testing against the inversion
797 * state variable used below, which will be either +1 or -1.
798 */
799 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
800
801 ureg_CMP(ureg, adj_temp,
802 ureg_scalar(wpostrans, invert ? 2 : 0),
803 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
804 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
805 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
806 } else {
807 ureg_ADD(ureg, wpos_temp, wpos_input,
808 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
809 }
810 wpos_input = ureg_src(wpos_temp);
811 } else {
812 /* MOV wpos_temp, input[wpos]
813 */
814 ureg_MOV( ureg, wpos_temp, wpos_input );
815 }
816
817 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
818 * inversion/identity, or the other way around if we're drawing to an FBO.
819 */
820 if (invert) {
821 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
822 */
823 ureg_MAD( ureg,
824 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
825 wpos_input,
826 ureg_scalar(wpostrans, 0),
827 ureg_scalar(wpostrans, 1));
828 } else {
829 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
830 */
831 ureg_MAD( ureg,
832 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
833 wpos_input,
834 ureg_scalar(wpostrans, 2),
835 ureg_scalar(wpostrans, 3));
836 }
837
838 /* Use wpos_temp as position input from here on:
839 */
840 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
841 }
842
843
844 /**
845 * Emit fragment position/coordinate code.
846 */
847 static void
848 emit_wpos(struct st_context *st,
849 struct st_translate *t,
850 const struct gl_program *program,
851 struct ureg_program *ureg)
852 {
853 const struct gl_fragment_program *fp =
854 (const struct gl_fragment_program *) program;
855 struct pipe_screen *pscreen = st->pipe->screen;
856 GLfloat adjX = 0.0f;
857 GLfloat adjY[2] = { 0.0f, 0.0f };
858 boolean invert = FALSE;
859
860 /* Query the pixel center conventions supported by the pipe driver and set
861 * adjX, adjY to help out if it cannot handle the requested one internally.
862 *
863 * The bias of the y-coordinate depends on whether y-inversion takes place
864 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
865 * drawing to an FBO (causes additional inversion), and whether the the pipe
866 * driver origin and the requested origin differ (the latter condition is
867 * stored in the 'invert' variable).
868 *
869 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
870 *
871 * center shift only:
872 * i -> h: +0.5
873 * h -> i: -0.5
874 *
875 * inversion only:
876 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
877 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
878 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
879 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
880 *
881 * inversion and center shift:
882 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
883 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
884 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
885 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
886 */
887 if (fp->OriginUpperLeft) {
888 /* Fragment shader wants origin in upper-left */
889 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
890 /* the driver supports upper-left origin */
891 }
892 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
893 /* the driver supports lower-left origin, need to invert Y */
894 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
895 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
896 invert = TRUE;
897 }
898 else
899 assert(0);
900 }
901 else {
902 /* Fragment shader wants origin in lower-left */
903 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
904 /* the driver supports lower-left origin */
905 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
906 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
907 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
908 /* the driver supports upper-left origin, need to invert Y */
909 invert = TRUE;
910 else
911 assert(0);
912 }
913
914 if (fp->PixelCenterInteger) {
915 /* Fragment shader wants pixel center integer */
916 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
917 /* the driver supports pixel center integer */
918 adjY[1] = 1.0f;
919 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
920 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
921 }
922 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
923 /* the driver supports pixel center half integer, need to bias X,Y */
924 adjX = -0.5f;
925 adjY[0] = -0.5f;
926 adjY[1] = 0.5f;
927 }
928 else
929 assert(0);
930 }
931 else {
932 /* Fragment shader wants pixel center half integer */
933 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
934 /* the driver supports pixel center half integer */
935 }
936 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
937 /* the driver supports pixel center integer, need to bias X,Y */
938 adjX = adjY[0] = adjY[1] = 0.5f;
939 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
940 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
941 }
942 else
943 assert(0);
944 }
945
946 /* we invert after adjustment so that we avoid the MOV to temporary,
947 * and reuse the adjustment ADD instead */
948 emit_wpos_adjustment(t, program, invert, adjX, adjY);
949 }
950
951
952 /**
953 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
954 * TGSI uses +1 for front, -1 for back.
955 * This function converts the TGSI value to the GL value. Simply clamping/
956 * saturating the value to [0,1] does the job.
957 */
958 static void
959 emit_face_var( struct st_translate *t,
960 const struct gl_program *program )
961 {
962 struct ureg_program *ureg = t->ureg;
963 struct ureg_dst face_temp = ureg_DECL_temporary( ureg );
964 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
965
966 /* MOV_SAT face_temp, input[face]
967 */
968 face_temp = ureg_saturate( face_temp );
969 ureg_MOV( ureg, face_temp, face_input );
970
971 /* Use face_temp as face input from here on:
972 */
973 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
974 }
975
976
977 static void
978 emit_edgeflags( struct st_translate *t,
979 const struct gl_program *program )
980 {
981 struct ureg_program *ureg = t->ureg;
982 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VARYING_SLOT_EDGE]];
983 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
984
985 ureg_MOV( ureg, edge_dst, edge_src );
986 }
987
988
989 /**
990 * Translate Mesa program to TGSI format.
991 * \param program the program to translate
992 * \param numInputs number of input registers used
993 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
994 * input indexes
995 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
996 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
997 * each input
998 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
999 * \param numOutputs number of output registers used
1000 * \param outputMapping maps Mesa fragment program outputs to TGSI
1001 * generic outputs
1002 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
1003 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
1004 * each output
1005 *
1006 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
1007 */
1008 enum pipe_error
1009 st_translate_mesa_program(
1010 struct gl_context *ctx,
1011 uint procType,
1012 struct ureg_program *ureg,
1013 const struct gl_program *program,
1014 GLuint numInputs,
1015 const GLuint inputMapping[],
1016 const ubyte inputSemanticName[],
1017 const ubyte inputSemanticIndex[],
1018 const GLuint interpMode[],
1019 GLuint numOutputs,
1020 const GLuint outputMapping[],
1021 const ubyte outputSemanticName[],
1022 const ubyte outputSemanticIndex[],
1023 boolean passthrough_edgeflags,
1024 boolean clamp_color)
1025 {
1026 struct st_translate translate, *t;
1027 unsigned i;
1028 enum pipe_error ret = PIPE_OK;
1029
1030 assert(numInputs <= Elements(t->inputs));
1031 assert(numOutputs <= Elements(t->outputs));
1032
1033 t = &translate;
1034 memset(t, 0, sizeof *t);
1035
1036 t->procType = procType;
1037 t->inputMapping = inputMapping;
1038 t->outputMapping = outputMapping;
1039 t->ureg = ureg;
1040
1041 /*_mesa_print_program(program);*/
1042
1043 /*
1044 * Declare input attributes.
1045 */
1046 if (procType == TGSI_PROCESSOR_FRAGMENT) {
1047 for (i = 0; i < numInputs; i++) {
1048 t->inputs[i] = ureg_DECL_fs_input(ureg,
1049 inputSemanticName[i],
1050 inputSemanticIndex[i],
1051 interpMode[i]);
1052 }
1053
1054 if (program->InputsRead & VARYING_BIT_POS) {
1055 /* Must do this after setting up t->inputs, and before
1056 * emitting constant references, below:
1057 */
1058 emit_wpos(st_context(ctx), t, program, ureg);
1059 }
1060
1061 if (program->InputsRead & VARYING_BIT_FACE) {
1062 emit_face_var( t, program );
1063 }
1064
1065 /*
1066 * Declare output attributes.
1067 */
1068 for (i = 0; i < numOutputs; i++) {
1069 switch (outputSemanticName[i]) {
1070 case TGSI_SEMANTIC_POSITION:
1071 t->outputs[i] = ureg_DECL_output( ureg,
1072 TGSI_SEMANTIC_POSITION, /* Z / Depth */
1073 outputSemanticIndex[i] );
1074
1075 t->outputs[i] = ureg_writemask( t->outputs[i],
1076 TGSI_WRITEMASK_Z );
1077 break;
1078 case TGSI_SEMANTIC_STENCIL:
1079 t->outputs[i] = ureg_DECL_output( ureg,
1080 TGSI_SEMANTIC_STENCIL, /* Stencil */
1081 outputSemanticIndex[i] );
1082 t->outputs[i] = ureg_writemask( t->outputs[i],
1083 TGSI_WRITEMASK_Y );
1084 break;
1085 case TGSI_SEMANTIC_COLOR:
1086 t->outputs[i] = ureg_DECL_output( ureg,
1087 TGSI_SEMANTIC_COLOR,
1088 outputSemanticIndex[i] );
1089 break;
1090 default:
1091 debug_assert(0);
1092 return 0;
1093 }
1094 }
1095 }
1096 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
1097 for (i = 0; i < numInputs; i++) {
1098 t->inputs[i] = ureg_DECL_gs_input(ureg,
1099 i,
1100 inputSemanticName[i],
1101 inputSemanticIndex[i]);
1102 }
1103
1104 for (i = 0; i < numOutputs; i++) {
1105 t->outputs[i] = ureg_DECL_output( ureg,
1106 outputSemanticName[i],
1107 outputSemanticIndex[i] );
1108 }
1109 }
1110 else {
1111 assert(procType == TGSI_PROCESSOR_VERTEX);
1112
1113 for (i = 0; i < numInputs; i++) {
1114 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1115 }
1116
1117 for (i = 0; i < numOutputs; i++) {
1118 t->outputs[i] = ureg_DECL_output( ureg,
1119 outputSemanticName[i],
1120 outputSemanticIndex[i] );
1121 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
1122 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
1123 ureg_MOV(ureg,
1124 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
1125 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
1126 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
1127 }
1128 }
1129 if (passthrough_edgeflags)
1130 emit_edgeflags( t, program );
1131 }
1132
1133 /* Declare address register.
1134 */
1135 if (program->NumAddressRegs > 0) {
1136 debug_assert( program->NumAddressRegs == 1 );
1137 t->address[0] = ureg_DECL_address( ureg );
1138 }
1139
1140 /* Declare misc input registers
1141 */
1142 {
1143 GLbitfield sysInputs = program->SystemValuesRead;
1144 unsigned numSys = 0;
1145 for (i = 0; sysInputs; i++) {
1146 if (sysInputs & (1 << i)) {
1147 unsigned semName = _mesa_sysval_to_semantic[i];
1148 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
1149 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1150 semName == TGSI_SEMANTIC_VERTEXID) {
1151 /* From Gallium perspective, these system values are always
1152 * integer, and require native integer support. However, if
1153 * native integer is supported on the vertex stage but not the
1154 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1155 * assumes these system values are floats. To resolve the
1156 * inconsistency, we insert a U2F.
1157 */
1158 struct st_context *st = st_context(ctx);
1159 struct pipe_screen *pscreen = st->pipe->screen;
1160 assert(procType == TGSI_PROCESSOR_VERTEX);
1161 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1162 (void) pscreen; /* silence non-debug build warnings */
1163 if (!ctx->Const.NativeIntegers) {
1164 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1165 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1166 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1167 }
1168 }
1169 numSys++;
1170 sysInputs &= ~(1 << i);
1171 }
1172 }
1173 }
1174
1175 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1176 /* If temps are accessed with indirect addressing, declare temporaries
1177 * in sequential order. Else, we declare them on demand elsewhere.
1178 */
1179 for (i = 0; i < program->NumTemporaries; i++) {
1180 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1181 t->temps[i] = ureg_DECL_temporary( t->ureg );
1182 }
1183 }
1184
1185 /* Emit constants and immediates. Mesa uses a single index space
1186 * for these, so we put all the translated regs in t->constants.
1187 */
1188 if (program->Parameters) {
1189 t->constants = calloc( program->Parameters->NumParameters,
1190 sizeof t->constants[0] );
1191 if (t->constants == NULL) {
1192 ret = PIPE_ERROR_OUT_OF_MEMORY;
1193 goto out;
1194 }
1195
1196 for (i = 0; i < program->Parameters->NumParameters; i++) {
1197 switch (program->Parameters->Parameters[i].Type) {
1198 case PROGRAM_STATE_VAR:
1199 case PROGRAM_UNIFORM:
1200 t->constants[i] = ureg_DECL_constant( ureg, i );
1201 break;
1202
1203 /* Emit immediates only when there's no indirect addressing of
1204 * the const buffer.
1205 * FIXME: Be smarter and recognize param arrays:
1206 * indirect addressing is only valid within the referenced
1207 * array.
1208 */
1209 case PROGRAM_CONSTANT:
1210 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1211 t->constants[i] = ureg_DECL_constant( ureg, i );
1212 else
1213 t->constants[i] =
1214 ureg_DECL_immediate( ureg,
1215 (const float*) program->Parameters->ParameterValues[i],
1216 4 );
1217 break;
1218 default:
1219 break;
1220 }
1221 }
1222 }
1223
1224 /* texture samplers */
1225 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1226 if (program->SamplersUsed & (1 << i)) {
1227 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1228 }
1229 }
1230
1231 /* Emit each instruction in turn:
1232 */
1233 for (i = 0; i < program->NumInstructions; i++) {
1234 set_insn_start( t, ureg_get_instruction_number( ureg ));
1235 compile_instruction( ctx, t, &program->Instructions[i], clamp_color );
1236 }
1237
1238 /* Fix up all emitted labels:
1239 */
1240 for (i = 0; i < t->labels_count; i++) {
1241 ureg_fixup_label( ureg,
1242 t->labels[i].token,
1243 t->insn[t->labels[i].branch_target] );
1244 }
1245
1246 out:
1247 free(t->insn);
1248 free(t->labels);
1249 free(t->constants);
1250
1251 if (t->error) {
1252 debug_printf("%s: translate error flag set\n", __FUNCTION__);
1253 }
1254
1255 return ret;
1256 }