mesa: remove unused opcodes AND, DP2A, NOT, NRM3, NRM4, OR, PRINT, XOR
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47
48
49 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
50 (1 << PROGRAM_ENV_PARAM) | \
51 (1 << PROGRAM_STATE_VAR) | \
52 (1 << PROGRAM_CONSTANT) | \
53 (1 << PROGRAM_UNIFORM))
54
55
56 struct label {
57 unsigned branch_target;
58 unsigned token;
59 };
60
61
62 /**
63 * Intermediate state used during shader translation.
64 */
65 struct st_translate {
66 struct ureg_program *ureg;
67
68 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
69 struct ureg_src *constants;
70 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
71 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
72 struct ureg_dst address[1];
73 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
74 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
75
76 const GLuint *inputMapping;
77 const GLuint *outputMapping;
78
79 /* For every instruction that contains a label (eg CALL), keep
80 * details so that we can go back afterwards and emit the correct
81 * tgsi instruction number for each label.
82 */
83 struct label *labels;
84 unsigned labels_size;
85 unsigned labels_count;
86
87 /* Keep a record of the tgsi instruction number that each mesa
88 * instruction starts at, will be used to fix up labels after
89 * translation.
90 */
91 unsigned *insn;
92 unsigned insn_size;
93 unsigned insn_count;
94
95 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
96
97 boolean error;
98 };
99
100
101 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
102 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
103 TGSI_SEMANTIC_FACE,
104 TGSI_SEMANTIC_VERTEXID,
105 TGSI_SEMANTIC_INSTANCEID
106 };
107
108
109 /**
110 * Make note of a branch to a label in the TGSI code.
111 * After we've emitted all instructions, we'll go over the list
112 * of labels built here and patch the TGSI code with the actual
113 * location of each label.
114 */
115 static unsigned *get_label( struct st_translate *t,
116 unsigned branch_target )
117 {
118 unsigned i;
119
120 if (t->labels_count + 1 >= t->labels_size) {
121 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
122 t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
123 if (t->labels == NULL) {
124 static unsigned dummy;
125 t->error = TRUE;
126 return &dummy;
127 }
128 }
129
130 i = t->labels_count++;
131 t->labels[i].branch_target = branch_target;
132 return &t->labels[i].token;
133 }
134
135
136 /**
137 * Called prior to emitting the TGSI code for each Mesa instruction.
138 * Allocate additional space for instructions if needed.
139 * Update the insn[] array so the next Mesa instruction points to
140 * the next TGSI instruction.
141 */
142 static void set_insn_start( struct st_translate *t,
143 unsigned start )
144 {
145 if (t->insn_count + 1 >= t->insn_size) {
146 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
147 t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
148 if (t->insn == NULL) {
149 t->error = TRUE;
150 return;
151 }
152 }
153
154 t->insn[t->insn_count++] = start;
155 }
156
157
158 /**
159 * Map a Mesa dst register to a TGSI ureg_dst register.
160 */
161 static struct ureg_dst
162 dst_register( struct st_translate *t,
163 gl_register_file file,
164 GLuint index )
165 {
166 switch( file ) {
167 case PROGRAM_UNDEFINED:
168 return ureg_dst_undef();
169
170 case PROGRAM_TEMPORARY:
171 if (ureg_dst_is_undef(t->temps[index]))
172 t->temps[index] = ureg_DECL_temporary( t->ureg );
173
174 return t->temps[index];
175
176 case PROGRAM_OUTPUT:
177 if (t->procType == TGSI_PROCESSOR_VERTEX)
178 assert(index < VARYING_SLOT_MAX);
179 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
180 assert(index < FRAG_RESULT_MAX);
181 else
182 assert(index < VARYING_SLOT_MAX);
183
184 assert(t->outputMapping[index] < Elements(t->outputs));
185
186 return t->outputs[t->outputMapping[index]];
187
188 case PROGRAM_ADDRESS:
189 return t->address[index];
190
191 default:
192 debug_assert( 0 );
193 return ureg_dst_undef();
194 }
195 }
196
197
198 /**
199 * Map a Mesa src register to a TGSI ureg_src register.
200 */
201 static struct ureg_src
202 src_register( struct st_translate *t,
203 gl_register_file file,
204 GLint index )
205 {
206 switch( file ) {
207 case PROGRAM_UNDEFINED:
208 return ureg_src_undef();
209
210 case PROGRAM_TEMPORARY:
211 assert(index >= 0);
212 assert(index < Elements(t->temps));
213 if (ureg_dst_is_undef(t->temps[index]))
214 t->temps[index] = ureg_DECL_temporary( t->ureg );
215 return ureg_src(t->temps[index]);
216
217 case PROGRAM_ENV_PARAM:
218 case PROGRAM_LOCAL_PARAM:
219 case PROGRAM_UNIFORM:
220 assert(index >= 0);
221 return t->constants[index];
222 case PROGRAM_STATE_VAR:
223 case PROGRAM_CONSTANT: /* ie, immediate */
224 if (index < 0)
225 return ureg_DECL_constant( t->ureg, 0 );
226 else
227 return t->constants[index];
228
229 case PROGRAM_INPUT:
230 assert(t->inputMapping[index] < Elements(t->inputs));
231 return t->inputs[t->inputMapping[index]];
232
233 case PROGRAM_OUTPUT:
234 assert(t->outputMapping[index] < Elements(t->outputs));
235 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
236
237 case PROGRAM_ADDRESS:
238 return ureg_src(t->address[index]);
239
240 case PROGRAM_SYSTEM_VALUE:
241 assert(index < Elements(t->systemValues));
242 return t->systemValues[index];
243
244 default:
245 debug_assert( 0 );
246 return ureg_src_undef();
247 }
248 }
249
250
251 /**
252 * Map mesa texture target to TGSI texture target.
253 */
254 unsigned
255 st_translate_texture_target( GLuint textarget,
256 GLboolean shadow )
257 {
258 if (shadow) {
259 switch( textarget ) {
260 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_SHADOW1D;
261 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_SHADOW2D;
262 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_SHADOWRECT;
263 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW1D_ARRAY;
264 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW2D_ARRAY;
265 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_SHADOWCUBE;
266 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
267 default: break;
268 }
269 }
270
271 switch( textarget ) {
272 case TEXTURE_2D_MULTISAMPLE_INDEX: return TGSI_TEXTURE_2D_MSAA;
273 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY_MSAA;
274 case TEXTURE_BUFFER_INDEX: return TGSI_TEXTURE_BUFFER;
275 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_1D;
276 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_2D;
277 case TEXTURE_3D_INDEX: return TGSI_TEXTURE_3D;
278 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_CUBE;
279 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_CUBE_ARRAY;
280 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_RECT;
281 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_1D_ARRAY;
282 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY;
283 case TEXTURE_EXTERNAL_INDEX: return TGSI_TEXTURE_2D;
284 default:
285 debug_assert( 0 );
286 return TGSI_TEXTURE_1D;
287 }
288 }
289
290
291 /**
292 * Create a TGSI ureg_dst register from a Mesa dest register.
293 */
294 static struct ureg_dst
295 translate_dst( struct st_translate *t,
296 const struct prog_dst_register *DstReg,
297 boolean saturate,
298 boolean clamp_color)
299 {
300 struct ureg_dst dst = dst_register( t,
301 DstReg->File,
302 DstReg->Index );
303
304 dst = ureg_writemask( dst,
305 DstReg->WriteMask );
306
307 if (saturate)
308 dst = ureg_saturate( dst );
309 else if (clamp_color && DstReg->File == PROGRAM_OUTPUT) {
310 /* Clamp colors for ARB_color_buffer_float. */
311 switch (t->procType) {
312 case TGSI_PROCESSOR_VERTEX:
313 /* XXX if the geometry shader is present, this must be done there
314 * instead of here. */
315 if (DstReg->Index == VARYING_SLOT_COL0 ||
316 DstReg->Index == VARYING_SLOT_COL1 ||
317 DstReg->Index == VARYING_SLOT_BFC0 ||
318 DstReg->Index == VARYING_SLOT_BFC1) {
319 dst = ureg_saturate(dst);
320 }
321 break;
322
323 case TGSI_PROCESSOR_FRAGMENT:
324 if (DstReg->Index >= FRAG_RESULT_COLOR) {
325 dst = ureg_saturate(dst);
326 }
327 break;
328 }
329 }
330
331 if (DstReg->RelAddr)
332 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
333
334 return dst;
335 }
336
337
338 /**
339 * Create a TGSI ureg_src register from a Mesa src register.
340 */
341 static struct ureg_src
342 translate_src( struct st_translate *t,
343 const struct prog_src_register *SrcReg )
344 {
345 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
346
347 if (t->procType == TGSI_PROCESSOR_GEOMETRY && SrcReg->HasIndex2) {
348 src = src_register( t, SrcReg->File, SrcReg->Index2 );
349 if (SrcReg->RelAddr2)
350 src = ureg_src_dimension_indirect( src, ureg_src(t->address[0]),
351 SrcReg->Index);
352 else
353 src = ureg_src_dimension( src, SrcReg->Index);
354 }
355
356 src = ureg_swizzle( src,
357 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
358 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
359 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
360 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
361
362 if (SrcReg->Negate == NEGATE_XYZW)
363 src = ureg_negate(src);
364
365 if (SrcReg->Abs)
366 src = ureg_abs(src);
367
368 if (SrcReg->RelAddr) {
369 src = ureg_src_indirect( src, ureg_src(t->address[0]));
370 if (SrcReg->File != PROGRAM_INPUT &&
371 SrcReg->File != PROGRAM_OUTPUT) {
372 /* If SrcReg->Index was negative, it was set to zero in
373 * src_register(). Reassign it now. But don't do this
374 * for input/output regs since they get remapped while
375 * const buffers don't.
376 */
377 src.Index = SrcReg->Index;
378 }
379 }
380
381 return src;
382 }
383
384
385 static struct ureg_src swizzle_4v( struct ureg_src src,
386 const unsigned *swz )
387 {
388 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
389 }
390
391
392 /**
393 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
394 *
395 * SWZ dst, src.x-y10
396 *
397 * becomes:
398 *
399 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
400 */
401 static void emit_swz( struct st_translate *t,
402 struct ureg_dst dst,
403 const struct prog_src_register *SrcReg )
404 {
405 struct ureg_program *ureg = t->ureg;
406 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
407
408 unsigned negate_mask = SrcReg->Negate;
409
410 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
411 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
412 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
413 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
414
415 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
416 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
417 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
418 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
419
420 unsigned negative_one_mask = one_mask & negate_mask;
421 unsigned positive_one_mask = one_mask & ~negate_mask;
422
423 struct ureg_src imm;
424 unsigned i;
425 unsigned mul_swizzle[4] = {0,0,0,0};
426 unsigned add_swizzle[4] = {0,0,0,0};
427 unsigned src_swizzle[4] = {0,0,0,0};
428 boolean need_add = FALSE;
429 boolean need_mul = FALSE;
430
431 if (dst.WriteMask == 0)
432 return;
433
434 /* Is this just a MOV?
435 */
436 if (zero_mask == 0 &&
437 one_mask == 0 &&
438 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
439 {
440 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
441 return;
442 }
443
444 #define IMM_ZERO 0
445 #define IMM_ONE 1
446 #define IMM_NEG_ONE 2
447
448 imm = ureg_imm3f( ureg, 0, 1, -1 );
449
450 for (i = 0; i < 4; i++) {
451 unsigned bit = 1 << i;
452
453 if (dst.WriteMask & bit) {
454 if (positive_one_mask & bit) {
455 mul_swizzle[i] = IMM_ZERO;
456 add_swizzle[i] = IMM_ONE;
457 need_add = TRUE;
458 }
459 else if (negative_one_mask & bit) {
460 mul_swizzle[i] = IMM_ZERO;
461 add_swizzle[i] = IMM_NEG_ONE;
462 need_add = TRUE;
463 }
464 else if (zero_mask & bit) {
465 mul_swizzle[i] = IMM_ZERO;
466 add_swizzle[i] = IMM_ZERO;
467 need_add = TRUE;
468 }
469 else {
470 add_swizzle[i] = IMM_ZERO;
471 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
472 need_mul = TRUE;
473 if (negate_mask & bit) {
474 mul_swizzle[i] = IMM_NEG_ONE;
475 }
476 else {
477 mul_swizzle[i] = IMM_ONE;
478 }
479 }
480 }
481 }
482
483 if (need_mul && need_add) {
484 ureg_MAD( ureg,
485 dst,
486 swizzle_4v( src, src_swizzle ),
487 swizzle_4v( imm, mul_swizzle ),
488 swizzle_4v( imm, add_swizzle ) );
489 }
490 else if (need_mul) {
491 ureg_MUL( ureg,
492 dst,
493 swizzle_4v( src, src_swizzle ),
494 swizzle_4v( imm, mul_swizzle ) );
495 }
496 else if (need_add) {
497 ureg_MOV( ureg,
498 dst,
499 swizzle_4v( imm, add_swizzle ) );
500 }
501 else {
502 debug_assert(0);
503 }
504
505 #undef IMM_ZERO
506 #undef IMM_ONE
507 #undef IMM_NEG_ONE
508 }
509
510
511 /**
512 * Negate the value of DDY to match GL semantics where (0,0) is the
513 * lower-left corner of the window.
514 * Note that the GL_ARB_fragment_coord_conventions extension will
515 * effect this someday.
516 */
517 static void emit_ddy( struct st_translate *t,
518 struct ureg_dst dst,
519 const struct prog_src_register *SrcReg )
520 {
521 struct ureg_program *ureg = t->ureg;
522 struct ureg_src src = translate_src( t, SrcReg );
523 src = ureg_negate( src );
524 ureg_DDY( ureg, dst, src );
525 }
526
527
528
529 static unsigned
530 translate_opcode( unsigned op )
531 {
532 switch( op ) {
533 case OPCODE_ARL:
534 return TGSI_OPCODE_ARL;
535 case OPCODE_ABS:
536 return TGSI_OPCODE_ABS;
537 case OPCODE_ADD:
538 return TGSI_OPCODE_ADD;
539 case OPCODE_BGNLOOP:
540 return TGSI_OPCODE_BGNLOOP;
541 case OPCODE_BGNSUB:
542 return TGSI_OPCODE_BGNSUB;
543 case OPCODE_BRK:
544 return TGSI_OPCODE_BRK;
545 case OPCODE_CAL:
546 return TGSI_OPCODE_CAL;
547 case OPCODE_CMP:
548 return TGSI_OPCODE_CMP;
549 case OPCODE_CONT:
550 return TGSI_OPCODE_CONT;
551 case OPCODE_COS:
552 return TGSI_OPCODE_COS;
553 case OPCODE_DDX:
554 return TGSI_OPCODE_DDX;
555 case OPCODE_DDY:
556 return TGSI_OPCODE_DDY;
557 case OPCODE_DP2:
558 return TGSI_OPCODE_DP2;
559 case OPCODE_DP3:
560 return TGSI_OPCODE_DP3;
561 case OPCODE_DP4:
562 return TGSI_OPCODE_DP4;
563 case OPCODE_DPH:
564 return TGSI_OPCODE_DPH;
565 case OPCODE_DST:
566 return TGSI_OPCODE_DST;
567 case OPCODE_ELSE:
568 return TGSI_OPCODE_ELSE;
569 case OPCODE_ENDIF:
570 return TGSI_OPCODE_ENDIF;
571 case OPCODE_ENDLOOP:
572 return TGSI_OPCODE_ENDLOOP;
573 case OPCODE_ENDSUB:
574 return TGSI_OPCODE_ENDSUB;
575 case OPCODE_EX2:
576 return TGSI_OPCODE_EX2;
577 case OPCODE_EXP:
578 return TGSI_OPCODE_EXP;
579 case OPCODE_FLR:
580 return TGSI_OPCODE_FLR;
581 case OPCODE_FRC:
582 return TGSI_OPCODE_FRC;
583 case OPCODE_IF:
584 return TGSI_OPCODE_IF;
585 case OPCODE_TRUNC:
586 return TGSI_OPCODE_TRUNC;
587 case OPCODE_KIL:
588 return TGSI_OPCODE_KIL;
589 case OPCODE_KIL_NV:
590 return TGSI_OPCODE_KILP;
591 case OPCODE_LG2:
592 return TGSI_OPCODE_LG2;
593 case OPCODE_LOG:
594 return TGSI_OPCODE_LOG;
595 case OPCODE_LIT:
596 return TGSI_OPCODE_LIT;
597 case OPCODE_LRP:
598 return TGSI_OPCODE_LRP;
599 case OPCODE_MAD:
600 return TGSI_OPCODE_MAD;
601 case OPCODE_MAX:
602 return TGSI_OPCODE_MAX;
603 case OPCODE_MIN:
604 return TGSI_OPCODE_MIN;
605 case OPCODE_MOV:
606 return TGSI_OPCODE_MOV;
607 case OPCODE_MUL:
608 return TGSI_OPCODE_MUL;
609 case OPCODE_NOP:
610 return TGSI_OPCODE_NOP;
611 case OPCODE_POW:
612 return TGSI_OPCODE_POW;
613 case OPCODE_RCP:
614 return TGSI_OPCODE_RCP;
615 case OPCODE_RET:
616 return TGSI_OPCODE_RET;
617 case OPCODE_RSQ:
618 return TGSI_OPCODE_RSQ;
619 case OPCODE_SCS:
620 return TGSI_OPCODE_SCS;
621 case OPCODE_SEQ:
622 return TGSI_OPCODE_SEQ;
623 case OPCODE_SGE:
624 return TGSI_OPCODE_SGE;
625 case OPCODE_SGT:
626 return TGSI_OPCODE_SGT;
627 case OPCODE_SIN:
628 return TGSI_OPCODE_SIN;
629 case OPCODE_SLE:
630 return TGSI_OPCODE_SLE;
631 case OPCODE_SLT:
632 return TGSI_OPCODE_SLT;
633 case OPCODE_SNE:
634 return TGSI_OPCODE_SNE;
635 case OPCODE_SSG:
636 return TGSI_OPCODE_SSG;
637 case OPCODE_SUB:
638 return TGSI_OPCODE_SUB;
639 case OPCODE_TEX:
640 return TGSI_OPCODE_TEX;
641 case OPCODE_TXB:
642 return TGSI_OPCODE_TXB;
643 case OPCODE_TXD:
644 return TGSI_OPCODE_TXD;
645 case OPCODE_TXL:
646 return TGSI_OPCODE_TXL;
647 case OPCODE_TXP:
648 return TGSI_OPCODE_TXP;
649 case OPCODE_XPD:
650 return TGSI_OPCODE_XPD;
651 case OPCODE_END:
652 return TGSI_OPCODE_END;
653 default:
654 debug_assert( 0 );
655 return TGSI_OPCODE_NOP;
656 }
657 }
658
659
660 static void
661 compile_instruction(
662 struct gl_context *ctx,
663 struct st_translate *t,
664 const struct prog_instruction *inst,
665 boolean clamp_dst_color_output)
666 {
667 struct ureg_program *ureg = t->ureg;
668 GLuint i;
669 struct ureg_dst dst[1] = { { 0 } };
670 struct ureg_src src[4];
671 unsigned num_dst;
672 unsigned num_src;
673
674 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
675 num_src = _mesa_num_inst_src_regs( inst->Opcode );
676
677 if (num_dst)
678 dst[0] = translate_dst( t,
679 &inst->DstReg,
680 inst->SaturateMode,
681 clamp_dst_color_output);
682
683 for (i = 0; i < num_src; i++)
684 src[i] = translate_src( t, &inst->SrcReg[i] );
685
686 switch( inst->Opcode ) {
687 case OPCODE_SWZ:
688 emit_swz( t, dst[0], &inst->SrcReg[0] );
689 return;
690
691 case OPCODE_BGNLOOP:
692 case OPCODE_CAL:
693 case OPCODE_ELSE:
694 case OPCODE_ENDLOOP:
695 debug_assert(num_dst == 0);
696 ureg_label_insn( ureg,
697 translate_opcode( inst->Opcode ),
698 src, num_src,
699 get_label( t, inst->BranchTarget ));
700 return;
701
702 case OPCODE_IF:
703 debug_assert(num_dst == 0);
704 ureg_label_insn( ureg,
705 ctx->Const.NativeIntegers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF,
706 src, num_src,
707 get_label( t, inst->BranchTarget ));
708 return;
709
710 case OPCODE_TEX:
711 case OPCODE_TXB:
712 case OPCODE_TXD:
713 case OPCODE_TXL:
714 case OPCODE_TXP:
715 src[num_src++] = t->samplers[inst->TexSrcUnit];
716 ureg_tex_insn( ureg,
717 translate_opcode( inst->Opcode ),
718 dst, num_dst,
719 st_translate_texture_target( inst->TexSrcTarget,
720 inst->TexShadow ),
721 NULL, 0,
722 src, num_src );
723 return;
724
725 case OPCODE_SCS:
726 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
727 ureg_insn( ureg,
728 translate_opcode( inst->Opcode ),
729 dst, num_dst,
730 src, num_src );
731 break;
732
733 case OPCODE_XPD:
734 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
735 ureg_insn( ureg,
736 translate_opcode( inst->Opcode ),
737 dst, num_dst,
738 src, num_src );
739 break;
740
741 case OPCODE_NOISE1:
742 case OPCODE_NOISE2:
743 case OPCODE_NOISE3:
744 case OPCODE_NOISE4:
745 /* At some point, a motivated person could add a better
746 * implementation of noise. Currently not even the nvidia
747 * binary drivers do anything more than this. In any case, the
748 * place to do this is in the GL state tracker, not the poor
749 * driver.
750 */
751 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
752 break;
753
754 case OPCODE_DDY:
755 emit_ddy( t, dst[0], &inst->SrcReg[0] );
756 break;
757
758 default:
759 ureg_insn( ureg,
760 translate_opcode( inst->Opcode ),
761 dst, num_dst,
762 src, num_src );
763 break;
764 }
765 }
766
767
768 /**
769 * Emit the TGSI instructions for inverting and adjusting WPOS.
770 * This code is unavoidable because it also depends on whether
771 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
772 */
773 static void
774 emit_wpos_adjustment( struct st_translate *t,
775 const struct gl_program *program,
776 boolean invert,
777 GLfloat adjX, GLfloat adjY[2])
778 {
779 struct ureg_program *ureg = t->ureg;
780
781 /* Fragment program uses fragment position input.
782 * Need to replace instances of INPUT[WPOS] with temp T
783 * where T = INPUT[WPOS] by y is inverted.
784 */
785 static const gl_state_index wposTransformState[STATE_LENGTH]
786 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
787
788 /* XXX: note we are modifying the incoming shader here! Need to
789 * do this before emitting the constant decls below, or this
790 * will be missed:
791 */
792 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
793 wposTransformState);
794
795 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
796 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
797 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
798
799 /* First, apply the coordinate shift: */
800 if (adjX || adjY[0] || adjY[1]) {
801 if (adjY[0] != adjY[1]) {
802 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
803 * depending on whether inversion is actually going to be applied
804 * or not, which is determined by testing against the inversion
805 * state variable used below, which will be either +1 or -1.
806 */
807 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
808
809 ureg_CMP(ureg, adj_temp,
810 ureg_scalar(wpostrans, invert ? 2 : 0),
811 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
812 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
813 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
814 } else {
815 ureg_ADD(ureg, wpos_temp, wpos_input,
816 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
817 }
818 wpos_input = ureg_src(wpos_temp);
819 } else {
820 /* MOV wpos_temp, input[wpos]
821 */
822 ureg_MOV( ureg, wpos_temp, wpos_input );
823 }
824
825 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
826 * inversion/identity, or the other way around if we're drawing to an FBO.
827 */
828 if (invert) {
829 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
830 */
831 ureg_MAD( ureg,
832 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
833 wpos_input,
834 ureg_scalar(wpostrans, 0),
835 ureg_scalar(wpostrans, 1));
836 } else {
837 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
838 */
839 ureg_MAD( ureg,
840 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
841 wpos_input,
842 ureg_scalar(wpostrans, 2),
843 ureg_scalar(wpostrans, 3));
844 }
845
846 /* Use wpos_temp as position input from here on:
847 */
848 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
849 }
850
851
852 /**
853 * Emit fragment position/ooordinate code.
854 */
855 static void
856 emit_wpos(struct st_context *st,
857 struct st_translate *t,
858 const struct gl_program *program,
859 struct ureg_program *ureg)
860 {
861 const struct gl_fragment_program *fp =
862 (const struct gl_fragment_program *) program;
863 struct pipe_screen *pscreen = st->pipe->screen;
864 GLfloat adjX = 0.0f;
865 GLfloat adjY[2] = { 0.0f, 0.0f };
866 boolean invert = FALSE;
867
868 /* Query the pixel center conventions supported by the pipe driver and set
869 * adjX, adjY to help out if it cannot handle the requested one internally.
870 *
871 * The bias of the y-coordinate depends on whether y-inversion takes place
872 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
873 * drawing to an FBO (causes additional inversion), and whether the the pipe
874 * driver origin and the requested origin differ (the latter condition is
875 * stored in the 'invert' variable).
876 *
877 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
878 *
879 * center shift only:
880 * i -> h: +0.5
881 * h -> i: -0.5
882 *
883 * inversion only:
884 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
885 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
886 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
887 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
888 *
889 * inversion and center shift:
890 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
891 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
892 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
893 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
894 */
895 if (fp->OriginUpperLeft) {
896 /* Fragment shader wants origin in upper-left */
897 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
898 /* the driver supports upper-left origin */
899 }
900 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
901 /* the driver supports lower-left origin, need to invert Y */
902 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
903 invert = TRUE;
904 }
905 else
906 assert(0);
907 }
908 else {
909 /* Fragment shader wants origin in lower-left */
910 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
911 /* the driver supports lower-left origin */
912 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
913 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
914 /* the driver supports upper-left origin, need to invert Y */
915 invert = TRUE;
916 else
917 assert(0);
918 }
919
920 if (fp->PixelCenterInteger) {
921 /* Fragment shader wants pixel center integer */
922 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
923 /* the driver supports pixel center integer */
924 adjY[1] = 1.0f;
925 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
926 }
927 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
928 /* the driver supports pixel center half integer, need to bias X,Y */
929 adjX = -0.5f;
930 adjY[0] = -0.5f;
931 adjY[1] = 0.5f;
932 }
933 else
934 assert(0);
935 }
936 else {
937 /* Fragment shader wants pixel center half integer */
938 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
939 /* the driver supports pixel center half integer */
940 }
941 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
942 /* the driver supports pixel center integer, need to bias X,Y */
943 adjX = adjY[0] = adjY[1] = 0.5f;
944 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
945 }
946 else
947 assert(0);
948 }
949
950 /* we invert after adjustment so that we avoid the MOV to temporary,
951 * and reuse the adjustment ADD instead */
952 emit_wpos_adjustment(t, program, invert, adjX, adjY);
953 }
954
955
956 /**
957 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
958 * TGSI uses +1 for front, -1 for back.
959 * This function converts the TGSI value to the GL value. Simply clamping/
960 * saturating the value to [0,1] does the job.
961 */
962 static void
963 emit_face_var( struct st_translate *t,
964 const struct gl_program *program )
965 {
966 struct ureg_program *ureg = t->ureg;
967 struct ureg_dst face_temp = ureg_DECL_temporary( ureg );
968 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
969
970 /* MOV_SAT face_temp, input[face]
971 */
972 face_temp = ureg_saturate( face_temp );
973 ureg_MOV( ureg, face_temp, face_input );
974
975 /* Use face_temp as face input from here on:
976 */
977 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
978 }
979
980
981 static void
982 emit_edgeflags( struct st_translate *t,
983 const struct gl_program *program )
984 {
985 struct ureg_program *ureg = t->ureg;
986 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VARYING_SLOT_EDGE]];
987 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
988
989 ureg_MOV( ureg, edge_dst, edge_src );
990 }
991
992
993 /**
994 * Translate Mesa program to TGSI format.
995 * \param program the program to translate
996 * \param numInputs number of input registers used
997 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
998 * input indexes
999 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
1000 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
1001 * each input
1002 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
1003 * \param numOutputs number of output registers used
1004 * \param outputMapping maps Mesa fragment program outputs to TGSI
1005 * generic outputs
1006 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
1007 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
1008 * each output
1009 *
1010 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
1011 */
1012 enum pipe_error
1013 st_translate_mesa_program(
1014 struct gl_context *ctx,
1015 uint procType,
1016 struct ureg_program *ureg,
1017 const struct gl_program *program,
1018 GLuint numInputs,
1019 const GLuint inputMapping[],
1020 const ubyte inputSemanticName[],
1021 const ubyte inputSemanticIndex[],
1022 const GLuint interpMode[],
1023 GLuint numOutputs,
1024 const GLuint outputMapping[],
1025 const ubyte outputSemanticName[],
1026 const ubyte outputSemanticIndex[],
1027 boolean passthrough_edgeflags,
1028 boolean clamp_color)
1029 {
1030 struct st_translate translate, *t;
1031 unsigned i;
1032 enum pipe_error ret = PIPE_OK;
1033
1034 assert(numInputs <= Elements(t->inputs));
1035 assert(numOutputs <= Elements(t->outputs));
1036
1037 t = &translate;
1038 memset(t, 0, sizeof *t);
1039
1040 t->procType = procType;
1041 t->inputMapping = inputMapping;
1042 t->outputMapping = outputMapping;
1043 t->ureg = ureg;
1044
1045 /*_mesa_print_program(program);*/
1046
1047 /*
1048 * Declare input attributes.
1049 */
1050 if (procType == TGSI_PROCESSOR_FRAGMENT) {
1051 for (i = 0; i < numInputs; i++) {
1052 t->inputs[i] = ureg_DECL_fs_input(ureg,
1053 inputSemanticName[i],
1054 inputSemanticIndex[i],
1055 interpMode[i]);
1056 }
1057
1058 if (program->InputsRead & VARYING_BIT_POS) {
1059 /* Must do this after setting up t->inputs, and before
1060 * emitting constant references, below:
1061 */
1062 emit_wpos(st_context(ctx), t, program, ureg);
1063 }
1064
1065 if (program->InputsRead & VARYING_BIT_FACE) {
1066 emit_face_var( t, program );
1067 }
1068
1069 /*
1070 * Declare output attributes.
1071 */
1072 for (i = 0; i < numOutputs; i++) {
1073 switch (outputSemanticName[i]) {
1074 case TGSI_SEMANTIC_POSITION:
1075 t->outputs[i] = ureg_DECL_output( ureg,
1076 TGSI_SEMANTIC_POSITION, /* Z / Depth */
1077 outputSemanticIndex[i] );
1078
1079 t->outputs[i] = ureg_writemask( t->outputs[i],
1080 TGSI_WRITEMASK_Z );
1081 break;
1082 case TGSI_SEMANTIC_STENCIL:
1083 t->outputs[i] = ureg_DECL_output( ureg,
1084 TGSI_SEMANTIC_STENCIL, /* Stencil */
1085 outputSemanticIndex[i] );
1086 t->outputs[i] = ureg_writemask( t->outputs[i],
1087 TGSI_WRITEMASK_Y );
1088 break;
1089 case TGSI_SEMANTIC_COLOR:
1090 t->outputs[i] = ureg_DECL_output( ureg,
1091 TGSI_SEMANTIC_COLOR,
1092 outputSemanticIndex[i] );
1093 break;
1094 default:
1095 debug_assert(0);
1096 return 0;
1097 }
1098 }
1099 }
1100 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
1101 for (i = 0; i < numInputs; i++) {
1102 t->inputs[i] = ureg_DECL_gs_input(ureg,
1103 i,
1104 inputSemanticName[i],
1105 inputSemanticIndex[i]);
1106 }
1107
1108 for (i = 0; i < numOutputs; i++) {
1109 t->outputs[i] = ureg_DECL_output( ureg,
1110 outputSemanticName[i],
1111 outputSemanticIndex[i] );
1112 }
1113 }
1114 else {
1115 assert(procType == TGSI_PROCESSOR_VERTEX);
1116
1117 for (i = 0; i < numInputs; i++) {
1118 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1119 }
1120
1121 for (i = 0; i < numOutputs; i++) {
1122 t->outputs[i] = ureg_DECL_output( ureg,
1123 outputSemanticName[i],
1124 outputSemanticIndex[i] );
1125 }
1126 if (passthrough_edgeflags)
1127 emit_edgeflags( t, program );
1128 }
1129
1130 /* Declare address register.
1131 */
1132 if (program->NumAddressRegs > 0) {
1133 debug_assert( program->NumAddressRegs == 1 );
1134 t->address[0] = ureg_DECL_address( ureg );
1135 }
1136
1137 /* Declare misc input registers
1138 */
1139 {
1140 GLbitfield sysInputs = program->SystemValuesRead;
1141 unsigned numSys = 0;
1142 for (i = 0; sysInputs; i++) {
1143 if (sysInputs & (1 << i)) {
1144 unsigned semName = mesa_sysval_to_semantic[i];
1145 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
1146 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1147 semName == TGSI_SEMANTIC_VERTEXID) {
1148 /* From Gallium perspective, these system values are always
1149 * integer, and require native integer support. However, if
1150 * native integer is supported on the vertex stage but not the
1151 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1152 * assumes these system values are floats. To resolve the
1153 * inconsistency, we insert a U2F.
1154 */
1155 struct st_context *st = st_context(ctx);
1156 struct pipe_screen *pscreen = st->pipe->screen;
1157 assert(procType == TGSI_PROCESSOR_VERTEX);
1158 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1159 (void) pscreen; /* silence non-debug build warnings */
1160 if (!ctx->Const.NativeIntegers) {
1161 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1162 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1163 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1164 }
1165 }
1166 numSys++;
1167 sysInputs &= ~(1 << i);
1168 }
1169 }
1170 }
1171
1172 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1173 /* If temps are accessed with indirect addressing, declare temporaries
1174 * in sequential order. Else, we declare them on demand elsewhere.
1175 */
1176 for (i = 0; i < program->NumTemporaries; i++) {
1177 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1178 t->temps[i] = ureg_DECL_temporary( t->ureg );
1179 }
1180 }
1181
1182 /* Emit constants and immediates. Mesa uses a single index space
1183 * for these, so we put all the translated regs in t->constants.
1184 */
1185 if (program->Parameters) {
1186 t->constants = calloc( program->Parameters->NumParameters,
1187 sizeof t->constants[0] );
1188 if (t->constants == NULL) {
1189 ret = PIPE_ERROR_OUT_OF_MEMORY;
1190 goto out;
1191 }
1192
1193 for (i = 0; i < program->Parameters->NumParameters; i++) {
1194 switch (program->Parameters->Parameters[i].Type) {
1195 case PROGRAM_ENV_PARAM:
1196 case PROGRAM_LOCAL_PARAM:
1197 case PROGRAM_STATE_VAR:
1198 case PROGRAM_UNIFORM:
1199 t->constants[i] = ureg_DECL_constant( ureg, i );
1200 break;
1201
1202 /* Emit immediates only when there's no indirect addressing of
1203 * the const buffer.
1204 * FIXME: Be smarter and recognize param arrays:
1205 * indirect addressing is only valid within the referenced
1206 * array.
1207 */
1208 case PROGRAM_CONSTANT:
1209 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1210 t->constants[i] = ureg_DECL_constant( ureg, i );
1211 else
1212 t->constants[i] =
1213 ureg_DECL_immediate( ureg,
1214 (const float*) program->Parameters->ParameterValues[i],
1215 4 );
1216 break;
1217 default:
1218 break;
1219 }
1220 }
1221 }
1222
1223 /* texture samplers */
1224 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
1225 if (program->SamplersUsed & (1 << i)) {
1226 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1227 }
1228 }
1229
1230 /* Emit each instruction in turn:
1231 */
1232 for (i = 0; i < program->NumInstructions; i++) {
1233 set_insn_start( t, ureg_get_instruction_number( ureg ));
1234 compile_instruction( ctx, t, &program->Instructions[i], clamp_color );
1235 }
1236
1237 /* Fix up all emitted labels:
1238 */
1239 for (i = 0; i < t->labels_count; i++) {
1240 ureg_fixup_label( ureg,
1241 t->labels[i].token,
1242 t->insn[t->labels[i].branch_target] );
1243 }
1244
1245 out:
1246 free(t->insn);
1247 free(t->labels);
1248 free(t->constants);
1249
1250 if (t->error) {
1251 debug_printf("%s: translate error flag set\n", __FUNCTION__);
1252 }
1253
1254 return ret;
1255 }
1256
1257
1258 /**
1259 * Tokens cannot be free with free otherwise the builtin gallium
1260 * malloc debugging will get confused.
1261 */
1262 void
1263 st_free_tokens(const struct tgsi_token *tokens)
1264 {
1265 ureg_free_tokens(tokens);
1266 }