program: Remove RelAddr2 support.
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "st_mesa_to_tgsi.h"
41 #include "st_context.h"
42 #include "program/prog_instruction.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_debug.h"
45 #include "util/u_math.h"
46 #include "util/u_memory.h"
47 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
48
49
50 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
51 (1 << PROGRAM_CONSTANT) | \
52 (1 << PROGRAM_UNIFORM))
53
54
55 struct label {
56 unsigned branch_target;
57 unsigned token;
58 };
59
60
61 /**
62 * Intermediate state used during shader translation.
63 */
64 struct st_translate {
65 struct ureg_program *ureg;
66
67 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
68 struct ureg_src *constants;
69 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
70 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
71 struct ureg_dst address[1];
72 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
73 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
74
75 const GLuint *inputMapping;
76 const GLuint *outputMapping;
77
78 /* For every instruction that contains a label (eg CALL), keep
79 * details so that we can go back afterwards and emit the correct
80 * tgsi instruction number for each label.
81 */
82 struct label *labels;
83 unsigned labels_size;
84 unsigned labels_count;
85
86 /* Keep a record of the tgsi instruction number that each mesa
87 * instruction starts at, will be used to fix up labels after
88 * translation.
89 */
90 unsigned *insn;
91 unsigned insn_size;
92 unsigned insn_count;
93
94 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
95
96 boolean error;
97 };
98
99
100 /**
101 * Make note of a branch to a label in the TGSI code.
102 * After we've emitted all instructions, we'll go over the list
103 * of labels built here and patch the TGSI code with the actual
104 * location of each label.
105 */
106 static unsigned *get_label( struct st_translate *t,
107 unsigned branch_target )
108 {
109 unsigned i;
110
111 if (t->labels_count + 1 >= t->labels_size) {
112 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
113 t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
114 if (t->labels == NULL) {
115 static unsigned dummy;
116 t->error = TRUE;
117 return &dummy;
118 }
119 }
120
121 i = t->labels_count++;
122 t->labels[i].branch_target = branch_target;
123 return &t->labels[i].token;
124 }
125
126
127 /**
128 * Called prior to emitting the TGSI code for each Mesa instruction.
129 * Allocate additional space for instructions if needed.
130 * Update the insn[] array so the next Mesa instruction points to
131 * the next TGSI instruction.
132 */
133 static void set_insn_start( struct st_translate *t,
134 unsigned start )
135 {
136 if (t->insn_count + 1 >= t->insn_size) {
137 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
138 t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
139 if (t->insn == NULL) {
140 t->error = TRUE;
141 return;
142 }
143 }
144
145 t->insn[t->insn_count++] = start;
146 }
147
148
149 /**
150 * Map a Mesa dst register to a TGSI ureg_dst register.
151 */
152 static struct ureg_dst
153 dst_register( struct st_translate *t,
154 gl_register_file file,
155 GLuint index )
156 {
157 switch( file ) {
158 case PROGRAM_UNDEFINED:
159 return ureg_dst_undef();
160
161 case PROGRAM_TEMPORARY:
162 if (ureg_dst_is_undef(t->temps[index]))
163 t->temps[index] = ureg_DECL_temporary( t->ureg );
164
165 return t->temps[index];
166
167 case PROGRAM_OUTPUT:
168 if (t->procType == TGSI_PROCESSOR_VERTEX)
169 assert(index < VARYING_SLOT_MAX);
170 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
171 assert(index < FRAG_RESULT_MAX);
172 else
173 assert(index < VARYING_SLOT_MAX);
174
175 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
176
177 return t->outputs[t->outputMapping[index]];
178
179 case PROGRAM_ADDRESS:
180 return t->address[index];
181
182 default:
183 debug_assert( 0 );
184 return ureg_dst_undef();
185 }
186 }
187
188
189 /**
190 * Map a Mesa src register to a TGSI ureg_src register.
191 */
192 static struct ureg_src
193 src_register( struct st_translate *t,
194 gl_register_file file,
195 GLint index )
196 {
197 switch( file ) {
198 case PROGRAM_UNDEFINED:
199 return ureg_src_undef();
200
201 case PROGRAM_TEMPORARY:
202 assert(index >= 0);
203 assert(index < ARRAY_SIZE(t->temps));
204 if (ureg_dst_is_undef(t->temps[index]))
205 t->temps[index] = ureg_DECL_temporary( t->ureg );
206 return ureg_src(t->temps[index]);
207
208 case PROGRAM_UNIFORM:
209 assert(index >= 0);
210 return t->constants[index];
211 case PROGRAM_STATE_VAR:
212 case PROGRAM_CONSTANT: /* ie, immediate */
213 if (index < 0)
214 return ureg_DECL_constant( t->ureg, 0 );
215 else
216 return t->constants[index];
217
218 case PROGRAM_INPUT:
219 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
220 return t->inputs[t->inputMapping[index]];
221
222 case PROGRAM_OUTPUT:
223 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
224 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
225
226 case PROGRAM_ADDRESS:
227 return ureg_src(t->address[index]);
228
229 case PROGRAM_SYSTEM_VALUE:
230 assert(index < ARRAY_SIZE(t->systemValues));
231 return t->systemValues[index];
232
233 default:
234 debug_assert( 0 );
235 return ureg_src_undef();
236 }
237 }
238
239
240 /**
241 * Map mesa texture target to TGSI texture target.
242 */
243 unsigned
244 st_translate_texture_target( GLuint textarget,
245 GLboolean shadow )
246 {
247 if (shadow) {
248 switch( textarget ) {
249 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_SHADOW1D;
250 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_SHADOW2D;
251 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_SHADOWRECT;
252 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW1D_ARRAY;
253 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW2D_ARRAY;
254 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_SHADOWCUBE;
255 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
256 default: break;
257 }
258 }
259
260 switch( textarget ) {
261 case TEXTURE_2D_MULTISAMPLE_INDEX: return TGSI_TEXTURE_2D_MSAA;
262 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY_MSAA;
263 case TEXTURE_BUFFER_INDEX: return TGSI_TEXTURE_BUFFER;
264 case TEXTURE_1D_INDEX: return TGSI_TEXTURE_1D;
265 case TEXTURE_2D_INDEX: return TGSI_TEXTURE_2D;
266 case TEXTURE_3D_INDEX: return TGSI_TEXTURE_3D;
267 case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_CUBE;
268 case TEXTURE_CUBE_ARRAY_INDEX: return TGSI_TEXTURE_CUBE_ARRAY;
269 case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_RECT;
270 case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_1D_ARRAY;
271 case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY;
272 case TEXTURE_EXTERNAL_INDEX: return TGSI_TEXTURE_2D;
273 default:
274 debug_assert( 0 );
275 return TGSI_TEXTURE_1D;
276 }
277 }
278
279
280 /**
281 * Create a TGSI ureg_dst register from a Mesa dest register.
282 */
283 static struct ureg_dst
284 translate_dst( struct st_translate *t,
285 const struct prog_dst_register *DstReg,
286 boolean saturate)
287 {
288 struct ureg_dst dst = dst_register( t,
289 DstReg->File,
290 DstReg->Index );
291
292 dst = ureg_writemask( dst,
293 DstReg->WriteMask );
294
295 if (saturate)
296 dst = ureg_saturate( dst );
297
298 if (DstReg->RelAddr)
299 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
300
301 return dst;
302 }
303
304
305 /**
306 * Create a TGSI ureg_src register from a Mesa src register.
307 */
308 static struct ureg_src
309 translate_src( struct st_translate *t,
310 const struct prog_src_register *SrcReg )
311 {
312 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
313
314 src = ureg_swizzle( src,
315 GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
316 GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
317 GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
318 GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
319
320 if (SrcReg->Negate == NEGATE_XYZW)
321 src = ureg_negate(src);
322
323 if (SrcReg->Abs)
324 src = ureg_abs(src);
325
326 if (SrcReg->RelAddr) {
327 src = ureg_src_indirect( src, ureg_src(t->address[0]));
328 if (SrcReg->File != PROGRAM_INPUT &&
329 SrcReg->File != PROGRAM_OUTPUT) {
330 /* If SrcReg->Index was negative, it was set to zero in
331 * src_register(). Reassign it now. But don't do this
332 * for input/output regs since they get remapped while
333 * const buffers don't.
334 */
335 src.Index = SrcReg->Index;
336 }
337 }
338
339 return src;
340 }
341
342
343 static struct ureg_src swizzle_4v( struct ureg_src src,
344 const unsigned *swz )
345 {
346 return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
347 }
348
349
350 /**
351 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
352 *
353 * SWZ dst, src.x-y10
354 *
355 * becomes:
356 *
357 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
358 */
359 static void emit_swz( struct st_translate *t,
360 struct ureg_dst dst,
361 const struct prog_src_register *SrcReg )
362 {
363 struct ureg_program *ureg = t->ureg;
364 struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
365
366 unsigned negate_mask = SrcReg->Negate;
367
368 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
369 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
370 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
371 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
372
373 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
374 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
375 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
376 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
377
378 unsigned negative_one_mask = one_mask & negate_mask;
379 unsigned positive_one_mask = one_mask & ~negate_mask;
380
381 struct ureg_src imm;
382 unsigned i;
383 unsigned mul_swizzle[4] = {0,0,0,0};
384 unsigned add_swizzle[4] = {0,0,0,0};
385 unsigned src_swizzle[4] = {0,0,0,0};
386 boolean need_add = FALSE;
387 boolean need_mul = FALSE;
388
389 if (dst.WriteMask == 0)
390 return;
391
392 /* Is this just a MOV?
393 */
394 if (zero_mask == 0 &&
395 one_mask == 0 &&
396 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
397 {
398 ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
399 return;
400 }
401
402 #define IMM_ZERO 0
403 #define IMM_ONE 1
404 #define IMM_NEG_ONE 2
405
406 imm = ureg_imm3f( ureg, 0, 1, -1 );
407
408 for (i = 0; i < 4; i++) {
409 unsigned bit = 1 << i;
410
411 if (dst.WriteMask & bit) {
412 if (positive_one_mask & bit) {
413 mul_swizzle[i] = IMM_ZERO;
414 add_swizzle[i] = IMM_ONE;
415 need_add = TRUE;
416 }
417 else if (negative_one_mask & bit) {
418 mul_swizzle[i] = IMM_ZERO;
419 add_swizzle[i] = IMM_NEG_ONE;
420 need_add = TRUE;
421 }
422 else if (zero_mask & bit) {
423 mul_swizzle[i] = IMM_ZERO;
424 add_swizzle[i] = IMM_ZERO;
425 need_add = TRUE;
426 }
427 else {
428 add_swizzle[i] = IMM_ZERO;
429 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
430 need_mul = TRUE;
431 if (negate_mask & bit) {
432 mul_swizzle[i] = IMM_NEG_ONE;
433 }
434 else {
435 mul_swizzle[i] = IMM_ONE;
436 }
437 }
438 }
439 }
440
441 if (need_mul && need_add) {
442 ureg_MAD( ureg,
443 dst,
444 swizzle_4v( src, src_swizzle ),
445 swizzle_4v( imm, mul_swizzle ),
446 swizzle_4v( imm, add_swizzle ) );
447 }
448 else if (need_mul) {
449 ureg_MUL( ureg,
450 dst,
451 swizzle_4v( src, src_swizzle ),
452 swizzle_4v( imm, mul_swizzle ) );
453 }
454 else if (need_add) {
455 ureg_MOV( ureg,
456 dst,
457 swizzle_4v( imm, add_swizzle ) );
458 }
459 else {
460 debug_assert(0);
461 }
462
463 #undef IMM_ZERO
464 #undef IMM_ONE
465 #undef IMM_NEG_ONE
466 }
467
468
469 static unsigned
470 translate_opcode( unsigned op )
471 {
472 switch( op ) {
473 case OPCODE_ARL:
474 return TGSI_OPCODE_ARL;
475 case OPCODE_ABS:
476 return TGSI_OPCODE_ABS;
477 case OPCODE_ADD:
478 return TGSI_OPCODE_ADD;
479 case OPCODE_BGNLOOP:
480 return TGSI_OPCODE_BGNLOOP;
481 case OPCODE_BGNSUB:
482 return TGSI_OPCODE_BGNSUB;
483 case OPCODE_BRK:
484 return TGSI_OPCODE_BRK;
485 case OPCODE_CAL:
486 return TGSI_OPCODE_CAL;
487 case OPCODE_CMP:
488 return TGSI_OPCODE_CMP;
489 case OPCODE_CONT:
490 return TGSI_OPCODE_CONT;
491 case OPCODE_COS:
492 return TGSI_OPCODE_COS;
493 case OPCODE_DDX:
494 return TGSI_OPCODE_DDX;
495 case OPCODE_DDY:
496 return TGSI_OPCODE_DDY;
497 case OPCODE_DP2:
498 return TGSI_OPCODE_DP2;
499 case OPCODE_DP3:
500 return TGSI_OPCODE_DP3;
501 case OPCODE_DP4:
502 return TGSI_OPCODE_DP4;
503 case OPCODE_DPH:
504 return TGSI_OPCODE_DPH;
505 case OPCODE_DST:
506 return TGSI_OPCODE_DST;
507 case OPCODE_ELSE:
508 return TGSI_OPCODE_ELSE;
509 case OPCODE_ENDIF:
510 return TGSI_OPCODE_ENDIF;
511 case OPCODE_ENDLOOP:
512 return TGSI_OPCODE_ENDLOOP;
513 case OPCODE_ENDSUB:
514 return TGSI_OPCODE_ENDSUB;
515 case OPCODE_EX2:
516 return TGSI_OPCODE_EX2;
517 case OPCODE_EXP:
518 return TGSI_OPCODE_EXP;
519 case OPCODE_FLR:
520 return TGSI_OPCODE_FLR;
521 case OPCODE_FRC:
522 return TGSI_OPCODE_FRC;
523 case OPCODE_IF:
524 return TGSI_OPCODE_IF;
525 case OPCODE_TRUNC:
526 return TGSI_OPCODE_TRUNC;
527 case OPCODE_KIL:
528 return TGSI_OPCODE_KILL_IF;
529 case OPCODE_KIL_NV:
530 /* XXX we don't support condition codes in TGSI */
531 return TGSI_OPCODE_KILL;
532 case OPCODE_LG2:
533 return TGSI_OPCODE_LG2;
534 case OPCODE_LOG:
535 return TGSI_OPCODE_LOG;
536 case OPCODE_LIT:
537 return TGSI_OPCODE_LIT;
538 case OPCODE_LRP:
539 return TGSI_OPCODE_LRP;
540 case OPCODE_MAD:
541 return TGSI_OPCODE_MAD;
542 case OPCODE_MAX:
543 return TGSI_OPCODE_MAX;
544 case OPCODE_MIN:
545 return TGSI_OPCODE_MIN;
546 case OPCODE_MOV:
547 return TGSI_OPCODE_MOV;
548 case OPCODE_MUL:
549 return TGSI_OPCODE_MUL;
550 case OPCODE_NOP:
551 return TGSI_OPCODE_NOP;
552 case OPCODE_POW:
553 return TGSI_OPCODE_POW;
554 case OPCODE_RCP:
555 return TGSI_OPCODE_RCP;
556 case OPCODE_RET:
557 return TGSI_OPCODE_RET;
558 case OPCODE_SCS:
559 return TGSI_OPCODE_SCS;
560 case OPCODE_SEQ:
561 return TGSI_OPCODE_SEQ;
562 case OPCODE_SGE:
563 return TGSI_OPCODE_SGE;
564 case OPCODE_SGT:
565 return TGSI_OPCODE_SGT;
566 case OPCODE_SIN:
567 return TGSI_OPCODE_SIN;
568 case OPCODE_SLE:
569 return TGSI_OPCODE_SLE;
570 case OPCODE_SLT:
571 return TGSI_OPCODE_SLT;
572 case OPCODE_SNE:
573 return TGSI_OPCODE_SNE;
574 case OPCODE_SSG:
575 return TGSI_OPCODE_SSG;
576 case OPCODE_SUB:
577 return TGSI_OPCODE_SUB;
578 case OPCODE_TEX:
579 return TGSI_OPCODE_TEX;
580 case OPCODE_TXB:
581 return TGSI_OPCODE_TXB;
582 case OPCODE_TXD:
583 return TGSI_OPCODE_TXD;
584 case OPCODE_TXL:
585 return TGSI_OPCODE_TXL;
586 case OPCODE_TXP:
587 return TGSI_OPCODE_TXP;
588 case OPCODE_XPD:
589 return TGSI_OPCODE_XPD;
590 case OPCODE_END:
591 return TGSI_OPCODE_END;
592 default:
593 debug_assert( 0 );
594 return TGSI_OPCODE_NOP;
595 }
596 }
597
598
599 static void
600 compile_instruction(
601 struct gl_context *ctx,
602 struct st_translate *t,
603 const struct prog_instruction *inst)
604 {
605 struct ureg_program *ureg = t->ureg;
606 GLuint i;
607 struct ureg_dst dst[1] = { { 0 } };
608 struct ureg_src src[4];
609 unsigned num_dst;
610 unsigned num_src;
611
612 num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
613 num_src = _mesa_num_inst_src_regs( inst->Opcode );
614
615 if (num_dst)
616 dst[0] = translate_dst( t,
617 &inst->DstReg,
618 inst->Saturate);
619
620 for (i = 0; i < num_src; i++)
621 src[i] = translate_src( t, &inst->SrcReg[i] );
622
623 switch( inst->Opcode ) {
624 case OPCODE_SWZ:
625 emit_swz( t, dst[0], &inst->SrcReg[0] );
626 return;
627
628 case OPCODE_BGNLOOP:
629 case OPCODE_CAL:
630 case OPCODE_ELSE:
631 case OPCODE_ENDLOOP:
632 debug_assert(num_dst == 0);
633 ureg_label_insn( ureg,
634 translate_opcode( inst->Opcode ),
635 src, num_src,
636 get_label( t, inst->BranchTarget ));
637 return;
638
639 case OPCODE_IF:
640 debug_assert(num_dst == 0);
641 ureg_label_insn( ureg,
642 ctx->Const.NativeIntegers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF,
643 src, num_src,
644 get_label( t, inst->BranchTarget ));
645 return;
646
647 case OPCODE_TEX:
648 case OPCODE_TXB:
649 case OPCODE_TXD:
650 case OPCODE_TXL:
651 case OPCODE_TXP:
652 src[num_src++] = t->samplers[inst->TexSrcUnit];
653 ureg_tex_insn( ureg,
654 translate_opcode( inst->Opcode ),
655 dst, num_dst,
656 st_translate_texture_target( inst->TexSrcTarget,
657 inst->TexShadow ),
658 NULL, 0,
659 src, num_src );
660 return;
661
662 case OPCODE_SCS:
663 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
664 ureg_insn( ureg,
665 translate_opcode( inst->Opcode ),
666 dst, num_dst,
667 src, num_src );
668 break;
669
670 case OPCODE_XPD:
671 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
672 ureg_insn( ureg,
673 translate_opcode( inst->Opcode ),
674 dst, num_dst,
675 src, num_src );
676 break;
677
678 case OPCODE_NOISE1:
679 case OPCODE_NOISE2:
680 case OPCODE_NOISE3:
681 case OPCODE_NOISE4:
682 /* At some point, a motivated person could add a better
683 * implementation of noise. Currently not even the nvidia
684 * binary drivers do anything more than this. In any case, the
685 * place to do this is in the GL state tracker, not the poor
686 * driver.
687 */
688 ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
689 break;
690
691 case OPCODE_RSQ:
692 ureg_RSQ( ureg, dst[0], ureg_abs(src[0]) );
693 break;
694
695 default:
696 ureg_insn( ureg,
697 translate_opcode( inst->Opcode ),
698 dst, num_dst,
699 src, num_src );
700 break;
701 }
702 }
703
704
705 /**
706 * Emit the TGSI instructions for inverting and adjusting WPOS.
707 * This code is unavoidable because it also depends on whether
708 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
709 */
710 static void
711 emit_wpos_adjustment(struct gl_context *ctx,
712 struct st_translate *t,
713 const struct gl_program *program,
714 boolean invert,
715 GLfloat adjX, GLfloat adjY[2])
716 {
717 struct ureg_program *ureg = t->ureg;
718
719 /* Fragment program uses fragment position input.
720 * Need to replace instances of INPUT[WPOS] with temp T
721 * where T = INPUT[WPOS] by y is inverted.
722 */
723 static const gl_state_index wposTransformState[STATE_LENGTH]
724 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
725
726 /* XXX: note we are modifying the incoming shader here! Need to
727 * do this before emitting the constant decls below, or this
728 * will be missed:
729 */
730 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
731 wposTransformState);
732
733 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
734 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
735 struct ureg_src *wpos =
736 ctx->Const.GLSLFragCoordIsSysVal ?
737 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
738 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
739 struct ureg_src wpos_input = *wpos;
740
741 /* First, apply the coordinate shift: */
742 if (adjX || adjY[0] || adjY[1]) {
743 if (adjY[0] != adjY[1]) {
744 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
745 * depending on whether inversion is actually going to be applied
746 * or not, which is determined by testing against the inversion
747 * state variable used below, which will be either +1 or -1.
748 */
749 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
750
751 ureg_CMP(ureg, adj_temp,
752 ureg_scalar(wpostrans, invert ? 2 : 0),
753 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
754 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
755 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
756 } else {
757 ureg_ADD(ureg, wpos_temp, wpos_input,
758 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
759 }
760 wpos_input = ureg_src(wpos_temp);
761 } else {
762 /* MOV wpos_temp, input[wpos]
763 */
764 ureg_MOV( ureg, wpos_temp, wpos_input );
765 }
766
767 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
768 * inversion/identity, or the other way around if we're drawing to an FBO.
769 */
770 if (invert) {
771 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
772 */
773 ureg_MAD( ureg,
774 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
775 wpos_input,
776 ureg_scalar(wpostrans, 0),
777 ureg_scalar(wpostrans, 1));
778 } else {
779 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
780 */
781 ureg_MAD( ureg,
782 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
783 wpos_input,
784 ureg_scalar(wpostrans, 2),
785 ureg_scalar(wpostrans, 3));
786 }
787
788 /* Use wpos_temp as position input from here on:
789 */
790 *wpos = ureg_src(wpos_temp);
791 }
792
793
794 /**
795 * Emit fragment position/coordinate code.
796 */
797 static void
798 emit_wpos(struct st_context *st,
799 struct st_translate *t,
800 const struct gl_program *program,
801 struct ureg_program *ureg)
802 {
803 const struct gl_fragment_program *fp =
804 (const struct gl_fragment_program *) program;
805 struct pipe_screen *pscreen = st->pipe->screen;
806 GLfloat adjX = 0.0f;
807 GLfloat adjY[2] = { 0.0f, 0.0f };
808 boolean invert = FALSE;
809
810 /* Query the pixel center conventions supported by the pipe driver and set
811 * adjX, adjY to help out if it cannot handle the requested one internally.
812 *
813 * The bias of the y-coordinate depends on whether y-inversion takes place
814 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
815 * drawing to an FBO (causes additional inversion), and whether the the pipe
816 * driver origin and the requested origin differ (the latter condition is
817 * stored in the 'invert' variable).
818 *
819 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
820 *
821 * center shift only:
822 * i -> h: +0.5
823 * h -> i: -0.5
824 *
825 * inversion only:
826 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
827 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
828 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
829 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
830 *
831 * inversion and center shift:
832 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
833 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
834 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
835 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
836 */
837 if (fp->OriginUpperLeft) {
838 /* Fragment shader wants origin in upper-left */
839 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
840 /* the driver supports upper-left origin */
841 }
842 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
843 /* the driver supports lower-left origin, need to invert Y */
844 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
845 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
846 invert = TRUE;
847 }
848 else
849 assert(0);
850 }
851 else {
852 /* Fragment shader wants origin in lower-left */
853 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
854 /* the driver supports lower-left origin */
855 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
856 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
857 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
858 /* the driver supports upper-left origin, need to invert Y */
859 invert = TRUE;
860 else
861 assert(0);
862 }
863
864 if (fp->PixelCenterInteger) {
865 /* Fragment shader wants pixel center integer */
866 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
867 /* the driver supports pixel center integer */
868 adjY[1] = 1.0f;
869 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
870 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
871 }
872 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
873 /* the driver supports pixel center half integer, need to bias X,Y */
874 adjX = -0.5f;
875 adjY[0] = -0.5f;
876 adjY[1] = 0.5f;
877 }
878 else
879 assert(0);
880 }
881 else {
882 /* Fragment shader wants pixel center half integer */
883 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
884 /* the driver supports pixel center half integer */
885 }
886 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
887 /* the driver supports pixel center integer, need to bias X,Y */
888 adjX = adjY[0] = adjY[1] = 0.5f;
889 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
890 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
891 }
892 else
893 assert(0);
894 }
895
896 /* we invert after adjustment so that we avoid the MOV to temporary,
897 * and reuse the adjustment ADD instead */
898 emit_wpos_adjustment(st->ctx, t, program, invert, adjX, adjY);
899 }
900
901
902 /**
903 * Translate Mesa program to TGSI format.
904 * \param program the program to translate
905 * \param numInputs number of input registers used
906 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
907 * input indexes
908 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
909 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
910 * each input
911 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
912 * \param numOutputs number of output registers used
913 * \param outputMapping maps Mesa fragment program outputs to TGSI
914 * generic outputs
915 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
916 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
917 * each output
918 *
919 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
920 */
921 enum pipe_error
922 st_translate_mesa_program(
923 struct gl_context *ctx,
924 uint procType,
925 struct ureg_program *ureg,
926 const struct gl_program *program,
927 GLuint numInputs,
928 const GLuint inputMapping[],
929 const ubyte inputSemanticName[],
930 const ubyte inputSemanticIndex[],
931 const GLuint interpMode[],
932 GLuint numOutputs,
933 const GLuint outputMapping[],
934 const ubyte outputSemanticName[],
935 const ubyte outputSemanticIndex[])
936 {
937 struct st_translate translate, *t;
938 unsigned i;
939 enum pipe_error ret = PIPE_OK;
940
941 assert(numInputs <= ARRAY_SIZE(t->inputs));
942 assert(numOutputs <= ARRAY_SIZE(t->outputs));
943
944 t = &translate;
945 memset(t, 0, sizeof *t);
946
947 t->procType = procType;
948 t->inputMapping = inputMapping;
949 t->outputMapping = outputMapping;
950 t->ureg = ureg;
951
952 /*_mesa_print_program(program);*/
953
954 /*
955 * Declare input attributes.
956 */
957 if (procType == TGSI_PROCESSOR_FRAGMENT) {
958 for (i = 0; i < numInputs; i++) {
959 t->inputs[i] = ureg_DECL_fs_input(ureg,
960 inputSemanticName[i],
961 inputSemanticIndex[i],
962 interpMode[i]);
963 }
964
965 if (program->InputsRead & VARYING_BIT_POS) {
966 /* Must do this after setting up t->inputs, and before
967 * emitting constant references, below:
968 */
969 emit_wpos(st_context(ctx), t, program, ureg);
970 }
971
972 /*
973 * Declare output attributes.
974 */
975 for (i = 0; i < numOutputs; i++) {
976 switch (outputSemanticName[i]) {
977 case TGSI_SEMANTIC_POSITION:
978 t->outputs[i] = ureg_DECL_output( ureg,
979 TGSI_SEMANTIC_POSITION, /* Z / Depth */
980 outputSemanticIndex[i] );
981
982 t->outputs[i] = ureg_writemask( t->outputs[i],
983 TGSI_WRITEMASK_Z );
984 break;
985 case TGSI_SEMANTIC_STENCIL:
986 t->outputs[i] = ureg_DECL_output( ureg,
987 TGSI_SEMANTIC_STENCIL, /* Stencil */
988 outputSemanticIndex[i] );
989 t->outputs[i] = ureg_writemask( t->outputs[i],
990 TGSI_WRITEMASK_Y );
991 break;
992 case TGSI_SEMANTIC_COLOR:
993 t->outputs[i] = ureg_DECL_output( ureg,
994 TGSI_SEMANTIC_COLOR,
995 outputSemanticIndex[i] );
996 break;
997 default:
998 debug_assert(0);
999 return 0;
1000 }
1001 }
1002 }
1003 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
1004 for (i = 0; i < numInputs; i++) {
1005 t->inputs[i] = ureg_DECL_input(ureg,
1006 inputSemanticName[i],
1007 inputSemanticIndex[i], 0, 1);
1008 }
1009
1010 for (i = 0; i < numOutputs; i++) {
1011 t->outputs[i] = ureg_DECL_output( ureg,
1012 outputSemanticName[i],
1013 outputSemanticIndex[i] );
1014 }
1015 }
1016 else {
1017 assert(procType == TGSI_PROCESSOR_VERTEX);
1018
1019 for (i = 0; i < numInputs; i++) {
1020 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1021 }
1022
1023 for (i = 0; i < numOutputs; i++) {
1024 t->outputs[i] = ureg_DECL_output( ureg,
1025 outputSemanticName[i],
1026 outputSemanticIndex[i] );
1027 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
1028 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
1029 ureg_MOV(ureg,
1030 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
1031 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
1032 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
1033 }
1034 }
1035 }
1036
1037 /* Declare address register.
1038 */
1039 if (program->NumAddressRegs > 0) {
1040 debug_assert( program->NumAddressRegs == 1 );
1041 t->address[0] = ureg_DECL_address( ureg );
1042 }
1043
1044 /* Declare misc input registers
1045 */
1046 {
1047 GLbitfield sysInputs = program->SystemValuesRead;
1048
1049 for (i = 0; sysInputs; i++) {
1050 if (sysInputs & (1 << i)) {
1051 unsigned semName = _mesa_sysval_to_semantic[i];
1052
1053 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
1054
1055 if (semName == TGSI_SEMANTIC_INSTANCEID ||
1056 semName == TGSI_SEMANTIC_VERTEXID) {
1057 /* From Gallium perspective, these system values are always
1058 * integer, and require native integer support. However, if
1059 * native integer is supported on the vertex stage but not the
1060 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1061 * assumes these system values are floats. To resolve the
1062 * inconsistency, we insert a U2F.
1063 */
1064 struct st_context *st = st_context(ctx);
1065 struct pipe_screen *pscreen = st->pipe->screen;
1066 assert(procType == TGSI_PROCESSOR_VERTEX);
1067 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1068 (void) pscreen; /* silence non-debug build warnings */
1069 if (!ctx->Const.NativeIntegers) {
1070 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1071 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1072 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1073 }
1074 }
1075
1076 if (procType == TGSI_PROCESSOR_FRAGMENT &&
1077 semName == TGSI_SEMANTIC_POSITION)
1078 emit_wpos(st_context(ctx), t, program, ureg);
1079
1080 sysInputs &= ~(1 << i);
1081 }
1082 }
1083 }
1084
1085 if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1086 /* If temps are accessed with indirect addressing, declare temporaries
1087 * in sequential order. Else, we declare them on demand elsewhere.
1088 */
1089 for (i = 0; i < program->NumTemporaries; i++) {
1090 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1091 t->temps[i] = ureg_DECL_temporary( t->ureg );
1092 }
1093 }
1094
1095 /* Emit constants and immediates. Mesa uses a single index space
1096 * for these, so we put all the translated regs in t->constants.
1097 */
1098 if (program->Parameters) {
1099 t->constants = calloc( program->Parameters->NumParameters,
1100 sizeof t->constants[0] );
1101 if (t->constants == NULL) {
1102 ret = PIPE_ERROR_OUT_OF_MEMORY;
1103 goto out;
1104 }
1105
1106 for (i = 0; i < program->Parameters->NumParameters; i++) {
1107 switch (program->Parameters->Parameters[i].Type) {
1108 case PROGRAM_STATE_VAR:
1109 case PROGRAM_UNIFORM:
1110 t->constants[i] = ureg_DECL_constant( ureg, i );
1111 break;
1112
1113 /* Emit immediates only when there's no indirect addressing of
1114 * the const buffer.
1115 * FIXME: Be smarter and recognize param arrays:
1116 * indirect addressing is only valid within the referenced
1117 * array.
1118 */
1119 case PROGRAM_CONSTANT:
1120 if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1121 t->constants[i] = ureg_DECL_constant( ureg, i );
1122 else
1123 t->constants[i] =
1124 ureg_DECL_immediate( ureg,
1125 (const float*) program->Parameters->ParameterValues[i],
1126 4 );
1127 break;
1128 default:
1129 break;
1130 }
1131 }
1132 }
1133
1134 /* texture samplers */
1135 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1136 if (program->SamplersUsed & (1 << i)) {
1137 t->samplers[i] = ureg_DECL_sampler( ureg, i );
1138 }
1139 }
1140
1141 /* Emit each instruction in turn:
1142 */
1143 for (i = 0; i < program->NumInstructions; i++) {
1144 set_insn_start( t, ureg_get_instruction_number( ureg ));
1145 compile_instruction(ctx, t, &program->Instructions[i]);
1146 }
1147
1148 /* Fix up all emitted labels:
1149 */
1150 for (i = 0; i < t->labels_count; i++) {
1151 ureg_fixup_label( ureg,
1152 t->labels[i].token,
1153 t->insn[t->labels[i].branch_target] );
1154 }
1155
1156 out:
1157 free(t->insn);
1158 free(t->labels);
1159 free(t->constants);
1160
1161 if (t->error) {
1162 debug_printf("%s: translate error flag set\n", __func__);
1163 }
1164
1165 return ret;
1166 }