mesa/st: Add VARYING_SLOT_TEX[1-7] to st_translate_geometry_program().
[mesa.git] / src / mesa / state_tracker / st_program.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 * Brian Paul
31 */
32
33
34 #include "main/imports.h"
35 #include "main/hash.h"
36 #include "main/mtypes.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/programopt.h"
40
41 #include "pipe/p_context.h"
42 #include "pipe/p_defines.h"
43 #include "pipe/p_shader_tokens.h"
44 #include "draw/draw_context.h"
45 #include "tgsi/tgsi_dump.h"
46 #include "tgsi/tgsi_ureg.h"
47
48 #include "st_debug.h"
49 #include "st_cb_bitmap.h"
50 #include "st_cb_drawpixels.h"
51 #include "st_context.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "cso_cache/cso_context.h"
55
56
57
58 /**
59 * Delete a vertex program variant. Note the caller must unlink
60 * the variant from the linked list.
61 */
62 static void
63 delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
64 {
65 if (vpv->driver_shader)
66 cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
67
68 if (vpv->draw_shader)
69 draw_delete_vertex_shader( st->draw, vpv->draw_shader );
70
71 if (vpv->tgsi.tokens)
72 st_free_tokens(vpv->tgsi.tokens);
73
74 free( vpv );
75 }
76
77
78
79 /**
80 * Clean out any old compilations:
81 */
82 void
83 st_release_vp_variants( struct st_context *st,
84 struct st_vertex_program *stvp )
85 {
86 struct st_vp_variant *vpv;
87
88 for (vpv = stvp->variants; vpv; ) {
89 struct st_vp_variant *next = vpv->next;
90 delete_vp_variant(st, vpv);
91 vpv = next;
92 }
93
94 stvp->variants = NULL;
95 }
96
97
98
99 /**
100 * Delete a fragment program variant. Note the caller must unlink
101 * the variant from the linked list.
102 */
103 static void
104 delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
105 {
106 if (fpv->driver_shader)
107 cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
108 if (fpv->parameters)
109 _mesa_free_parameter_list(fpv->parameters);
110 if (fpv->tgsi.tokens)
111 st_free_tokens(fpv->tgsi.tokens);
112 free(fpv);
113 }
114
115
116 /**
117 * Free all variants of a fragment program.
118 */
119 void
120 st_release_fp_variants(struct st_context *st, struct st_fragment_program *stfp)
121 {
122 struct st_fp_variant *fpv;
123
124 for (fpv = stfp->variants; fpv; ) {
125 struct st_fp_variant *next = fpv->next;
126 delete_fp_variant(st, fpv);
127 fpv = next;
128 }
129
130 stfp->variants = NULL;
131 }
132
133
134 /**
135 * Delete a geometry program variant. Note the caller must unlink
136 * the variant from the linked list.
137 */
138 static void
139 delete_gp_variant(struct st_context *st, struct st_gp_variant *gpv)
140 {
141 if (gpv->driver_shader)
142 cso_delete_geometry_shader(st->cso_context, gpv->driver_shader);
143
144 free(gpv);
145 }
146
147
148 /**
149 * Free all variants of a geometry program.
150 */
151 void
152 st_release_gp_variants(struct st_context *st, struct st_geometry_program *stgp)
153 {
154 struct st_gp_variant *gpv;
155
156 for (gpv = stgp->variants; gpv; ) {
157 struct st_gp_variant *next = gpv->next;
158 delete_gp_variant(st, gpv);
159 gpv = next;
160 }
161
162 stgp->variants = NULL;
163 }
164
165
166
167
168 /**
169 * Translate a Mesa vertex shader into a TGSI shader.
170 * \param outputMapping to map vertex program output registers (VARYING_SLOT_x)
171 * to TGSI output slots
172 * \param tokensOut destination for TGSI tokens
173 * \return pointer to cached pipe_shader object.
174 */
175 void
176 st_prepare_vertex_program(struct gl_context *ctx,
177 struct st_vertex_program *stvp)
178 {
179 struct st_context *st = st_context(ctx);
180 GLuint attr;
181
182 stvp->num_inputs = 0;
183 stvp->num_outputs = 0;
184
185 if (stvp->Base.IsPositionInvariant)
186 _mesa_insert_mvp_code(ctx, &stvp->Base);
187
188 if (!stvp->glsl_to_tgsi)
189 assert(stvp->Base.Base.NumInstructions > 1);
190
191 /*
192 * Determine number of inputs, the mappings between VERT_ATTRIB_x
193 * and TGSI generic input indexes, plus input attrib semantic info.
194 */
195 for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
196 if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
197 stvp->input_to_index[attr] = stvp->num_inputs;
198 stvp->index_to_input[stvp->num_inputs] = attr;
199 stvp->num_inputs++;
200 }
201 }
202 /* bit of a hack, presetup potentially unused edgeflag input */
203 stvp->input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
204 stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;
205
206 /* Compute mapping of vertex program outputs to slots.
207 */
208 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
209 if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
210 stvp->result_to_output[attr] = ~0;
211 }
212 else {
213 unsigned slot = stvp->num_outputs++;
214
215 stvp->result_to_output[attr] = slot;
216
217 switch (attr) {
218 case VARYING_SLOT_POS:
219 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
220 stvp->output_semantic_index[slot] = 0;
221 break;
222 case VARYING_SLOT_COL0:
223 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
224 stvp->output_semantic_index[slot] = 0;
225 break;
226 case VARYING_SLOT_COL1:
227 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
228 stvp->output_semantic_index[slot] = 1;
229 break;
230 case VARYING_SLOT_BFC0:
231 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
232 stvp->output_semantic_index[slot] = 0;
233 break;
234 case VARYING_SLOT_BFC1:
235 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
236 stvp->output_semantic_index[slot] = 1;
237 break;
238 case VARYING_SLOT_FOGC:
239 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
240 stvp->output_semantic_index[slot] = 0;
241 break;
242 case VARYING_SLOT_PSIZ:
243 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
244 stvp->output_semantic_index[slot] = 0;
245 break;
246 case VARYING_SLOT_CLIP_DIST0:
247 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
248 stvp->output_semantic_index[slot] = 0;
249 break;
250 case VARYING_SLOT_CLIP_DIST1:
251 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
252 stvp->output_semantic_index[slot] = 1;
253 break;
254 case VARYING_SLOT_EDGE:
255 assert(0);
256 break;
257 case VARYING_SLOT_CLIP_VERTEX:
258 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
259 stvp->output_semantic_index[slot] = 0;
260 break;
261
262 case VARYING_SLOT_TEX0:
263 case VARYING_SLOT_TEX1:
264 case VARYING_SLOT_TEX2:
265 case VARYING_SLOT_TEX3:
266 case VARYING_SLOT_TEX4:
267 case VARYING_SLOT_TEX5:
268 case VARYING_SLOT_TEX6:
269 case VARYING_SLOT_TEX7:
270 stvp->output_semantic_name[slot] = st->needs_texcoord_semantic ?
271 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
272 stvp->output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
273 break;
274
275 case VARYING_SLOT_VAR0:
276 default:
277 assert(attr < VARYING_SLOT_MAX);
278 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
279 stvp->output_semantic_index[slot] = st->needs_texcoord_semantic ?
280 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
281 break;
282 }
283 }
284 }
285 /* similar hack to above, presetup potentially unused edgeflag output */
286 stvp->result_to_output[VARYING_SLOT_EDGE] = stvp->num_outputs;
287 stvp->output_semantic_name[stvp->num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
288 stvp->output_semantic_index[stvp->num_outputs] = 0;
289 }
290
291
292 /**
293 * Translate a vertex program to create a new variant.
294 */
295 static struct st_vp_variant *
296 st_translate_vertex_program(struct st_context *st,
297 struct st_vertex_program *stvp,
298 const struct st_vp_variant_key *key)
299 {
300 struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
301 struct pipe_context *pipe = st->pipe;
302 struct ureg_program *ureg;
303 enum pipe_error error;
304 unsigned num_outputs;
305
306 st_prepare_vertex_program(st->ctx, stvp);
307
308 if (!stvp->glsl_to_tgsi)
309 {
310 _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
311 }
312
313 ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
314 if (ureg == NULL) {
315 free(vpv);
316 return NULL;
317 }
318
319 vpv->key = *key;
320
321 vpv->num_inputs = stvp->num_inputs;
322 num_outputs = stvp->num_outputs;
323 if (key->passthrough_edgeflags) {
324 vpv->num_inputs++;
325 num_outputs++;
326 }
327
328 if (ST_DEBUG & DEBUG_MESA) {
329 _mesa_print_program(&stvp->Base.Base);
330 _mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
331 debug_printf("\n");
332 }
333
334 if (stvp->glsl_to_tgsi)
335 error = st_translate_program(st->ctx,
336 TGSI_PROCESSOR_VERTEX,
337 ureg,
338 stvp->glsl_to_tgsi,
339 &stvp->Base.Base,
340 /* inputs */
341 stvp->num_inputs,
342 stvp->input_to_index,
343 NULL, /* input semantic name */
344 NULL, /* input semantic index */
345 NULL, /* interp mode */
346 NULL, /* is centroid */
347 /* outputs */
348 stvp->num_outputs,
349 stvp->result_to_output,
350 stvp->output_semantic_name,
351 stvp->output_semantic_index,
352 key->passthrough_edgeflags,
353 key->clamp_color);
354 else
355 error = st_translate_mesa_program(st->ctx,
356 TGSI_PROCESSOR_VERTEX,
357 ureg,
358 &stvp->Base.Base,
359 /* inputs */
360 vpv->num_inputs,
361 stvp->input_to_index,
362 NULL, /* input semantic name */
363 NULL, /* input semantic index */
364 NULL,
365 /* outputs */
366 num_outputs,
367 stvp->result_to_output,
368 stvp->output_semantic_name,
369 stvp->output_semantic_index,
370 key->passthrough_edgeflags,
371 key->clamp_color);
372
373 if (error)
374 goto fail;
375
376 vpv->tgsi.tokens = ureg_get_tokens( ureg, NULL );
377 if (!vpv->tgsi.tokens)
378 goto fail;
379
380 ureg_destroy( ureg );
381
382 if (stvp->glsl_to_tgsi) {
383 st_translate_stream_output_info(stvp->glsl_to_tgsi,
384 stvp->result_to_output,
385 &vpv->tgsi.stream_output);
386 }
387
388 vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
389
390 if (ST_DEBUG & DEBUG_TGSI) {
391 tgsi_dump( vpv->tgsi.tokens, 0 );
392 debug_printf("\n");
393 }
394
395 return vpv;
396
397 fail:
398 debug_printf("%s: failed to translate Mesa program:\n", __FUNCTION__);
399 _mesa_print_program(&stvp->Base.Base);
400 debug_assert(0);
401
402 ureg_destroy( ureg );
403 return NULL;
404 }
405
406
407 /**
408 * Find/create a vertex program variant.
409 */
410 struct st_vp_variant *
411 st_get_vp_variant(struct st_context *st,
412 struct st_vertex_program *stvp,
413 const struct st_vp_variant_key *key)
414 {
415 struct st_vp_variant *vpv;
416
417 /* Search for existing variant */
418 for (vpv = stvp->variants; vpv; vpv = vpv->next) {
419 if (memcmp(&vpv->key, key, sizeof(*key)) == 0) {
420 break;
421 }
422 }
423
424 if (!vpv) {
425 /* create now */
426 vpv = st_translate_vertex_program(st, stvp, key);
427 if (vpv) {
428 /* insert into list */
429 vpv->next = stvp->variants;
430 stvp->variants = vpv;
431 }
432 }
433
434 return vpv;
435 }
436
437
438 static unsigned
439 st_translate_interp(enum glsl_interp_qualifier glsl_qual, bool is_color)
440 {
441 switch (glsl_qual) {
442 case INTERP_QUALIFIER_NONE:
443 if (is_color)
444 return TGSI_INTERPOLATE_COLOR;
445 return TGSI_INTERPOLATE_PERSPECTIVE;
446 case INTERP_QUALIFIER_SMOOTH:
447 return TGSI_INTERPOLATE_PERSPECTIVE;
448 case INTERP_QUALIFIER_FLAT:
449 return TGSI_INTERPOLATE_CONSTANT;
450 case INTERP_QUALIFIER_NOPERSPECTIVE:
451 return TGSI_INTERPOLATE_LINEAR;
452 default:
453 assert(0 && "unexpected interp mode in st_translate_interp()");
454 return TGSI_INTERPOLATE_PERSPECTIVE;
455 }
456 }
457
458
459 /**
460 * Translate a Mesa fragment shader into a TGSI shader using extra info in
461 * the key.
462 * \return new fragment program variant
463 */
464 static struct st_fp_variant *
465 st_translate_fragment_program(struct st_context *st,
466 struct st_fragment_program *stfp,
467 const struct st_fp_variant_key *key)
468 {
469 struct pipe_context *pipe = st->pipe;
470 struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
471 GLboolean deleteFP = GL_FALSE;
472
473 GLuint outputMapping[FRAG_RESULT_MAX];
474 GLuint inputMapping[VARYING_SLOT_MAX];
475 GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */
476 GLuint attr;
477 GLbitfield64 inputsRead;
478 struct ureg_program *ureg;
479
480 GLboolean write_all = GL_FALSE;
481
482 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
483 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
484 GLboolean is_centroid[PIPE_MAX_SHADER_INPUTS];
485 uint fs_num_inputs = 0;
486
487 ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
488 ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
489 uint fs_num_outputs = 0;
490
491 if (!variant)
492 return NULL;
493
494 assert(!(key->bitmap && key->drawpixels));
495
496 if (key->bitmap) {
497 /* glBitmap drawing */
498 struct gl_fragment_program *fp; /* we free this temp program below */
499
500 st_make_bitmap_fragment_program(st, &stfp->Base,
501 &fp, &variant->bitmap_sampler);
502
503 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
504 stfp = st_fragment_program(fp);
505 deleteFP = GL_TRUE;
506 }
507 else if (key->drawpixels) {
508 /* glDrawPixels drawing */
509 struct gl_fragment_program *fp; /* we free this temp program below */
510
511 if (key->drawpixels_z || key->drawpixels_stencil) {
512 fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z,
513 key->drawpixels_stencil);
514 }
515 else {
516 /* RGBA */
517 st_make_drawpix_fragment_program(st, &stfp->Base, &fp);
518 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
519 deleteFP = GL_TRUE;
520 }
521 stfp = st_fragment_program(fp);
522 }
523
524 if (!stfp->glsl_to_tgsi)
525 _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);
526
527 /*
528 * Convert Mesa program inputs to TGSI input register semantics.
529 */
530 inputsRead = stfp->Base.Base.InputsRead;
531 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
532 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
533 const GLuint slot = fs_num_inputs++;
534
535 inputMapping[attr] = slot;
536 is_centroid[slot] = (stfp->Base.IsCentroid & BITFIELD64_BIT(attr)) != 0;
537
538 switch (attr) {
539 case VARYING_SLOT_POS:
540 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
541 input_semantic_index[slot] = 0;
542 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
543 break;
544 case VARYING_SLOT_COL0:
545 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
546 input_semantic_index[slot] = 0;
547 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
548 TRUE);
549 break;
550 case VARYING_SLOT_COL1:
551 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
552 input_semantic_index[slot] = 1;
553 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
554 TRUE);
555 break;
556 case VARYING_SLOT_FOGC:
557 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
558 input_semantic_index[slot] = 0;
559 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
560 break;
561 case VARYING_SLOT_FACE:
562 input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
563 input_semantic_index[slot] = 0;
564 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
565 break;
566 case VARYING_SLOT_CLIP_DIST0:
567 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
568 input_semantic_index[slot] = 0;
569 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
570 break;
571 case VARYING_SLOT_CLIP_DIST1:
572 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
573 input_semantic_index[slot] = 1;
574 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
575 break;
576 /* In most cases, there is nothing special about these
577 * inputs, so adopt a convention to use the generic
578 * semantic name and the mesa VARYING_SLOT_ number as the
579 * index.
580 *
581 * All that is required is that the vertex shader labels
582 * its own outputs similarly, and that the vertex shader
583 * generates at least every output required by the
584 * fragment shader plus fixed-function hardware (such as
585 * BFC).
586 *
587 * However, some drivers may need us to identify the PNTC and TEXi
588 * varyings if, for example, their capability to replace them with
589 * sprite coordinates is limited.
590 */
591 case VARYING_SLOT_PNTC:
592 if (st->needs_texcoord_semantic) {
593 input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
594 input_semantic_index[slot] = 0;
595 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
596 break;
597 }
598 /* fall through */
599 case VARYING_SLOT_TEX0:
600 case VARYING_SLOT_TEX1:
601 case VARYING_SLOT_TEX2:
602 case VARYING_SLOT_TEX3:
603 case VARYING_SLOT_TEX4:
604 case VARYING_SLOT_TEX5:
605 case VARYING_SLOT_TEX6:
606 case VARYING_SLOT_TEX7:
607 if (st->needs_texcoord_semantic) {
608 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
609 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
610 interpMode[slot] =
611 st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
612 break;
613 }
614 /* fall through */
615 case VARYING_SLOT_VAR0:
616 default:
617 /* Semantic indices should be zero-based because drivers may choose
618 * to assign a fixed slot determined by that index.
619 * This is useful because ARB_separate_shader_objects uses location
620 * qualifiers for linkage, and if the semantic index corresponds to
621 * these locations, linkage passes in the driver become unecessary.
622 *
623 * If needs_texcoord_semantic is true, no semantic indices will be
624 * consumed for the TEXi varyings, and we can base the locations of
625 * the user varyings on VAR0. Otherwise, we use TEX0 as base index.
626 */
627 assert(attr >= VARYING_SLOT_TEX0);
628 input_semantic_index[slot] = st->needs_texcoord_semantic ?
629 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
630 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
631 if (attr == VARYING_SLOT_PNTC)
632 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
633 else
634 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
635 FALSE);
636 break;
637 }
638 }
639 else {
640 inputMapping[attr] = -1;
641 }
642 }
643
644 /*
645 * Semantics and mapping for outputs
646 */
647 {
648 uint numColors = 0;
649 GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;
650
651 /* if z is written, emit that first */
652 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
653 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
654 fs_output_semantic_index[fs_num_outputs] = 0;
655 outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
656 fs_num_outputs++;
657 outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
658 }
659
660 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
661 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
662 fs_output_semantic_index[fs_num_outputs] = 0;
663 outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
664 fs_num_outputs++;
665 outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
666 }
667
668 /* handle remaining outputs (color) */
669 for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
670 if (outputsWritten & BITFIELD64_BIT(attr)) {
671 switch (attr) {
672 case FRAG_RESULT_DEPTH:
673 case FRAG_RESULT_STENCIL:
674 /* handled above */
675 assert(0);
676 break;
677 case FRAG_RESULT_COLOR:
678 write_all = GL_TRUE; /* fallthrough */
679 default:
680 assert(attr == FRAG_RESULT_COLOR ||
681 (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
682 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
683 fs_output_semantic_index[fs_num_outputs] = numColors;
684 outputMapping[attr] = fs_num_outputs;
685 numColors++;
686 break;
687 }
688
689 fs_num_outputs++;
690 }
691 }
692 }
693
694 ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
695 if (ureg == NULL) {
696 free(variant);
697 return NULL;
698 }
699
700 if (ST_DEBUG & DEBUG_MESA) {
701 _mesa_print_program(&stfp->Base.Base);
702 _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
703 debug_printf("\n");
704 }
705 if (write_all == GL_TRUE)
706 ureg_property_fs_color0_writes_all_cbufs(ureg, 1);
707
708 if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
709 switch (stfp->Base.FragDepthLayout) {
710 case FRAG_DEPTH_LAYOUT_ANY:
711 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_ANY);
712 break;
713 case FRAG_DEPTH_LAYOUT_GREATER:
714 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_GREATER);
715 break;
716 case FRAG_DEPTH_LAYOUT_LESS:
717 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_LESS);
718 break;
719 case FRAG_DEPTH_LAYOUT_UNCHANGED:
720 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
721 break;
722 default:
723 assert(0);
724 }
725 }
726
727 if (stfp->glsl_to_tgsi)
728 st_translate_program(st->ctx,
729 TGSI_PROCESSOR_FRAGMENT,
730 ureg,
731 stfp->glsl_to_tgsi,
732 &stfp->Base.Base,
733 /* inputs */
734 fs_num_inputs,
735 inputMapping,
736 input_semantic_name,
737 input_semantic_index,
738 interpMode,
739 is_centroid,
740 /* outputs */
741 fs_num_outputs,
742 outputMapping,
743 fs_output_semantic_name,
744 fs_output_semantic_index, FALSE,
745 key->clamp_color );
746 else
747 st_translate_mesa_program(st->ctx,
748 TGSI_PROCESSOR_FRAGMENT,
749 ureg,
750 &stfp->Base.Base,
751 /* inputs */
752 fs_num_inputs,
753 inputMapping,
754 input_semantic_name,
755 input_semantic_index,
756 interpMode,
757 /* outputs */
758 fs_num_outputs,
759 outputMapping,
760 fs_output_semantic_name,
761 fs_output_semantic_index, FALSE,
762 key->clamp_color);
763
764 variant->tgsi.tokens = ureg_get_tokens( ureg, NULL );
765 ureg_destroy( ureg );
766
767 /* fill in variant */
768 variant->driver_shader = pipe->create_fs_state(pipe, &variant->tgsi);
769 variant->key = *key;
770
771 if (ST_DEBUG & DEBUG_TGSI) {
772 tgsi_dump( variant->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/ );
773 debug_printf("\n");
774 }
775
776 if (deleteFP) {
777 /* Free the temporary program made above */
778 struct gl_fragment_program *fp = &stfp->Base;
779 _mesa_reference_fragprog(st->ctx, &fp, NULL);
780 }
781
782 return variant;
783 }
784
785
786 /**
787 * Translate fragment program if needed.
788 */
789 struct st_fp_variant *
790 st_get_fp_variant(struct st_context *st,
791 struct st_fragment_program *stfp,
792 const struct st_fp_variant_key *key)
793 {
794 struct st_fp_variant *fpv;
795
796 /* Search for existing variant */
797 for (fpv = stfp->variants; fpv; fpv = fpv->next) {
798 if (memcmp(&fpv->key, key, sizeof(*key)) == 0) {
799 break;
800 }
801 }
802
803 if (!fpv) {
804 /* create new */
805 fpv = st_translate_fragment_program(st, stfp, key);
806 if (fpv) {
807 /* insert into list */
808 fpv->next = stfp->variants;
809 stfp->variants = fpv;
810 }
811 }
812
813 return fpv;
814 }
815
816
817 /**
818 * Translate a geometry program to create a new variant.
819 */
820 static struct st_gp_variant *
821 st_translate_geometry_program(struct st_context *st,
822 struct st_geometry_program *stgp,
823 const struct st_gp_variant_key *key)
824 {
825 GLuint inputMapping[VARYING_SLOT_MAX];
826 GLuint outputMapping[VARYING_SLOT_MAX];
827 struct pipe_context *pipe = st->pipe;
828 GLuint attr;
829 GLbitfield64 inputsRead;
830 GLuint vslot = 0;
831 GLuint num_generic = 0;
832
833 uint gs_num_inputs = 0;
834 uint gs_builtin_inputs = 0;
835 uint gs_array_offset = 0;
836
837 ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
838 ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
839 uint gs_num_outputs = 0;
840
841 GLint i;
842 GLuint maxSlot = 0;
843 struct ureg_program *ureg;
844
845 struct st_gp_variant *gpv;
846
847 gpv = CALLOC_STRUCT(st_gp_variant);
848 if (!gpv)
849 return NULL;
850
851 _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_OUTPUT);
852
853 ureg = ureg_create( TGSI_PROCESSOR_GEOMETRY );
854 if (ureg == NULL) {
855 free(gpv);
856 return NULL;
857 }
858
859 /* which vertex output goes to the first geometry input */
860 vslot = 0;
861
862 memset(inputMapping, 0, sizeof(inputMapping));
863 memset(outputMapping, 0, sizeof(outputMapping));
864
865 /*
866 * Convert Mesa program inputs to TGSI input register semantics.
867 */
868 inputsRead = stgp->Base.Base.InputsRead;
869 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
870 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
871 const GLuint slot = gs_num_inputs;
872
873 gs_num_inputs++;
874
875 inputMapping[attr] = slot;
876
877 stgp->input_map[slot + gs_array_offset] = vslot - gs_builtin_inputs;
878 stgp->input_to_index[attr] = vslot;
879 stgp->index_to_input[vslot] = attr;
880 ++vslot;
881
882 if (attr != VARYING_SLOT_PRIMITIVE_ID) {
883 gs_array_offset += 2;
884 } else
885 ++gs_builtin_inputs;
886
887 #if 0
888 debug_printf("input map at %d = %d\n",
889 slot + gs_array_offset, stgp->input_map[slot + gs_array_offset]);
890 #endif
891
892 switch (attr) {
893 case VARYING_SLOT_PRIMITIVE_ID:
894 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
895 stgp->input_semantic_index[slot] = 0;
896 break;
897 case VARYING_SLOT_POS:
898 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
899 stgp->input_semantic_index[slot] = 0;
900 break;
901 case VARYING_SLOT_COL0:
902 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
903 stgp->input_semantic_index[slot] = 0;
904 break;
905 case VARYING_SLOT_COL1:
906 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
907 stgp->input_semantic_index[slot] = 1;
908 break;
909 case VARYING_SLOT_FOGC:
910 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
911 stgp->input_semantic_index[slot] = 0;
912 break;
913 case VARYING_SLOT_TEX0:
914 case VARYING_SLOT_TEX1:
915 case VARYING_SLOT_TEX2:
916 case VARYING_SLOT_TEX3:
917 case VARYING_SLOT_TEX4:
918 case VARYING_SLOT_TEX5:
919 case VARYING_SLOT_TEX6:
920 case VARYING_SLOT_TEX7:
921 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
922 stgp->input_semantic_index[slot] = num_generic++;
923 break;
924 case VARYING_SLOT_VAR0:
925 /* fall-through */
926 default:
927 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
928 stgp->input_semantic_index[slot] = num_generic++;
929 }
930 }
931 }
932
933 /* initialize output semantics to defaults */
934 for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
935 gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
936 gs_output_semantic_index[i] = 0;
937 }
938
939 num_generic = 0;
940 /*
941 * Determine number of outputs, the (default) output register
942 * mapping and the semantic information for each output.
943 */
944 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
945 if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
946 GLuint slot;
947
948 slot = gs_num_outputs;
949 gs_num_outputs++;
950 outputMapping[attr] = slot;
951
952 switch (attr) {
953 case VARYING_SLOT_POS:
954 assert(slot == 0);
955 gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
956 gs_output_semantic_index[slot] = 0;
957 break;
958 case VARYING_SLOT_COL0:
959 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
960 gs_output_semantic_index[slot] = 0;
961 break;
962 case VARYING_SLOT_COL1:
963 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
964 gs_output_semantic_index[slot] = 1;
965 break;
966 case VARYING_SLOT_BFC0:
967 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
968 gs_output_semantic_index[slot] = 0;
969 break;
970 case VARYING_SLOT_BFC1:
971 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
972 gs_output_semantic_index[slot] = 1;
973 break;
974 case VARYING_SLOT_FOGC:
975 gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
976 gs_output_semantic_index[slot] = 0;
977 break;
978 case VARYING_SLOT_PSIZ:
979 gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
980 gs_output_semantic_index[slot] = 0;
981 break;
982 case VARYING_SLOT_TEX0:
983 case VARYING_SLOT_TEX1:
984 case VARYING_SLOT_TEX2:
985 case VARYING_SLOT_TEX3:
986 case VARYING_SLOT_TEX4:
987 case VARYING_SLOT_TEX5:
988 case VARYING_SLOT_TEX6:
989 case VARYING_SLOT_TEX7:
990 /* fall-through */
991 case VARYING_SLOT_VAR0:
992 /* fall-through */
993 default:
994 assert(slot < Elements(gs_output_semantic_name));
995 /* use default semantic info */
996 gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
997 gs_output_semantic_index[slot] = num_generic++;
998 }
999 }
1000 }
1001
1002 assert(gs_output_semantic_name[0] == TGSI_SEMANTIC_POSITION);
1003
1004 /* find max output slot referenced to compute gs_num_outputs */
1005 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1006 if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot)
1007 maxSlot = outputMapping[attr];
1008 }
1009 gs_num_outputs = maxSlot + 1;
1010
1011 #if 0 /* debug */
1012 {
1013 GLuint i;
1014 printf("outputMapping? %d\n", outputMapping ? 1 : 0);
1015 if (outputMapping) {
1016 printf("attr -> slot\n");
1017 for (i = 0; i < 16; i++) {
1018 printf(" %2d %3d\n", i, outputMapping[i]);
1019 }
1020 }
1021 printf("slot sem_name sem_index\n");
1022 for (i = 0; i < gs_num_outputs; i++) {
1023 printf(" %2d %d %d\n",
1024 i,
1025 gs_output_semantic_name[i],
1026 gs_output_semantic_index[i]);
1027 }
1028 }
1029 #endif
1030
1031 /* free old shader state, if any */
1032 if (stgp->tgsi.tokens) {
1033 st_free_tokens(stgp->tgsi.tokens);
1034 stgp->tgsi.tokens = NULL;
1035 }
1036
1037 ureg_property_gs_input_prim(ureg, stgp->Base.InputType);
1038 ureg_property_gs_output_prim(ureg, stgp->Base.OutputType);
1039 ureg_property_gs_max_vertices(ureg, stgp->Base.VerticesOut);
1040
1041 st_translate_mesa_program(st->ctx,
1042 TGSI_PROCESSOR_GEOMETRY,
1043 ureg,
1044 &stgp->Base.Base,
1045 /* inputs */
1046 gs_num_inputs,
1047 inputMapping,
1048 stgp->input_semantic_name,
1049 stgp->input_semantic_index,
1050 NULL,
1051 /* outputs */
1052 gs_num_outputs,
1053 outputMapping,
1054 gs_output_semantic_name,
1055 gs_output_semantic_index,
1056 FALSE,
1057 FALSE);
1058
1059 stgp->num_inputs = gs_num_inputs;
1060 stgp->tgsi.tokens = ureg_get_tokens( ureg, NULL );
1061 ureg_destroy( ureg );
1062
1063 if (stgp->glsl_to_tgsi) {
1064 st_translate_stream_output_info(stgp->glsl_to_tgsi,
1065 outputMapping,
1066 &stgp->tgsi.stream_output);
1067 }
1068
1069 /* fill in new variant */
1070 gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
1071 gpv->key = *key;
1072
1073 if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
1074 _mesa_print_program(&stgp->Base.Base);
1075 debug_printf("\n");
1076 }
1077
1078 if (ST_DEBUG & DEBUG_TGSI) {
1079 tgsi_dump(stgp->tgsi.tokens, 0);
1080 debug_printf("\n");
1081 }
1082
1083 return gpv;
1084 }
1085
1086
1087 /**
1088 * Get/create geometry program variant.
1089 */
1090 struct st_gp_variant *
1091 st_get_gp_variant(struct st_context *st,
1092 struct st_geometry_program *stgp,
1093 const struct st_gp_variant_key *key)
1094 {
1095 struct st_gp_variant *gpv;
1096
1097 /* Search for existing variant */
1098 for (gpv = stgp->variants; gpv; gpv = gpv->next) {
1099 if (memcmp(&gpv->key, key, sizeof(*key)) == 0) {
1100 break;
1101 }
1102 }
1103
1104 if (!gpv) {
1105 /* create new */
1106 gpv = st_translate_geometry_program(st, stgp, key);
1107 if (gpv) {
1108 /* insert into list */
1109 gpv->next = stgp->variants;
1110 stgp->variants = gpv;
1111 }
1112 }
1113
1114 return gpv;
1115 }
1116
1117
1118
1119
1120 /**
1121 * Debug- print current shader text
1122 */
1123 void
1124 st_print_shaders(struct gl_context *ctx)
1125 {
1126 struct gl_shader_program *shProg[3] = {
1127 ctx->Shader.CurrentVertexProgram,
1128 ctx->Shader.CurrentGeometryProgram,
1129 ctx->Shader.CurrentFragmentProgram,
1130 };
1131 unsigned j;
1132
1133 for (j = 0; j < 3; j++) {
1134 unsigned i;
1135
1136 if (shProg[j] == NULL)
1137 continue;
1138
1139 for (i = 0; i < shProg[j]->NumShaders; i++) {
1140 struct gl_shader *sh;
1141
1142 switch (shProg[j]->Shaders[i]->Type) {
1143 case GL_VERTEX_SHADER:
1144 sh = (i != 0) ? NULL : shProg[j]->Shaders[i];
1145 break;
1146 case GL_GEOMETRY_SHADER_ARB:
1147 sh = (i != 1) ? NULL : shProg[j]->Shaders[i];
1148 break;
1149 case GL_FRAGMENT_SHADER:
1150 sh = (i != 2) ? NULL : shProg[j]->Shaders[i];
1151 break;
1152 default:
1153 assert(0);
1154 sh = NULL;
1155 break;
1156 }
1157
1158 if (sh != NULL) {
1159 printf("GLSL shader %u of %u:\n", i, shProg[j]->NumShaders);
1160 printf("%s\n", sh->Source);
1161 }
1162 }
1163 }
1164 }
1165
1166
1167 /**
1168 * Vert/Geom/Frag programs have per-context variants. Free all the
1169 * variants attached to the given program which match the given context.
1170 */
1171 static void
1172 destroy_program_variants(struct st_context *st, struct gl_program *program)
1173 {
1174 if (!program || program == &_mesa_DummyProgram)
1175 return;
1176
1177 switch (program->Target) {
1178 case GL_VERTEX_PROGRAM_ARB:
1179 {
1180 struct st_vertex_program *stvp = (struct st_vertex_program *) program;
1181 struct st_vp_variant *vpv, **prevPtr = &stvp->variants;
1182
1183 for (vpv = stvp->variants; vpv; ) {
1184 struct st_vp_variant *next = vpv->next;
1185 if (vpv->key.st == st) {
1186 /* unlink from list */
1187 *prevPtr = next;
1188 /* destroy this variant */
1189 delete_vp_variant(st, vpv);
1190 }
1191 else {
1192 prevPtr = &vpv->next;
1193 }
1194 vpv = next;
1195 }
1196 }
1197 break;
1198 case GL_FRAGMENT_PROGRAM_ARB:
1199 {
1200 struct st_fragment_program *stfp =
1201 (struct st_fragment_program *) program;
1202 struct st_fp_variant *fpv, **prevPtr = &stfp->variants;
1203
1204 for (fpv = stfp->variants; fpv; ) {
1205 struct st_fp_variant *next = fpv->next;
1206 if (fpv->key.st == st) {
1207 /* unlink from list */
1208 *prevPtr = next;
1209 /* destroy this variant */
1210 delete_fp_variant(st, fpv);
1211 }
1212 else {
1213 prevPtr = &fpv->next;
1214 }
1215 fpv = next;
1216 }
1217 }
1218 break;
1219 case MESA_GEOMETRY_PROGRAM:
1220 {
1221 struct st_geometry_program *stgp =
1222 (struct st_geometry_program *) program;
1223 struct st_gp_variant *gpv, **prevPtr = &stgp->variants;
1224
1225 for (gpv = stgp->variants; gpv; ) {
1226 struct st_gp_variant *next = gpv->next;
1227 if (gpv->key.st == st) {
1228 /* unlink from list */
1229 *prevPtr = next;
1230 /* destroy this variant */
1231 delete_gp_variant(st, gpv);
1232 }
1233 else {
1234 prevPtr = &gpv->next;
1235 }
1236 gpv = next;
1237 }
1238 }
1239 break;
1240 default:
1241 _mesa_problem(NULL, "Unexpected program target 0x%x in "
1242 "destroy_program_variants_cb()", program->Target);
1243 }
1244 }
1245
1246
1247 /**
1248 * Callback for _mesa_HashWalk. Free all the shader's program variants
1249 * which match the given context.
1250 */
1251 static void
1252 destroy_shader_program_variants_cb(GLuint key, void *data, void *userData)
1253 {
1254 struct st_context *st = (struct st_context *) userData;
1255 struct gl_shader *shader = (struct gl_shader *) data;
1256
1257 switch (shader->Type) {
1258 case GL_SHADER_PROGRAM_MESA:
1259 {
1260 struct gl_shader_program *shProg = (struct gl_shader_program *) data;
1261 GLuint i;
1262
1263 for (i = 0; i < shProg->NumShaders; i++) {
1264 destroy_program_variants(st, shProg->Shaders[i]->Program);
1265 }
1266
1267 for (i = 0; i < Elements(shProg->_LinkedShaders); i++) {
1268 if (shProg->_LinkedShaders[i])
1269 destroy_program_variants(st, shProg->_LinkedShaders[i]->Program);
1270 }
1271 }
1272 break;
1273 case GL_VERTEX_SHADER:
1274 case GL_FRAGMENT_SHADER:
1275 case GL_GEOMETRY_SHADER:
1276 {
1277 destroy_program_variants(st, shader->Program);
1278 }
1279 break;
1280 default:
1281 assert(0);
1282 }
1283 }
1284
1285
1286 /**
1287 * Callback for _mesa_HashWalk. Free all the program variants which match
1288 * the given context.
1289 */
1290 static void
1291 destroy_program_variants_cb(GLuint key, void *data, void *userData)
1292 {
1293 struct st_context *st = (struct st_context *) userData;
1294 struct gl_program *program = (struct gl_program *) data;
1295 destroy_program_variants(st, program);
1296 }
1297
1298
1299 /**
1300 * Walk over all shaders and programs to delete any variants which
1301 * belong to the given context.
1302 * This is called during context tear-down.
1303 */
1304 void
1305 st_destroy_program_variants(struct st_context *st)
1306 {
1307 /* ARB vert/frag program */
1308 _mesa_HashWalk(st->ctx->Shared->Programs,
1309 destroy_program_variants_cb, st);
1310
1311 /* GLSL vert/frag/geom shaders */
1312 _mesa_HashWalk(st->ctx->Shared->ShaderObjects,
1313 destroy_shader_program_variants_cb, st);
1314 }
1315
1316
1317 /**
1318 * For debugging, print/dump the current vertex program.
1319 */
1320 void
1321 st_print_current_vertex_program(void)
1322 {
1323 GET_CURRENT_CONTEXT(ctx);
1324
1325 if (ctx->VertexProgram._Current) {
1326 struct st_vertex_program *stvp =
1327 (struct st_vertex_program *) ctx->VertexProgram._Current;
1328 struct st_vp_variant *stv;
1329
1330 debug_printf("Vertex program %u\n", stvp->Base.Base.Id);
1331
1332 for (stv = stvp->variants; stv; stv = stv->next) {
1333 debug_printf("variant %p\n", stv);
1334 tgsi_dump(stv->tgsi.tokens, 0);
1335 }
1336 }
1337 }