mesa/sso: rename Shader to the pointer _Shader
[mesa.git] / src / mesa / state_tracker / st_program.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 * Brian Paul
31 */
32
33
34 #include "main/imports.h"
35 #include "main/hash.h"
36 #include "main/mtypes.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/programopt.h"
40
41 #include "pipe/p_context.h"
42 #include "pipe/p_defines.h"
43 #include "pipe/p_shader_tokens.h"
44 #include "draw/draw_context.h"
45 #include "tgsi/tgsi_dump.h"
46 #include "tgsi/tgsi_ureg.h"
47
48 #include "st_debug.h"
49 #include "st_cb_bitmap.h"
50 #include "st_cb_drawpixels.h"
51 #include "st_context.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "cso_cache/cso_context.h"
55
56
57
58 /**
59 * Delete a vertex program variant. Note the caller must unlink
60 * the variant from the linked list.
61 */
62 static void
63 delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
64 {
65 if (vpv->driver_shader)
66 cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
67
68 if (vpv->draw_shader)
69 draw_delete_vertex_shader( st->draw, vpv->draw_shader );
70
71 if (vpv->tgsi.tokens)
72 st_free_tokens(vpv->tgsi.tokens);
73
74 free( vpv );
75 }
76
77
78
79 /**
80 * Clean out any old compilations:
81 */
82 void
83 st_release_vp_variants( struct st_context *st,
84 struct st_vertex_program *stvp )
85 {
86 struct st_vp_variant *vpv;
87
88 for (vpv = stvp->variants; vpv; ) {
89 struct st_vp_variant *next = vpv->next;
90 delete_vp_variant(st, vpv);
91 vpv = next;
92 }
93
94 stvp->variants = NULL;
95 }
96
97
98
99 /**
100 * Delete a fragment program variant. Note the caller must unlink
101 * the variant from the linked list.
102 */
103 static void
104 delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
105 {
106 if (fpv->driver_shader)
107 cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
108 if (fpv->parameters)
109 _mesa_free_parameter_list(fpv->parameters);
110 if (fpv->tgsi.tokens)
111 st_free_tokens(fpv->tgsi.tokens);
112 free(fpv);
113 }
114
115
116 /**
117 * Free all variants of a fragment program.
118 */
119 void
120 st_release_fp_variants(struct st_context *st, struct st_fragment_program *stfp)
121 {
122 struct st_fp_variant *fpv;
123
124 for (fpv = stfp->variants; fpv; ) {
125 struct st_fp_variant *next = fpv->next;
126 delete_fp_variant(st, fpv);
127 fpv = next;
128 }
129
130 stfp->variants = NULL;
131 }
132
133
134 /**
135 * Delete a geometry program variant. Note the caller must unlink
136 * the variant from the linked list.
137 */
138 static void
139 delete_gp_variant(struct st_context *st, struct st_gp_variant *gpv)
140 {
141 if (gpv->driver_shader)
142 cso_delete_geometry_shader(st->cso_context, gpv->driver_shader);
143
144 free(gpv);
145 }
146
147
148 /**
149 * Free all variants of a geometry program.
150 */
151 void
152 st_release_gp_variants(struct st_context *st, struct st_geometry_program *stgp)
153 {
154 struct st_gp_variant *gpv;
155
156 for (gpv = stgp->variants; gpv; ) {
157 struct st_gp_variant *next = gpv->next;
158 delete_gp_variant(st, gpv);
159 gpv = next;
160 }
161
162 stgp->variants = NULL;
163 }
164
165
166
167
168 /**
169 * Translate a Mesa vertex shader into a TGSI shader.
170 * \param outputMapping to map vertex program output registers (VARYING_SLOT_x)
171 * to TGSI output slots
172 * \param tokensOut destination for TGSI tokens
173 * \return pointer to cached pipe_shader object.
174 */
175 void
176 st_prepare_vertex_program(struct gl_context *ctx,
177 struct st_vertex_program *stvp)
178 {
179 struct st_context *st = st_context(ctx);
180 GLuint attr;
181
182 stvp->num_inputs = 0;
183 stvp->num_outputs = 0;
184
185 if (stvp->Base.IsPositionInvariant)
186 _mesa_insert_mvp_code(ctx, &stvp->Base);
187
188 if (!stvp->glsl_to_tgsi)
189 assert(stvp->Base.Base.NumInstructions > 1);
190
191 /*
192 * Determine number of inputs, the mappings between VERT_ATTRIB_x
193 * and TGSI generic input indexes, plus input attrib semantic info.
194 */
195 for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
196 if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
197 stvp->input_to_index[attr] = stvp->num_inputs;
198 stvp->index_to_input[stvp->num_inputs] = attr;
199 stvp->num_inputs++;
200 }
201 }
202 /* bit of a hack, presetup potentially unused edgeflag input */
203 stvp->input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
204 stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;
205
206 /* Compute mapping of vertex program outputs to slots.
207 */
208 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
209 if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
210 stvp->result_to_output[attr] = ~0;
211 }
212 else {
213 unsigned slot = stvp->num_outputs++;
214
215 stvp->result_to_output[attr] = slot;
216
217 switch (attr) {
218 case VARYING_SLOT_POS:
219 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
220 stvp->output_semantic_index[slot] = 0;
221 break;
222 case VARYING_SLOT_COL0:
223 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
224 stvp->output_semantic_index[slot] = 0;
225 break;
226 case VARYING_SLOT_COL1:
227 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
228 stvp->output_semantic_index[slot] = 1;
229 break;
230 case VARYING_SLOT_BFC0:
231 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
232 stvp->output_semantic_index[slot] = 0;
233 break;
234 case VARYING_SLOT_BFC1:
235 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
236 stvp->output_semantic_index[slot] = 1;
237 break;
238 case VARYING_SLOT_FOGC:
239 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
240 stvp->output_semantic_index[slot] = 0;
241 break;
242 case VARYING_SLOT_PSIZ:
243 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
244 stvp->output_semantic_index[slot] = 0;
245 break;
246 case VARYING_SLOT_CLIP_DIST0:
247 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
248 stvp->output_semantic_index[slot] = 0;
249 break;
250 case VARYING_SLOT_CLIP_DIST1:
251 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
252 stvp->output_semantic_index[slot] = 1;
253 break;
254 case VARYING_SLOT_EDGE:
255 assert(0);
256 break;
257 case VARYING_SLOT_CLIP_VERTEX:
258 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
259 stvp->output_semantic_index[slot] = 0;
260 break;
261 case VARYING_SLOT_LAYER:
262 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
263 stvp->output_semantic_index[slot] = 0;
264 break;
265
266 case VARYING_SLOT_TEX0:
267 case VARYING_SLOT_TEX1:
268 case VARYING_SLOT_TEX2:
269 case VARYING_SLOT_TEX3:
270 case VARYING_SLOT_TEX4:
271 case VARYING_SLOT_TEX5:
272 case VARYING_SLOT_TEX6:
273 case VARYING_SLOT_TEX7:
274 stvp->output_semantic_name[slot] = st->needs_texcoord_semantic ?
275 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
276 stvp->output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
277 break;
278
279 case VARYING_SLOT_VAR0:
280 default:
281 assert(attr < VARYING_SLOT_MAX);
282 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
283 stvp->output_semantic_index[slot] = st->needs_texcoord_semantic ?
284 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
285 break;
286 }
287 }
288 }
289 /* similar hack to above, presetup potentially unused edgeflag output */
290 stvp->result_to_output[VARYING_SLOT_EDGE] = stvp->num_outputs;
291 stvp->output_semantic_name[stvp->num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
292 stvp->output_semantic_index[stvp->num_outputs] = 0;
293 }
294
295
296 /**
297 * Translate a vertex program to create a new variant.
298 */
299 static struct st_vp_variant *
300 st_translate_vertex_program(struct st_context *st,
301 struct st_vertex_program *stvp,
302 const struct st_vp_variant_key *key)
303 {
304 struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
305 struct pipe_context *pipe = st->pipe;
306 struct ureg_program *ureg;
307 enum pipe_error error;
308 unsigned num_outputs;
309
310 st_prepare_vertex_program(st->ctx, stvp);
311
312 if (!stvp->glsl_to_tgsi)
313 {
314 _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
315 }
316
317 ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
318 if (ureg == NULL) {
319 free(vpv);
320 return NULL;
321 }
322
323 vpv->key = *key;
324
325 vpv->num_inputs = stvp->num_inputs;
326 num_outputs = stvp->num_outputs;
327 if (key->passthrough_edgeflags) {
328 vpv->num_inputs++;
329 num_outputs++;
330 }
331
332 if (ST_DEBUG & DEBUG_MESA) {
333 _mesa_print_program(&stvp->Base.Base);
334 _mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
335 debug_printf("\n");
336 }
337
338 if (stvp->glsl_to_tgsi)
339 error = st_translate_program(st->ctx,
340 TGSI_PROCESSOR_VERTEX,
341 ureg,
342 stvp->glsl_to_tgsi,
343 &stvp->Base.Base,
344 /* inputs */
345 vpv->num_inputs,
346 stvp->input_to_index,
347 NULL, /* input semantic name */
348 NULL, /* input semantic index */
349 NULL, /* interp mode */
350 NULL, /* is centroid */
351 /* outputs */
352 num_outputs,
353 stvp->result_to_output,
354 stvp->output_semantic_name,
355 stvp->output_semantic_index,
356 key->passthrough_edgeflags,
357 key->clamp_color);
358 else
359 error = st_translate_mesa_program(st->ctx,
360 TGSI_PROCESSOR_VERTEX,
361 ureg,
362 &stvp->Base.Base,
363 /* inputs */
364 vpv->num_inputs,
365 stvp->input_to_index,
366 NULL, /* input semantic name */
367 NULL, /* input semantic index */
368 NULL,
369 /* outputs */
370 num_outputs,
371 stvp->result_to_output,
372 stvp->output_semantic_name,
373 stvp->output_semantic_index,
374 key->passthrough_edgeflags,
375 key->clamp_color);
376
377 if (error)
378 goto fail;
379
380 vpv->tgsi.tokens = ureg_get_tokens( ureg, NULL );
381 if (!vpv->tgsi.tokens)
382 goto fail;
383
384 ureg_destroy( ureg );
385
386 if (stvp->glsl_to_tgsi) {
387 st_translate_stream_output_info(stvp->glsl_to_tgsi,
388 stvp->result_to_output,
389 &vpv->tgsi.stream_output);
390 }
391
392 vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
393
394 if (ST_DEBUG & DEBUG_TGSI) {
395 tgsi_dump( vpv->tgsi.tokens, 0 );
396 debug_printf("\n");
397 }
398
399 return vpv;
400
401 fail:
402 debug_printf("%s: failed to translate Mesa program:\n", __FUNCTION__);
403 _mesa_print_program(&stvp->Base.Base);
404 debug_assert(0);
405
406 ureg_destroy( ureg );
407 return NULL;
408 }
409
410
411 /**
412 * Find/create a vertex program variant.
413 */
414 struct st_vp_variant *
415 st_get_vp_variant(struct st_context *st,
416 struct st_vertex_program *stvp,
417 const struct st_vp_variant_key *key)
418 {
419 struct st_vp_variant *vpv;
420
421 /* Search for existing variant */
422 for (vpv = stvp->variants; vpv; vpv = vpv->next) {
423 if (memcmp(&vpv->key, key, sizeof(*key)) == 0) {
424 break;
425 }
426 }
427
428 if (!vpv) {
429 /* create now */
430 vpv = st_translate_vertex_program(st, stvp, key);
431 if (vpv) {
432 /* insert into list */
433 vpv->next = stvp->variants;
434 stvp->variants = vpv;
435 }
436 }
437
438 return vpv;
439 }
440
441
442 static unsigned
443 st_translate_interp(enum glsl_interp_qualifier glsl_qual, bool is_color)
444 {
445 switch (glsl_qual) {
446 case INTERP_QUALIFIER_NONE:
447 if (is_color)
448 return TGSI_INTERPOLATE_COLOR;
449 return TGSI_INTERPOLATE_PERSPECTIVE;
450 case INTERP_QUALIFIER_SMOOTH:
451 return TGSI_INTERPOLATE_PERSPECTIVE;
452 case INTERP_QUALIFIER_FLAT:
453 return TGSI_INTERPOLATE_CONSTANT;
454 case INTERP_QUALIFIER_NOPERSPECTIVE:
455 return TGSI_INTERPOLATE_LINEAR;
456 default:
457 assert(0 && "unexpected interp mode in st_translate_interp()");
458 return TGSI_INTERPOLATE_PERSPECTIVE;
459 }
460 }
461
462
463 /**
464 * Translate a Mesa fragment shader into a TGSI shader using extra info in
465 * the key.
466 * \return new fragment program variant
467 */
468 static struct st_fp_variant *
469 st_translate_fragment_program(struct st_context *st,
470 struct st_fragment_program *stfp,
471 const struct st_fp_variant_key *key)
472 {
473 struct pipe_context *pipe = st->pipe;
474 struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
475 GLboolean deleteFP = GL_FALSE;
476
477 GLuint outputMapping[FRAG_RESULT_MAX];
478 GLuint inputMapping[VARYING_SLOT_MAX];
479 GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */
480 GLuint attr;
481 GLbitfield64 inputsRead;
482 struct ureg_program *ureg;
483
484 GLboolean write_all = GL_FALSE;
485
486 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
487 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
488 GLboolean is_centroid[PIPE_MAX_SHADER_INPUTS];
489 uint fs_num_inputs = 0;
490
491 ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
492 ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
493 uint fs_num_outputs = 0;
494
495 if (!variant)
496 return NULL;
497
498 assert(!(key->bitmap && key->drawpixels));
499
500 if (key->bitmap) {
501 /* glBitmap drawing */
502 struct gl_fragment_program *fp; /* we free this temp program below */
503
504 st_make_bitmap_fragment_program(st, &stfp->Base,
505 &fp, &variant->bitmap_sampler);
506
507 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
508 stfp = st_fragment_program(fp);
509 deleteFP = GL_TRUE;
510 }
511 else if (key->drawpixels) {
512 /* glDrawPixels drawing */
513 struct gl_fragment_program *fp; /* we free this temp program below */
514
515 if (key->drawpixels_z || key->drawpixels_stencil) {
516 fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z,
517 key->drawpixels_stencil);
518 }
519 else {
520 /* RGBA */
521 st_make_drawpix_fragment_program(st, &stfp->Base, &fp);
522 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
523 deleteFP = GL_TRUE;
524 }
525 stfp = st_fragment_program(fp);
526 }
527
528 if (!stfp->glsl_to_tgsi)
529 _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);
530
531 /*
532 * Convert Mesa program inputs to TGSI input register semantics.
533 */
534 inputsRead = stfp->Base.Base.InputsRead;
535 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
536 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
537 const GLuint slot = fs_num_inputs++;
538
539 inputMapping[attr] = slot;
540 is_centroid[slot] = (stfp->Base.IsCentroid & BITFIELD64_BIT(attr)) != 0;
541
542 switch (attr) {
543 case VARYING_SLOT_POS:
544 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
545 input_semantic_index[slot] = 0;
546 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
547 break;
548 case VARYING_SLOT_COL0:
549 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
550 input_semantic_index[slot] = 0;
551 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
552 TRUE);
553 break;
554 case VARYING_SLOT_COL1:
555 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
556 input_semantic_index[slot] = 1;
557 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
558 TRUE);
559 break;
560 case VARYING_SLOT_FOGC:
561 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
562 input_semantic_index[slot] = 0;
563 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
564 break;
565 case VARYING_SLOT_FACE:
566 input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
567 input_semantic_index[slot] = 0;
568 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
569 break;
570 case VARYING_SLOT_PRIMITIVE_ID:
571 input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
572 input_semantic_index[slot] = 0;
573 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
574 break;
575 case VARYING_SLOT_VIEWPORT:
576 input_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
577 input_semantic_index[slot] = 0;
578 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
579 break;
580 case VARYING_SLOT_CLIP_DIST0:
581 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
582 input_semantic_index[slot] = 0;
583 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
584 break;
585 case VARYING_SLOT_CLIP_DIST1:
586 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
587 input_semantic_index[slot] = 1;
588 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
589 break;
590 /* In most cases, there is nothing special about these
591 * inputs, so adopt a convention to use the generic
592 * semantic name and the mesa VARYING_SLOT_ number as the
593 * index.
594 *
595 * All that is required is that the vertex shader labels
596 * its own outputs similarly, and that the vertex shader
597 * generates at least every output required by the
598 * fragment shader plus fixed-function hardware (such as
599 * BFC).
600 *
601 * However, some drivers may need us to identify the PNTC and TEXi
602 * varyings if, for example, their capability to replace them with
603 * sprite coordinates is limited.
604 */
605 case VARYING_SLOT_PNTC:
606 if (st->needs_texcoord_semantic) {
607 input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
608 input_semantic_index[slot] = 0;
609 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
610 break;
611 }
612 /* fall through */
613 case VARYING_SLOT_TEX0:
614 case VARYING_SLOT_TEX1:
615 case VARYING_SLOT_TEX2:
616 case VARYING_SLOT_TEX3:
617 case VARYING_SLOT_TEX4:
618 case VARYING_SLOT_TEX5:
619 case VARYING_SLOT_TEX6:
620 case VARYING_SLOT_TEX7:
621 if (st->needs_texcoord_semantic) {
622 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
623 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
624 interpMode[slot] =
625 st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
626 break;
627 }
628 /* fall through */
629 case VARYING_SLOT_VAR0:
630 default:
631 /* Semantic indices should be zero-based because drivers may choose
632 * to assign a fixed slot determined by that index.
633 * This is useful because ARB_separate_shader_objects uses location
634 * qualifiers for linkage, and if the semantic index corresponds to
635 * these locations, linkage passes in the driver become unecessary.
636 *
637 * If needs_texcoord_semantic is true, no semantic indices will be
638 * consumed for the TEXi varyings, and we can base the locations of
639 * the user varyings on VAR0. Otherwise, we use TEX0 as base index.
640 */
641 assert(attr >= VARYING_SLOT_TEX0);
642 input_semantic_index[slot] = st->needs_texcoord_semantic ?
643 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
644 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
645 if (attr == VARYING_SLOT_PNTC)
646 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
647 else
648 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
649 FALSE);
650 break;
651 }
652 }
653 else {
654 inputMapping[attr] = -1;
655 }
656 }
657
658 /*
659 * Semantics and mapping for outputs
660 */
661 {
662 uint numColors = 0;
663 GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;
664
665 /* if z is written, emit that first */
666 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
667 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
668 fs_output_semantic_index[fs_num_outputs] = 0;
669 outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
670 fs_num_outputs++;
671 outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
672 }
673
674 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
675 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
676 fs_output_semantic_index[fs_num_outputs] = 0;
677 outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
678 fs_num_outputs++;
679 outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
680 }
681
682 /* handle remaining outputs (color) */
683 for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
684 if (outputsWritten & BITFIELD64_BIT(attr)) {
685 switch (attr) {
686 case FRAG_RESULT_DEPTH:
687 case FRAG_RESULT_STENCIL:
688 /* handled above */
689 assert(0);
690 break;
691 case FRAG_RESULT_COLOR:
692 write_all = GL_TRUE; /* fallthrough */
693 default:
694 assert(attr == FRAG_RESULT_COLOR ||
695 (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
696 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
697 fs_output_semantic_index[fs_num_outputs] = numColors;
698 outputMapping[attr] = fs_num_outputs;
699 numColors++;
700 break;
701 }
702
703 fs_num_outputs++;
704 }
705 }
706 }
707
708 ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
709 if (ureg == NULL) {
710 free(variant);
711 return NULL;
712 }
713
714 if (ST_DEBUG & DEBUG_MESA) {
715 _mesa_print_program(&stfp->Base.Base);
716 _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
717 debug_printf("\n");
718 }
719 if (write_all == GL_TRUE)
720 ureg_property_fs_color0_writes_all_cbufs(ureg, 1);
721
722 if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
723 switch (stfp->Base.FragDepthLayout) {
724 case FRAG_DEPTH_LAYOUT_ANY:
725 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_ANY);
726 break;
727 case FRAG_DEPTH_LAYOUT_GREATER:
728 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_GREATER);
729 break;
730 case FRAG_DEPTH_LAYOUT_LESS:
731 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_LESS);
732 break;
733 case FRAG_DEPTH_LAYOUT_UNCHANGED:
734 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
735 break;
736 default:
737 assert(0);
738 }
739 }
740
741 if (stfp->glsl_to_tgsi)
742 st_translate_program(st->ctx,
743 TGSI_PROCESSOR_FRAGMENT,
744 ureg,
745 stfp->glsl_to_tgsi,
746 &stfp->Base.Base,
747 /* inputs */
748 fs_num_inputs,
749 inputMapping,
750 input_semantic_name,
751 input_semantic_index,
752 interpMode,
753 is_centroid,
754 /* outputs */
755 fs_num_outputs,
756 outputMapping,
757 fs_output_semantic_name,
758 fs_output_semantic_index, FALSE,
759 key->clamp_color );
760 else
761 st_translate_mesa_program(st->ctx,
762 TGSI_PROCESSOR_FRAGMENT,
763 ureg,
764 &stfp->Base.Base,
765 /* inputs */
766 fs_num_inputs,
767 inputMapping,
768 input_semantic_name,
769 input_semantic_index,
770 interpMode,
771 /* outputs */
772 fs_num_outputs,
773 outputMapping,
774 fs_output_semantic_name,
775 fs_output_semantic_index, FALSE,
776 key->clamp_color);
777
778 variant->tgsi.tokens = ureg_get_tokens( ureg, NULL );
779 ureg_destroy( ureg );
780
781 /* fill in variant */
782 variant->driver_shader = pipe->create_fs_state(pipe, &variant->tgsi);
783 variant->key = *key;
784
785 if (ST_DEBUG & DEBUG_TGSI) {
786 tgsi_dump( variant->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/ );
787 debug_printf("\n");
788 }
789
790 if (deleteFP) {
791 /* Free the temporary program made above */
792 struct gl_fragment_program *fp = &stfp->Base;
793 _mesa_reference_fragprog(st->ctx, &fp, NULL);
794 }
795
796 return variant;
797 }
798
799
800 /**
801 * Translate fragment program if needed.
802 */
803 struct st_fp_variant *
804 st_get_fp_variant(struct st_context *st,
805 struct st_fragment_program *stfp,
806 const struct st_fp_variant_key *key)
807 {
808 struct st_fp_variant *fpv;
809
810 /* Search for existing variant */
811 for (fpv = stfp->variants; fpv; fpv = fpv->next) {
812 if (memcmp(&fpv->key, key, sizeof(*key)) == 0) {
813 break;
814 }
815 }
816
817 if (!fpv) {
818 /* create new */
819 fpv = st_translate_fragment_program(st, stfp, key);
820 if (fpv) {
821 /* insert into list */
822 fpv->next = stfp->variants;
823 stfp->variants = fpv;
824 }
825 }
826
827 return fpv;
828 }
829
830
831 /**
832 * Translate a geometry program to create a new variant.
833 */
834 static struct st_gp_variant *
835 st_translate_geometry_program(struct st_context *st,
836 struct st_geometry_program *stgp,
837 const struct st_gp_variant_key *key)
838 {
839 GLuint inputMapping[VARYING_SLOT_MAX];
840 GLuint outputMapping[VARYING_SLOT_MAX];
841 struct pipe_context *pipe = st->pipe;
842 GLuint attr;
843 GLbitfield64 inputsRead;
844 GLuint vslot = 0;
845
846 uint gs_num_inputs = 0;
847 uint gs_builtin_inputs = 0;
848 uint gs_array_offset = 0;
849
850 ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
851 ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
852 uint gs_num_outputs = 0;
853
854 GLint i;
855 GLuint maxSlot = 0;
856 struct ureg_program *ureg;
857
858 struct st_gp_variant *gpv;
859
860 gpv = CALLOC_STRUCT(st_gp_variant);
861 if (!gpv)
862 return NULL;
863
864 if (!stgp->glsl_to_tgsi) {
865 _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_OUTPUT);
866 }
867
868 ureg = ureg_create( TGSI_PROCESSOR_GEOMETRY );
869 if (ureg == NULL) {
870 free(gpv);
871 return NULL;
872 }
873
874 /* which vertex output goes to the first geometry input */
875 vslot = 0;
876
877 memset(inputMapping, 0, sizeof(inputMapping));
878 memset(outputMapping, 0, sizeof(outputMapping));
879
880 /*
881 * Convert Mesa program inputs to TGSI input register semantics.
882 */
883 inputsRead = stgp->Base.Base.InputsRead;
884 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
885 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
886 const GLuint slot = gs_num_inputs;
887
888 gs_num_inputs++;
889
890 inputMapping[attr] = slot;
891
892 stgp->input_map[slot + gs_array_offset] = vslot - gs_builtin_inputs;
893 stgp->input_to_index[attr] = vslot;
894 stgp->index_to_input[vslot] = attr;
895 ++vslot;
896
897 if (attr != VARYING_SLOT_PRIMITIVE_ID) {
898 gs_array_offset += 2;
899 } else
900 ++gs_builtin_inputs;
901
902 #if 0
903 debug_printf("input map at %d = %d\n",
904 slot + gs_array_offset, stgp->input_map[slot + gs_array_offset]);
905 #endif
906
907 switch (attr) {
908 case VARYING_SLOT_PRIMITIVE_ID:
909 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
910 stgp->input_semantic_index[slot] = 0;
911 break;
912 case VARYING_SLOT_POS:
913 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
914 stgp->input_semantic_index[slot] = 0;
915 break;
916 case VARYING_SLOT_COL0:
917 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
918 stgp->input_semantic_index[slot] = 0;
919 break;
920 case VARYING_SLOT_COL1:
921 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
922 stgp->input_semantic_index[slot] = 1;
923 break;
924 case VARYING_SLOT_FOGC:
925 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
926 stgp->input_semantic_index[slot] = 0;
927 break;
928 case VARYING_SLOT_CLIP_VERTEX:
929 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
930 stgp->input_semantic_index[slot] = 0;
931 break;
932 case VARYING_SLOT_CLIP_DIST0:
933 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
934 stgp->input_semantic_index[slot] = 0;
935 break;
936 case VARYING_SLOT_CLIP_DIST1:
937 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
938 stgp->input_semantic_index[slot] = 1;
939 break;
940 case VARYING_SLOT_PSIZ:
941 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
942 stgp->input_semantic_index[slot] = 0;
943 break;
944 case VARYING_SLOT_TEX0:
945 case VARYING_SLOT_TEX1:
946 case VARYING_SLOT_TEX2:
947 case VARYING_SLOT_TEX3:
948 case VARYING_SLOT_TEX4:
949 case VARYING_SLOT_TEX5:
950 case VARYING_SLOT_TEX6:
951 case VARYING_SLOT_TEX7:
952 stgp->input_semantic_name[slot] = st->needs_texcoord_semantic ?
953 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
954 stgp->input_semantic_index[slot] = (attr - VARYING_SLOT_TEX0);
955 break;
956 case VARYING_SLOT_VAR0:
957 default:
958 assert(attr >= VARYING_SLOT_VAR0 && attr < VARYING_SLOT_MAX);
959 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
960 stgp->input_semantic_index[slot] = st->needs_texcoord_semantic ?
961 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
962 break;
963 }
964 }
965 }
966
967 /* initialize output semantics to defaults */
968 for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
969 gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
970 gs_output_semantic_index[i] = 0;
971 }
972
973 /*
974 * Determine number of outputs, the (default) output register
975 * mapping and the semantic information for each output.
976 */
977 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
978 if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
979 GLuint slot;
980
981 slot = gs_num_outputs;
982 gs_num_outputs++;
983 outputMapping[attr] = slot;
984
985 switch (attr) {
986 case VARYING_SLOT_POS:
987 assert(slot == 0);
988 gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
989 gs_output_semantic_index[slot] = 0;
990 break;
991 case VARYING_SLOT_COL0:
992 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
993 gs_output_semantic_index[slot] = 0;
994 break;
995 case VARYING_SLOT_COL1:
996 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
997 gs_output_semantic_index[slot] = 1;
998 break;
999 case VARYING_SLOT_BFC0:
1000 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1001 gs_output_semantic_index[slot] = 0;
1002 break;
1003 case VARYING_SLOT_BFC1:
1004 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1005 gs_output_semantic_index[slot] = 1;
1006 break;
1007 case VARYING_SLOT_FOGC:
1008 gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
1009 gs_output_semantic_index[slot] = 0;
1010 break;
1011 case VARYING_SLOT_PSIZ:
1012 gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
1013 gs_output_semantic_index[slot] = 0;
1014 break;
1015 case VARYING_SLOT_CLIP_VERTEX:
1016 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1017 gs_output_semantic_index[slot] = 0;
1018 break;
1019 case VARYING_SLOT_CLIP_DIST0:
1020 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1021 gs_output_semantic_index[slot] = 0;
1022 break;
1023 case VARYING_SLOT_CLIP_DIST1:
1024 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1025 gs_output_semantic_index[slot] = 1;
1026 break;
1027 case VARYING_SLOT_LAYER:
1028 gs_output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
1029 gs_output_semantic_index[slot] = 0;
1030 break;
1031 case VARYING_SLOT_PRIMITIVE_ID:
1032 gs_output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
1033 gs_output_semantic_index[slot] = 0;
1034 break;
1035 case VARYING_SLOT_VIEWPORT:
1036 gs_output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
1037 gs_output_semantic_index[slot] = 0;
1038 break;
1039 case VARYING_SLOT_TEX0:
1040 case VARYING_SLOT_TEX1:
1041 case VARYING_SLOT_TEX2:
1042 case VARYING_SLOT_TEX3:
1043 case VARYING_SLOT_TEX4:
1044 case VARYING_SLOT_TEX5:
1045 case VARYING_SLOT_TEX6:
1046 case VARYING_SLOT_TEX7:
1047 gs_output_semantic_name[slot] = st->needs_texcoord_semantic ?
1048 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
1049 gs_output_semantic_index[slot] = (attr - VARYING_SLOT_TEX0);
1050 break;
1051 case VARYING_SLOT_VAR0:
1052 default:
1053 assert(slot < Elements(gs_output_semantic_name));
1054 assert(attr >= VARYING_SLOT_VAR0);
1055 gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1056 gs_output_semantic_index[slot] = st->needs_texcoord_semantic ?
1057 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
1058 break;
1059 }
1060 }
1061 }
1062
1063 /* find max output slot referenced to compute gs_num_outputs */
1064 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1065 if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot)
1066 maxSlot = outputMapping[attr];
1067 }
1068 gs_num_outputs = maxSlot + 1;
1069
1070 #if 0 /* debug */
1071 {
1072 GLuint i;
1073 printf("outputMapping? %d\n", outputMapping ? 1 : 0);
1074 if (outputMapping) {
1075 printf("attr -> slot\n");
1076 for (i = 0; i < 16; i++) {
1077 printf(" %2d %3d\n", i, outputMapping[i]);
1078 }
1079 }
1080 printf("slot sem_name sem_index\n");
1081 for (i = 0; i < gs_num_outputs; i++) {
1082 printf(" %2d %d %d\n",
1083 i,
1084 gs_output_semantic_name[i],
1085 gs_output_semantic_index[i]);
1086 }
1087 }
1088 #endif
1089
1090 /* free old shader state, if any */
1091 if (stgp->tgsi.tokens) {
1092 st_free_tokens(stgp->tgsi.tokens);
1093 stgp->tgsi.tokens = NULL;
1094 }
1095
1096 ureg_property_gs_input_prim(ureg, stgp->Base.InputType);
1097 ureg_property_gs_output_prim(ureg, stgp->Base.OutputType);
1098 ureg_property_gs_max_vertices(ureg, stgp->Base.VerticesOut);
1099 ureg_property_gs_invocations(ureg, stgp->Base.Invocations);
1100
1101 if (stgp->glsl_to_tgsi)
1102 st_translate_program(st->ctx,
1103 TGSI_PROCESSOR_GEOMETRY,
1104 ureg,
1105 stgp->glsl_to_tgsi,
1106 &stgp->Base.Base,
1107 /* inputs */
1108 gs_num_inputs,
1109 inputMapping,
1110 stgp->input_semantic_name,
1111 stgp->input_semantic_index,
1112 NULL,
1113 NULL,
1114 /* outputs */
1115 gs_num_outputs,
1116 outputMapping,
1117 gs_output_semantic_name,
1118 gs_output_semantic_index,
1119 FALSE,
1120 FALSE);
1121 else
1122 st_translate_mesa_program(st->ctx,
1123 TGSI_PROCESSOR_GEOMETRY,
1124 ureg,
1125 &stgp->Base.Base,
1126 /* inputs */
1127 gs_num_inputs,
1128 inputMapping,
1129 stgp->input_semantic_name,
1130 stgp->input_semantic_index,
1131 NULL,
1132 /* outputs */
1133 gs_num_outputs,
1134 outputMapping,
1135 gs_output_semantic_name,
1136 gs_output_semantic_index,
1137 FALSE,
1138 FALSE);
1139
1140 stgp->num_inputs = gs_num_inputs;
1141 stgp->tgsi.tokens = ureg_get_tokens( ureg, NULL );
1142 ureg_destroy( ureg );
1143
1144 if (stgp->glsl_to_tgsi) {
1145 st_translate_stream_output_info(stgp->glsl_to_tgsi,
1146 outputMapping,
1147 &stgp->tgsi.stream_output);
1148 }
1149
1150 /* fill in new variant */
1151 gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
1152 gpv->key = *key;
1153
1154 if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
1155 _mesa_print_program(&stgp->Base.Base);
1156 debug_printf("\n");
1157 }
1158
1159 if (ST_DEBUG & DEBUG_TGSI) {
1160 tgsi_dump(stgp->tgsi.tokens, 0);
1161 debug_printf("\n");
1162 }
1163
1164 return gpv;
1165 }
1166
1167
1168 /**
1169 * Get/create geometry program variant.
1170 */
1171 struct st_gp_variant *
1172 st_get_gp_variant(struct st_context *st,
1173 struct st_geometry_program *stgp,
1174 const struct st_gp_variant_key *key)
1175 {
1176 struct st_gp_variant *gpv;
1177
1178 /* Search for existing variant */
1179 for (gpv = stgp->variants; gpv; gpv = gpv->next) {
1180 if (memcmp(&gpv->key, key, sizeof(*key)) == 0) {
1181 break;
1182 }
1183 }
1184
1185 if (!gpv) {
1186 /* create new */
1187 gpv = st_translate_geometry_program(st, stgp, key);
1188 if (gpv) {
1189 /* insert into list */
1190 gpv->next = stgp->variants;
1191 stgp->variants = gpv;
1192 }
1193 }
1194
1195 return gpv;
1196 }
1197
1198
1199
1200
1201 /**
1202 * Debug- print current shader text
1203 */
1204 void
1205 st_print_shaders(struct gl_context *ctx)
1206 {
1207 struct gl_shader_program **shProg = ctx->_Shader->CurrentProgram;
1208 unsigned j;
1209
1210 for (j = 0; j < 3; j++) {
1211 unsigned i;
1212
1213 if (shProg[j] == NULL)
1214 continue;
1215
1216 for (i = 0; i < shProg[j]->NumShaders; i++) {
1217 struct gl_shader *sh;
1218
1219 switch (shProg[j]->Shaders[i]->Type) {
1220 case GL_VERTEX_SHADER:
1221 sh = (i != 0) ? NULL : shProg[j]->Shaders[i];
1222 break;
1223 case GL_GEOMETRY_SHADER_ARB:
1224 sh = (i != 1) ? NULL : shProg[j]->Shaders[i];
1225 break;
1226 case GL_FRAGMENT_SHADER:
1227 sh = (i != 2) ? NULL : shProg[j]->Shaders[i];
1228 break;
1229 default:
1230 assert(0);
1231 sh = NULL;
1232 break;
1233 }
1234
1235 if (sh != NULL) {
1236 printf("GLSL shader %u of %u:\n", i, shProg[j]->NumShaders);
1237 printf("%s\n", sh->Source);
1238 }
1239 }
1240 }
1241 }
1242
1243
1244 /**
1245 * Vert/Geom/Frag programs have per-context variants. Free all the
1246 * variants attached to the given program which match the given context.
1247 */
1248 static void
1249 destroy_program_variants(struct st_context *st, struct gl_program *program)
1250 {
1251 if (!program || program == &_mesa_DummyProgram)
1252 return;
1253
1254 switch (program->Target) {
1255 case GL_VERTEX_PROGRAM_ARB:
1256 {
1257 struct st_vertex_program *stvp = (struct st_vertex_program *) program;
1258 struct st_vp_variant *vpv, **prevPtr = &stvp->variants;
1259
1260 for (vpv = stvp->variants; vpv; ) {
1261 struct st_vp_variant *next = vpv->next;
1262 if (vpv->key.st == st) {
1263 /* unlink from list */
1264 *prevPtr = next;
1265 /* destroy this variant */
1266 delete_vp_variant(st, vpv);
1267 }
1268 else {
1269 prevPtr = &vpv->next;
1270 }
1271 vpv = next;
1272 }
1273 }
1274 break;
1275 case GL_FRAGMENT_PROGRAM_ARB:
1276 {
1277 struct st_fragment_program *stfp =
1278 (struct st_fragment_program *) program;
1279 struct st_fp_variant *fpv, **prevPtr = &stfp->variants;
1280
1281 for (fpv = stfp->variants; fpv; ) {
1282 struct st_fp_variant *next = fpv->next;
1283 if (fpv->key.st == st) {
1284 /* unlink from list */
1285 *prevPtr = next;
1286 /* destroy this variant */
1287 delete_fp_variant(st, fpv);
1288 }
1289 else {
1290 prevPtr = &fpv->next;
1291 }
1292 fpv = next;
1293 }
1294 }
1295 break;
1296 case MESA_GEOMETRY_PROGRAM:
1297 {
1298 struct st_geometry_program *stgp =
1299 (struct st_geometry_program *) program;
1300 struct st_gp_variant *gpv, **prevPtr = &stgp->variants;
1301
1302 for (gpv = stgp->variants; gpv; ) {
1303 struct st_gp_variant *next = gpv->next;
1304 if (gpv->key.st == st) {
1305 /* unlink from list */
1306 *prevPtr = next;
1307 /* destroy this variant */
1308 delete_gp_variant(st, gpv);
1309 }
1310 else {
1311 prevPtr = &gpv->next;
1312 }
1313 gpv = next;
1314 }
1315 }
1316 break;
1317 default:
1318 _mesa_problem(NULL, "Unexpected program target 0x%x in "
1319 "destroy_program_variants_cb()", program->Target);
1320 }
1321 }
1322
1323
1324 /**
1325 * Callback for _mesa_HashWalk. Free all the shader's program variants
1326 * which match the given context.
1327 */
1328 static void
1329 destroy_shader_program_variants_cb(GLuint key, void *data, void *userData)
1330 {
1331 struct st_context *st = (struct st_context *) userData;
1332 struct gl_shader *shader = (struct gl_shader *) data;
1333
1334 switch (shader->Type) {
1335 case GL_SHADER_PROGRAM_MESA:
1336 {
1337 struct gl_shader_program *shProg = (struct gl_shader_program *) data;
1338 GLuint i;
1339
1340 for (i = 0; i < shProg->NumShaders; i++) {
1341 destroy_program_variants(st, shProg->Shaders[i]->Program);
1342 }
1343
1344 for (i = 0; i < Elements(shProg->_LinkedShaders); i++) {
1345 if (shProg->_LinkedShaders[i])
1346 destroy_program_variants(st, shProg->_LinkedShaders[i]->Program);
1347 }
1348 }
1349 break;
1350 case GL_VERTEX_SHADER:
1351 case GL_FRAGMENT_SHADER:
1352 case GL_GEOMETRY_SHADER:
1353 {
1354 destroy_program_variants(st, shader->Program);
1355 }
1356 break;
1357 default:
1358 assert(0);
1359 }
1360 }
1361
1362
1363 /**
1364 * Callback for _mesa_HashWalk. Free all the program variants which match
1365 * the given context.
1366 */
1367 static void
1368 destroy_program_variants_cb(GLuint key, void *data, void *userData)
1369 {
1370 struct st_context *st = (struct st_context *) userData;
1371 struct gl_program *program = (struct gl_program *) data;
1372 destroy_program_variants(st, program);
1373 }
1374
1375
1376 /**
1377 * Walk over all shaders and programs to delete any variants which
1378 * belong to the given context.
1379 * This is called during context tear-down.
1380 */
1381 void
1382 st_destroy_program_variants(struct st_context *st)
1383 {
1384 /* ARB vert/frag program */
1385 _mesa_HashWalk(st->ctx->Shared->Programs,
1386 destroy_program_variants_cb, st);
1387
1388 /* GLSL vert/frag/geom shaders */
1389 _mesa_HashWalk(st->ctx->Shared->ShaderObjects,
1390 destroy_shader_program_variants_cb, st);
1391 }
1392
1393
1394 /**
1395 * For debugging, print/dump the current vertex program.
1396 */
1397 void
1398 st_print_current_vertex_program(void)
1399 {
1400 GET_CURRENT_CONTEXT(ctx);
1401
1402 if (ctx->VertexProgram._Current) {
1403 struct st_vertex_program *stvp =
1404 (struct st_vertex_program *) ctx->VertexProgram._Current;
1405 struct st_vp_variant *stv;
1406
1407 debug_printf("Vertex program %u\n", stvp->Base.Base.Id);
1408
1409 for (stv = stvp->variants; stv; stv = stv->next) {
1410 debug_printf("variant %p\n", stv);
1411 tgsi_dump(stv->tgsi.tokens, 0);
1412 }
1413 }
1414 }