st/mesa: fix GLSL uniform updates for glBitmap & glDrawPixels (v2)
[mesa.git] / src / mesa / state_tracker / st_program.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 * Brian Paul
31 */
32
33
34 #include "main/imports.h"
35 #include "main/hash.h"
36 #include "main/mtypes.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/programopt.h"
40
41 #include "pipe/p_context.h"
42 #include "pipe/p_defines.h"
43 #include "pipe/p_shader_tokens.h"
44 #include "draw/draw_context.h"
45 #include "tgsi/tgsi_dump.h"
46 #include "tgsi/tgsi_emulate.h"
47 #include "tgsi/tgsi_parse.h"
48 #include "tgsi/tgsi_ureg.h"
49
50 #include "st_debug.h"
51 #include "st_cb_bitmap.h"
52 #include "st_cb_drawpixels.h"
53 #include "st_context.h"
54 #include "st_program.h"
55 #include "st_mesa_to_tgsi.h"
56 #include "cso_cache/cso_context.h"
57
58
59
60 /**
61 * Delete a vertex program variant. Note the caller must unlink
62 * the variant from the linked list.
63 */
64 static void
65 delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
66 {
67 if (vpv->driver_shader)
68 cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
69
70 if (vpv->draw_shader)
71 draw_delete_vertex_shader( st->draw, vpv->draw_shader );
72
73 if (vpv->tgsi.tokens)
74 ureg_free_tokens(vpv->tgsi.tokens);
75
76 free( vpv );
77 }
78
79
80
81 /**
82 * Clean out any old compilations:
83 */
84 void
85 st_release_vp_variants( struct st_context *st,
86 struct st_vertex_program *stvp )
87 {
88 struct st_vp_variant *vpv;
89
90 for (vpv = stvp->variants; vpv; ) {
91 struct st_vp_variant *next = vpv->next;
92 delete_vp_variant(st, vpv);
93 vpv = next;
94 }
95
96 stvp->variants = NULL;
97
98 if (stvp->tgsi.tokens) {
99 tgsi_free_tokens(stvp->tgsi.tokens);
100 stvp->tgsi.tokens = NULL;
101 }
102 }
103
104
105
106 /**
107 * Delete a fragment program variant. Note the caller must unlink
108 * the variant from the linked list.
109 */
110 static void
111 delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
112 {
113 if (fpv->driver_shader)
114 cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
115 free(fpv);
116 }
117
118
119 /**
120 * Free all variants of a fragment program.
121 */
122 void
123 st_release_fp_variants(struct st_context *st, struct st_fragment_program *stfp)
124 {
125 struct st_fp_variant *fpv;
126
127 for (fpv = stfp->variants; fpv; ) {
128 struct st_fp_variant *next = fpv->next;
129 delete_fp_variant(st, fpv);
130 fpv = next;
131 }
132
133 stfp->variants = NULL;
134
135 if (stfp->tgsi.tokens) {
136 ureg_free_tokens(stfp->tgsi.tokens);
137 stfp->tgsi.tokens = NULL;
138 }
139 }
140
141
142 /**
143 * Delete a geometry program variant. Note the caller must unlink
144 * the variant from the linked list.
145 */
146 static void
147 delete_gp_variant(struct st_context *st, struct st_gp_variant *gpv)
148 {
149 if (gpv->driver_shader)
150 cso_delete_geometry_shader(st->cso_context, gpv->driver_shader);
151
152 free(gpv);
153 }
154
155
156 /**
157 * Free all variants of a geometry program.
158 */
159 void
160 st_release_gp_variants(struct st_context *st, struct st_geometry_program *stgp)
161 {
162 struct st_gp_variant *gpv;
163
164 for (gpv = stgp->variants; gpv; ) {
165 struct st_gp_variant *next = gpv->next;
166 delete_gp_variant(st, gpv);
167 gpv = next;
168 }
169
170 stgp->variants = NULL;
171
172 if (stgp->tgsi.tokens) {
173 ureg_free_tokens(stgp->tgsi.tokens);
174 stgp->tgsi.tokens = NULL;
175 }
176 }
177
178
179 /**
180 * Delete a tessellation control program variant. Note the caller must unlink
181 * the variant from the linked list.
182 */
183 static void
184 delete_tcp_variant(struct st_context *st, struct st_tcp_variant *tcpv)
185 {
186 if (tcpv->driver_shader)
187 cso_delete_tessctrl_shader(st->cso_context, tcpv->driver_shader);
188
189 free(tcpv);
190 }
191
192
193 /**
194 * Free all variants of a tessellation control program.
195 */
196 void
197 st_release_tcp_variants(struct st_context *st, struct st_tessctrl_program *sttcp)
198 {
199 struct st_tcp_variant *tcpv;
200
201 for (tcpv = sttcp->variants; tcpv; ) {
202 struct st_tcp_variant *next = tcpv->next;
203 delete_tcp_variant(st, tcpv);
204 tcpv = next;
205 }
206
207 sttcp->variants = NULL;
208
209 if (sttcp->tgsi.tokens) {
210 ureg_free_tokens(sttcp->tgsi.tokens);
211 sttcp->tgsi.tokens = NULL;
212 }
213 }
214
215
216 /**
217 * Delete a tessellation evaluation program variant. Note the caller must
218 * unlink the variant from the linked list.
219 */
220 static void
221 delete_tep_variant(struct st_context *st, struct st_tep_variant *tepv)
222 {
223 if (tepv->driver_shader)
224 cso_delete_tesseval_shader(st->cso_context, tepv->driver_shader);
225
226 free(tepv);
227 }
228
229
230 /**
231 * Free all variants of a tessellation evaluation program.
232 */
233 void
234 st_release_tep_variants(struct st_context *st, struct st_tesseval_program *sttep)
235 {
236 struct st_tep_variant *tepv;
237
238 for (tepv = sttep->variants; tepv; ) {
239 struct st_tep_variant *next = tepv->next;
240 delete_tep_variant(st, tepv);
241 tepv = next;
242 }
243
244 sttep->variants = NULL;
245
246 if (sttep->tgsi.tokens) {
247 ureg_free_tokens(sttep->tgsi.tokens);
248 sttep->tgsi.tokens = NULL;
249 }
250 }
251
252
253 /**
254 * Translate a vertex program.
255 */
256 bool
257 st_translate_vertex_program(struct st_context *st,
258 struct st_vertex_program *stvp)
259 {
260 struct ureg_program *ureg;
261 enum pipe_error error;
262 unsigned num_outputs = 0;
263 unsigned attr;
264 unsigned input_to_index[VERT_ATTRIB_MAX] = {0};
265 unsigned output_slot_to_attr[VARYING_SLOT_MAX] = {0};
266 ubyte output_semantic_name[VARYING_SLOT_MAX] = {0};
267 ubyte output_semantic_index[VARYING_SLOT_MAX] = {0};
268
269 stvp->num_inputs = 0;
270
271 if (stvp->Base.IsPositionInvariant)
272 _mesa_insert_mvp_code(st->ctx, &stvp->Base);
273
274 /*
275 * Determine number of inputs, the mappings between VERT_ATTRIB_x
276 * and TGSI generic input indexes, plus input attrib semantic info.
277 */
278 for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
279 if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
280 input_to_index[attr] = stvp->num_inputs;
281 stvp->index_to_input[stvp->num_inputs] = attr;
282 stvp->num_inputs++;
283 if ((stvp->Base.Base.DoubleInputsRead & BITFIELD64_BIT(attr)) != 0) {
284 /* add placeholder for second part of a double attribute */
285 stvp->index_to_input[stvp->num_inputs] = ST_DOUBLE_ATTRIB_PLACEHOLDER;
286 stvp->num_inputs++;
287 }
288 }
289 }
290 /* bit of a hack, presetup potentially unused edgeflag input */
291 input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
292 stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;
293
294 /* Compute mapping of vertex program outputs to slots.
295 */
296 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
297 if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
298 stvp->result_to_output[attr] = ~0;
299 }
300 else {
301 unsigned slot = num_outputs++;
302
303 stvp->result_to_output[attr] = slot;
304 output_slot_to_attr[slot] = attr;
305
306 switch (attr) {
307 case VARYING_SLOT_POS:
308 output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
309 output_semantic_index[slot] = 0;
310 break;
311 case VARYING_SLOT_COL0:
312 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
313 output_semantic_index[slot] = 0;
314 break;
315 case VARYING_SLOT_COL1:
316 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
317 output_semantic_index[slot] = 1;
318 break;
319 case VARYING_SLOT_BFC0:
320 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
321 output_semantic_index[slot] = 0;
322 break;
323 case VARYING_SLOT_BFC1:
324 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
325 output_semantic_index[slot] = 1;
326 break;
327 case VARYING_SLOT_FOGC:
328 output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
329 output_semantic_index[slot] = 0;
330 break;
331 case VARYING_SLOT_PSIZ:
332 output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
333 output_semantic_index[slot] = 0;
334 break;
335 case VARYING_SLOT_CLIP_DIST0:
336 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
337 output_semantic_index[slot] = 0;
338 break;
339 case VARYING_SLOT_CLIP_DIST1:
340 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
341 output_semantic_index[slot] = 1;
342 break;
343 case VARYING_SLOT_EDGE:
344 assert(0);
345 break;
346 case VARYING_SLOT_CLIP_VERTEX:
347 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
348 output_semantic_index[slot] = 0;
349 break;
350 case VARYING_SLOT_LAYER:
351 output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
352 output_semantic_index[slot] = 0;
353 break;
354 case VARYING_SLOT_VIEWPORT:
355 output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
356 output_semantic_index[slot] = 0;
357 break;
358
359 case VARYING_SLOT_TEX0:
360 case VARYING_SLOT_TEX1:
361 case VARYING_SLOT_TEX2:
362 case VARYING_SLOT_TEX3:
363 case VARYING_SLOT_TEX4:
364 case VARYING_SLOT_TEX5:
365 case VARYING_SLOT_TEX6:
366 case VARYING_SLOT_TEX7:
367 if (st->needs_texcoord_semantic) {
368 output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
369 output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
370 break;
371 }
372 /* fall through */
373 case VARYING_SLOT_VAR0:
374 default:
375 assert(attr >= VARYING_SLOT_VAR0 ||
376 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
377 output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
378 output_semantic_index[slot] =
379 st_get_generic_varying_index(st, attr);
380 break;
381 }
382 }
383 }
384 /* similar hack to above, presetup potentially unused edgeflag output */
385 stvp->result_to_output[VARYING_SLOT_EDGE] = num_outputs;
386 output_semantic_name[num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
387 output_semantic_index[num_outputs] = 0;
388
389 if (!stvp->glsl_to_tgsi)
390 _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
391
392 ureg = ureg_create_with_screen(TGSI_PROCESSOR_VERTEX, st->pipe->screen);
393 if (ureg == NULL)
394 return false;
395
396 if (stvp->Base.Base.ClipDistanceArraySize)
397 ureg_property(ureg, TGSI_PROPERTY_NUM_CLIPDIST_ENABLED,
398 stvp->Base.Base.ClipDistanceArraySize);
399
400 if (ST_DEBUG & DEBUG_MESA) {
401 _mesa_print_program(&stvp->Base.Base);
402 _mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
403 debug_printf("\n");
404 }
405
406 if (stvp->glsl_to_tgsi) {
407 error = st_translate_program(st->ctx,
408 TGSI_PROCESSOR_VERTEX,
409 ureg,
410 stvp->glsl_to_tgsi,
411 &stvp->Base.Base,
412 /* inputs */
413 stvp->num_inputs,
414 input_to_index,
415 NULL, /* inputSlotToAttr */
416 NULL, /* input semantic name */
417 NULL, /* input semantic index */
418 NULL, /* interp mode */
419 NULL, /* interp location */
420 /* outputs */
421 num_outputs,
422 stvp->result_to_output,
423 output_slot_to_attr,
424 output_semantic_name,
425 output_semantic_index);
426
427 st_translate_stream_output_info(stvp->glsl_to_tgsi,
428 stvp->result_to_output,
429 &stvp->tgsi.stream_output);
430
431 free_glsl_to_tgsi_visitor(stvp->glsl_to_tgsi);
432 stvp->glsl_to_tgsi = NULL;
433 } else
434 error = st_translate_mesa_program(st->ctx,
435 TGSI_PROCESSOR_VERTEX,
436 ureg,
437 &stvp->Base.Base,
438 /* inputs */
439 stvp->num_inputs,
440 input_to_index,
441 NULL, /* input semantic name */
442 NULL, /* input semantic index */
443 NULL,
444 /* outputs */
445 num_outputs,
446 stvp->result_to_output,
447 output_semantic_name,
448 output_semantic_index);
449
450 if (error) {
451 debug_printf("%s: failed to translate Mesa program:\n", __func__);
452 _mesa_print_program(&stvp->Base.Base);
453 debug_assert(0);
454 return false;
455 }
456
457 stvp->tgsi.tokens = ureg_get_tokens(ureg, NULL);
458 ureg_destroy(ureg);
459 return stvp->tgsi.tokens != NULL;
460 }
461
462 static struct st_vp_variant *
463 st_create_vp_variant(struct st_context *st,
464 struct st_vertex_program *stvp,
465 const struct st_vp_variant_key *key)
466 {
467 struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
468 struct pipe_context *pipe = st->pipe;
469
470 vpv->key = *key;
471 vpv->tgsi.tokens = tgsi_dup_tokens(stvp->tgsi.tokens);
472 vpv->tgsi.stream_output = stvp->tgsi.stream_output;
473 vpv->num_inputs = stvp->num_inputs;
474
475 /* Emulate features. */
476 if (key->clamp_color || key->passthrough_edgeflags) {
477 const struct tgsi_token *tokens;
478 unsigned flags =
479 (key->clamp_color ? TGSI_EMU_CLAMP_COLOR_OUTPUTS : 0) |
480 (key->passthrough_edgeflags ? TGSI_EMU_PASSTHROUGH_EDGEFLAG : 0);
481
482 tokens = tgsi_emulate(vpv->tgsi.tokens, flags);
483
484 if (tokens) {
485 tgsi_free_tokens(vpv->tgsi.tokens);
486 vpv->tgsi.tokens = tokens;
487
488 if (key->passthrough_edgeflags)
489 vpv->num_inputs++;
490 } else
491 fprintf(stderr, "mesa: cannot emulate deprecated features\n");
492 }
493
494 if (ST_DEBUG & DEBUG_TGSI) {
495 tgsi_dump(vpv->tgsi.tokens, 0);
496 debug_printf("\n");
497 }
498
499 vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
500 return vpv;
501 }
502
503
504 /**
505 * Find/create a vertex program variant.
506 */
507 struct st_vp_variant *
508 st_get_vp_variant(struct st_context *st,
509 struct st_vertex_program *stvp,
510 const struct st_vp_variant_key *key)
511 {
512 struct st_vp_variant *vpv;
513
514 /* Search for existing variant */
515 for (vpv = stvp->variants; vpv; vpv = vpv->next) {
516 if (memcmp(&vpv->key, key, sizeof(*key)) == 0) {
517 break;
518 }
519 }
520
521 if (!vpv) {
522 /* create now */
523 vpv = st_create_vp_variant(st, stvp, key);
524 if (vpv) {
525 /* insert into list */
526 vpv->next = stvp->variants;
527 stvp->variants = vpv;
528 }
529 }
530
531 return vpv;
532 }
533
534
535 static unsigned
536 st_translate_interp(enum glsl_interp_qualifier glsl_qual, bool is_color)
537 {
538 switch (glsl_qual) {
539 case INTERP_QUALIFIER_NONE:
540 if (is_color)
541 return TGSI_INTERPOLATE_COLOR;
542 return TGSI_INTERPOLATE_PERSPECTIVE;
543 case INTERP_QUALIFIER_SMOOTH:
544 return TGSI_INTERPOLATE_PERSPECTIVE;
545 case INTERP_QUALIFIER_FLAT:
546 return TGSI_INTERPOLATE_CONSTANT;
547 case INTERP_QUALIFIER_NOPERSPECTIVE:
548 return TGSI_INTERPOLATE_LINEAR;
549 default:
550 assert(0 && "unexpected interp mode in st_translate_interp()");
551 return TGSI_INTERPOLATE_PERSPECTIVE;
552 }
553 }
554
555
556 /**
557 * Translate a Mesa fragment shader into a TGSI shader.
558 */
559 bool
560 st_translate_fragment_program(struct st_context *st,
561 struct st_fragment_program *stfp)
562 {
563 GLuint outputMapping[FRAG_RESULT_MAX];
564 GLuint inputMapping[VARYING_SLOT_MAX];
565 GLuint inputSlotToAttr[VARYING_SLOT_MAX];
566 GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */
567 GLuint interpLocation[PIPE_MAX_SHADER_INPUTS];
568 GLuint attr;
569 GLbitfield64 inputsRead;
570 struct ureg_program *ureg;
571
572 GLboolean write_all = GL_FALSE;
573
574 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
575 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
576 uint fs_num_inputs = 0;
577
578 ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
579 ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
580 uint fs_num_outputs = 0;
581
582 memset(inputSlotToAttr, ~0, sizeof(inputSlotToAttr));
583
584 if (!stfp->glsl_to_tgsi)
585 _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);
586
587 /*
588 * Convert Mesa program inputs to TGSI input register semantics.
589 */
590 inputsRead = stfp->Base.Base.InputsRead;
591 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
592 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
593 const GLuint slot = fs_num_inputs++;
594
595 inputMapping[attr] = slot;
596 inputSlotToAttr[slot] = attr;
597 if (stfp->Base.IsCentroid & BITFIELD64_BIT(attr))
598 interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTROID;
599 else if (stfp->Base.IsSample & BITFIELD64_BIT(attr))
600 interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;
601 else
602 interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTER;
603
604 if (stfp->Base.Base.SystemValuesRead & (SYSTEM_BIT_SAMPLE_ID |
605 SYSTEM_BIT_SAMPLE_POS))
606 interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;
607
608 switch (attr) {
609 case VARYING_SLOT_POS:
610 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
611 input_semantic_index[slot] = 0;
612 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
613 break;
614 case VARYING_SLOT_COL0:
615 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
616 input_semantic_index[slot] = 0;
617 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
618 TRUE);
619 break;
620 case VARYING_SLOT_COL1:
621 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
622 input_semantic_index[slot] = 1;
623 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
624 TRUE);
625 break;
626 case VARYING_SLOT_FOGC:
627 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
628 input_semantic_index[slot] = 0;
629 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
630 break;
631 case VARYING_SLOT_FACE:
632 input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
633 input_semantic_index[slot] = 0;
634 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
635 break;
636 case VARYING_SLOT_PRIMITIVE_ID:
637 input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
638 input_semantic_index[slot] = 0;
639 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
640 break;
641 case VARYING_SLOT_LAYER:
642 input_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
643 input_semantic_index[slot] = 0;
644 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
645 break;
646 case VARYING_SLOT_VIEWPORT:
647 input_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
648 input_semantic_index[slot] = 0;
649 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
650 break;
651 case VARYING_SLOT_CLIP_DIST0:
652 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
653 input_semantic_index[slot] = 0;
654 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
655 break;
656 case VARYING_SLOT_CLIP_DIST1:
657 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
658 input_semantic_index[slot] = 1;
659 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
660 break;
661 /* In most cases, there is nothing special about these
662 * inputs, so adopt a convention to use the generic
663 * semantic name and the mesa VARYING_SLOT_ number as the
664 * index.
665 *
666 * All that is required is that the vertex shader labels
667 * its own outputs similarly, and that the vertex shader
668 * generates at least every output required by the
669 * fragment shader plus fixed-function hardware (such as
670 * BFC).
671 *
672 * However, some drivers may need us to identify the PNTC and TEXi
673 * varyings if, for example, their capability to replace them with
674 * sprite coordinates is limited.
675 */
676 case VARYING_SLOT_PNTC:
677 if (st->needs_texcoord_semantic) {
678 input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
679 input_semantic_index[slot] = 0;
680 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
681 break;
682 }
683 /* fall through */
684 case VARYING_SLOT_TEX0:
685 case VARYING_SLOT_TEX1:
686 case VARYING_SLOT_TEX2:
687 case VARYING_SLOT_TEX3:
688 case VARYING_SLOT_TEX4:
689 case VARYING_SLOT_TEX5:
690 case VARYING_SLOT_TEX6:
691 case VARYING_SLOT_TEX7:
692 if (st->needs_texcoord_semantic) {
693 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
694 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
695 interpMode[slot] =
696 st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
697 break;
698 }
699 /* fall through */
700 case VARYING_SLOT_VAR0:
701 default:
702 /* Semantic indices should be zero-based because drivers may choose
703 * to assign a fixed slot determined by that index.
704 * This is useful because ARB_separate_shader_objects uses location
705 * qualifiers for linkage, and if the semantic index corresponds to
706 * these locations, linkage passes in the driver become unecessary.
707 *
708 * If needs_texcoord_semantic is true, no semantic indices will be
709 * consumed for the TEXi varyings, and we can base the locations of
710 * the user varyings on VAR0. Otherwise, we use TEX0 as base index.
711 */
712 assert(attr >= VARYING_SLOT_VAR0 || attr == VARYING_SLOT_PNTC ||
713 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
714 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
715 input_semantic_index[slot] = st_get_generic_varying_index(st, attr);
716 if (attr == VARYING_SLOT_PNTC)
717 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
718 else
719 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
720 FALSE);
721 break;
722 }
723 }
724 else {
725 inputMapping[attr] = -1;
726 }
727 }
728
729 /*
730 * Semantics and mapping for outputs
731 */
732 {
733 uint numColors = 0;
734 GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;
735
736 /* if z is written, emit that first */
737 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
738 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
739 fs_output_semantic_index[fs_num_outputs] = 0;
740 outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
741 fs_num_outputs++;
742 outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
743 }
744
745 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
746 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
747 fs_output_semantic_index[fs_num_outputs] = 0;
748 outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
749 fs_num_outputs++;
750 outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
751 }
752
753 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) {
754 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_SAMPLEMASK;
755 fs_output_semantic_index[fs_num_outputs] = 0;
756 outputMapping[FRAG_RESULT_SAMPLE_MASK] = fs_num_outputs;
757 fs_num_outputs++;
758 outputsWritten &= ~(1 << FRAG_RESULT_SAMPLE_MASK);
759 }
760
761 /* handle remaining outputs (color) */
762 for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
763 if (outputsWritten & BITFIELD64_BIT(attr)) {
764 switch (attr) {
765 case FRAG_RESULT_DEPTH:
766 case FRAG_RESULT_STENCIL:
767 case FRAG_RESULT_SAMPLE_MASK:
768 /* handled above */
769 assert(0);
770 break;
771 case FRAG_RESULT_COLOR:
772 write_all = GL_TRUE; /* fallthrough */
773 default:
774 assert(attr == FRAG_RESULT_COLOR ||
775 (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
776 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
777 fs_output_semantic_index[fs_num_outputs] = numColors;
778 outputMapping[attr] = fs_num_outputs;
779 numColors++;
780 break;
781 }
782
783 fs_num_outputs++;
784 }
785 }
786 }
787
788 ureg = ureg_create_with_screen(TGSI_PROCESSOR_FRAGMENT, st->pipe->screen);
789 if (ureg == NULL)
790 return false;
791
792 if (ST_DEBUG & DEBUG_MESA) {
793 _mesa_print_program(&stfp->Base.Base);
794 _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
795 debug_printf("\n");
796 }
797 if (write_all == GL_TRUE)
798 ureg_property(ureg, TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS, 1);
799
800 if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
801 switch (stfp->Base.FragDepthLayout) {
802 case FRAG_DEPTH_LAYOUT_ANY:
803 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
804 TGSI_FS_DEPTH_LAYOUT_ANY);
805 break;
806 case FRAG_DEPTH_LAYOUT_GREATER:
807 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
808 TGSI_FS_DEPTH_LAYOUT_GREATER);
809 break;
810 case FRAG_DEPTH_LAYOUT_LESS:
811 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
812 TGSI_FS_DEPTH_LAYOUT_LESS);
813 break;
814 case FRAG_DEPTH_LAYOUT_UNCHANGED:
815 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
816 TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
817 break;
818 default:
819 assert(0);
820 }
821 }
822
823 if (stfp->glsl_to_tgsi) {
824 st_translate_program(st->ctx,
825 TGSI_PROCESSOR_FRAGMENT,
826 ureg,
827 stfp->glsl_to_tgsi,
828 &stfp->Base.Base,
829 /* inputs */
830 fs_num_inputs,
831 inputMapping,
832 inputSlotToAttr,
833 input_semantic_name,
834 input_semantic_index,
835 interpMode,
836 interpLocation,
837 /* outputs */
838 fs_num_outputs,
839 outputMapping,
840 NULL,
841 fs_output_semantic_name,
842 fs_output_semantic_index);
843
844 free_glsl_to_tgsi_visitor(stfp->glsl_to_tgsi);
845 stfp->glsl_to_tgsi = NULL;
846 } else
847 st_translate_mesa_program(st->ctx,
848 TGSI_PROCESSOR_FRAGMENT,
849 ureg,
850 &stfp->Base.Base,
851 /* inputs */
852 fs_num_inputs,
853 inputMapping,
854 input_semantic_name,
855 input_semantic_index,
856 interpMode,
857 /* outputs */
858 fs_num_outputs,
859 outputMapping,
860 fs_output_semantic_name,
861 fs_output_semantic_index);
862
863 stfp->tgsi.tokens = ureg_get_tokens(ureg, NULL);
864 ureg_destroy(ureg);
865 return stfp->tgsi.tokens != NULL;
866 }
867
868 static struct st_fp_variant *
869 st_create_fp_variant(struct st_context *st,
870 struct st_fragment_program *stfp,
871 const struct st_fp_variant_key *key)
872 {
873 struct pipe_context *pipe = st->pipe;
874 struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
875 struct pipe_shader_state tgsi = {0};
876
877 if (!variant)
878 return NULL;
879
880 tgsi.tokens = stfp->tgsi.tokens;
881
882 assert(!(key->bitmap && key->drawpixels));
883
884 /* Emulate features. */
885 if (key->clamp_color || key->persample_shading) {
886 const struct tgsi_token *tokens;
887 unsigned flags =
888 (key->clamp_color ? TGSI_EMU_CLAMP_COLOR_OUTPUTS : 0) |
889 (key->persample_shading ? TGSI_EMU_FORCE_PERSAMPLE_INTERP : 0);
890
891 tokens = tgsi_emulate(tgsi.tokens, flags);
892
893 if (tokens)
894 tgsi.tokens = tokens;
895 else
896 fprintf(stderr, "mesa: cannot emulate deprecated features\n");
897 }
898
899 /* glBitmap */
900 if (key->bitmap) {
901 const struct tgsi_token *tokens;
902
903 variant->bitmap_sampler = ffs(~stfp->Base.Base.SamplersUsed) - 1;
904
905 tokens = st_get_bitmap_shader(tgsi.tokens,
906 variant->bitmap_sampler,
907 st->needs_texcoord_semantic,
908 st->bitmap.tex_format ==
909 PIPE_FORMAT_L8_UNORM);
910
911 if (tokens) {
912 if (tgsi.tokens != stfp->tgsi.tokens)
913 tgsi_free_tokens(tgsi.tokens);
914 tgsi.tokens = tokens;
915 } else
916 fprintf(stderr, "mesa: cannot create a shader for glBitmap\n");
917 }
918
919 /* glDrawPixels (color only) */
920 if (key->drawpixels) {
921 const struct tgsi_token *tokens;
922 unsigned scale_const = 0, bias_const = 0, texcoord_const = 0;
923 struct gl_program_parameter_list *params = stfp->Base.Base.Parameters;
924
925 /* Find the first unused slot. */
926 variant->drawpix_sampler = ffs(~stfp->Base.Base.SamplersUsed) - 1;
927
928 if (key->pixelMaps) {
929 unsigned samplers_used = stfp->Base.Base.SamplersUsed |
930 (1 << variant->drawpix_sampler);
931
932 variant->pixelmap_sampler = ffs(~samplers_used) - 1;
933 }
934
935 if (key->scaleAndBias) {
936 static const gl_state_index scale_state[STATE_LENGTH] =
937 { STATE_INTERNAL, STATE_PT_SCALE };
938 static const gl_state_index bias_state[STATE_LENGTH] =
939 { STATE_INTERNAL, STATE_PT_BIAS };
940
941 scale_const = _mesa_add_state_reference(params, scale_state);
942 bias_const = _mesa_add_state_reference(params, bias_state);
943 }
944
945 {
946 static const gl_state_index state[STATE_LENGTH] =
947 { STATE_INTERNAL, STATE_CURRENT_ATTRIB, VERT_ATTRIB_TEX0 };
948
949 texcoord_const = _mesa_add_state_reference(params, state);
950 }
951
952 tokens = st_get_drawpix_shader(tgsi.tokens,
953 st->needs_texcoord_semantic,
954 key->scaleAndBias, scale_const,
955 bias_const, key->pixelMaps,
956 variant->drawpix_sampler,
957 variant->pixelmap_sampler,
958 texcoord_const);
959
960 if (tokens) {
961 if (tgsi.tokens != stfp->tgsi.tokens)
962 tgsi_free_tokens(tgsi.tokens);
963 tgsi.tokens = tokens;
964 } else
965 fprintf(stderr, "mesa: cannot create a shader for glDrawPixels\n");
966 }
967
968 if (ST_DEBUG & DEBUG_TGSI) {
969 tgsi_dump(tgsi.tokens, 0);
970 debug_printf("\n");
971 }
972
973 /* fill in variant */
974 variant->driver_shader = pipe->create_fs_state(pipe, &tgsi);
975 variant->key = *key;
976
977 if (tgsi.tokens != stfp->tgsi.tokens)
978 tgsi_free_tokens(tgsi.tokens);
979 return variant;
980 }
981
982 /**
983 * Translate fragment program if needed.
984 */
985 struct st_fp_variant *
986 st_get_fp_variant(struct st_context *st,
987 struct st_fragment_program *stfp,
988 const struct st_fp_variant_key *key)
989 {
990 struct st_fp_variant *fpv;
991
992 /* Search for existing variant */
993 for (fpv = stfp->variants; fpv; fpv = fpv->next) {
994 if (memcmp(&fpv->key, key, sizeof(*key)) == 0) {
995 break;
996 }
997 }
998
999 if (!fpv) {
1000 /* create new */
1001 fpv = st_create_fp_variant(st, stfp, key);
1002 if (fpv) {
1003 /* insert into list */
1004 fpv->next = stfp->variants;
1005 stfp->variants = fpv;
1006 }
1007 }
1008
1009 return fpv;
1010 }
1011
1012
1013 /**
1014 * Translate a program. This is common code for geometry and tessellation
1015 * shaders.
1016 */
1017 static void
1018 st_translate_program_common(struct st_context *st,
1019 struct gl_program *prog,
1020 struct glsl_to_tgsi_visitor *glsl_to_tgsi,
1021 struct ureg_program *ureg,
1022 unsigned tgsi_processor,
1023 struct pipe_shader_state *out_state)
1024 {
1025 GLuint inputSlotToAttr[VARYING_SLOT_TESS_MAX];
1026 GLuint inputMapping[VARYING_SLOT_TESS_MAX];
1027 GLuint outputSlotToAttr[VARYING_SLOT_TESS_MAX];
1028 GLuint outputMapping[VARYING_SLOT_TESS_MAX];
1029 GLuint attr;
1030
1031 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
1032 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
1033 uint num_inputs = 0;
1034
1035 ubyte output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
1036 ubyte output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
1037 uint num_outputs = 0;
1038
1039 GLint i;
1040
1041 memset(inputSlotToAttr, 0, sizeof(inputSlotToAttr));
1042 memset(inputMapping, 0, sizeof(inputMapping));
1043 memset(outputSlotToAttr, 0, sizeof(outputSlotToAttr));
1044 memset(outputMapping, 0, sizeof(outputMapping));
1045 memset(out_state, 0, sizeof(*out_state));
1046
1047 if (prog->ClipDistanceArraySize)
1048 ureg_property(ureg, TGSI_PROPERTY_NUM_CLIPDIST_ENABLED,
1049 prog->ClipDistanceArraySize);
1050
1051 /*
1052 * Convert Mesa program inputs to TGSI input register semantics.
1053 */
1054 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1055 if ((prog->InputsRead & BITFIELD64_BIT(attr)) != 0) {
1056 const GLuint slot = num_inputs++;
1057
1058 inputMapping[attr] = slot;
1059 inputSlotToAttr[slot] = attr;
1060
1061 switch (attr) {
1062 case VARYING_SLOT_PRIMITIVE_ID:
1063 assert(tgsi_processor == TGSI_PROCESSOR_GEOMETRY);
1064 input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
1065 input_semantic_index[slot] = 0;
1066 break;
1067 case VARYING_SLOT_POS:
1068 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
1069 input_semantic_index[slot] = 0;
1070 break;
1071 case VARYING_SLOT_COL0:
1072 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1073 input_semantic_index[slot] = 0;
1074 break;
1075 case VARYING_SLOT_COL1:
1076 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1077 input_semantic_index[slot] = 1;
1078 break;
1079 case VARYING_SLOT_FOGC:
1080 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
1081 input_semantic_index[slot] = 0;
1082 break;
1083 case VARYING_SLOT_CLIP_VERTEX:
1084 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1085 input_semantic_index[slot] = 0;
1086 break;
1087 case VARYING_SLOT_CLIP_DIST0:
1088 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1089 input_semantic_index[slot] = 0;
1090 break;
1091 case VARYING_SLOT_CLIP_DIST1:
1092 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1093 input_semantic_index[slot] = 1;
1094 break;
1095 case VARYING_SLOT_PSIZ:
1096 input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
1097 input_semantic_index[slot] = 0;
1098 break;
1099 case VARYING_SLOT_TEX0:
1100 case VARYING_SLOT_TEX1:
1101 case VARYING_SLOT_TEX2:
1102 case VARYING_SLOT_TEX3:
1103 case VARYING_SLOT_TEX4:
1104 case VARYING_SLOT_TEX5:
1105 case VARYING_SLOT_TEX6:
1106 case VARYING_SLOT_TEX7:
1107 if (st->needs_texcoord_semantic) {
1108 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
1109 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
1110 break;
1111 }
1112 /* fall through */
1113 case VARYING_SLOT_VAR0:
1114 default:
1115 assert(attr >= VARYING_SLOT_VAR0 ||
1116 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
1117 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1118 input_semantic_index[slot] =
1119 st_get_generic_varying_index(st, attr);
1120 break;
1121 }
1122 }
1123 }
1124
1125 /* Also add patch inputs. */
1126 for (attr = 0; attr < 32; attr++) {
1127 if (prog->PatchInputsRead & (1 << attr)) {
1128 GLuint slot = num_inputs++;
1129 GLuint patch_attr = VARYING_SLOT_PATCH0 + attr;
1130
1131 inputMapping[patch_attr] = slot;
1132 inputSlotToAttr[slot] = patch_attr;
1133 input_semantic_name[slot] = TGSI_SEMANTIC_PATCH;
1134 input_semantic_index[slot] = attr;
1135 }
1136 }
1137
1138 /* initialize output semantics to defaults */
1139 for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
1140 output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
1141 output_semantic_index[i] = 0;
1142 }
1143
1144 /*
1145 * Determine number of outputs, the (default) output register
1146 * mapping and the semantic information for each output.
1147 */
1148 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1149 if (prog->OutputsWritten & BITFIELD64_BIT(attr)) {
1150 GLuint slot = num_outputs++;
1151
1152 outputMapping[attr] = slot;
1153 outputSlotToAttr[slot] = attr;
1154
1155 switch (attr) {
1156 case VARYING_SLOT_POS:
1157 assert(slot == 0);
1158 output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
1159 output_semantic_index[slot] = 0;
1160 break;
1161 case VARYING_SLOT_COL0:
1162 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1163 output_semantic_index[slot] = 0;
1164 break;
1165 case VARYING_SLOT_COL1:
1166 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1167 output_semantic_index[slot] = 1;
1168 break;
1169 case VARYING_SLOT_BFC0:
1170 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1171 output_semantic_index[slot] = 0;
1172 break;
1173 case VARYING_SLOT_BFC1:
1174 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1175 output_semantic_index[slot] = 1;
1176 break;
1177 case VARYING_SLOT_FOGC:
1178 output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
1179 output_semantic_index[slot] = 0;
1180 break;
1181 case VARYING_SLOT_PSIZ:
1182 output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
1183 output_semantic_index[slot] = 0;
1184 break;
1185 case VARYING_SLOT_CLIP_VERTEX:
1186 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1187 output_semantic_index[slot] = 0;
1188 break;
1189 case VARYING_SLOT_CLIP_DIST0:
1190 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1191 output_semantic_index[slot] = 0;
1192 break;
1193 case VARYING_SLOT_CLIP_DIST1:
1194 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1195 output_semantic_index[slot] = 1;
1196 break;
1197 case VARYING_SLOT_LAYER:
1198 output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
1199 output_semantic_index[slot] = 0;
1200 break;
1201 case VARYING_SLOT_PRIMITIVE_ID:
1202 output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
1203 output_semantic_index[slot] = 0;
1204 break;
1205 case VARYING_SLOT_VIEWPORT:
1206 output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
1207 output_semantic_index[slot] = 0;
1208 break;
1209 case VARYING_SLOT_TESS_LEVEL_OUTER:
1210 output_semantic_name[slot] = TGSI_SEMANTIC_TESSOUTER;
1211 output_semantic_index[slot] = 0;
1212 break;
1213 case VARYING_SLOT_TESS_LEVEL_INNER:
1214 output_semantic_name[slot] = TGSI_SEMANTIC_TESSINNER;
1215 output_semantic_index[slot] = 0;
1216 break;
1217 case VARYING_SLOT_TEX0:
1218 case VARYING_SLOT_TEX1:
1219 case VARYING_SLOT_TEX2:
1220 case VARYING_SLOT_TEX3:
1221 case VARYING_SLOT_TEX4:
1222 case VARYING_SLOT_TEX5:
1223 case VARYING_SLOT_TEX6:
1224 case VARYING_SLOT_TEX7:
1225 if (st->needs_texcoord_semantic) {
1226 output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
1227 output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
1228 break;
1229 }
1230 /* fall through */
1231 case VARYING_SLOT_VAR0:
1232 default:
1233 assert(slot < ARRAY_SIZE(output_semantic_name));
1234 assert(attr >= VARYING_SLOT_VAR0 ||
1235 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
1236 output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1237 output_semantic_index[slot] =
1238 st_get_generic_varying_index(st, attr);
1239 break;
1240 }
1241 }
1242 }
1243
1244 /* Also add patch outputs. */
1245 for (attr = 0; attr < 32; attr++) {
1246 if (prog->PatchOutputsWritten & (1 << attr)) {
1247 GLuint slot = num_outputs++;
1248 GLuint patch_attr = VARYING_SLOT_PATCH0 + attr;
1249
1250 outputMapping[patch_attr] = slot;
1251 outputSlotToAttr[slot] = patch_attr;
1252 output_semantic_name[slot] = TGSI_SEMANTIC_PATCH;
1253 output_semantic_index[slot] = attr;
1254 }
1255 }
1256
1257 st_translate_program(st->ctx,
1258 tgsi_processor,
1259 ureg,
1260 glsl_to_tgsi,
1261 prog,
1262 /* inputs */
1263 num_inputs,
1264 inputMapping,
1265 inputSlotToAttr,
1266 input_semantic_name,
1267 input_semantic_index,
1268 NULL,
1269 NULL,
1270 /* outputs */
1271 num_outputs,
1272 outputMapping,
1273 outputSlotToAttr,
1274 output_semantic_name,
1275 output_semantic_index);
1276
1277 out_state->tokens = ureg_get_tokens(ureg, NULL);
1278 ureg_destroy(ureg);
1279
1280 st_translate_stream_output_info(glsl_to_tgsi,
1281 outputMapping,
1282 &out_state->stream_output);
1283
1284 if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
1285 _mesa_print_program(prog);
1286 debug_printf("\n");
1287 }
1288
1289 if (ST_DEBUG & DEBUG_TGSI) {
1290 tgsi_dump(out_state->tokens, 0);
1291 debug_printf("\n");
1292 }
1293 }
1294
1295
1296 /**
1297 * Translate a geometry program to create a new variant.
1298 */
1299 bool
1300 st_translate_geometry_program(struct st_context *st,
1301 struct st_geometry_program *stgp)
1302 {
1303 struct ureg_program *ureg;
1304
1305 ureg = ureg_create_with_screen(TGSI_PROCESSOR_GEOMETRY, st->pipe->screen);
1306 if (ureg == NULL)
1307 return false;
1308
1309 ureg_property(ureg, TGSI_PROPERTY_GS_INPUT_PRIM, stgp->Base.InputType);
1310 ureg_property(ureg, TGSI_PROPERTY_GS_OUTPUT_PRIM, stgp->Base.OutputType);
1311 ureg_property(ureg, TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES,
1312 stgp->Base.VerticesOut);
1313 ureg_property(ureg, TGSI_PROPERTY_GS_INVOCATIONS, stgp->Base.Invocations);
1314
1315 st_translate_program_common(st, &stgp->Base.Base, stgp->glsl_to_tgsi, ureg,
1316 TGSI_PROCESSOR_GEOMETRY, &stgp->tgsi);
1317
1318 free_glsl_to_tgsi_visitor(stgp->glsl_to_tgsi);
1319 stgp->glsl_to_tgsi = NULL;
1320 return true;
1321 }
1322
1323
1324 static struct st_gp_variant *
1325 st_create_gp_variant(struct st_context *st,
1326 struct st_geometry_program *stgp,
1327 const struct st_gp_variant_key *key)
1328 {
1329 struct pipe_context *pipe = st->pipe;
1330 struct st_gp_variant *gpv;
1331
1332 gpv = CALLOC_STRUCT(st_gp_variant);
1333 if (!gpv)
1334 return NULL;
1335
1336 /* fill in new variant */
1337 gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
1338 gpv->key = *key;
1339 return gpv;
1340 }
1341
1342
1343 /**
1344 * Get/create geometry program variant.
1345 */
1346 struct st_gp_variant *
1347 st_get_gp_variant(struct st_context *st,
1348 struct st_geometry_program *stgp,
1349 const struct st_gp_variant_key *key)
1350 {
1351 struct st_gp_variant *gpv;
1352
1353 /* Search for existing variant */
1354 for (gpv = stgp->variants; gpv; gpv = gpv->next) {
1355 if (memcmp(&gpv->key, key, sizeof(*key)) == 0) {
1356 break;
1357 }
1358 }
1359
1360 if (!gpv) {
1361 /* create new */
1362 gpv = st_create_gp_variant(st, stgp, key);
1363 if (gpv) {
1364 /* insert into list */
1365 gpv->next = stgp->variants;
1366 stgp->variants = gpv;
1367 }
1368 }
1369
1370 return gpv;
1371 }
1372
1373
1374 /**
1375 * Translate a tessellation control program to create a new variant.
1376 */
1377 bool
1378 st_translate_tessctrl_program(struct st_context *st,
1379 struct st_tessctrl_program *sttcp)
1380 {
1381 struct ureg_program *ureg;
1382
1383 ureg = ureg_create_with_screen(TGSI_PROCESSOR_TESS_CTRL, st->pipe->screen);
1384 if (ureg == NULL)
1385 return false;
1386
1387 ureg_property(ureg, TGSI_PROPERTY_TCS_VERTICES_OUT,
1388 sttcp->Base.VerticesOut);
1389
1390 st_translate_program_common(st, &sttcp->Base.Base, sttcp->glsl_to_tgsi,
1391 ureg, TGSI_PROCESSOR_TESS_CTRL, &sttcp->tgsi);
1392
1393 free_glsl_to_tgsi_visitor(sttcp->glsl_to_tgsi);
1394 sttcp->glsl_to_tgsi = NULL;
1395 return true;
1396 }
1397
1398
1399 static struct st_tcp_variant *
1400 st_create_tcp_variant(struct st_context *st,
1401 struct st_tessctrl_program *sttcp,
1402 const struct st_tcp_variant_key *key)
1403 {
1404 struct pipe_context *pipe = st->pipe;
1405 struct st_tcp_variant *tcpv;
1406
1407 tcpv = CALLOC_STRUCT(st_tcp_variant);
1408 if (!tcpv)
1409 return NULL;
1410
1411 /* fill in new variant */
1412 tcpv->driver_shader = pipe->create_tcs_state(pipe, &sttcp->tgsi);
1413 tcpv->key = *key;
1414 return tcpv;
1415 }
1416
1417
1418 /**
1419 * Get/create tessellation control program variant.
1420 */
1421 struct st_tcp_variant *
1422 st_get_tcp_variant(struct st_context *st,
1423 struct st_tessctrl_program *sttcp,
1424 const struct st_tcp_variant_key *key)
1425 {
1426 struct st_tcp_variant *tcpv;
1427
1428 /* Search for existing variant */
1429 for (tcpv = sttcp->variants; tcpv; tcpv = tcpv->next) {
1430 if (memcmp(&tcpv->key, key, sizeof(*key)) == 0) {
1431 break;
1432 }
1433 }
1434
1435 if (!tcpv) {
1436 /* create new */
1437 tcpv = st_create_tcp_variant(st, sttcp, key);
1438 if (tcpv) {
1439 /* insert into list */
1440 tcpv->next = sttcp->variants;
1441 sttcp->variants = tcpv;
1442 }
1443 }
1444
1445 return tcpv;
1446 }
1447
1448
1449 /**
1450 * Translate a tessellation evaluation program to create a new variant.
1451 */
1452 bool
1453 st_translate_tesseval_program(struct st_context *st,
1454 struct st_tesseval_program *sttep)
1455 {
1456 struct ureg_program *ureg;
1457
1458 ureg = ureg_create_with_screen(TGSI_PROCESSOR_TESS_EVAL, st->pipe->screen);
1459 if (ureg == NULL)
1460 return false;
1461
1462 if (sttep->Base.PrimitiveMode == GL_ISOLINES)
1463 ureg_property(ureg, TGSI_PROPERTY_TES_PRIM_MODE, GL_LINES);
1464 else
1465 ureg_property(ureg, TGSI_PROPERTY_TES_PRIM_MODE, sttep->Base.PrimitiveMode);
1466
1467 switch (sttep->Base.Spacing) {
1468 case GL_EQUAL:
1469 ureg_property(ureg, TGSI_PROPERTY_TES_SPACING, PIPE_TESS_SPACING_EQUAL);
1470 break;
1471 case GL_FRACTIONAL_EVEN:
1472 ureg_property(ureg, TGSI_PROPERTY_TES_SPACING,
1473 PIPE_TESS_SPACING_FRACTIONAL_EVEN);
1474 break;
1475 case GL_FRACTIONAL_ODD:
1476 ureg_property(ureg, TGSI_PROPERTY_TES_SPACING,
1477 PIPE_TESS_SPACING_FRACTIONAL_ODD);
1478 break;
1479 default:
1480 assert(0);
1481 }
1482
1483 ureg_property(ureg, TGSI_PROPERTY_TES_VERTEX_ORDER_CW,
1484 sttep->Base.VertexOrder == GL_CW);
1485 ureg_property(ureg, TGSI_PROPERTY_TES_POINT_MODE, sttep->Base.PointMode);
1486
1487 st_translate_program_common(st, &sttep->Base.Base, sttep->glsl_to_tgsi,
1488 ureg, TGSI_PROCESSOR_TESS_EVAL, &sttep->tgsi);
1489
1490 free_glsl_to_tgsi_visitor(sttep->glsl_to_tgsi);
1491 sttep->glsl_to_tgsi = NULL;
1492 return true;
1493 }
1494
1495
1496 static struct st_tep_variant *
1497 st_create_tep_variant(struct st_context *st,
1498 struct st_tesseval_program *sttep,
1499 const struct st_tep_variant_key *key)
1500 {
1501 struct pipe_context *pipe = st->pipe;
1502 struct st_tep_variant *tepv;
1503
1504 tepv = CALLOC_STRUCT(st_tep_variant);
1505 if (!tepv)
1506 return NULL;
1507
1508 /* fill in new variant */
1509 tepv->driver_shader = pipe->create_tes_state(pipe, &sttep->tgsi);
1510 tepv->key = *key;
1511 return tepv;
1512 }
1513
1514
1515 /**
1516 * Get/create tessellation evaluation program variant.
1517 */
1518 struct st_tep_variant *
1519 st_get_tep_variant(struct st_context *st,
1520 struct st_tesseval_program *sttep,
1521 const struct st_tep_variant_key *key)
1522 {
1523 struct st_tep_variant *tepv;
1524
1525 /* Search for existing variant */
1526 for (tepv = sttep->variants; tepv; tepv = tepv->next) {
1527 if (memcmp(&tepv->key, key, sizeof(*key)) == 0) {
1528 break;
1529 }
1530 }
1531
1532 if (!tepv) {
1533 /* create new */
1534 tepv = st_create_tep_variant(st, sttep, key);
1535 if (tepv) {
1536 /* insert into list */
1537 tepv->next = sttep->variants;
1538 sttep->variants = tepv;
1539 }
1540 }
1541
1542 return tepv;
1543 }
1544
1545
1546 /**
1547 * Vert/Geom/Frag programs have per-context variants. Free all the
1548 * variants attached to the given program which match the given context.
1549 */
1550 static void
1551 destroy_program_variants(struct st_context *st, struct gl_program *program)
1552 {
1553 if (!program || program == &_mesa_DummyProgram)
1554 return;
1555
1556 switch (program->Target) {
1557 case GL_VERTEX_PROGRAM_ARB:
1558 {
1559 struct st_vertex_program *stvp = (struct st_vertex_program *) program;
1560 struct st_vp_variant *vpv, **prevPtr = &stvp->variants;
1561
1562 for (vpv = stvp->variants; vpv; ) {
1563 struct st_vp_variant *next = vpv->next;
1564 if (vpv->key.st == st) {
1565 /* unlink from list */
1566 *prevPtr = next;
1567 /* destroy this variant */
1568 delete_vp_variant(st, vpv);
1569 }
1570 else {
1571 prevPtr = &vpv->next;
1572 }
1573 vpv = next;
1574 }
1575 }
1576 break;
1577 case GL_FRAGMENT_PROGRAM_ARB:
1578 {
1579 struct st_fragment_program *stfp =
1580 (struct st_fragment_program *) program;
1581 struct st_fp_variant *fpv, **prevPtr = &stfp->variants;
1582
1583 for (fpv = stfp->variants; fpv; ) {
1584 struct st_fp_variant *next = fpv->next;
1585 if (fpv->key.st == st) {
1586 /* unlink from list */
1587 *prevPtr = next;
1588 /* destroy this variant */
1589 delete_fp_variant(st, fpv);
1590 }
1591 else {
1592 prevPtr = &fpv->next;
1593 }
1594 fpv = next;
1595 }
1596 }
1597 break;
1598 case GL_GEOMETRY_PROGRAM_NV:
1599 {
1600 struct st_geometry_program *stgp =
1601 (struct st_geometry_program *) program;
1602 struct st_gp_variant *gpv, **prevPtr = &stgp->variants;
1603
1604 for (gpv = stgp->variants; gpv; ) {
1605 struct st_gp_variant *next = gpv->next;
1606 if (gpv->key.st == st) {
1607 /* unlink from list */
1608 *prevPtr = next;
1609 /* destroy this variant */
1610 delete_gp_variant(st, gpv);
1611 }
1612 else {
1613 prevPtr = &gpv->next;
1614 }
1615 gpv = next;
1616 }
1617 }
1618 break;
1619 case GL_TESS_CONTROL_PROGRAM_NV:
1620 {
1621 struct st_tessctrl_program *sttcp =
1622 (struct st_tessctrl_program *) program;
1623 struct st_tcp_variant *tcpv, **prevPtr = &sttcp->variants;
1624
1625 for (tcpv = sttcp->variants; tcpv; ) {
1626 struct st_tcp_variant *next = tcpv->next;
1627 if (tcpv->key.st == st) {
1628 /* unlink from list */
1629 *prevPtr = next;
1630 /* destroy this variant */
1631 delete_tcp_variant(st, tcpv);
1632 }
1633 else {
1634 prevPtr = &tcpv->next;
1635 }
1636 tcpv = next;
1637 }
1638 }
1639 break;
1640 case GL_TESS_EVALUATION_PROGRAM_NV:
1641 {
1642 struct st_tesseval_program *sttep =
1643 (struct st_tesseval_program *) program;
1644 struct st_tep_variant *tepv, **prevPtr = &sttep->variants;
1645
1646 for (tepv = sttep->variants; tepv; ) {
1647 struct st_tep_variant *next = tepv->next;
1648 if (tepv->key.st == st) {
1649 /* unlink from list */
1650 *prevPtr = next;
1651 /* destroy this variant */
1652 delete_tep_variant(st, tepv);
1653 }
1654 else {
1655 prevPtr = &tepv->next;
1656 }
1657 tepv = next;
1658 }
1659 }
1660 break;
1661 default:
1662 _mesa_problem(NULL, "Unexpected program target 0x%x in "
1663 "destroy_program_variants_cb()", program->Target);
1664 }
1665 }
1666
1667
1668 /**
1669 * Callback for _mesa_HashWalk. Free all the shader's program variants
1670 * which match the given context.
1671 */
1672 static void
1673 destroy_shader_program_variants_cb(GLuint key, void *data, void *userData)
1674 {
1675 struct st_context *st = (struct st_context *) userData;
1676 struct gl_shader *shader = (struct gl_shader *) data;
1677
1678 switch (shader->Type) {
1679 case GL_SHADER_PROGRAM_MESA:
1680 {
1681 struct gl_shader_program *shProg = (struct gl_shader_program *) data;
1682 GLuint i;
1683
1684 for (i = 0; i < shProg->NumShaders; i++) {
1685 destroy_program_variants(st, shProg->Shaders[i]->Program);
1686 }
1687
1688 for (i = 0; i < ARRAY_SIZE(shProg->_LinkedShaders); i++) {
1689 if (shProg->_LinkedShaders[i])
1690 destroy_program_variants(st, shProg->_LinkedShaders[i]->Program);
1691 }
1692 }
1693 break;
1694 case GL_VERTEX_SHADER:
1695 case GL_FRAGMENT_SHADER:
1696 case GL_GEOMETRY_SHADER:
1697 case GL_TESS_CONTROL_SHADER:
1698 case GL_TESS_EVALUATION_SHADER:
1699 {
1700 destroy_program_variants(st, shader->Program);
1701 }
1702 break;
1703 default:
1704 assert(0);
1705 }
1706 }
1707
1708
1709 /**
1710 * Callback for _mesa_HashWalk. Free all the program variants which match
1711 * the given context.
1712 */
1713 static void
1714 destroy_program_variants_cb(GLuint key, void *data, void *userData)
1715 {
1716 struct st_context *st = (struct st_context *) userData;
1717 struct gl_program *program = (struct gl_program *) data;
1718 destroy_program_variants(st, program);
1719 }
1720
1721
1722 /**
1723 * Walk over all shaders and programs to delete any variants which
1724 * belong to the given context.
1725 * This is called during context tear-down.
1726 */
1727 void
1728 st_destroy_program_variants(struct st_context *st)
1729 {
1730 /* If shaders can be shared with other contexts, the last context will
1731 * call DeleteProgram on all shaders, releasing everything.
1732 */
1733 if (st->has_shareable_shaders)
1734 return;
1735
1736 /* ARB vert/frag program */
1737 _mesa_HashWalk(st->ctx->Shared->Programs,
1738 destroy_program_variants_cb, st);
1739
1740 /* GLSL vert/frag/geom shaders */
1741 _mesa_HashWalk(st->ctx->Shared->ShaderObjects,
1742 destroy_shader_program_variants_cb, st);
1743 }
1744
1745
1746 /**
1747 * For debugging, print/dump the current vertex program.
1748 */
1749 void
1750 st_print_current_vertex_program(void)
1751 {
1752 GET_CURRENT_CONTEXT(ctx);
1753
1754 if (ctx->VertexProgram._Current) {
1755 struct st_vertex_program *stvp =
1756 (struct st_vertex_program *) ctx->VertexProgram._Current;
1757 struct st_vp_variant *stv;
1758
1759 debug_printf("Vertex program %u\n", stvp->Base.Base.Id);
1760
1761 for (stv = stvp->variants; stv; stv = stv->next) {
1762 debug_printf("variant %p\n", stv);
1763 tgsi_dump(stv->tgsi.tokens, 0);
1764 }
1765 }
1766 }
1767
1768
1769 /**
1770 * Compile one shader variant.
1771 */
1772 void
1773 st_precompile_shader_variant(struct st_context *st,
1774 struct gl_program *prog)
1775 {
1776 switch (prog->Target) {
1777 case GL_VERTEX_PROGRAM_ARB: {
1778 struct st_vertex_program *p = (struct st_vertex_program *)prog;
1779 struct st_vp_variant_key key;
1780
1781 memset(&key, 0, sizeof(key));
1782 key.st = st->has_shareable_shaders ? NULL : st;
1783 st_get_vp_variant(st, p, &key);
1784 break;
1785 }
1786
1787 case GL_TESS_CONTROL_PROGRAM_NV: {
1788 struct st_tessctrl_program *p = (struct st_tessctrl_program *)prog;
1789 struct st_tcp_variant_key key;
1790
1791 memset(&key, 0, sizeof(key));
1792 key.st = st->has_shareable_shaders ? NULL : st;
1793 st_get_tcp_variant(st, p, &key);
1794 break;
1795 }
1796
1797 case GL_TESS_EVALUATION_PROGRAM_NV: {
1798 struct st_tesseval_program *p = (struct st_tesseval_program *)prog;
1799 struct st_tep_variant_key key;
1800
1801 memset(&key, 0, sizeof(key));
1802 key.st = st->has_shareable_shaders ? NULL : st;
1803 st_get_tep_variant(st, p, &key);
1804 break;
1805 }
1806
1807 case GL_GEOMETRY_PROGRAM_NV: {
1808 struct st_geometry_program *p = (struct st_geometry_program *)prog;
1809 struct st_gp_variant_key key;
1810
1811 memset(&key, 0, sizeof(key));
1812 key.st = st->has_shareable_shaders ? NULL : st;
1813 st_get_gp_variant(st, p, &key);
1814 break;
1815 }
1816
1817 case GL_FRAGMENT_PROGRAM_ARB: {
1818 struct st_fragment_program *p = (struct st_fragment_program *)prog;
1819 struct st_fp_variant_key key;
1820
1821 memset(&key, 0, sizeof(key));
1822 key.st = st->has_shareable_shaders ? NULL : st;
1823 st_get_fp_variant(st, p, &key);
1824 break;
1825 }
1826
1827 default:
1828 assert(0);
1829 }
1830 }