mesa/st: Allow geometry shaders without gl_Position export.
[mesa.git] / src / mesa / state_tracker / st_program.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 * Brian Paul
31 */
32
33
34 #include "main/imports.h"
35 #include "main/hash.h"
36 #include "main/mtypes.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/programopt.h"
40
41 #include "pipe/p_context.h"
42 #include "pipe/p_defines.h"
43 #include "pipe/p_shader_tokens.h"
44 #include "draw/draw_context.h"
45 #include "tgsi/tgsi_dump.h"
46 #include "tgsi/tgsi_ureg.h"
47
48 #include "st_debug.h"
49 #include "st_cb_bitmap.h"
50 #include "st_cb_drawpixels.h"
51 #include "st_context.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "cso_cache/cso_context.h"
55
56
57
58 /**
59 * Delete a vertex program variant. Note the caller must unlink
60 * the variant from the linked list.
61 */
62 static void
63 delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
64 {
65 if (vpv->driver_shader)
66 cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
67
68 if (vpv->draw_shader)
69 draw_delete_vertex_shader( st->draw, vpv->draw_shader );
70
71 if (vpv->tgsi.tokens)
72 st_free_tokens(vpv->tgsi.tokens);
73
74 free( vpv );
75 }
76
77
78
79 /**
80 * Clean out any old compilations:
81 */
82 void
83 st_release_vp_variants( struct st_context *st,
84 struct st_vertex_program *stvp )
85 {
86 struct st_vp_variant *vpv;
87
88 for (vpv = stvp->variants; vpv; ) {
89 struct st_vp_variant *next = vpv->next;
90 delete_vp_variant(st, vpv);
91 vpv = next;
92 }
93
94 stvp->variants = NULL;
95 }
96
97
98
99 /**
100 * Delete a fragment program variant. Note the caller must unlink
101 * the variant from the linked list.
102 */
103 static void
104 delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
105 {
106 if (fpv->driver_shader)
107 cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
108 if (fpv->parameters)
109 _mesa_free_parameter_list(fpv->parameters);
110 if (fpv->tgsi.tokens)
111 st_free_tokens(fpv->tgsi.tokens);
112 free(fpv);
113 }
114
115
116 /**
117 * Free all variants of a fragment program.
118 */
119 void
120 st_release_fp_variants(struct st_context *st, struct st_fragment_program *stfp)
121 {
122 struct st_fp_variant *fpv;
123
124 for (fpv = stfp->variants; fpv; ) {
125 struct st_fp_variant *next = fpv->next;
126 delete_fp_variant(st, fpv);
127 fpv = next;
128 }
129
130 stfp->variants = NULL;
131 }
132
133
134 /**
135 * Delete a geometry program variant. Note the caller must unlink
136 * the variant from the linked list.
137 */
138 static void
139 delete_gp_variant(struct st_context *st, struct st_gp_variant *gpv)
140 {
141 if (gpv->driver_shader)
142 cso_delete_geometry_shader(st->cso_context, gpv->driver_shader);
143
144 free(gpv);
145 }
146
147
148 /**
149 * Free all variants of a geometry program.
150 */
151 void
152 st_release_gp_variants(struct st_context *st, struct st_geometry_program *stgp)
153 {
154 struct st_gp_variant *gpv;
155
156 for (gpv = stgp->variants; gpv; ) {
157 struct st_gp_variant *next = gpv->next;
158 delete_gp_variant(st, gpv);
159 gpv = next;
160 }
161
162 stgp->variants = NULL;
163 }
164
165
166
167
168 /**
169 * Translate a Mesa vertex shader into a TGSI shader.
170 * \param outputMapping to map vertex program output registers (VARYING_SLOT_x)
171 * to TGSI output slots
172 * \param tokensOut destination for TGSI tokens
173 * \return pointer to cached pipe_shader object.
174 */
175 void
176 st_prepare_vertex_program(struct gl_context *ctx,
177 struct st_vertex_program *stvp)
178 {
179 struct st_context *st = st_context(ctx);
180 GLuint attr;
181
182 stvp->num_inputs = 0;
183 stvp->num_outputs = 0;
184
185 if (stvp->Base.IsPositionInvariant)
186 _mesa_insert_mvp_code(ctx, &stvp->Base);
187
188 if (!stvp->glsl_to_tgsi)
189 assert(stvp->Base.Base.NumInstructions > 1);
190
191 /*
192 * Determine number of inputs, the mappings between VERT_ATTRIB_x
193 * and TGSI generic input indexes, plus input attrib semantic info.
194 */
195 for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
196 if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
197 stvp->input_to_index[attr] = stvp->num_inputs;
198 stvp->index_to_input[stvp->num_inputs] = attr;
199 stvp->num_inputs++;
200 }
201 }
202 /* bit of a hack, presetup potentially unused edgeflag input */
203 stvp->input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
204 stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;
205
206 /* Compute mapping of vertex program outputs to slots.
207 */
208 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
209 if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
210 stvp->result_to_output[attr] = ~0;
211 }
212 else {
213 unsigned slot = stvp->num_outputs++;
214
215 stvp->result_to_output[attr] = slot;
216
217 switch (attr) {
218 case VARYING_SLOT_POS:
219 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
220 stvp->output_semantic_index[slot] = 0;
221 break;
222 case VARYING_SLOT_COL0:
223 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
224 stvp->output_semantic_index[slot] = 0;
225 break;
226 case VARYING_SLOT_COL1:
227 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
228 stvp->output_semantic_index[slot] = 1;
229 break;
230 case VARYING_SLOT_BFC0:
231 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
232 stvp->output_semantic_index[slot] = 0;
233 break;
234 case VARYING_SLOT_BFC1:
235 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
236 stvp->output_semantic_index[slot] = 1;
237 break;
238 case VARYING_SLOT_FOGC:
239 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
240 stvp->output_semantic_index[slot] = 0;
241 break;
242 case VARYING_SLOT_PSIZ:
243 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
244 stvp->output_semantic_index[slot] = 0;
245 break;
246 case VARYING_SLOT_CLIP_DIST0:
247 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
248 stvp->output_semantic_index[slot] = 0;
249 break;
250 case VARYING_SLOT_CLIP_DIST1:
251 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
252 stvp->output_semantic_index[slot] = 1;
253 break;
254 case VARYING_SLOT_EDGE:
255 assert(0);
256 break;
257 case VARYING_SLOT_CLIP_VERTEX:
258 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
259 stvp->output_semantic_index[slot] = 0;
260 break;
261
262 case VARYING_SLOT_TEX0:
263 case VARYING_SLOT_TEX1:
264 case VARYING_SLOT_TEX2:
265 case VARYING_SLOT_TEX3:
266 case VARYING_SLOT_TEX4:
267 case VARYING_SLOT_TEX5:
268 case VARYING_SLOT_TEX6:
269 case VARYING_SLOT_TEX7:
270 stvp->output_semantic_name[slot] = st->needs_texcoord_semantic ?
271 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
272 stvp->output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
273 break;
274
275 case VARYING_SLOT_VAR0:
276 default:
277 assert(attr < VARYING_SLOT_MAX);
278 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
279 stvp->output_semantic_index[slot] = st->needs_texcoord_semantic ?
280 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
281 break;
282 }
283 }
284 }
285 /* similar hack to above, presetup potentially unused edgeflag output */
286 stvp->result_to_output[VARYING_SLOT_EDGE] = stvp->num_outputs;
287 stvp->output_semantic_name[stvp->num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
288 stvp->output_semantic_index[stvp->num_outputs] = 0;
289 }
290
291
292 /**
293 * Translate a vertex program to create a new variant.
294 */
295 static struct st_vp_variant *
296 st_translate_vertex_program(struct st_context *st,
297 struct st_vertex_program *stvp,
298 const struct st_vp_variant_key *key)
299 {
300 struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
301 struct pipe_context *pipe = st->pipe;
302 struct ureg_program *ureg;
303 enum pipe_error error;
304 unsigned num_outputs;
305
306 st_prepare_vertex_program(st->ctx, stvp);
307
308 if (!stvp->glsl_to_tgsi)
309 {
310 _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
311 }
312
313 ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
314 if (ureg == NULL) {
315 free(vpv);
316 return NULL;
317 }
318
319 vpv->key = *key;
320
321 vpv->num_inputs = stvp->num_inputs;
322 num_outputs = stvp->num_outputs;
323 if (key->passthrough_edgeflags) {
324 vpv->num_inputs++;
325 num_outputs++;
326 }
327
328 if (ST_DEBUG & DEBUG_MESA) {
329 _mesa_print_program(&stvp->Base.Base);
330 _mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
331 debug_printf("\n");
332 }
333
334 if (stvp->glsl_to_tgsi)
335 error = st_translate_program(st->ctx,
336 TGSI_PROCESSOR_VERTEX,
337 ureg,
338 stvp->glsl_to_tgsi,
339 &stvp->Base.Base,
340 /* inputs */
341 stvp->num_inputs,
342 stvp->input_to_index,
343 NULL, /* input semantic name */
344 NULL, /* input semantic index */
345 NULL, /* interp mode */
346 NULL, /* is centroid */
347 /* outputs */
348 stvp->num_outputs,
349 stvp->result_to_output,
350 stvp->output_semantic_name,
351 stvp->output_semantic_index,
352 key->passthrough_edgeflags,
353 key->clamp_color);
354 else
355 error = st_translate_mesa_program(st->ctx,
356 TGSI_PROCESSOR_VERTEX,
357 ureg,
358 &stvp->Base.Base,
359 /* inputs */
360 vpv->num_inputs,
361 stvp->input_to_index,
362 NULL, /* input semantic name */
363 NULL, /* input semantic index */
364 NULL,
365 /* outputs */
366 num_outputs,
367 stvp->result_to_output,
368 stvp->output_semantic_name,
369 stvp->output_semantic_index,
370 key->passthrough_edgeflags,
371 key->clamp_color);
372
373 if (error)
374 goto fail;
375
376 vpv->tgsi.tokens = ureg_get_tokens( ureg, NULL );
377 if (!vpv->tgsi.tokens)
378 goto fail;
379
380 ureg_destroy( ureg );
381
382 if (stvp->glsl_to_tgsi) {
383 st_translate_stream_output_info(stvp->glsl_to_tgsi,
384 stvp->result_to_output,
385 &vpv->tgsi.stream_output);
386 }
387
388 vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
389
390 if (ST_DEBUG & DEBUG_TGSI) {
391 tgsi_dump( vpv->tgsi.tokens, 0 );
392 debug_printf("\n");
393 }
394
395 return vpv;
396
397 fail:
398 debug_printf("%s: failed to translate Mesa program:\n", __FUNCTION__);
399 _mesa_print_program(&stvp->Base.Base);
400 debug_assert(0);
401
402 ureg_destroy( ureg );
403 return NULL;
404 }
405
406
407 /**
408 * Find/create a vertex program variant.
409 */
410 struct st_vp_variant *
411 st_get_vp_variant(struct st_context *st,
412 struct st_vertex_program *stvp,
413 const struct st_vp_variant_key *key)
414 {
415 struct st_vp_variant *vpv;
416
417 /* Search for existing variant */
418 for (vpv = stvp->variants; vpv; vpv = vpv->next) {
419 if (memcmp(&vpv->key, key, sizeof(*key)) == 0) {
420 break;
421 }
422 }
423
424 if (!vpv) {
425 /* create now */
426 vpv = st_translate_vertex_program(st, stvp, key);
427 if (vpv) {
428 /* insert into list */
429 vpv->next = stvp->variants;
430 stvp->variants = vpv;
431 }
432 }
433
434 return vpv;
435 }
436
437
438 static unsigned
439 st_translate_interp(enum glsl_interp_qualifier glsl_qual, bool is_color)
440 {
441 switch (glsl_qual) {
442 case INTERP_QUALIFIER_NONE:
443 if (is_color)
444 return TGSI_INTERPOLATE_COLOR;
445 return TGSI_INTERPOLATE_PERSPECTIVE;
446 case INTERP_QUALIFIER_SMOOTH:
447 return TGSI_INTERPOLATE_PERSPECTIVE;
448 case INTERP_QUALIFIER_FLAT:
449 return TGSI_INTERPOLATE_CONSTANT;
450 case INTERP_QUALIFIER_NOPERSPECTIVE:
451 return TGSI_INTERPOLATE_LINEAR;
452 default:
453 assert(0 && "unexpected interp mode in st_translate_interp()");
454 return TGSI_INTERPOLATE_PERSPECTIVE;
455 }
456 }
457
458
459 /**
460 * Translate a Mesa fragment shader into a TGSI shader using extra info in
461 * the key.
462 * \return new fragment program variant
463 */
464 static struct st_fp_variant *
465 st_translate_fragment_program(struct st_context *st,
466 struct st_fragment_program *stfp,
467 const struct st_fp_variant_key *key)
468 {
469 struct pipe_context *pipe = st->pipe;
470 struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
471 GLboolean deleteFP = GL_FALSE;
472
473 GLuint outputMapping[FRAG_RESULT_MAX];
474 GLuint inputMapping[VARYING_SLOT_MAX];
475 GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */
476 GLuint attr;
477 GLbitfield64 inputsRead;
478 struct ureg_program *ureg;
479
480 GLboolean write_all = GL_FALSE;
481
482 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
483 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
484 GLboolean is_centroid[PIPE_MAX_SHADER_INPUTS];
485 uint fs_num_inputs = 0;
486
487 ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
488 ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
489 uint fs_num_outputs = 0;
490
491 if (!variant)
492 return NULL;
493
494 assert(!(key->bitmap && key->drawpixels));
495
496 if (key->bitmap) {
497 /* glBitmap drawing */
498 struct gl_fragment_program *fp; /* we free this temp program below */
499
500 st_make_bitmap_fragment_program(st, &stfp->Base,
501 &fp, &variant->bitmap_sampler);
502
503 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
504 stfp = st_fragment_program(fp);
505 deleteFP = GL_TRUE;
506 }
507 else if (key->drawpixels) {
508 /* glDrawPixels drawing */
509 struct gl_fragment_program *fp; /* we free this temp program below */
510
511 if (key->drawpixels_z || key->drawpixels_stencil) {
512 fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z,
513 key->drawpixels_stencil);
514 }
515 else {
516 /* RGBA */
517 st_make_drawpix_fragment_program(st, &stfp->Base, &fp);
518 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
519 deleteFP = GL_TRUE;
520 }
521 stfp = st_fragment_program(fp);
522 }
523
524 if (!stfp->glsl_to_tgsi)
525 _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);
526
527 /*
528 * Convert Mesa program inputs to TGSI input register semantics.
529 */
530 inputsRead = stfp->Base.Base.InputsRead;
531 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
532 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
533 const GLuint slot = fs_num_inputs++;
534
535 inputMapping[attr] = slot;
536 is_centroid[slot] = (stfp->Base.IsCentroid & BITFIELD64_BIT(attr)) != 0;
537
538 switch (attr) {
539 case VARYING_SLOT_POS:
540 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
541 input_semantic_index[slot] = 0;
542 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
543 break;
544 case VARYING_SLOT_COL0:
545 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
546 input_semantic_index[slot] = 0;
547 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
548 TRUE);
549 break;
550 case VARYING_SLOT_COL1:
551 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
552 input_semantic_index[slot] = 1;
553 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
554 TRUE);
555 break;
556 case VARYING_SLOT_FOGC:
557 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
558 input_semantic_index[slot] = 0;
559 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
560 break;
561 case VARYING_SLOT_FACE:
562 input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
563 input_semantic_index[slot] = 0;
564 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
565 break;
566 case VARYING_SLOT_CLIP_DIST0:
567 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
568 input_semantic_index[slot] = 0;
569 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
570 break;
571 case VARYING_SLOT_CLIP_DIST1:
572 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
573 input_semantic_index[slot] = 1;
574 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
575 break;
576 /* In most cases, there is nothing special about these
577 * inputs, so adopt a convention to use the generic
578 * semantic name and the mesa VARYING_SLOT_ number as the
579 * index.
580 *
581 * All that is required is that the vertex shader labels
582 * its own outputs similarly, and that the vertex shader
583 * generates at least every output required by the
584 * fragment shader plus fixed-function hardware (such as
585 * BFC).
586 *
587 * However, some drivers may need us to identify the PNTC and TEXi
588 * varyings if, for example, their capability to replace them with
589 * sprite coordinates is limited.
590 */
591 case VARYING_SLOT_PNTC:
592 if (st->needs_texcoord_semantic) {
593 input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
594 input_semantic_index[slot] = 0;
595 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
596 break;
597 }
598 /* fall through */
599 case VARYING_SLOT_TEX0:
600 case VARYING_SLOT_TEX1:
601 case VARYING_SLOT_TEX2:
602 case VARYING_SLOT_TEX3:
603 case VARYING_SLOT_TEX4:
604 case VARYING_SLOT_TEX5:
605 case VARYING_SLOT_TEX6:
606 case VARYING_SLOT_TEX7:
607 if (st->needs_texcoord_semantic) {
608 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
609 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
610 interpMode[slot] =
611 st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
612 break;
613 }
614 /* fall through */
615 case VARYING_SLOT_VAR0:
616 default:
617 /* Semantic indices should be zero-based because drivers may choose
618 * to assign a fixed slot determined by that index.
619 * This is useful because ARB_separate_shader_objects uses location
620 * qualifiers for linkage, and if the semantic index corresponds to
621 * these locations, linkage passes in the driver become unecessary.
622 *
623 * If needs_texcoord_semantic is true, no semantic indices will be
624 * consumed for the TEXi varyings, and we can base the locations of
625 * the user varyings on VAR0. Otherwise, we use TEX0 as base index.
626 */
627 assert(attr >= VARYING_SLOT_TEX0);
628 input_semantic_index[slot] = st->needs_texcoord_semantic ?
629 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
630 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
631 if (attr == VARYING_SLOT_PNTC)
632 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
633 else
634 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
635 FALSE);
636 break;
637 }
638 }
639 else {
640 inputMapping[attr] = -1;
641 }
642 }
643
644 /*
645 * Semantics and mapping for outputs
646 */
647 {
648 uint numColors = 0;
649 GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;
650
651 /* if z is written, emit that first */
652 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
653 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
654 fs_output_semantic_index[fs_num_outputs] = 0;
655 outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
656 fs_num_outputs++;
657 outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
658 }
659
660 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
661 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
662 fs_output_semantic_index[fs_num_outputs] = 0;
663 outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
664 fs_num_outputs++;
665 outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
666 }
667
668 /* handle remaining outputs (color) */
669 for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
670 if (outputsWritten & BITFIELD64_BIT(attr)) {
671 switch (attr) {
672 case FRAG_RESULT_DEPTH:
673 case FRAG_RESULT_STENCIL:
674 /* handled above */
675 assert(0);
676 break;
677 case FRAG_RESULT_COLOR:
678 write_all = GL_TRUE; /* fallthrough */
679 default:
680 assert(attr == FRAG_RESULT_COLOR ||
681 (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
682 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
683 fs_output_semantic_index[fs_num_outputs] = numColors;
684 outputMapping[attr] = fs_num_outputs;
685 numColors++;
686 break;
687 }
688
689 fs_num_outputs++;
690 }
691 }
692 }
693
694 ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
695 if (ureg == NULL) {
696 free(variant);
697 return NULL;
698 }
699
700 if (ST_DEBUG & DEBUG_MESA) {
701 _mesa_print_program(&stfp->Base.Base);
702 _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
703 debug_printf("\n");
704 }
705 if (write_all == GL_TRUE)
706 ureg_property_fs_color0_writes_all_cbufs(ureg, 1);
707
708 if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
709 switch (stfp->Base.FragDepthLayout) {
710 case FRAG_DEPTH_LAYOUT_ANY:
711 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_ANY);
712 break;
713 case FRAG_DEPTH_LAYOUT_GREATER:
714 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_GREATER);
715 break;
716 case FRAG_DEPTH_LAYOUT_LESS:
717 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_LESS);
718 break;
719 case FRAG_DEPTH_LAYOUT_UNCHANGED:
720 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
721 break;
722 default:
723 assert(0);
724 }
725 }
726
727 if (stfp->glsl_to_tgsi)
728 st_translate_program(st->ctx,
729 TGSI_PROCESSOR_FRAGMENT,
730 ureg,
731 stfp->glsl_to_tgsi,
732 &stfp->Base.Base,
733 /* inputs */
734 fs_num_inputs,
735 inputMapping,
736 input_semantic_name,
737 input_semantic_index,
738 interpMode,
739 is_centroid,
740 /* outputs */
741 fs_num_outputs,
742 outputMapping,
743 fs_output_semantic_name,
744 fs_output_semantic_index, FALSE,
745 key->clamp_color );
746 else
747 st_translate_mesa_program(st->ctx,
748 TGSI_PROCESSOR_FRAGMENT,
749 ureg,
750 &stfp->Base.Base,
751 /* inputs */
752 fs_num_inputs,
753 inputMapping,
754 input_semantic_name,
755 input_semantic_index,
756 interpMode,
757 /* outputs */
758 fs_num_outputs,
759 outputMapping,
760 fs_output_semantic_name,
761 fs_output_semantic_index, FALSE,
762 key->clamp_color);
763
764 variant->tgsi.tokens = ureg_get_tokens( ureg, NULL );
765 ureg_destroy( ureg );
766
767 /* fill in variant */
768 variant->driver_shader = pipe->create_fs_state(pipe, &variant->tgsi);
769 variant->key = *key;
770
771 if (ST_DEBUG & DEBUG_TGSI) {
772 tgsi_dump( variant->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/ );
773 debug_printf("\n");
774 }
775
776 if (deleteFP) {
777 /* Free the temporary program made above */
778 struct gl_fragment_program *fp = &stfp->Base;
779 _mesa_reference_fragprog(st->ctx, &fp, NULL);
780 }
781
782 return variant;
783 }
784
785
786 /**
787 * Translate fragment program if needed.
788 */
789 struct st_fp_variant *
790 st_get_fp_variant(struct st_context *st,
791 struct st_fragment_program *stfp,
792 const struct st_fp_variant_key *key)
793 {
794 struct st_fp_variant *fpv;
795
796 /* Search for existing variant */
797 for (fpv = stfp->variants; fpv; fpv = fpv->next) {
798 if (memcmp(&fpv->key, key, sizeof(*key)) == 0) {
799 break;
800 }
801 }
802
803 if (!fpv) {
804 /* create new */
805 fpv = st_translate_fragment_program(st, stfp, key);
806 if (fpv) {
807 /* insert into list */
808 fpv->next = stfp->variants;
809 stfp->variants = fpv;
810 }
811 }
812
813 return fpv;
814 }
815
816
817 /**
818 * Translate a geometry program to create a new variant.
819 */
820 static struct st_gp_variant *
821 st_translate_geometry_program(struct st_context *st,
822 struct st_geometry_program *stgp,
823 const struct st_gp_variant_key *key)
824 {
825 GLuint inputMapping[VARYING_SLOT_MAX];
826 GLuint outputMapping[VARYING_SLOT_MAX];
827 struct pipe_context *pipe = st->pipe;
828 GLuint attr;
829 GLbitfield64 inputsRead;
830 GLuint vslot = 0;
831
832 uint gs_num_inputs = 0;
833 uint gs_builtin_inputs = 0;
834 uint gs_array_offset = 0;
835
836 ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
837 ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
838 uint gs_num_outputs = 0;
839
840 GLint i;
841 GLuint maxSlot = 0;
842 struct ureg_program *ureg;
843
844 struct st_gp_variant *gpv;
845
846 gpv = CALLOC_STRUCT(st_gp_variant);
847 if (!gpv)
848 return NULL;
849
850 if (!stgp->glsl_to_tgsi) {
851 _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_OUTPUT);
852 }
853
854 ureg = ureg_create( TGSI_PROCESSOR_GEOMETRY );
855 if (ureg == NULL) {
856 free(gpv);
857 return NULL;
858 }
859
860 /* which vertex output goes to the first geometry input */
861 vslot = 0;
862
863 memset(inputMapping, 0, sizeof(inputMapping));
864 memset(outputMapping, 0, sizeof(outputMapping));
865
866 /*
867 * Convert Mesa program inputs to TGSI input register semantics.
868 */
869 inputsRead = stgp->Base.Base.InputsRead;
870 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
871 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
872 const GLuint slot = gs_num_inputs;
873
874 gs_num_inputs++;
875
876 inputMapping[attr] = slot;
877
878 stgp->input_map[slot + gs_array_offset] = vslot - gs_builtin_inputs;
879 stgp->input_to_index[attr] = vslot;
880 stgp->index_to_input[vslot] = attr;
881 ++vslot;
882
883 if (attr != VARYING_SLOT_PRIMITIVE_ID) {
884 gs_array_offset += 2;
885 } else
886 ++gs_builtin_inputs;
887
888 #if 0
889 debug_printf("input map at %d = %d\n",
890 slot + gs_array_offset, stgp->input_map[slot + gs_array_offset]);
891 #endif
892
893 switch (attr) {
894 case VARYING_SLOT_PRIMITIVE_ID:
895 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
896 stgp->input_semantic_index[slot] = 0;
897 break;
898 case VARYING_SLOT_POS:
899 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
900 stgp->input_semantic_index[slot] = 0;
901 break;
902 case VARYING_SLOT_COL0:
903 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
904 stgp->input_semantic_index[slot] = 0;
905 break;
906 case VARYING_SLOT_COL1:
907 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
908 stgp->input_semantic_index[slot] = 1;
909 break;
910 case VARYING_SLOT_FOGC:
911 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
912 stgp->input_semantic_index[slot] = 0;
913 break;
914 case VARYING_SLOT_CLIP_VERTEX:
915 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
916 stgp->input_semantic_index[slot] = 0;
917 break;
918 case VARYING_SLOT_CLIP_DIST0:
919 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
920 stgp->input_semantic_index[slot] = 0;
921 break;
922 case VARYING_SLOT_CLIP_DIST1:
923 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
924 stgp->input_semantic_index[slot] = 1;
925 break;
926 case VARYING_SLOT_TEX0:
927 case VARYING_SLOT_TEX1:
928 case VARYING_SLOT_TEX2:
929 case VARYING_SLOT_TEX3:
930 case VARYING_SLOT_TEX4:
931 case VARYING_SLOT_TEX5:
932 case VARYING_SLOT_TEX6:
933 case VARYING_SLOT_TEX7:
934 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
935 stgp->input_semantic_index[slot] = (attr - VARYING_SLOT_TEX0);
936 break;
937 case VARYING_SLOT_VAR0:
938 default:
939 assert(attr >= VARYING_SLOT_VAR0 && attr < VARYING_SLOT_MAX);
940 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
941 stgp->input_semantic_index[slot] = (VARYING_SLOT_VAR0 -
942 VARYING_SLOT_TEX0 +
943 attr -
944 VARYING_SLOT_VAR0);
945 break;
946 }
947 }
948 }
949
950 /* initialize output semantics to defaults */
951 for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
952 gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
953 gs_output_semantic_index[i] = 0;
954 }
955
956 /*
957 * Determine number of outputs, the (default) output register
958 * mapping and the semantic information for each output.
959 */
960 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
961 if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
962 GLuint slot;
963
964 slot = gs_num_outputs;
965 gs_num_outputs++;
966 outputMapping[attr] = slot;
967
968 switch (attr) {
969 case VARYING_SLOT_POS:
970 assert(slot == 0);
971 gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
972 gs_output_semantic_index[slot] = 0;
973 break;
974 case VARYING_SLOT_COL0:
975 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
976 gs_output_semantic_index[slot] = 0;
977 break;
978 case VARYING_SLOT_COL1:
979 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
980 gs_output_semantic_index[slot] = 1;
981 break;
982 case VARYING_SLOT_BFC0:
983 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
984 gs_output_semantic_index[slot] = 0;
985 break;
986 case VARYING_SLOT_BFC1:
987 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
988 gs_output_semantic_index[slot] = 1;
989 break;
990 case VARYING_SLOT_FOGC:
991 gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
992 gs_output_semantic_index[slot] = 0;
993 break;
994 case VARYING_SLOT_PSIZ:
995 gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
996 gs_output_semantic_index[slot] = 0;
997 break;
998 case VARYING_SLOT_CLIP_VERTEX:
999 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1000 gs_output_semantic_index[slot] = 0;
1001 break;
1002 case VARYING_SLOT_CLIP_DIST0:
1003 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1004 gs_output_semantic_index[slot] = 0;
1005 break;
1006 case VARYING_SLOT_CLIP_DIST1:
1007 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1008 gs_output_semantic_index[slot] = 1;
1009 break;
1010 case VARYING_SLOT_TEX0:
1011 case VARYING_SLOT_TEX1:
1012 case VARYING_SLOT_TEX2:
1013 case VARYING_SLOT_TEX3:
1014 case VARYING_SLOT_TEX4:
1015 case VARYING_SLOT_TEX5:
1016 case VARYING_SLOT_TEX6:
1017 case VARYING_SLOT_TEX7:
1018 gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1019 gs_output_semantic_index[slot] = (attr - VARYING_SLOT_TEX0);
1020 break;
1021 case VARYING_SLOT_VAR0:
1022 default:
1023 assert(slot < Elements(gs_output_semantic_name));
1024 assert(attr >= VARYING_SLOT_VAR0);
1025 gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1026 gs_output_semantic_index[slot] = (VARYING_SLOT_VAR0 -
1027 VARYING_SLOT_TEX0 +
1028 attr -
1029 VARYING_SLOT_VAR0);
1030 }
1031 }
1032 }
1033
1034 /* find max output slot referenced to compute gs_num_outputs */
1035 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1036 if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot)
1037 maxSlot = outputMapping[attr];
1038 }
1039 gs_num_outputs = maxSlot + 1;
1040
1041 #if 0 /* debug */
1042 {
1043 GLuint i;
1044 printf("outputMapping? %d\n", outputMapping ? 1 : 0);
1045 if (outputMapping) {
1046 printf("attr -> slot\n");
1047 for (i = 0; i < 16; i++) {
1048 printf(" %2d %3d\n", i, outputMapping[i]);
1049 }
1050 }
1051 printf("slot sem_name sem_index\n");
1052 for (i = 0; i < gs_num_outputs; i++) {
1053 printf(" %2d %d %d\n",
1054 i,
1055 gs_output_semantic_name[i],
1056 gs_output_semantic_index[i]);
1057 }
1058 }
1059 #endif
1060
1061 /* free old shader state, if any */
1062 if (stgp->tgsi.tokens) {
1063 st_free_tokens(stgp->tgsi.tokens);
1064 stgp->tgsi.tokens = NULL;
1065 }
1066
1067 ureg_property_gs_input_prim(ureg, stgp->Base.InputType);
1068 ureg_property_gs_output_prim(ureg, stgp->Base.OutputType);
1069 ureg_property_gs_max_vertices(ureg, stgp->Base.VerticesOut);
1070
1071 if (stgp->glsl_to_tgsi)
1072 st_translate_program(st->ctx,
1073 TGSI_PROCESSOR_GEOMETRY,
1074 ureg,
1075 stgp->glsl_to_tgsi,
1076 &stgp->Base.Base,
1077 /* inputs */
1078 gs_num_inputs,
1079 inputMapping,
1080 stgp->input_semantic_name,
1081 stgp->input_semantic_index,
1082 NULL,
1083 NULL,
1084 /* outputs */
1085 gs_num_outputs,
1086 outputMapping,
1087 gs_output_semantic_name,
1088 gs_output_semantic_index,
1089 FALSE,
1090 FALSE);
1091 else
1092 st_translate_mesa_program(st->ctx,
1093 TGSI_PROCESSOR_GEOMETRY,
1094 ureg,
1095 &stgp->Base.Base,
1096 /* inputs */
1097 gs_num_inputs,
1098 inputMapping,
1099 stgp->input_semantic_name,
1100 stgp->input_semantic_index,
1101 NULL,
1102 /* outputs */
1103 gs_num_outputs,
1104 outputMapping,
1105 gs_output_semantic_name,
1106 gs_output_semantic_index,
1107 FALSE,
1108 FALSE);
1109
1110 stgp->num_inputs = gs_num_inputs;
1111 stgp->tgsi.tokens = ureg_get_tokens( ureg, NULL );
1112 ureg_destroy( ureg );
1113
1114 if (stgp->glsl_to_tgsi) {
1115 st_translate_stream_output_info(stgp->glsl_to_tgsi,
1116 outputMapping,
1117 &stgp->tgsi.stream_output);
1118 }
1119
1120 /* fill in new variant */
1121 gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
1122 gpv->key = *key;
1123
1124 if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
1125 _mesa_print_program(&stgp->Base.Base);
1126 debug_printf("\n");
1127 }
1128
1129 if (ST_DEBUG & DEBUG_TGSI) {
1130 tgsi_dump(stgp->tgsi.tokens, 0);
1131 debug_printf("\n");
1132 }
1133
1134 return gpv;
1135 }
1136
1137
1138 /**
1139 * Get/create geometry program variant.
1140 */
1141 struct st_gp_variant *
1142 st_get_gp_variant(struct st_context *st,
1143 struct st_geometry_program *stgp,
1144 const struct st_gp_variant_key *key)
1145 {
1146 struct st_gp_variant *gpv;
1147
1148 /* Search for existing variant */
1149 for (gpv = stgp->variants; gpv; gpv = gpv->next) {
1150 if (memcmp(&gpv->key, key, sizeof(*key)) == 0) {
1151 break;
1152 }
1153 }
1154
1155 if (!gpv) {
1156 /* create new */
1157 gpv = st_translate_geometry_program(st, stgp, key);
1158 if (gpv) {
1159 /* insert into list */
1160 gpv->next = stgp->variants;
1161 stgp->variants = gpv;
1162 }
1163 }
1164
1165 return gpv;
1166 }
1167
1168
1169
1170
1171 /**
1172 * Debug- print current shader text
1173 */
1174 void
1175 st_print_shaders(struct gl_context *ctx)
1176 {
1177 struct gl_shader_program *shProg[3] = {
1178 ctx->Shader.CurrentVertexProgram,
1179 ctx->Shader.CurrentGeometryProgram,
1180 ctx->Shader.CurrentFragmentProgram,
1181 };
1182 unsigned j;
1183
1184 for (j = 0; j < 3; j++) {
1185 unsigned i;
1186
1187 if (shProg[j] == NULL)
1188 continue;
1189
1190 for (i = 0; i < shProg[j]->NumShaders; i++) {
1191 struct gl_shader *sh;
1192
1193 switch (shProg[j]->Shaders[i]->Type) {
1194 case GL_VERTEX_SHADER:
1195 sh = (i != 0) ? NULL : shProg[j]->Shaders[i];
1196 break;
1197 case GL_GEOMETRY_SHADER_ARB:
1198 sh = (i != 1) ? NULL : shProg[j]->Shaders[i];
1199 break;
1200 case GL_FRAGMENT_SHADER:
1201 sh = (i != 2) ? NULL : shProg[j]->Shaders[i];
1202 break;
1203 default:
1204 assert(0);
1205 sh = NULL;
1206 break;
1207 }
1208
1209 if (sh != NULL) {
1210 printf("GLSL shader %u of %u:\n", i, shProg[j]->NumShaders);
1211 printf("%s\n", sh->Source);
1212 }
1213 }
1214 }
1215 }
1216
1217
1218 /**
1219 * Vert/Geom/Frag programs have per-context variants. Free all the
1220 * variants attached to the given program which match the given context.
1221 */
1222 static void
1223 destroy_program_variants(struct st_context *st, struct gl_program *program)
1224 {
1225 if (!program || program == &_mesa_DummyProgram)
1226 return;
1227
1228 switch (program->Target) {
1229 case GL_VERTEX_PROGRAM_ARB:
1230 {
1231 struct st_vertex_program *stvp = (struct st_vertex_program *) program;
1232 struct st_vp_variant *vpv, **prevPtr = &stvp->variants;
1233
1234 for (vpv = stvp->variants; vpv; ) {
1235 struct st_vp_variant *next = vpv->next;
1236 if (vpv->key.st == st) {
1237 /* unlink from list */
1238 *prevPtr = next;
1239 /* destroy this variant */
1240 delete_vp_variant(st, vpv);
1241 }
1242 else {
1243 prevPtr = &vpv->next;
1244 }
1245 vpv = next;
1246 }
1247 }
1248 break;
1249 case GL_FRAGMENT_PROGRAM_ARB:
1250 {
1251 struct st_fragment_program *stfp =
1252 (struct st_fragment_program *) program;
1253 struct st_fp_variant *fpv, **prevPtr = &stfp->variants;
1254
1255 for (fpv = stfp->variants; fpv; ) {
1256 struct st_fp_variant *next = fpv->next;
1257 if (fpv->key.st == st) {
1258 /* unlink from list */
1259 *prevPtr = next;
1260 /* destroy this variant */
1261 delete_fp_variant(st, fpv);
1262 }
1263 else {
1264 prevPtr = &fpv->next;
1265 }
1266 fpv = next;
1267 }
1268 }
1269 break;
1270 case MESA_GEOMETRY_PROGRAM:
1271 {
1272 struct st_geometry_program *stgp =
1273 (struct st_geometry_program *) program;
1274 struct st_gp_variant *gpv, **prevPtr = &stgp->variants;
1275
1276 for (gpv = stgp->variants; gpv; ) {
1277 struct st_gp_variant *next = gpv->next;
1278 if (gpv->key.st == st) {
1279 /* unlink from list */
1280 *prevPtr = next;
1281 /* destroy this variant */
1282 delete_gp_variant(st, gpv);
1283 }
1284 else {
1285 prevPtr = &gpv->next;
1286 }
1287 gpv = next;
1288 }
1289 }
1290 break;
1291 default:
1292 _mesa_problem(NULL, "Unexpected program target 0x%x in "
1293 "destroy_program_variants_cb()", program->Target);
1294 }
1295 }
1296
1297
1298 /**
1299 * Callback for _mesa_HashWalk. Free all the shader's program variants
1300 * which match the given context.
1301 */
1302 static void
1303 destroy_shader_program_variants_cb(GLuint key, void *data, void *userData)
1304 {
1305 struct st_context *st = (struct st_context *) userData;
1306 struct gl_shader *shader = (struct gl_shader *) data;
1307
1308 switch (shader->Type) {
1309 case GL_SHADER_PROGRAM_MESA:
1310 {
1311 struct gl_shader_program *shProg = (struct gl_shader_program *) data;
1312 GLuint i;
1313
1314 for (i = 0; i < shProg->NumShaders; i++) {
1315 destroy_program_variants(st, shProg->Shaders[i]->Program);
1316 }
1317
1318 for (i = 0; i < Elements(shProg->_LinkedShaders); i++) {
1319 if (shProg->_LinkedShaders[i])
1320 destroy_program_variants(st, shProg->_LinkedShaders[i]->Program);
1321 }
1322 }
1323 break;
1324 case GL_VERTEX_SHADER:
1325 case GL_FRAGMENT_SHADER:
1326 case GL_GEOMETRY_SHADER:
1327 {
1328 destroy_program_variants(st, shader->Program);
1329 }
1330 break;
1331 default:
1332 assert(0);
1333 }
1334 }
1335
1336
1337 /**
1338 * Callback for _mesa_HashWalk. Free all the program variants which match
1339 * the given context.
1340 */
1341 static void
1342 destroy_program_variants_cb(GLuint key, void *data, void *userData)
1343 {
1344 struct st_context *st = (struct st_context *) userData;
1345 struct gl_program *program = (struct gl_program *) data;
1346 destroy_program_variants(st, program);
1347 }
1348
1349
1350 /**
1351 * Walk over all shaders and programs to delete any variants which
1352 * belong to the given context.
1353 * This is called during context tear-down.
1354 */
1355 void
1356 st_destroy_program_variants(struct st_context *st)
1357 {
1358 /* ARB vert/frag program */
1359 _mesa_HashWalk(st->ctx->Shared->Programs,
1360 destroy_program_variants_cb, st);
1361
1362 /* GLSL vert/frag/geom shaders */
1363 _mesa_HashWalk(st->ctx->Shared->ShaderObjects,
1364 destroy_shader_program_variants_cb, st);
1365 }
1366
1367
1368 /**
1369 * For debugging, print/dump the current vertex program.
1370 */
1371 void
1372 st_print_current_vertex_program(void)
1373 {
1374 GET_CURRENT_CONTEXT(ctx);
1375
1376 if (ctx->VertexProgram._Current) {
1377 struct st_vertex_program *stvp =
1378 (struct st_vertex_program *) ctx->VertexProgram._Current;
1379 struct st_vp_variant *stv;
1380
1381 debug_printf("Vertex program %u\n", stvp->Base.Base.Id);
1382
1383 for (stv = stvp->variants; stv; stv = stv->next) {
1384 debug_printf("variant %p\n", stv);
1385 tgsi_dump(stv->tgsi.tokens, 0);
1386 }
1387 }
1388 }