mesa: Eliminate parameters to dd_function_table::Viewport
[mesa.git] / src / mesa / state_tracker / st_program.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 * Brian Paul
31 */
32
33
34 #include "main/imports.h"
35 #include "main/hash.h"
36 #include "main/mtypes.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/programopt.h"
40
41 #include "pipe/p_context.h"
42 #include "pipe/p_defines.h"
43 #include "pipe/p_shader_tokens.h"
44 #include "draw/draw_context.h"
45 #include "tgsi/tgsi_dump.h"
46 #include "tgsi/tgsi_ureg.h"
47
48 #include "st_debug.h"
49 #include "st_cb_bitmap.h"
50 #include "st_cb_drawpixels.h"
51 #include "st_context.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "cso_cache/cso_context.h"
55
56
57
58 /**
59 * Delete a vertex program variant. Note the caller must unlink
60 * the variant from the linked list.
61 */
62 static void
63 delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
64 {
65 if (vpv->driver_shader)
66 cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
67
68 if (vpv->draw_shader)
69 draw_delete_vertex_shader( st->draw, vpv->draw_shader );
70
71 if (vpv->tgsi.tokens)
72 st_free_tokens(vpv->tgsi.tokens);
73
74 free( vpv );
75 }
76
77
78
79 /**
80 * Clean out any old compilations:
81 */
82 void
83 st_release_vp_variants( struct st_context *st,
84 struct st_vertex_program *stvp )
85 {
86 struct st_vp_variant *vpv;
87
88 for (vpv = stvp->variants; vpv; ) {
89 struct st_vp_variant *next = vpv->next;
90 delete_vp_variant(st, vpv);
91 vpv = next;
92 }
93
94 stvp->variants = NULL;
95 }
96
97
98
99 /**
100 * Delete a fragment program variant. Note the caller must unlink
101 * the variant from the linked list.
102 */
103 static void
104 delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
105 {
106 if (fpv->driver_shader)
107 cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
108 if (fpv->parameters)
109 _mesa_free_parameter_list(fpv->parameters);
110 if (fpv->tgsi.tokens)
111 st_free_tokens(fpv->tgsi.tokens);
112 free(fpv);
113 }
114
115
116 /**
117 * Free all variants of a fragment program.
118 */
119 void
120 st_release_fp_variants(struct st_context *st, struct st_fragment_program *stfp)
121 {
122 struct st_fp_variant *fpv;
123
124 for (fpv = stfp->variants; fpv; ) {
125 struct st_fp_variant *next = fpv->next;
126 delete_fp_variant(st, fpv);
127 fpv = next;
128 }
129
130 stfp->variants = NULL;
131 }
132
133
134 /**
135 * Delete a geometry program variant. Note the caller must unlink
136 * the variant from the linked list.
137 */
138 static void
139 delete_gp_variant(struct st_context *st, struct st_gp_variant *gpv)
140 {
141 if (gpv->driver_shader)
142 cso_delete_geometry_shader(st->cso_context, gpv->driver_shader);
143
144 free(gpv);
145 }
146
147
148 /**
149 * Free all variants of a geometry program.
150 */
151 void
152 st_release_gp_variants(struct st_context *st, struct st_geometry_program *stgp)
153 {
154 struct st_gp_variant *gpv;
155
156 for (gpv = stgp->variants; gpv; ) {
157 struct st_gp_variant *next = gpv->next;
158 delete_gp_variant(st, gpv);
159 gpv = next;
160 }
161
162 stgp->variants = NULL;
163 }
164
165
166
167
168 /**
169 * Translate a Mesa vertex shader into a TGSI shader.
170 * \param outputMapping to map vertex program output registers (VARYING_SLOT_x)
171 * to TGSI output slots
172 * \param tokensOut destination for TGSI tokens
173 * \return pointer to cached pipe_shader object.
174 */
175 void
176 st_prepare_vertex_program(struct gl_context *ctx,
177 struct st_vertex_program *stvp)
178 {
179 struct st_context *st = st_context(ctx);
180 GLuint attr;
181
182 stvp->num_inputs = 0;
183 stvp->num_outputs = 0;
184
185 if (stvp->Base.IsPositionInvariant)
186 _mesa_insert_mvp_code(ctx, &stvp->Base);
187
188 if (!stvp->glsl_to_tgsi)
189 assert(stvp->Base.Base.NumInstructions > 1);
190
191 /*
192 * Determine number of inputs, the mappings between VERT_ATTRIB_x
193 * and TGSI generic input indexes, plus input attrib semantic info.
194 */
195 for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
196 if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
197 stvp->input_to_index[attr] = stvp->num_inputs;
198 stvp->index_to_input[stvp->num_inputs] = attr;
199 stvp->num_inputs++;
200 }
201 }
202 /* bit of a hack, presetup potentially unused edgeflag input */
203 stvp->input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
204 stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;
205
206 /* Compute mapping of vertex program outputs to slots.
207 */
208 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
209 if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
210 stvp->result_to_output[attr] = ~0;
211 }
212 else {
213 unsigned slot = stvp->num_outputs++;
214
215 stvp->result_to_output[attr] = slot;
216
217 switch (attr) {
218 case VARYING_SLOT_POS:
219 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
220 stvp->output_semantic_index[slot] = 0;
221 break;
222 case VARYING_SLOT_COL0:
223 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
224 stvp->output_semantic_index[slot] = 0;
225 break;
226 case VARYING_SLOT_COL1:
227 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
228 stvp->output_semantic_index[slot] = 1;
229 break;
230 case VARYING_SLOT_BFC0:
231 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
232 stvp->output_semantic_index[slot] = 0;
233 break;
234 case VARYING_SLOT_BFC1:
235 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
236 stvp->output_semantic_index[slot] = 1;
237 break;
238 case VARYING_SLOT_FOGC:
239 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
240 stvp->output_semantic_index[slot] = 0;
241 break;
242 case VARYING_SLOT_PSIZ:
243 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
244 stvp->output_semantic_index[slot] = 0;
245 break;
246 case VARYING_SLOT_CLIP_DIST0:
247 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
248 stvp->output_semantic_index[slot] = 0;
249 break;
250 case VARYING_SLOT_CLIP_DIST1:
251 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
252 stvp->output_semantic_index[slot] = 1;
253 break;
254 case VARYING_SLOT_EDGE:
255 assert(0);
256 break;
257 case VARYING_SLOT_CLIP_VERTEX:
258 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
259 stvp->output_semantic_index[slot] = 0;
260 break;
261 case VARYING_SLOT_LAYER:
262 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
263 stvp->output_semantic_index[slot] = 0;
264 break;
265
266 case VARYING_SLOT_TEX0:
267 case VARYING_SLOT_TEX1:
268 case VARYING_SLOT_TEX2:
269 case VARYING_SLOT_TEX3:
270 case VARYING_SLOT_TEX4:
271 case VARYING_SLOT_TEX5:
272 case VARYING_SLOT_TEX6:
273 case VARYING_SLOT_TEX7:
274 stvp->output_semantic_name[slot] = st->needs_texcoord_semantic ?
275 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
276 stvp->output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
277 break;
278
279 case VARYING_SLOT_VAR0:
280 default:
281 assert(attr < VARYING_SLOT_MAX);
282 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
283 stvp->output_semantic_index[slot] = st->needs_texcoord_semantic ?
284 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
285 break;
286 }
287 }
288 }
289 /* similar hack to above, presetup potentially unused edgeflag output */
290 stvp->result_to_output[VARYING_SLOT_EDGE] = stvp->num_outputs;
291 stvp->output_semantic_name[stvp->num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
292 stvp->output_semantic_index[stvp->num_outputs] = 0;
293 }
294
295
296 /**
297 * Translate a vertex program to create a new variant.
298 */
299 static struct st_vp_variant *
300 st_translate_vertex_program(struct st_context *st,
301 struct st_vertex_program *stvp,
302 const struct st_vp_variant_key *key)
303 {
304 struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
305 struct pipe_context *pipe = st->pipe;
306 struct ureg_program *ureg;
307 enum pipe_error error;
308 unsigned num_outputs;
309
310 st_prepare_vertex_program(st->ctx, stvp);
311
312 if (!stvp->glsl_to_tgsi)
313 {
314 _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
315 }
316
317 ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
318 if (ureg == NULL) {
319 free(vpv);
320 return NULL;
321 }
322
323 vpv->key = *key;
324
325 vpv->num_inputs = stvp->num_inputs;
326 num_outputs = stvp->num_outputs;
327 if (key->passthrough_edgeflags) {
328 vpv->num_inputs++;
329 num_outputs++;
330 }
331
332 if (ST_DEBUG & DEBUG_MESA) {
333 _mesa_print_program(&stvp->Base.Base);
334 _mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
335 debug_printf("\n");
336 }
337
338 if (stvp->glsl_to_tgsi)
339 error = st_translate_program(st->ctx,
340 TGSI_PROCESSOR_VERTEX,
341 ureg,
342 stvp->glsl_to_tgsi,
343 &stvp->Base.Base,
344 /* inputs */
345 stvp->num_inputs,
346 stvp->input_to_index,
347 NULL, /* input semantic name */
348 NULL, /* input semantic index */
349 NULL, /* interp mode */
350 NULL, /* is centroid */
351 /* outputs */
352 stvp->num_outputs,
353 stvp->result_to_output,
354 stvp->output_semantic_name,
355 stvp->output_semantic_index,
356 key->passthrough_edgeflags,
357 key->clamp_color);
358 else
359 error = st_translate_mesa_program(st->ctx,
360 TGSI_PROCESSOR_VERTEX,
361 ureg,
362 &stvp->Base.Base,
363 /* inputs */
364 vpv->num_inputs,
365 stvp->input_to_index,
366 NULL, /* input semantic name */
367 NULL, /* input semantic index */
368 NULL,
369 /* outputs */
370 num_outputs,
371 stvp->result_to_output,
372 stvp->output_semantic_name,
373 stvp->output_semantic_index,
374 key->passthrough_edgeflags,
375 key->clamp_color);
376
377 if (error)
378 goto fail;
379
380 vpv->tgsi.tokens = ureg_get_tokens( ureg, NULL );
381 if (!vpv->tgsi.tokens)
382 goto fail;
383
384 ureg_destroy( ureg );
385
386 if (stvp->glsl_to_tgsi) {
387 st_translate_stream_output_info(stvp->glsl_to_tgsi,
388 stvp->result_to_output,
389 &vpv->tgsi.stream_output);
390 }
391
392 vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
393
394 if (ST_DEBUG & DEBUG_TGSI) {
395 tgsi_dump( vpv->tgsi.tokens, 0 );
396 debug_printf("\n");
397 }
398
399 return vpv;
400
401 fail:
402 debug_printf("%s: failed to translate Mesa program:\n", __FUNCTION__);
403 _mesa_print_program(&stvp->Base.Base);
404 debug_assert(0);
405
406 ureg_destroy( ureg );
407 return NULL;
408 }
409
410
411 /**
412 * Find/create a vertex program variant.
413 */
414 struct st_vp_variant *
415 st_get_vp_variant(struct st_context *st,
416 struct st_vertex_program *stvp,
417 const struct st_vp_variant_key *key)
418 {
419 struct st_vp_variant *vpv;
420
421 /* Search for existing variant */
422 for (vpv = stvp->variants; vpv; vpv = vpv->next) {
423 if (memcmp(&vpv->key, key, sizeof(*key)) == 0) {
424 break;
425 }
426 }
427
428 if (!vpv) {
429 /* create now */
430 vpv = st_translate_vertex_program(st, stvp, key);
431 if (vpv) {
432 /* insert into list */
433 vpv->next = stvp->variants;
434 stvp->variants = vpv;
435 }
436 }
437
438 return vpv;
439 }
440
441
442 static unsigned
443 st_translate_interp(enum glsl_interp_qualifier glsl_qual, bool is_color)
444 {
445 switch (glsl_qual) {
446 case INTERP_QUALIFIER_NONE:
447 if (is_color)
448 return TGSI_INTERPOLATE_COLOR;
449 return TGSI_INTERPOLATE_PERSPECTIVE;
450 case INTERP_QUALIFIER_SMOOTH:
451 return TGSI_INTERPOLATE_PERSPECTIVE;
452 case INTERP_QUALIFIER_FLAT:
453 return TGSI_INTERPOLATE_CONSTANT;
454 case INTERP_QUALIFIER_NOPERSPECTIVE:
455 return TGSI_INTERPOLATE_LINEAR;
456 default:
457 assert(0 && "unexpected interp mode in st_translate_interp()");
458 return TGSI_INTERPOLATE_PERSPECTIVE;
459 }
460 }
461
462
463 /**
464 * Translate a Mesa fragment shader into a TGSI shader using extra info in
465 * the key.
466 * \return new fragment program variant
467 */
468 static struct st_fp_variant *
469 st_translate_fragment_program(struct st_context *st,
470 struct st_fragment_program *stfp,
471 const struct st_fp_variant_key *key)
472 {
473 struct pipe_context *pipe = st->pipe;
474 struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
475 GLboolean deleteFP = GL_FALSE;
476
477 GLuint outputMapping[FRAG_RESULT_MAX];
478 GLuint inputMapping[VARYING_SLOT_MAX];
479 GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */
480 GLuint attr;
481 GLbitfield64 inputsRead;
482 struct ureg_program *ureg;
483
484 GLboolean write_all = GL_FALSE;
485
486 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
487 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
488 GLboolean is_centroid[PIPE_MAX_SHADER_INPUTS];
489 uint fs_num_inputs = 0;
490
491 ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
492 ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
493 uint fs_num_outputs = 0;
494
495 if (!variant)
496 return NULL;
497
498 assert(!(key->bitmap && key->drawpixels));
499
500 if (key->bitmap) {
501 /* glBitmap drawing */
502 struct gl_fragment_program *fp; /* we free this temp program below */
503
504 st_make_bitmap_fragment_program(st, &stfp->Base,
505 &fp, &variant->bitmap_sampler);
506
507 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
508 stfp = st_fragment_program(fp);
509 deleteFP = GL_TRUE;
510 }
511 else if (key->drawpixels) {
512 /* glDrawPixels drawing */
513 struct gl_fragment_program *fp; /* we free this temp program below */
514
515 if (key->drawpixels_z || key->drawpixels_stencil) {
516 fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z,
517 key->drawpixels_stencil);
518 }
519 else {
520 /* RGBA */
521 st_make_drawpix_fragment_program(st, &stfp->Base, &fp);
522 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
523 deleteFP = GL_TRUE;
524 }
525 stfp = st_fragment_program(fp);
526 }
527
528 if (!stfp->glsl_to_tgsi)
529 _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);
530
531 /*
532 * Convert Mesa program inputs to TGSI input register semantics.
533 */
534 inputsRead = stfp->Base.Base.InputsRead;
535 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
536 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
537 const GLuint slot = fs_num_inputs++;
538
539 inputMapping[attr] = slot;
540 is_centroid[slot] = (stfp->Base.IsCentroid & BITFIELD64_BIT(attr)) != 0;
541
542 switch (attr) {
543 case VARYING_SLOT_POS:
544 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
545 input_semantic_index[slot] = 0;
546 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
547 break;
548 case VARYING_SLOT_COL0:
549 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
550 input_semantic_index[slot] = 0;
551 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
552 TRUE);
553 break;
554 case VARYING_SLOT_COL1:
555 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
556 input_semantic_index[slot] = 1;
557 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
558 TRUE);
559 break;
560 case VARYING_SLOT_FOGC:
561 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
562 input_semantic_index[slot] = 0;
563 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
564 break;
565 case VARYING_SLOT_FACE:
566 input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
567 input_semantic_index[slot] = 0;
568 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
569 break;
570 case VARYING_SLOT_PRIMITIVE_ID:
571 input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
572 input_semantic_index[slot] = 0;
573 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
574 break;
575 case VARYING_SLOT_CLIP_DIST0:
576 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
577 input_semantic_index[slot] = 0;
578 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
579 break;
580 case VARYING_SLOT_CLIP_DIST1:
581 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
582 input_semantic_index[slot] = 1;
583 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
584 break;
585 /* In most cases, there is nothing special about these
586 * inputs, so adopt a convention to use the generic
587 * semantic name and the mesa VARYING_SLOT_ number as the
588 * index.
589 *
590 * All that is required is that the vertex shader labels
591 * its own outputs similarly, and that the vertex shader
592 * generates at least every output required by the
593 * fragment shader plus fixed-function hardware (such as
594 * BFC).
595 *
596 * However, some drivers may need us to identify the PNTC and TEXi
597 * varyings if, for example, their capability to replace them with
598 * sprite coordinates is limited.
599 */
600 case VARYING_SLOT_PNTC:
601 if (st->needs_texcoord_semantic) {
602 input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
603 input_semantic_index[slot] = 0;
604 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
605 break;
606 }
607 /* fall through */
608 case VARYING_SLOT_TEX0:
609 case VARYING_SLOT_TEX1:
610 case VARYING_SLOT_TEX2:
611 case VARYING_SLOT_TEX3:
612 case VARYING_SLOT_TEX4:
613 case VARYING_SLOT_TEX5:
614 case VARYING_SLOT_TEX6:
615 case VARYING_SLOT_TEX7:
616 if (st->needs_texcoord_semantic) {
617 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
618 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
619 interpMode[slot] =
620 st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
621 break;
622 }
623 /* fall through */
624 case VARYING_SLOT_VAR0:
625 default:
626 /* Semantic indices should be zero-based because drivers may choose
627 * to assign a fixed slot determined by that index.
628 * This is useful because ARB_separate_shader_objects uses location
629 * qualifiers for linkage, and if the semantic index corresponds to
630 * these locations, linkage passes in the driver become unecessary.
631 *
632 * If needs_texcoord_semantic is true, no semantic indices will be
633 * consumed for the TEXi varyings, and we can base the locations of
634 * the user varyings on VAR0. Otherwise, we use TEX0 as base index.
635 */
636 assert(attr >= VARYING_SLOT_TEX0);
637 input_semantic_index[slot] = st->needs_texcoord_semantic ?
638 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
639 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
640 if (attr == VARYING_SLOT_PNTC)
641 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
642 else
643 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
644 FALSE);
645 break;
646 }
647 }
648 else {
649 inputMapping[attr] = -1;
650 }
651 }
652
653 /*
654 * Semantics and mapping for outputs
655 */
656 {
657 uint numColors = 0;
658 GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;
659
660 /* if z is written, emit that first */
661 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
662 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
663 fs_output_semantic_index[fs_num_outputs] = 0;
664 outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
665 fs_num_outputs++;
666 outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
667 }
668
669 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
670 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
671 fs_output_semantic_index[fs_num_outputs] = 0;
672 outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
673 fs_num_outputs++;
674 outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
675 }
676
677 /* handle remaining outputs (color) */
678 for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
679 if (outputsWritten & BITFIELD64_BIT(attr)) {
680 switch (attr) {
681 case FRAG_RESULT_DEPTH:
682 case FRAG_RESULT_STENCIL:
683 /* handled above */
684 assert(0);
685 break;
686 case FRAG_RESULT_COLOR:
687 write_all = GL_TRUE; /* fallthrough */
688 default:
689 assert(attr == FRAG_RESULT_COLOR ||
690 (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
691 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
692 fs_output_semantic_index[fs_num_outputs] = numColors;
693 outputMapping[attr] = fs_num_outputs;
694 numColors++;
695 break;
696 }
697
698 fs_num_outputs++;
699 }
700 }
701 }
702
703 ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
704 if (ureg == NULL) {
705 free(variant);
706 return NULL;
707 }
708
709 if (ST_DEBUG & DEBUG_MESA) {
710 _mesa_print_program(&stfp->Base.Base);
711 _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
712 debug_printf("\n");
713 }
714 if (write_all == GL_TRUE)
715 ureg_property_fs_color0_writes_all_cbufs(ureg, 1);
716
717 if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
718 switch (stfp->Base.FragDepthLayout) {
719 case FRAG_DEPTH_LAYOUT_ANY:
720 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_ANY);
721 break;
722 case FRAG_DEPTH_LAYOUT_GREATER:
723 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_GREATER);
724 break;
725 case FRAG_DEPTH_LAYOUT_LESS:
726 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_LESS);
727 break;
728 case FRAG_DEPTH_LAYOUT_UNCHANGED:
729 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
730 break;
731 default:
732 assert(0);
733 }
734 }
735
736 if (stfp->glsl_to_tgsi)
737 st_translate_program(st->ctx,
738 TGSI_PROCESSOR_FRAGMENT,
739 ureg,
740 stfp->glsl_to_tgsi,
741 &stfp->Base.Base,
742 /* inputs */
743 fs_num_inputs,
744 inputMapping,
745 input_semantic_name,
746 input_semantic_index,
747 interpMode,
748 is_centroid,
749 /* outputs */
750 fs_num_outputs,
751 outputMapping,
752 fs_output_semantic_name,
753 fs_output_semantic_index, FALSE,
754 key->clamp_color );
755 else
756 st_translate_mesa_program(st->ctx,
757 TGSI_PROCESSOR_FRAGMENT,
758 ureg,
759 &stfp->Base.Base,
760 /* inputs */
761 fs_num_inputs,
762 inputMapping,
763 input_semantic_name,
764 input_semantic_index,
765 interpMode,
766 /* outputs */
767 fs_num_outputs,
768 outputMapping,
769 fs_output_semantic_name,
770 fs_output_semantic_index, FALSE,
771 key->clamp_color);
772
773 variant->tgsi.tokens = ureg_get_tokens( ureg, NULL );
774 ureg_destroy( ureg );
775
776 /* fill in variant */
777 variant->driver_shader = pipe->create_fs_state(pipe, &variant->tgsi);
778 variant->key = *key;
779
780 if (ST_DEBUG & DEBUG_TGSI) {
781 tgsi_dump( variant->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/ );
782 debug_printf("\n");
783 }
784
785 if (deleteFP) {
786 /* Free the temporary program made above */
787 struct gl_fragment_program *fp = &stfp->Base;
788 _mesa_reference_fragprog(st->ctx, &fp, NULL);
789 }
790
791 return variant;
792 }
793
794
795 /**
796 * Translate fragment program if needed.
797 */
798 struct st_fp_variant *
799 st_get_fp_variant(struct st_context *st,
800 struct st_fragment_program *stfp,
801 const struct st_fp_variant_key *key)
802 {
803 struct st_fp_variant *fpv;
804
805 /* Search for existing variant */
806 for (fpv = stfp->variants; fpv; fpv = fpv->next) {
807 if (memcmp(&fpv->key, key, sizeof(*key)) == 0) {
808 break;
809 }
810 }
811
812 if (!fpv) {
813 /* create new */
814 fpv = st_translate_fragment_program(st, stfp, key);
815 if (fpv) {
816 /* insert into list */
817 fpv->next = stfp->variants;
818 stfp->variants = fpv;
819 }
820 }
821
822 return fpv;
823 }
824
825
826 /**
827 * Translate a geometry program to create a new variant.
828 */
829 static struct st_gp_variant *
830 st_translate_geometry_program(struct st_context *st,
831 struct st_geometry_program *stgp,
832 const struct st_gp_variant_key *key)
833 {
834 GLuint inputMapping[VARYING_SLOT_MAX];
835 GLuint outputMapping[VARYING_SLOT_MAX];
836 struct pipe_context *pipe = st->pipe;
837 GLuint attr;
838 GLbitfield64 inputsRead;
839 GLuint vslot = 0;
840
841 uint gs_num_inputs = 0;
842 uint gs_builtin_inputs = 0;
843 uint gs_array_offset = 0;
844
845 ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
846 ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
847 uint gs_num_outputs = 0;
848
849 GLint i;
850 GLuint maxSlot = 0;
851 struct ureg_program *ureg;
852
853 struct st_gp_variant *gpv;
854
855 gpv = CALLOC_STRUCT(st_gp_variant);
856 if (!gpv)
857 return NULL;
858
859 if (!stgp->glsl_to_tgsi) {
860 _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_OUTPUT);
861 }
862
863 ureg = ureg_create( TGSI_PROCESSOR_GEOMETRY );
864 if (ureg == NULL) {
865 free(gpv);
866 return NULL;
867 }
868
869 /* which vertex output goes to the first geometry input */
870 vslot = 0;
871
872 memset(inputMapping, 0, sizeof(inputMapping));
873 memset(outputMapping, 0, sizeof(outputMapping));
874
875 /*
876 * Convert Mesa program inputs to TGSI input register semantics.
877 */
878 inputsRead = stgp->Base.Base.InputsRead;
879 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
880 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
881 const GLuint slot = gs_num_inputs;
882
883 gs_num_inputs++;
884
885 inputMapping[attr] = slot;
886
887 stgp->input_map[slot + gs_array_offset] = vslot - gs_builtin_inputs;
888 stgp->input_to_index[attr] = vslot;
889 stgp->index_to_input[vslot] = attr;
890 ++vslot;
891
892 if (attr != VARYING_SLOT_PRIMITIVE_ID) {
893 gs_array_offset += 2;
894 } else
895 ++gs_builtin_inputs;
896
897 #if 0
898 debug_printf("input map at %d = %d\n",
899 slot + gs_array_offset, stgp->input_map[slot + gs_array_offset]);
900 #endif
901
902 switch (attr) {
903 case VARYING_SLOT_PRIMITIVE_ID:
904 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
905 stgp->input_semantic_index[slot] = 0;
906 break;
907 case VARYING_SLOT_POS:
908 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
909 stgp->input_semantic_index[slot] = 0;
910 break;
911 case VARYING_SLOT_COL0:
912 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
913 stgp->input_semantic_index[slot] = 0;
914 break;
915 case VARYING_SLOT_COL1:
916 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
917 stgp->input_semantic_index[slot] = 1;
918 break;
919 case VARYING_SLOT_FOGC:
920 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
921 stgp->input_semantic_index[slot] = 0;
922 break;
923 case VARYING_SLOT_CLIP_VERTEX:
924 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
925 stgp->input_semantic_index[slot] = 0;
926 break;
927 case VARYING_SLOT_CLIP_DIST0:
928 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
929 stgp->input_semantic_index[slot] = 0;
930 break;
931 case VARYING_SLOT_CLIP_DIST1:
932 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
933 stgp->input_semantic_index[slot] = 1;
934 break;
935 case VARYING_SLOT_PSIZ:
936 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
937 stgp->input_semantic_index[slot] = 0;
938 break;
939 case VARYING_SLOT_TEX0:
940 case VARYING_SLOT_TEX1:
941 case VARYING_SLOT_TEX2:
942 case VARYING_SLOT_TEX3:
943 case VARYING_SLOT_TEX4:
944 case VARYING_SLOT_TEX5:
945 case VARYING_SLOT_TEX6:
946 case VARYING_SLOT_TEX7:
947 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
948 stgp->input_semantic_index[slot] = (attr - VARYING_SLOT_TEX0);
949 break;
950 case VARYING_SLOT_VAR0:
951 default:
952 assert(attr >= VARYING_SLOT_VAR0 && attr < VARYING_SLOT_MAX);
953 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
954 stgp->input_semantic_index[slot] = (VARYING_SLOT_VAR0 -
955 VARYING_SLOT_TEX0 +
956 attr -
957 VARYING_SLOT_VAR0);
958 break;
959 }
960 }
961 }
962
963 /* initialize output semantics to defaults */
964 for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
965 gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
966 gs_output_semantic_index[i] = 0;
967 }
968
969 /*
970 * Determine number of outputs, the (default) output register
971 * mapping and the semantic information for each output.
972 */
973 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
974 if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
975 GLuint slot;
976
977 slot = gs_num_outputs;
978 gs_num_outputs++;
979 outputMapping[attr] = slot;
980
981 switch (attr) {
982 case VARYING_SLOT_POS:
983 assert(slot == 0);
984 gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
985 gs_output_semantic_index[slot] = 0;
986 break;
987 case VARYING_SLOT_COL0:
988 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
989 gs_output_semantic_index[slot] = 0;
990 break;
991 case VARYING_SLOT_COL1:
992 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
993 gs_output_semantic_index[slot] = 1;
994 break;
995 case VARYING_SLOT_BFC0:
996 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
997 gs_output_semantic_index[slot] = 0;
998 break;
999 case VARYING_SLOT_BFC1:
1000 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1001 gs_output_semantic_index[slot] = 1;
1002 break;
1003 case VARYING_SLOT_FOGC:
1004 gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
1005 gs_output_semantic_index[slot] = 0;
1006 break;
1007 case VARYING_SLOT_PSIZ:
1008 gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
1009 gs_output_semantic_index[slot] = 0;
1010 break;
1011 case VARYING_SLOT_CLIP_VERTEX:
1012 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1013 gs_output_semantic_index[slot] = 0;
1014 break;
1015 case VARYING_SLOT_CLIP_DIST0:
1016 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1017 gs_output_semantic_index[slot] = 0;
1018 break;
1019 case VARYING_SLOT_CLIP_DIST1:
1020 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1021 gs_output_semantic_index[slot] = 1;
1022 break;
1023 case VARYING_SLOT_LAYER:
1024 gs_output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
1025 gs_output_semantic_index[slot] = 0;
1026 break;
1027 case VARYING_SLOT_PRIMITIVE_ID:
1028 gs_output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
1029 gs_output_semantic_index[slot] = 0;
1030 break;
1031 case VARYING_SLOT_TEX0:
1032 case VARYING_SLOT_TEX1:
1033 case VARYING_SLOT_TEX2:
1034 case VARYING_SLOT_TEX3:
1035 case VARYING_SLOT_TEX4:
1036 case VARYING_SLOT_TEX5:
1037 case VARYING_SLOT_TEX6:
1038 case VARYING_SLOT_TEX7:
1039 gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1040 gs_output_semantic_index[slot] = (attr - VARYING_SLOT_TEX0);
1041 break;
1042 case VARYING_SLOT_VAR0:
1043 default:
1044 assert(slot < Elements(gs_output_semantic_name));
1045 assert(attr >= VARYING_SLOT_VAR0);
1046 gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1047 gs_output_semantic_index[slot] = (VARYING_SLOT_VAR0 -
1048 VARYING_SLOT_TEX0 +
1049 attr -
1050 VARYING_SLOT_VAR0);
1051 }
1052 }
1053 }
1054
1055 /* find max output slot referenced to compute gs_num_outputs */
1056 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1057 if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot)
1058 maxSlot = outputMapping[attr];
1059 }
1060 gs_num_outputs = maxSlot + 1;
1061
1062 #if 0 /* debug */
1063 {
1064 GLuint i;
1065 printf("outputMapping? %d\n", outputMapping ? 1 : 0);
1066 if (outputMapping) {
1067 printf("attr -> slot\n");
1068 for (i = 0; i < 16; i++) {
1069 printf(" %2d %3d\n", i, outputMapping[i]);
1070 }
1071 }
1072 printf("slot sem_name sem_index\n");
1073 for (i = 0; i < gs_num_outputs; i++) {
1074 printf(" %2d %d %d\n",
1075 i,
1076 gs_output_semantic_name[i],
1077 gs_output_semantic_index[i]);
1078 }
1079 }
1080 #endif
1081
1082 /* free old shader state, if any */
1083 if (stgp->tgsi.tokens) {
1084 st_free_tokens(stgp->tgsi.tokens);
1085 stgp->tgsi.tokens = NULL;
1086 }
1087
1088 ureg_property_gs_input_prim(ureg, stgp->Base.InputType);
1089 ureg_property_gs_output_prim(ureg, stgp->Base.OutputType);
1090 ureg_property_gs_max_vertices(ureg, stgp->Base.VerticesOut);
1091
1092 if (stgp->glsl_to_tgsi)
1093 st_translate_program(st->ctx,
1094 TGSI_PROCESSOR_GEOMETRY,
1095 ureg,
1096 stgp->glsl_to_tgsi,
1097 &stgp->Base.Base,
1098 /* inputs */
1099 gs_num_inputs,
1100 inputMapping,
1101 stgp->input_semantic_name,
1102 stgp->input_semantic_index,
1103 NULL,
1104 NULL,
1105 /* outputs */
1106 gs_num_outputs,
1107 outputMapping,
1108 gs_output_semantic_name,
1109 gs_output_semantic_index,
1110 FALSE,
1111 FALSE);
1112 else
1113 st_translate_mesa_program(st->ctx,
1114 TGSI_PROCESSOR_GEOMETRY,
1115 ureg,
1116 &stgp->Base.Base,
1117 /* inputs */
1118 gs_num_inputs,
1119 inputMapping,
1120 stgp->input_semantic_name,
1121 stgp->input_semantic_index,
1122 NULL,
1123 /* outputs */
1124 gs_num_outputs,
1125 outputMapping,
1126 gs_output_semantic_name,
1127 gs_output_semantic_index,
1128 FALSE,
1129 FALSE);
1130
1131 stgp->num_inputs = gs_num_inputs;
1132 stgp->tgsi.tokens = ureg_get_tokens( ureg, NULL );
1133 ureg_destroy( ureg );
1134
1135 if (stgp->glsl_to_tgsi) {
1136 st_translate_stream_output_info(stgp->glsl_to_tgsi,
1137 outputMapping,
1138 &stgp->tgsi.stream_output);
1139 }
1140
1141 /* fill in new variant */
1142 gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
1143 gpv->key = *key;
1144
1145 if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
1146 _mesa_print_program(&stgp->Base.Base);
1147 debug_printf("\n");
1148 }
1149
1150 if (ST_DEBUG & DEBUG_TGSI) {
1151 tgsi_dump(stgp->tgsi.tokens, 0);
1152 debug_printf("\n");
1153 }
1154
1155 return gpv;
1156 }
1157
1158
1159 /**
1160 * Get/create geometry program variant.
1161 */
1162 struct st_gp_variant *
1163 st_get_gp_variant(struct st_context *st,
1164 struct st_geometry_program *stgp,
1165 const struct st_gp_variant_key *key)
1166 {
1167 struct st_gp_variant *gpv;
1168
1169 /* Search for existing variant */
1170 for (gpv = stgp->variants; gpv; gpv = gpv->next) {
1171 if (memcmp(&gpv->key, key, sizeof(*key)) == 0) {
1172 break;
1173 }
1174 }
1175
1176 if (!gpv) {
1177 /* create new */
1178 gpv = st_translate_geometry_program(st, stgp, key);
1179 if (gpv) {
1180 /* insert into list */
1181 gpv->next = stgp->variants;
1182 stgp->variants = gpv;
1183 }
1184 }
1185
1186 return gpv;
1187 }
1188
1189
1190
1191
1192 /**
1193 * Debug- print current shader text
1194 */
1195 void
1196 st_print_shaders(struct gl_context *ctx)
1197 {
1198 struct gl_shader_program *shProg[3] = {
1199 ctx->Shader.CurrentVertexProgram,
1200 ctx->Shader.CurrentGeometryProgram,
1201 ctx->Shader.CurrentFragmentProgram,
1202 };
1203 unsigned j;
1204
1205 for (j = 0; j < 3; j++) {
1206 unsigned i;
1207
1208 if (shProg[j] == NULL)
1209 continue;
1210
1211 for (i = 0; i < shProg[j]->NumShaders; i++) {
1212 struct gl_shader *sh;
1213
1214 switch (shProg[j]->Shaders[i]->Type) {
1215 case GL_VERTEX_SHADER:
1216 sh = (i != 0) ? NULL : shProg[j]->Shaders[i];
1217 break;
1218 case GL_GEOMETRY_SHADER_ARB:
1219 sh = (i != 1) ? NULL : shProg[j]->Shaders[i];
1220 break;
1221 case GL_FRAGMENT_SHADER:
1222 sh = (i != 2) ? NULL : shProg[j]->Shaders[i];
1223 break;
1224 default:
1225 assert(0);
1226 sh = NULL;
1227 break;
1228 }
1229
1230 if (sh != NULL) {
1231 printf("GLSL shader %u of %u:\n", i, shProg[j]->NumShaders);
1232 printf("%s\n", sh->Source);
1233 }
1234 }
1235 }
1236 }
1237
1238
1239 /**
1240 * Vert/Geom/Frag programs have per-context variants. Free all the
1241 * variants attached to the given program which match the given context.
1242 */
1243 static void
1244 destroy_program_variants(struct st_context *st, struct gl_program *program)
1245 {
1246 if (!program || program == &_mesa_DummyProgram)
1247 return;
1248
1249 switch (program->Target) {
1250 case GL_VERTEX_PROGRAM_ARB:
1251 {
1252 struct st_vertex_program *stvp = (struct st_vertex_program *) program;
1253 struct st_vp_variant *vpv, **prevPtr = &stvp->variants;
1254
1255 for (vpv = stvp->variants; vpv; ) {
1256 struct st_vp_variant *next = vpv->next;
1257 if (vpv->key.st == st) {
1258 /* unlink from list */
1259 *prevPtr = next;
1260 /* destroy this variant */
1261 delete_vp_variant(st, vpv);
1262 }
1263 else {
1264 prevPtr = &vpv->next;
1265 }
1266 vpv = next;
1267 }
1268 }
1269 break;
1270 case GL_FRAGMENT_PROGRAM_ARB:
1271 {
1272 struct st_fragment_program *stfp =
1273 (struct st_fragment_program *) program;
1274 struct st_fp_variant *fpv, **prevPtr = &stfp->variants;
1275
1276 for (fpv = stfp->variants; fpv; ) {
1277 struct st_fp_variant *next = fpv->next;
1278 if (fpv->key.st == st) {
1279 /* unlink from list */
1280 *prevPtr = next;
1281 /* destroy this variant */
1282 delete_fp_variant(st, fpv);
1283 }
1284 else {
1285 prevPtr = &fpv->next;
1286 }
1287 fpv = next;
1288 }
1289 }
1290 break;
1291 case MESA_GEOMETRY_PROGRAM:
1292 {
1293 struct st_geometry_program *stgp =
1294 (struct st_geometry_program *) program;
1295 struct st_gp_variant *gpv, **prevPtr = &stgp->variants;
1296
1297 for (gpv = stgp->variants; gpv; ) {
1298 struct st_gp_variant *next = gpv->next;
1299 if (gpv->key.st == st) {
1300 /* unlink from list */
1301 *prevPtr = next;
1302 /* destroy this variant */
1303 delete_gp_variant(st, gpv);
1304 }
1305 else {
1306 prevPtr = &gpv->next;
1307 }
1308 gpv = next;
1309 }
1310 }
1311 break;
1312 default:
1313 _mesa_problem(NULL, "Unexpected program target 0x%x in "
1314 "destroy_program_variants_cb()", program->Target);
1315 }
1316 }
1317
1318
1319 /**
1320 * Callback for _mesa_HashWalk. Free all the shader's program variants
1321 * which match the given context.
1322 */
1323 static void
1324 destroy_shader_program_variants_cb(GLuint key, void *data, void *userData)
1325 {
1326 struct st_context *st = (struct st_context *) userData;
1327 struct gl_shader *shader = (struct gl_shader *) data;
1328
1329 switch (shader->Type) {
1330 case GL_SHADER_PROGRAM_MESA:
1331 {
1332 struct gl_shader_program *shProg = (struct gl_shader_program *) data;
1333 GLuint i;
1334
1335 for (i = 0; i < shProg->NumShaders; i++) {
1336 destroy_program_variants(st, shProg->Shaders[i]->Program);
1337 }
1338
1339 for (i = 0; i < Elements(shProg->_LinkedShaders); i++) {
1340 if (shProg->_LinkedShaders[i])
1341 destroy_program_variants(st, shProg->_LinkedShaders[i]->Program);
1342 }
1343 }
1344 break;
1345 case GL_VERTEX_SHADER:
1346 case GL_FRAGMENT_SHADER:
1347 case GL_GEOMETRY_SHADER:
1348 {
1349 destroy_program_variants(st, shader->Program);
1350 }
1351 break;
1352 default:
1353 assert(0);
1354 }
1355 }
1356
1357
1358 /**
1359 * Callback for _mesa_HashWalk. Free all the program variants which match
1360 * the given context.
1361 */
1362 static void
1363 destroy_program_variants_cb(GLuint key, void *data, void *userData)
1364 {
1365 struct st_context *st = (struct st_context *) userData;
1366 struct gl_program *program = (struct gl_program *) data;
1367 destroy_program_variants(st, program);
1368 }
1369
1370
1371 /**
1372 * Walk over all shaders and programs to delete any variants which
1373 * belong to the given context.
1374 * This is called during context tear-down.
1375 */
1376 void
1377 st_destroy_program_variants(struct st_context *st)
1378 {
1379 /* ARB vert/frag program */
1380 _mesa_HashWalk(st->ctx->Shared->Programs,
1381 destroy_program_variants_cb, st);
1382
1383 /* GLSL vert/frag/geom shaders */
1384 _mesa_HashWalk(st->ctx->Shared->ShaderObjects,
1385 destroy_shader_program_variants_cb, st);
1386 }
1387
1388
1389 /**
1390 * For debugging, print/dump the current vertex program.
1391 */
1392 void
1393 st_print_current_vertex_program(void)
1394 {
1395 GET_CURRENT_CONTEXT(ctx);
1396
1397 if (ctx->VertexProgram._Current) {
1398 struct st_vertex_program *stvp =
1399 (struct st_vertex_program *) ctx->VertexProgram._Current;
1400 struct st_vp_variant *stv;
1401
1402 debug_printf("Vertex program %u\n", stvp->Base.Base.Id);
1403
1404 for (stv = stvp->variants; stv; stv = stv->next) {
1405 debug_printf("variant %p\n", stv);
1406 tgsi_dump(stv->tgsi.tokens, 0);
1407 }
1408 }
1409 }