mesa: Add the format enums for BPTC-compressed images
[mesa.git] / src / mesa / state_tracker / st_program.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 * Brian Paul
31 */
32
33
34 #include "main/imports.h"
35 #include "main/hash.h"
36 #include "main/mtypes.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/programopt.h"
40
41 #include "pipe/p_context.h"
42 #include "pipe/p_defines.h"
43 #include "pipe/p_shader_tokens.h"
44 #include "draw/draw_context.h"
45 #include "tgsi/tgsi_dump.h"
46 #include "tgsi/tgsi_ureg.h"
47
48 #include "st_debug.h"
49 #include "st_cb_bitmap.h"
50 #include "st_cb_drawpixels.h"
51 #include "st_context.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "cso_cache/cso_context.h"
55
56
57
58 /**
59 * Delete a vertex program variant. Note the caller must unlink
60 * the variant from the linked list.
61 */
62 static void
63 delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
64 {
65 if (vpv->driver_shader)
66 cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
67
68 if (vpv->draw_shader)
69 draw_delete_vertex_shader( st->draw, vpv->draw_shader );
70
71 if (vpv->tgsi.tokens)
72 st_free_tokens(vpv->tgsi.tokens);
73
74 free( vpv );
75 }
76
77
78
79 /**
80 * Clean out any old compilations:
81 */
82 void
83 st_release_vp_variants( struct st_context *st,
84 struct st_vertex_program *stvp )
85 {
86 struct st_vp_variant *vpv;
87
88 for (vpv = stvp->variants; vpv; ) {
89 struct st_vp_variant *next = vpv->next;
90 delete_vp_variant(st, vpv);
91 vpv = next;
92 }
93
94 stvp->variants = NULL;
95 }
96
97
98
99 /**
100 * Delete a fragment program variant. Note the caller must unlink
101 * the variant from the linked list.
102 */
103 static void
104 delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
105 {
106 if (fpv->driver_shader)
107 cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
108 if (fpv->parameters)
109 _mesa_free_parameter_list(fpv->parameters);
110 if (fpv->tgsi.tokens)
111 st_free_tokens(fpv->tgsi.tokens);
112 free(fpv);
113 }
114
115
116 /**
117 * Free all variants of a fragment program.
118 */
119 void
120 st_release_fp_variants(struct st_context *st, struct st_fragment_program *stfp)
121 {
122 struct st_fp_variant *fpv;
123
124 for (fpv = stfp->variants; fpv; ) {
125 struct st_fp_variant *next = fpv->next;
126 delete_fp_variant(st, fpv);
127 fpv = next;
128 }
129
130 stfp->variants = NULL;
131 }
132
133
134 /**
135 * Delete a geometry program variant. Note the caller must unlink
136 * the variant from the linked list.
137 */
138 static void
139 delete_gp_variant(struct st_context *st, struct st_gp_variant *gpv)
140 {
141 if (gpv->driver_shader)
142 cso_delete_geometry_shader(st->cso_context, gpv->driver_shader);
143
144 free(gpv);
145 }
146
147
148 /**
149 * Free all variants of a geometry program.
150 */
151 void
152 st_release_gp_variants(struct st_context *st, struct st_geometry_program *stgp)
153 {
154 struct st_gp_variant *gpv;
155
156 for (gpv = stgp->variants; gpv; ) {
157 struct st_gp_variant *next = gpv->next;
158 delete_gp_variant(st, gpv);
159 gpv = next;
160 }
161
162 stgp->variants = NULL;
163 }
164
165
166
167
168 /**
169 * Translate a Mesa vertex shader into a TGSI shader.
170 * \param outputMapping to map vertex program output registers (VARYING_SLOT_x)
171 * to TGSI output slots
172 * \param tokensOut destination for TGSI tokens
173 * \return pointer to cached pipe_shader object.
174 */
175 void
176 st_prepare_vertex_program(struct gl_context *ctx,
177 struct st_vertex_program *stvp)
178 {
179 struct st_context *st = st_context(ctx);
180 GLuint attr;
181
182 stvp->num_inputs = 0;
183 stvp->num_outputs = 0;
184
185 if (stvp->Base.IsPositionInvariant)
186 _mesa_insert_mvp_code(ctx, &stvp->Base);
187
188 if (!stvp->glsl_to_tgsi)
189 assert(stvp->Base.Base.NumInstructions > 1);
190
191 /*
192 * Determine number of inputs, the mappings between VERT_ATTRIB_x
193 * and TGSI generic input indexes, plus input attrib semantic info.
194 */
195 for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
196 if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
197 stvp->input_to_index[attr] = stvp->num_inputs;
198 stvp->index_to_input[stvp->num_inputs] = attr;
199 stvp->num_inputs++;
200 }
201 }
202 /* bit of a hack, presetup potentially unused edgeflag input */
203 stvp->input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
204 stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;
205
206 /* Compute mapping of vertex program outputs to slots.
207 */
208 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
209 if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
210 stvp->result_to_output[attr] = ~0;
211 }
212 else {
213 unsigned slot = stvp->num_outputs++;
214
215 stvp->result_to_output[attr] = slot;
216
217 switch (attr) {
218 case VARYING_SLOT_POS:
219 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
220 stvp->output_semantic_index[slot] = 0;
221 break;
222 case VARYING_SLOT_COL0:
223 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
224 stvp->output_semantic_index[slot] = 0;
225 break;
226 case VARYING_SLOT_COL1:
227 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
228 stvp->output_semantic_index[slot] = 1;
229 break;
230 case VARYING_SLOT_BFC0:
231 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
232 stvp->output_semantic_index[slot] = 0;
233 break;
234 case VARYING_SLOT_BFC1:
235 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
236 stvp->output_semantic_index[slot] = 1;
237 break;
238 case VARYING_SLOT_FOGC:
239 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
240 stvp->output_semantic_index[slot] = 0;
241 break;
242 case VARYING_SLOT_PSIZ:
243 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
244 stvp->output_semantic_index[slot] = 0;
245 break;
246 case VARYING_SLOT_CLIP_DIST0:
247 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
248 stvp->output_semantic_index[slot] = 0;
249 break;
250 case VARYING_SLOT_CLIP_DIST1:
251 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
252 stvp->output_semantic_index[slot] = 1;
253 break;
254 case VARYING_SLOT_EDGE:
255 assert(0);
256 break;
257 case VARYING_SLOT_CLIP_VERTEX:
258 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
259 stvp->output_semantic_index[slot] = 0;
260 break;
261 case VARYING_SLOT_LAYER:
262 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
263 stvp->output_semantic_index[slot] = 0;
264 break;
265 case VARYING_SLOT_VIEWPORT:
266 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
267 stvp->output_semantic_index[slot] = 0;
268 break;
269
270 case VARYING_SLOT_TEX0:
271 case VARYING_SLOT_TEX1:
272 case VARYING_SLOT_TEX2:
273 case VARYING_SLOT_TEX3:
274 case VARYING_SLOT_TEX4:
275 case VARYING_SLOT_TEX5:
276 case VARYING_SLOT_TEX6:
277 case VARYING_SLOT_TEX7:
278 stvp->output_semantic_name[slot] = st->needs_texcoord_semantic ?
279 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
280 stvp->output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
281 break;
282
283 case VARYING_SLOT_VAR0:
284 default:
285 assert(attr < VARYING_SLOT_MAX);
286 stvp->output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
287 stvp->output_semantic_index[slot] = st->needs_texcoord_semantic ?
288 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
289 break;
290 }
291 }
292 }
293 /* similar hack to above, presetup potentially unused edgeflag output */
294 stvp->result_to_output[VARYING_SLOT_EDGE] = stvp->num_outputs;
295 stvp->output_semantic_name[stvp->num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
296 stvp->output_semantic_index[stvp->num_outputs] = 0;
297 }
298
299
300 /**
301 * Translate a vertex program to create a new variant.
302 */
303 static struct st_vp_variant *
304 st_translate_vertex_program(struct st_context *st,
305 struct st_vertex_program *stvp,
306 const struct st_vp_variant_key *key)
307 {
308 struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
309 struct pipe_context *pipe = st->pipe;
310 struct ureg_program *ureg;
311 enum pipe_error error;
312 unsigned num_outputs;
313
314 st_prepare_vertex_program(st->ctx, stvp);
315
316 if (!stvp->glsl_to_tgsi)
317 {
318 _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
319 }
320
321 ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
322 if (ureg == NULL) {
323 free(vpv);
324 return NULL;
325 }
326
327 vpv->key = *key;
328
329 vpv->num_inputs = stvp->num_inputs;
330 num_outputs = stvp->num_outputs;
331 if (key->passthrough_edgeflags) {
332 vpv->num_inputs++;
333 num_outputs++;
334 }
335
336 if (ST_DEBUG & DEBUG_MESA) {
337 _mesa_print_program(&stvp->Base.Base);
338 _mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
339 debug_printf("\n");
340 }
341
342 if (stvp->glsl_to_tgsi)
343 error = st_translate_program(st->ctx,
344 TGSI_PROCESSOR_VERTEX,
345 ureg,
346 stvp->glsl_to_tgsi,
347 &stvp->Base.Base,
348 /* inputs */
349 vpv->num_inputs,
350 stvp->input_to_index,
351 NULL, /* input semantic name */
352 NULL, /* input semantic index */
353 NULL, /* interp mode */
354 NULL, /* interp location */
355 /* outputs */
356 num_outputs,
357 stvp->result_to_output,
358 stvp->output_semantic_name,
359 stvp->output_semantic_index,
360 key->passthrough_edgeflags,
361 key->clamp_color);
362 else
363 error = st_translate_mesa_program(st->ctx,
364 TGSI_PROCESSOR_VERTEX,
365 ureg,
366 &stvp->Base.Base,
367 /* inputs */
368 vpv->num_inputs,
369 stvp->input_to_index,
370 NULL, /* input semantic name */
371 NULL, /* input semantic index */
372 NULL,
373 /* outputs */
374 num_outputs,
375 stvp->result_to_output,
376 stvp->output_semantic_name,
377 stvp->output_semantic_index,
378 key->passthrough_edgeflags,
379 key->clamp_color);
380
381 if (error)
382 goto fail;
383
384 vpv->tgsi.tokens = ureg_get_tokens( ureg, NULL );
385 if (!vpv->tgsi.tokens)
386 goto fail;
387
388 ureg_destroy( ureg );
389
390 if (stvp->glsl_to_tgsi) {
391 st_translate_stream_output_info(stvp->glsl_to_tgsi,
392 stvp->result_to_output,
393 &vpv->tgsi.stream_output);
394 }
395
396 if (ST_DEBUG & DEBUG_TGSI) {
397 tgsi_dump(vpv->tgsi.tokens, 0);
398 debug_printf("\n");
399 }
400
401 vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
402 return vpv;
403
404 fail:
405 debug_printf("%s: failed to translate Mesa program:\n", __FUNCTION__);
406 _mesa_print_program(&stvp->Base.Base);
407 debug_assert(0);
408
409 ureg_destroy( ureg );
410 return NULL;
411 }
412
413
414 /**
415 * Find/create a vertex program variant.
416 */
417 struct st_vp_variant *
418 st_get_vp_variant(struct st_context *st,
419 struct st_vertex_program *stvp,
420 const struct st_vp_variant_key *key)
421 {
422 struct st_vp_variant *vpv;
423
424 /* Search for existing variant */
425 for (vpv = stvp->variants; vpv; vpv = vpv->next) {
426 if (memcmp(&vpv->key, key, sizeof(*key)) == 0) {
427 break;
428 }
429 }
430
431 if (!vpv) {
432 /* create now */
433 vpv = st_translate_vertex_program(st, stvp, key);
434 if (vpv) {
435 /* insert into list */
436 vpv->next = stvp->variants;
437 stvp->variants = vpv;
438 }
439 }
440
441 return vpv;
442 }
443
444
445 static unsigned
446 st_translate_interp(enum glsl_interp_qualifier glsl_qual, bool is_color)
447 {
448 switch (glsl_qual) {
449 case INTERP_QUALIFIER_NONE:
450 if (is_color)
451 return TGSI_INTERPOLATE_COLOR;
452 return TGSI_INTERPOLATE_PERSPECTIVE;
453 case INTERP_QUALIFIER_SMOOTH:
454 return TGSI_INTERPOLATE_PERSPECTIVE;
455 case INTERP_QUALIFIER_FLAT:
456 return TGSI_INTERPOLATE_CONSTANT;
457 case INTERP_QUALIFIER_NOPERSPECTIVE:
458 return TGSI_INTERPOLATE_LINEAR;
459 default:
460 assert(0 && "unexpected interp mode in st_translate_interp()");
461 return TGSI_INTERPOLATE_PERSPECTIVE;
462 }
463 }
464
465
466 /**
467 * Translate a Mesa fragment shader into a TGSI shader using extra info in
468 * the key.
469 * \return new fragment program variant
470 */
471 static struct st_fp_variant *
472 st_translate_fragment_program(struct st_context *st,
473 struct st_fragment_program *stfp,
474 const struct st_fp_variant_key *key)
475 {
476 struct pipe_context *pipe = st->pipe;
477 struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
478 GLboolean deleteFP = GL_FALSE;
479
480 GLuint outputMapping[FRAG_RESULT_MAX];
481 GLuint inputMapping[VARYING_SLOT_MAX];
482 GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */
483 GLuint interpLocation[PIPE_MAX_SHADER_INPUTS];
484 GLuint attr;
485 GLbitfield64 inputsRead;
486 struct ureg_program *ureg;
487
488 GLboolean write_all = GL_FALSE;
489
490 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
491 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
492 uint fs_num_inputs = 0;
493
494 ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
495 ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
496 uint fs_num_outputs = 0;
497
498 if (!variant)
499 return NULL;
500
501 assert(!(key->bitmap && key->drawpixels));
502
503 if (key->bitmap) {
504 /* glBitmap drawing */
505 struct gl_fragment_program *fp; /* we free this temp program below */
506
507 st_make_bitmap_fragment_program(st, &stfp->Base,
508 &fp, &variant->bitmap_sampler);
509
510 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
511 stfp = st_fragment_program(fp);
512 deleteFP = GL_TRUE;
513 }
514 else if (key->drawpixels) {
515 /* glDrawPixels drawing */
516 struct gl_fragment_program *fp; /* we free this temp program below */
517
518 if (key->drawpixels_z || key->drawpixels_stencil) {
519 fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z,
520 key->drawpixels_stencil);
521 }
522 else {
523 /* RGBA */
524 st_make_drawpix_fragment_program(st, &stfp->Base, &fp);
525 variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
526 deleteFP = GL_TRUE;
527 }
528 stfp = st_fragment_program(fp);
529 }
530
531 if (!stfp->glsl_to_tgsi)
532 _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);
533
534 /*
535 * Convert Mesa program inputs to TGSI input register semantics.
536 */
537 inputsRead = stfp->Base.Base.InputsRead;
538 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
539 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
540 const GLuint slot = fs_num_inputs++;
541
542 inputMapping[attr] = slot;
543 if (stfp->Base.IsCentroid & BITFIELD64_BIT(attr))
544 interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTROID;
545 else if (stfp->Base.IsSample & BITFIELD64_BIT(attr))
546 interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;
547 else
548 interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTER;
549
550 if (key->persample_shading)
551 interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;
552
553 switch (attr) {
554 case VARYING_SLOT_POS:
555 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
556 input_semantic_index[slot] = 0;
557 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
558 break;
559 case VARYING_SLOT_COL0:
560 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
561 input_semantic_index[slot] = 0;
562 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
563 TRUE);
564 break;
565 case VARYING_SLOT_COL1:
566 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
567 input_semantic_index[slot] = 1;
568 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
569 TRUE);
570 break;
571 case VARYING_SLOT_FOGC:
572 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
573 input_semantic_index[slot] = 0;
574 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
575 break;
576 case VARYING_SLOT_FACE:
577 input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
578 input_semantic_index[slot] = 0;
579 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
580 break;
581 case VARYING_SLOT_PRIMITIVE_ID:
582 input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
583 input_semantic_index[slot] = 0;
584 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
585 break;
586 case VARYING_SLOT_LAYER:
587 input_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
588 input_semantic_index[slot] = 0;
589 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
590 break;
591 case VARYING_SLOT_VIEWPORT:
592 input_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
593 input_semantic_index[slot] = 0;
594 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
595 break;
596 case VARYING_SLOT_CLIP_DIST0:
597 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
598 input_semantic_index[slot] = 0;
599 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
600 break;
601 case VARYING_SLOT_CLIP_DIST1:
602 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
603 input_semantic_index[slot] = 1;
604 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
605 break;
606 /* In most cases, there is nothing special about these
607 * inputs, so adopt a convention to use the generic
608 * semantic name and the mesa VARYING_SLOT_ number as the
609 * index.
610 *
611 * All that is required is that the vertex shader labels
612 * its own outputs similarly, and that the vertex shader
613 * generates at least every output required by the
614 * fragment shader plus fixed-function hardware (such as
615 * BFC).
616 *
617 * However, some drivers may need us to identify the PNTC and TEXi
618 * varyings if, for example, their capability to replace them with
619 * sprite coordinates is limited.
620 */
621 case VARYING_SLOT_PNTC:
622 if (st->needs_texcoord_semantic) {
623 input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
624 input_semantic_index[slot] = 0;
625 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
626 break;
627 }
628 /* fall through */
629 case VARYING_SLOT_TEX0:
630 case VARYING_SLOT_TEX1:
631 case VARYING_SLOT_TEX2:
632 case VARYING_SLOT_TEX3:
633 case VARYING_SLOT_TEX4:
634 case VARYING_SLOT_TEX5:
635 case VARYING_SLOT_TEX6:
636 case VARYING_SLOT_TEX7:
637 if (st->needs_texcoord_semantic) {
638 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
639 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
640 interpMode[slot] =
641 st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
642 break;
643 }
644 /* fall through */
645 case VARYING_SLOT_VAR0:
646 default:
647 /* Semantic indices should be zero-based because drivers may choose
648 * to assign a fixed slot determined by that index.
649 * This is useful because ARB_separate_shader_objects uses location
650 * qualifiers for linkage, and if the semantic index corresponds to
651 * these locations, linkage passes in the driver become unecessary.
652 *
653 * If needs_texcoord_semantic is true, no semantic indices will be
654 * consumed for the TEXi varyings, and we can base the locations of
655 * the user varyings on VAR0. Otherwise, we use TEX0 as base index.
656 */
657 assert(attr >= VARYING_SLOT_TEX0);
658 input_semantic_index[slot] = st->needs_texcoord_semantic ?
659 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
660 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
661 if (attr == VARYING_SLOT_PNTC)
662 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
663 else
664 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
665 FALSE);
666 break;
667 }
668 }
669 else {
670 inputMapping[attr] = -1;
671 }
672 }
673
674 /*
675 * Semantics and mapping for outputs
676 */
677 {
678 uint numColors = 0;
679 GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;
680
681 /* if z is written, emit that first */
682 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
683 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
684 fs_output_semantic_index[fs_num_outputs] = 0;
685 outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
686 fs_num_outputs++;
687 outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
688 }
689
690 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
691 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
692 fs_output_semantic_index[fs_num_outputs] = 0;
693 outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
694 fs_num_outputs++;
695 outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
696 }
697
698 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) {
699 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_SAMPLEMASK;
700 fs_output_semantic_index[fs_num_outputs] = 0;
701 outputMapping[FRAG_RESULT_SAMPLE_MASK] = fs_num_outputs;
702 fs_num_outputs++;
703 outputsWritten &= ~(1 << FRAG_RESULT_SAMPLE_MASK);
704 }
705
706 /* handle remaining outputs (color) */
707 for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
708 if (outputsWritten & BITFIELD64_BIT(attr)) {
709 switch (attr) {
710 case FRAG_RESULT_DEPTH:
711 case FRAG_RESULT_STENCIL:
712 case FRAG_RESULT_SAMPLE_MASK:
713 /* handled above */
714 assert(0);
715 break;
716 case FRAG_RESULT_COLOR:
717 write_all = GL_TRUE; /* fallthrough */
718 default:
719 assert(attr == FRAG_RESULT_COLOR ||
720 (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
721 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
722 fs_output_semantic_index[fs_num_outputs] = numColors;
723 outputMapping[attr] = fs_num_outputs;
724 numColors++;
725 break;
726 }
727
728 fs_num_outputs++;
729 }
730 }
731 }
732
733 ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
734 if (ureg == NULL) {
735 free(variant);
736 return NULL;
737 }
738
739 if (ST_DEBUG & DEBUG_MESA) {
740 _mesa_print_program(&stfp->Base.Base);
741 _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
742 debug_printf("\n");
743 }
744 if (write_all == GL_TRUE)
745 ureg_property_fs_color0_writes_all_cbufs(ureg, 1);
746
747 if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
748 switch (stfp->Base.FragDepthLayout) {
749 case FRAG_DEPTH_LAYOUT_ANY:
750 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_ANY);
751 break;
752 case FRAG_DEPTH_LAYOUT_GREATER:
753 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_GREATER);
754 break;
755 case FRAG_DEPTH_LAYOUT_LESS:
756 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_LESS);
757 break;
758 case FRAG_DEPTH_LAYOUT_UNCHANGED:
759 ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
760 break;
761 default:
762 assert(0);
763 }
764 }
765
766 if (stfp->glsl_to_tgsi)
767 st_translate_program(st->ctx,
768 TGSI_PROCESSOR_FRAGMENT,
769 ureg,
770 stfp->glsl_to_tgsi,
771 &stfp->Base.Base,
772 /* inputs */
773 fs_num_inputs,
774 inputMapping,
775 input_semantic_name,
776 input_semantic_index,
777 interpMode,
778 interpLocation,
779 /* outputs */
780 fs_num_outputs,
781 outputMapping,
782 fs_output_semantic_name,
783 fs_output_semantic_index, FALSE,
784 key->clamp_color );
785 else
786 st_translate_mesa_program(st->ctx,
787 TGSI_PROCESSOR_FRAGMENT,
788 ureg,
789 &stfp->Base.Base,
790 /* inputs */
791 fs_num_inputs,
792 inputMapping,
793 input_semantic_name,
794 input_semantic_index,
795 interpMode,
796 /* outputs */
797 fs_num_outputs,
798 outputMapping,
799 fs_output_semantic_name,
800 fs_output_semantic_index, FALSE,
801 key->clamp_color);
802
803 variant->tgsi.tokens = ureg_get_tokens( ureg, NULL );
804 ureg_destroy( ureg );
805
806 if (ST_DEBUG & DEBUG_TGSI) {
807 tgsi_dump(variant->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/);
808 debug_printf("\n");
809 }
810
811 /* fill in variant */
812 variant->driver_shader = pipe->create_fs_state(pipe, &variant->tgsi);
813 variant->key = *key;
814
815 if (deleteFP) {
816 /* Free the temporary program made above */
817 struct gl_fragment_program *fp = &stfp->Base;
818 _mesa_reference_fragprog(st->ctx, &fp, NULL);
819 }
820
821 return variant;
822 }
823
824
825 /**
826 * Translate fragment program if needed.
827 */
828 struct st_fp_variant *
829 st_get_fp_variant(struct st_context *st,
830 struct st_fragment_program *stfp,
831 const struct st_fp_variant_key *key)
832 {
833 struct st_fp_variant *fpv;
834
835 /* Search for existing variant */
836 for (fpv = stfp->variants; fpv; fpv = fpv->next) {
837 if (memcmp(&fpv->key, key, sizeof(*key)) == 0) {
838 break;
839 }
840 }
841
842 if (!fpv) {
843 /* create new */
844 fpv = st_translate_fragment_program(st, stfp, key);
845 if (fpv) {
846 /* insert into list */
847 fpv->next = stfp->variants;
848 stfp->variants = fpv;
849 }
850 }
851
852 return fpv;
853 }
854
855
856 /**
857 * Translate a geometry program to create a new variant.
858 */
859 static struct st_gp_variant *
860 st_translate_geometry_program(struct st_context *st,
861 struct st_geometry_program *stgp,
862 const struct st_gp_variant_key *key)
863 {
864 GLuint inputMapping[VARYING_SLOT_MAX];
865 GLuint outputMapping[VARYING_SLOT_MAX];
866 struct pipe_context *pipe = st->pipe;
867 GLuint attr;
868 GLbitfield64 inputsRead;
869 GLuint vslot = 0;
870
871 uint gs_num_inputs = 0;
872 uint gs_builtin_inputs = 0;
873 uint gs_array_offset = 0;
874
875 ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
876 ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
877 uint gs_num_outputs = 0;
878
879 GLint i;
880 GLuint maxSlot = 0;
881 struct ureg_program *ureg;
882
883 struct st_gp_variant *gpv;
884
885 gpv = CALLOC_STRUCT(st_gp_variant);
886 if (!gpv)
887 return NULL;
888
889 if (!stgp->glsl_to_tgsi) {
890 _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_OUTPUT);
891 }
892
893 ureg = ureg_create( TGSI_PROCESSOR_GEOMETRY );
894 if (ureg == NULL) {
895 free(gpv);
896 return NULL;
897 }
898
899 /* which vertex output goes to the first geometry input */
900 vslot = 0;
901
902 memset(inputMapping, 0, sizeof(inputMapping));
903 memset(outputMapping, 0, sizeof(outputMapping));
904
905 /*
906 * Convert Mesa program inputs to TGSI input register semantics.
907 */
908 inputsRead = stgp->Base.Base.InputsRead;
909 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
910 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
911 const GLuint slot = gs_num_inputs;
912
913 gs_num_inputs++;
914
915 inputMapping[attr] = slot;
916
917 stgp->input_map[slot + gs_array_offset] = vslot - gs_builtin_inputs;
918 stgp->input_to_index[attr] = vslot;
919 stgp->index_to_input[vslot] = attr;
920 ++vslot;
921
922 if (attr != VARYING_SLOT_PRIMITIVE_ID) {
923 gs_array_offset += 2;
924 } else
925 ++gs_builtin_inputs;
926
927 #if 0
928 debug_printf("input map at %d = %d\n",
929 slot + gs_array_offset, stgp->input_map[slot + gs_array_offset]);
930 #endif
931
932 switch (attr) {
933 case VARYING_SLOT_PRIMITIVE_ID:
934 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
935 stgp->input_semantic_index[slot] = 0;
936 break;
937 case VARYING_SLOT_POS:
938 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
939 stgp->input_semantic_index[slot] = 0;
940 break;
941 case VARYING_SLOT_COL0:
942 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
943 stgp->input_semantic_index[slot] = 0;
944 break;
945 case VARYING_SLOT_COL1:
946 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
947 stgp->input_semantic_index[slot] = 1;
948 break;
949 case VARYING_SLOT_FOGC:
950 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
951 stgp->input_semantic_index[slot] = 0;
952 break;
953 case VARYING_SLOT_CLIP_VERTEX:
954 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
955 stgp->input_semantic_index[slot] = 0;
956 break;
957 case VARYING_SLOT_CLIP_DIST0:
958 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
959 stgp->input_semantic_index[slot] = 0;
960 break;
961 case VARYING_SLOT_CLIP_DIST1:
962 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
963 stgp->input_semantic_index[slot] = 1;
964 break;
965 case VARYING_SLOT_PSIZ:
966 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
967 stgp->input_semantic_index[slot] = 0;
968 break;
969 case VARYING_SLOT_TEX0:
970 case VARYING_SLOT_TEX1:
971 case VARYING_SLOT_TEX2:
972 case VARYING_SLOT_TEX3:
973 case VARYING_SLOT_TEX4:
974 case VARYING_SLOT_TEX5:
975 case VARYING_SLOT_TEX6:
976 case VARYING_SLOT_TEX7:
977 stgp->input_semantic_name[slot] = st->needs_texcoord_semantic ?
978 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
979 stgp->input_semantic_index[slot] = (attr - VARYING_SLOT_TEX0);
980 break;
981 case VARYING_SLOT_VAR0:
982 default:
983 assert(attr >= VARYING_SLOT_VAR0 && attr < VARYING_SLOT_MAX);
984 stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
985 stgp->input_semantic_index[slot] = st->needs_texcoord_semantic ?
986 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
987 break;
988 }
989 }
990 }
991
992 /* initialize output semantics to defaults */
993 for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
994 gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
995 gs_output_semantic_index[i] = 0;
996 }
997
998 /*
999 * Determine number of outputs, the (default) output register
1000 * mapping and the semantic information for each output.
1001 */
1002 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1003 if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
1004 GLuint slot;
1005
1006 slot = gs_num_outputs;
1007 gs_num_outputs++;
1008 outputMapping[attr] = slot;
1009
1010 switch (attr) {
1011 case VARYING_SLOT_POS:
1012 assert(slot == 0);
1013 gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
1014 gs_output_semantic_index[slot] = 0;
1015 break;
1016 case VARYING_SLOT_COL0:
1017 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1018 gs_output_semantic_index[slot] = 0;
1019 break;
1020 case VARYING_SLOT_COL1:
1021 gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1022 gs_output_semantic_index[slot] = 1;
1023 break;
1024 case VARYING_SLOT_BFC0:
1025 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1026 gs_output_semantic_index[slot] = 0;
1027 break;
1028 case VARYING_SLOT_BFC1:
1029 gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1030 gs_output_semantic_index[slot] = 1;
1031 break;
1032 case VARYING_SLOT_FOGC:
1033 gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
1034 gs_output_semantic_index[slot] = 0;
1035 break;
1036 case VARYING_SLOT_PSIZ:
1037 gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
1038 gs_output_semantic_index[slot] = 0;
1039 break;
1040 case VARYING_SLOT_CLIP_VERTEX:
1041 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1042 gs_output_semantic_index[slot] = 0;
1043 break;
1044 case VARYING_SLOT_CLIP_DIST0:
1045 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1046 gs_output_semantic_index[slot] = 0;
1047 break;
1048 case VARYING_SLOT_CLIP_DIST1:
1049 gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1050 gs_output_semantic_index[slot] = 1;
1051 break;
1052 case VARYING_SLOT_LAYER:
1053 gs_output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
1054 gs_output_semantic_index[slot] = 0;
1055 break;
1056 case VARYING_SLOT_PRIMITIVE_ID:
1057 gs_output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
1058 gs_output_semantic_index[slot] = 0;
1059 break;
1060 case VARYING_SLOT_VIEWPORT:
1061 gs_output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
1062 gs_output_semantic_index[slot] = 0;
1063 break;
1064 case VARYING_SLOT_TEX0:
1065 case VARYING_SLOT_TEX1:
1066 case VARYING_SLOT_TEX2:
1067 case VARYING_SLOT_TEX3:
1068 case VARYING_SLOT_TEX4:
1069 case VARYING_SLOT_TEX5:
1070 case VARYING_SLOT_TEX6:
1071 case VARYING_SLOT_TEX7:
1072 gs_output_semantic_name[slot] = st->needs_texcoord_semantic ?
1073 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
1074 gs_output_semantic_index[slot] = (attr - VARYING_SLOT_TEX0);
1075 break;
1076 case VARYING_SLOT_VAR0:
1077 default:
1078 assert(slot < Elements(gs_output_semantic_name));
1079 assert(attr >= VARYING_SLOT_VAR0);
1080 gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1081 gs_output_semantic_index[slot] = st->needs_texcoord_semantic ?
1082 (attr - VARYING_SLOT_VAR0) : (attr - VARYING_SLOT_TEX0);
1083 break;
1084 }
1085 }
1086 }
1087
1088 /* find max output slot referenced to compute gs_num_outputs */
1089 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1090 if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot)
1091 maxSlot = outputMapping[attr];
1092 }
1093 gs_num_outputs = maxSlot + 1;
1094
1095 #if 0 /* debug */
1096 {
1097 GLuint i;
1098 printf("outputMapping? %d\n", outputMapping ? 1 : 0);
1099 if (outputMapping) {
1100 printf("attr -> slot\n");
1101 for (i = 0; i < 16; i++) {
1102 printf(" %2d %3d\n", i, outputMapping[i]);
1103 }
1104 }
1105 printf("slot sem_name sem_index\n");
1106 for (i = 0; i < gs_num_outputs; i++) {
1107 printf(" %2d %d %d\n",
1108 i,
1109 gs_output_semantic_name[i],
1110 gs_output_semantic_index[i]);
1111 }
1112 }
1113 #endif
1114
1115 /* free old shader state, if any */
1116 if (stgp->tgsi.tokens) {
1117 st_free_tokens(stgp->tgsi.tokens);
1118 stgp->tgsi.tokens = NULL;
1119 }
1120
1121 ureg_property_gs_input_prim(ureg, stgp->Base.InputType);
1122 ureg_property_gs_output_prim(ureg, stgp->Base.OutputType);
1123 ureg_property_gs_max_vertices(ureg, stgp->Base.VerticesOut);
1124 ureg_property_gs_invocations(ureg, stgp->Base.Invocations);
1125
1126 if (stgp->glsl_to_tgsi)
1127 st_translate_program(st->ctx,
1128 TGSI_PROCESSOR_GEOMETRY,
1129 ureg,
1130 stgp->glsl_to_tgsi,
1131 &stgp->Base.Base,
1132 /* inputs */
1133 gs_num_inputs,
1134 inputMapping,
1135 stgp->input_semantic_name,
1136 stgp->input_semantic_index,
1137 NULL,
1138 NULL,
1139 /* outputs */
1140 gs_num_outputs,
1141 outputMapping,
1142 gs_output_semantic_name,
1143 gs_output_semantic_index,
1144 FALSE,
1145 FALSE);
1146 else
1147 st_translate_mesa_program(st->ctx,
1148 TGSI_PROCESSOR_GEOMETRY,
1149 ureg,
1150 &stgp->Base.Base,
1151 /* inputs */
1152 gs_num_inputs,
1153 inputMapping,
1154 stgp->input_semantic_name,
1155 stgp->input_semantic_index,
1156 NULL,
1157 /* outputs */
1158 gs_num_outputs,
1159 outputMapping,
1160 gs_output_semantic_name,
1161 gs_output_semantic_index,
1162 FALSE,
1163 FALSE);
1164
1165 stgp->num_inputs = gs_num_inputs;
1166 stgp->tgsi.tokens = ureg_get_tokens( ureg, NULL );
1167 ureg_destroy( ureg );
1168
1169 if (stgp->glsl_to_tgsi) {
1170 st_translate_stream_output_info(stgp->glsl_to_tgsi,
1171 outputMapping,
1172 &stgp->tgsi.stream_output);
1173 }
1174
1175 if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
1176 _mesa_print_program(&stgp->Base.Base);
1177 debug_printf("\n");
1178 }
1179
1180 if (ST_DEBUG & DEBUG_TGSI) {
1181 tgsi_dump(stgp->tgsi.tokens, 0);
1182 debug_printf("\n");
1183 }
1184
1185 /* fill in new variant */
1186 gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
1187 gpv->key = *key;
1188 return gpv;
1189 }
1190
1191
1192 /**
1193 * Get/create geometry program variant.
1194 */
1195 struct st_gp_variant *
1196 st_get_gp_variant(struct st_context *st,
1197 struct st_geometry_program *stgp,
1198 const struct st_gp_variant_key *key)
1199 {
1200 struct st_gp_variant *gpv;
1201
1202 /* Search for existing variant */
1203 for (gpv = stgp->variants; gpv; gpv = gpv->next) {
1204 if (memcmp(&gpv->key, key, sizeof(*key)) == 0) {
1205 break;
1206 }
1207 }
1208
1209 if (!gpv) {
1210 /* create new */
1211 gpv = st_translate_geometry_program(st, stgp, key);
1212 if (gpv) {
1213 /* insert into list */
1214 gpv->next = stgp->variants;
1215 stgp->variants = gpv;
1216 }
1217 }
1218
1219 return gpv;
1220 }
1221
1222
1223
1224
1225 /**
1226 * Debug- print current shader text
1227 */
1228 void
1229 st_print_shaders(struct gl_context *ctx)
1230 {
1231 struct gl_shader_program **shProg = ctx->_Shader->CurrentProgram;
1232 unsigned j;
1233
1234 for (j = 0; j < 3; j++) {
1235 unsigned i;
1236
1237 if (shProg[j] == NULL)
1238 continue;
1239
1240 for (i = 0; i < shProg[j]->NumShaders; i++) {
1241 struct gl_shader *sh;
1242
1243 switch (shProg[j]->Shaders[i]->Type) {
1244 case GL_VERTEX_SHADER:
1245 sh = (i != 0) ? NULL : shProg[j]->Shaders[i];
1246 break;
1247 case GL_GEOMETRY_SHADER_ARB:
1248 sh = (i != 1) ? NULL : shProg[j]->Shaders[i];
1249 break;
1250 case GL_FRAGMENT_SHADER:
1251 sh = (i != 2) ? NULL : shProg[j]->Shaders[i];
1252 break;
1253 default:
1254 assert(0);
1255 sh = NULL;
1256 break;
1257 }
1258
1259 if (sh != NULL) {
1260 printf("GLSL shader %u of %u:\n", i, shProg[j]->NumShaders);
1261 printf("%s\n", sh->Source);
1262 }
1263 }
1264 }
1265 }
1266
1267
1268 /**
1269 * Vert/Geom/Frag programs have per-context variants. Free all the
1270 * variants attached to the given program which match the given context.
1271 */
1272 static void
1273 destroy_program_variants(struct st_context *st, struct gl_program *program)
1274 {
1275 if (!program || program == &_mesa_DummyProgram)
1276 return;
1277
1278 switch (program->Target) {
1279 case GL_VERTEX_PROGRAM_ARB:
1280 {
1281 struct st_vertex_program *stvp = (struct st_vertex_program *) program;
1282 struct st_vp_variant *vpv, **prevPtr = &stvp->variants;
1283
1284 for (vpv = stvp->variants; vpv; ) {
1285 struct st_vp_variant *next = vpv->next;
1286 if (vpv->key.st == st) {
1287 /* unlink from list */
1288 *prevPtr = next;
1289 /* destroy this variant */
1290 delete_vp_variant(st, vpv);
1291 }
1292 else {
1293 prevPtr = &vpv->next;
1294 }
1295 vpv = next;
1296 }
1297 }
1298 break;
1299 case GL_FRAGMENT_PROGRAM_ARB:
1300 {
1301 struct st_fragment_program *stfp =
1302 (struct st_fragment_program *) program;
1303 struct st_fp_variant *fpv, **prevPtr = &stfp->variants;
1304
1305 for (fpv = stfp->variants; fpv; ) {
1306 struct st_fp_variant *next = fpv->next;
1307 if (fpv->key.st == st) {
1308 /* unlink from list */
1309 *prevPtr = next;
1310 /* destroy this variant */
1311 delete_fp_variant(st, fpv);
1312 }
1313 else {
1314 prevPtr = &fpv->next;
1315 }
1316 fpv = next;
1317 }
1318 }
1319 break;
1320 case MESA_GEOMETRY_PROGRAM:
1321 {
1322 struct st_geometry_program *stgp =
1323 (struct st_geometry_program *) program;
1324 struct st_gp_variant *gpv, **prevPtr = &stgp->variants;
1325
1326 for (gpv = stgp->variants; gpv; ) {
1327 struct st_gp_variant *next = gpv->next;
1328 if (gpv->key.st == st) {
1329 /* unlink from list */
1330 *prevPtr = next;
1331 /* destroy this variant */
1332 delete_gp_variant(st, gpv);
1333 }
1334 else {
1335 prevPtr = &gpv->next;
1336 }
1337 gpv = next;
1338 }
1339 }
1340 break;
1341 default:
1342 _mesa_problem(NULL, "Unexpected program target 0x%x in "
1343 "destroy_program_variants_cb()", program->Target);
1344 }
1345 }
1346
1347
1348 /**
1349 * Callback for _mesa_HashWalk. Free all the shader's program variants
1350 * which match the given context.
1351 */
1352 static void
1353 destroy_shader_program_variants_cb(GLuint key, void *data, void *userData)
1354 {
1355 struct st_context *st = (struct st_context *) userData;
1356 struct gl_shader *shader = (struct gl_shader *) data;
1357
1358 switch (shader->Type) {
1359 case GL_SHADER_PROGRAM_MESA:
1360 {
1361 struct gl_shader_program *shProg = (struct gl_shader_program *) data;
1362 GLuint i;
1363
1364 for (i = 0; i < shProg->NumShaders; i++) {
1365 destroy_program_variants(st, shProg->Shaders[i]->Program);
1366 }
1367
1368 for (i = 0; i < Elements(shProg->_LinkedShaders); i++) {
1369 if (shProg->_LinkedShaders[i])
1370 destroy_program_variants(st, shProg->_LinkedShaders[i]->Program);
1371 }
1372 }
1373 break;
1374 case GL_VERTEX_SHADER:
1375 case GL_FRAGMENT_SHADER:
1376 case GL_GEOMETRY_SHADER:
1377 {
1378 destroy_program_variants(st, shader->Program);
1379 }
1380 break;
1381 default:
1382 assert(0);
1383 }
1384 }
1385
1386
1387 /**
1388 * Callback for _mesa_HashWalk. Free all the program variants which match
1389 * the given context.
1390 */
1391 static void
1392 destroy_program_variants_cb(GLuint key, void *data, void *userData)
1393 {
1394 struct st_context *st = (struct st_context *) userData;
1395 struct gl_program *program = (struct gl_program *) data;
1396 destroy_program_variants(st, program);
1397 }
1398
1399
1400 /**
1401 * Walk over all shaders and programs to delete any variants which
1402 * belong to the given context.
1403 * This is called during context tear-down.
1404 */
1405 void
1406 st_destroy_program_variants(struct st_context *st)
1407 {
1408 /* ARB vert/frag program */
1409 _mesa_HashWalk(st->ctx->Shared->Programs,
1410 destroy_program_variants_cb, st);
1411
1412 /* GLSL vert/frag/geom shaders */
1413 _mesa_HashWalk(st->ctx->Shared->ShaderObjects,
1414 destroy_shader_program_variants_cb, st);
1415 }
1416
1417
1418 /**
1419 * For debugging, print/dump the current vertex program.
1420 */
1421 void
1422 st_print_current_vertex_program(void)
1423 {
1424 GET_CURRENT_CONTEXT(ctx);
1425
1426 if (ctx->VertexProgram._Current) {
1427 struct st_vertex_program *stvp =
1428 (struct st_vertex_program *) ctx->VertexProgram._Current;
1429 struct st_vp_variant *stv;
1430
1431 debug_printf("Vertex program %u\n", stvp->Base.Base.Id);
1432
1433 for (stv = stvp->variants; stv; stv = stv->next) {
1434 debug_printf("variant %p\n", stv);
1435 tgsi_dump(stv->tgsi.tokens, 0);
1436 }
1437 }
1438 }