st/mesa: use correct TGSI texture target in drawpix fragment shader
[mesa.git] / src / mesa / state_tracker / st_program.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 * Brian Paul
31 */
32
33
34 #include "main/imports.h"
35 #include "main/hash.h"
36 #include "main/mtypes.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/programopt.h"
40
41 #include "pipe/p_context.h"
42 #include "pipe/p_defines.h"
43 #include "pipe/p_shader_tokens.h"
44 #include "draw/draw_context.h"
45 #include "tgsi/tgsi_dump.h"
46 #include "tgsi/tgsi_emulate.h"
47 #include "tgsi/tgsi_parse.h"
48 #include "tgsi/tgsi_ureg.h"
49
50 #include "st_debug.h"
51 #include "st_cb_bitmap.h"
52 #include "st_cb_drawpixels.h"
53 #include "st_context.h"
54 #include "st_program.h"
55 #include "st_mesa_to_tgsi.h"
56 #include "cso_cache/cso_context.h"
57
58
59
60 /**
61 * Delete a vertex program variant. Note the caller must unlink
62 * the variant from the linked list.
63 */
64 static void
65 delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
66 {
67 if (vpv->driver_shader)
68 cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
69
70 if (vpv->draw_shader)
71 draw_delete_vertex_shader( st->draw, vpv->draw_shader );
72
73 if (vpv->tgsi.tokens)
74 ureg_free_tokens(vpv->tgsi.tokens);
75
76 free( vpv );
77 }
78
79
80
81 /**
82 * Clean out any old compilations:
83 */
84 void
85 st_release_vp_variants( struct st_context *st,
86 struct st_vertex_program *stvp )
87 {
88 struct st_vp_variant *vpv;
89
90 for (vpv = stvp->variants; vpv; ) {
91 struct st_vp_variant *next = vpv->next;
92 delete_vp_variant(st, vpv);
93 vpv = next;
94 }
95
96 stvp->variants = NULL;
97
98 if (stvp->tgsi.tokens) {
99 tgsi_free_tokens(stvp->tgsi.tokens);
100 stvp->tgsi.tokens = NULL;
101 }
102 }
103
104
105
106 /**
107 * Delete a fragment program variant. Note the caller must unlink
108 * the variant from the linked list.
109 */
110 static void
111 delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
112 {
113 if (fpv->driver_shader)
114 cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
115 free(fpv);
116 }
117
118
119 /**
120 * Free all variants of a fragment program.
121 */
122 void
123 st_release_fp_variants(struct st_context *st, struct st_fragment_program *stfp)
124 {
125 struct st_fp_variant *fpv;
126
127 for (fpv = stfp->variants; fpv; ) {
128 struct st_fp_variant *next = fpv->next;
129 delete_fp_variant(st, fpv);
130 fpv = next;
131 }
132
133 stfp->variants = NULL;
134
135 if (stfp->tgsi.tokens) {
136 ureg_free_tokens(stfp->tgsi.tokens);
137 stfp->tgsi.tokens = NULL;
138 }
139 }
140
141
142 /**
143 * Delete a basic program variant. Note the caller must unlink
144 * the variant from the linked list.
145 */
146 static void
147 delete_basic_variant(struct st_context *st, struct st_basic_variant *v,
148 GLenum target)
149 {
150 if (v->driver_shader) {
151 switch (target) {
152 case GL_TESS_CONTROL_PROGRAM_NV:
153 cso_delete_tessctrl_shader(st->cso_context, v->driver_shader);
154 break;
155 case GL_TESS_EVALUATION_PROGRAM_NV:
156 cso_delete_tesseval_shader(st->cso_context, v->driver_shader);
157 break;
158 case GL_GEOMETRY_PROGRAM_NV:
159 cso_delete_geometry_shader(st->cso_context, v->driver_shader);
160 break;
161 case GL_COMPUTE_PROGRAM_NV:
162 cso_delete_compute_shader(st->cso_context, v->driver_shader);
163 break;
164 default:
165 assert(!"this shouldn't occur");
166 }
167 }
168
169 free(v);
170 }
171
172
173 /**
174 * Free all basic program variants.
175 */
176 void
177 st_release_basic_variants(struct st_context *st, GLenum target,
178 struct st_basic_variant **variants,
179 struct pipe_shader_state *tgsi)
180 {
181 struct st_basic_variant *v;
182
183 for (v = *variants; v; ) {
184 struct st_basic_variant *next = v->next;
185 delete_basic_variant(st, v, target);
186 v = next;
187 }
188
189 *variants = NULL;
190
191 if (tgsi->tokens) {
192 ureg_free_tokens(tgsi->tokens);
193 tgsi->tokens = NULL;
194 }
195 }
196
197
198 /**
199 * Free all variants of a compute program.
200 */
201 void
202 st_release_cp_variants(struct st_context *st, struct st_compute_program *stcp)
203 {
204 struct st_basic_variant **variants = &stcp->variants;
205 struct st_basic_variant *v;
206
207 for (v = *variants; v; ) {
208 struct st_basic_variant *next = v->next;
209 delete_basic_variant(st, v, stcp->Base.Base.Target);
210 v = next;
211 }
212
213 *variants = NULL;
214
215 if (stcp->tgsi.prog) {
216 ureg_free_tokens(stcp->tgsi.prog);
217 stcp->tgsi.prog = NULL;
218 }
219 }
220
221
222 /**
223 * Translate a vertex program.
224 */
225 bool
226 st_translate_vertex_program(struct st_context *st,
227 struct st_vertex_program *stvp)
228 {
229 struct ureg_program *ureg;
230 enum pipe_error error;
231 unsigned num_outputs = 0;
232 unsigned attr;
233 unsigned input_to_index[VERT_ATTRIB_MAX] = {0};
234 unsigned output_slot_to_attr[VARYING_SLOT_MAX] = {0};
235 ubyte output_semantic_name[VARYING_SLOT_MAX] = {0};
236 ubyte output_semantic_index[VARYING_SLOT_MAX] = {0};
237
238 stvp->num_inputs = 0;
239
240 if (stvp->Base.IsPositionInvariant)
241 _mesa_insert_mvp_code(st->ctx, &stvp->Base);
242
243 /*
244 * Determine number of inputs, the mappings between VERT_ATTRIB_x
245 * and TGSI generic input indexes, plus input attrib semantic info.
246 */
247 for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
248 if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
249 input_to_index[attr] = stvp->num_inputs;
250 stvp->index_to_input[stvp->num_inputs] = attr;
251 stvp->num_inputs++;
252 if ((stvp->Base.Base.DoubleInputsRead & BITFIELD64_BIT(attr)) != 0) {
253 /* add placeholder for second part of a double attribute */
254 stvp->index_to_input[stvp->num_inputs] = ST_DOUBLE_ATTRIB_PLACEHOLDER;
255 stvp->num_inputs++;
256 }
257 }
258 }
259 /* bit of a hack, presetup potentially unused edgeflag input */
260 input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
261 stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;
262
263 /* Compute mapping of vertex program outputs to slots.
264 */
265 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
266 if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
267 stvp->result_to_output[attr] = ~0;
268 }
269 else {
270 unsigned slot = num_outputs++;
271
272 stvp->result_to_output[attr] = slot;
273 output_slot_to_attr[slot] = attr;
274
275 switch (attr) {
276 case VARYING_SLOT_POS:
277 output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
278 output_semantic_index[slot] = 0;
279 break;
280 case VARYING_SLOT_COL0:
281 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
282 output_semantic_index[slot] = 0;
283 break;
284 case VARYING_SLOT_COL1:
285 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
286 output_semantic_index[slot] = 1;
287 break;
288 case VARYING_SLOT_BFC0:
289 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
290 output_semantic_index[slot] = 0;
291 break;
292 case VARYING_SLOT_BFC1:
293 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
294 output_semantic_index[slot] = 1;
295 break;
296 case VARYING_SLOT_FOGC:
297 output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
298 output_semantic_index[slot] = 0;
299 break;
300 case VARYING_SLOT_PSIZ:
301 output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
302 output_semantic_index[slot] = 0;
303 break;
304 case VARYING_SLOT_CLIP_DIST0:
305 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
306 output_semantic_index[slot] = 0;
307 break;
308 case VARYING_SLOT_CLIP_DIST1:
309 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
310 output_semantic_index[slot] = 1;
311 break;
312 case VARYING_SLOT_EDGE:
313 assert(0);
314 break;
315 case VARYING_SLOT_CLIP_VERTEX:
316 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
317 output_semantic_index[slot] = 0;
318 break;
319 case VARYING_SLOT_LAYER:
320 output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
321 output_semantic_index[slot] = 0;
322 break;
323 case VARYING_SLOT_VIEWPORT:
324 output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
325 output_semantic_index[slot] = 0;
326 break;
327
328 case VARYING_SLOT_TEX0:
329 case VARYING_SLOT_TEX1:
330 case VARYING_SLOT_TEX2:
331 case VARYING_SLOT_TEX3:
332 case VARYING_SLOT_TEX4:
333 case VARYING_SLOT_TEX5:
334 case VARYING_SLOT_TEX6:
335 case VARYING_SLOT_TEX7:
336 if (st->needs_texcoord_semantic) {
337 output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
338 output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
339 break;
340 }
341 /* fall through */
342 case VARYING_SLOT_VAR0:
343 default:
344 assert(attr >= VARYING_SLOT_VAR0 ||
345 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
346 output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
347 output_semantic_index[slot] =
348 st_get_generic_varying_index(st, attr);
349 break;
350 }
351 }
352 }
353 /* similar hack to above, presetup potentially unused edgeflag output */
354 stvp->result_to_output[VARYING_SLOT_EDGE] = num_outputs;
355 output_semantic_name[num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
356 output_semantic_index[num_outputs] = 0;
357
358 if (!stvp->glsl_to_tgsi)
359 _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
360
361 ureg = ureg_create_with_screen(TGSI_PROCESSOR_VERTEX, st->pipe->screen);
362 if (ureg == NULL)
363 return false;
364
365 if (stvp->Base.Base.ClipDistanceArraySize)
366 ureg_property(ureg, TGSI_PROPERTY_NUM_CLIPDIST_ENABLED,
367 stvp->Base.Base.ClipDistanceArraySize);
368
369 if (ST_DEBUG & DEBUG_MESA) {
370 _mesa_print_program(&stvp->Base.Base);
371 _mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
372 debug_printf("\n");
373 }
374
375 if (stvp->glsl_to_tgsi) {
376 error = st_translate_program(st->ctx,
377 TGSI_PROCESSOR_VERTEX,
378 ureg,
379 stvp->glsl_to_tgsi,
380 &stvp->Base.Base,
381 /* inputs */
382 stvp->num_inputs,
383 input_to_index,
384 NULL, /* inputSlotToAttr */
385 NULL, /* input semantic name */
386 NULL, /* input semantic index */
387 NULL, /* interp mode */
388 NULL, /* interp location */
389 /* outputs */
390 num_outputs,
391 stvp->result_to_output,
392 output_slot_to_attr,
393 output_semantic_name,
394 output_semantic_index);
395
396 st_translate_stream_output_info(stvp->glsl_to_tgsi,
397 stvp->result_to_output,
398 &stvp->tgsi.stream_output);
399
400 free_glsl_to_tgsi_visitor(stvp->glsl_to_tgsi);
401 stvp->glsl_to_tgsi = NULL;
402 } else
403 error = st_translate_mesa_program(st->ctx,
404 TGSI_PROCESSOR_VERTEX,
405 ureg,
406 &stvp->Base.Base,
407 /* inputs */
408 stvp->num_inputs,
409 input_to_index,
410 NULL, /* input semantic name */
411 NULL, /* input semantic index */
412 NULL,
413 /* outputs */
414 num_outputs,
415 stvp->result_to_output,
416 output_semantic_name,
417 output_semantic_index);
418
419 if (error) {
420 debug_printf("%s: failed to translate Mesa program:\n", __func__);
421 _mesa_print_program(&stvp->Base.Base);
422 debug_assert(0);
423 return false;
424 }
425
426 stvp->tgsi.tokens = ureg_get_tokens(ureg, NULL);
427 ureg_destroy(ureg);
428 return stvp->tgsi.tokens != NULL;
429 }
430
431 static struct st_vp_variant *
432 st_create_vp_variant(struct st_context *st,
433 struct st_vertex_program *stvp,
434 const struct st_vp_variant_key *key)
435 {
436 struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
437 struct pipe_context *pipe = st->pipe;
438
439 vpv->key = *key;
440 vpv->tgsi.tokens = tgsi_dup_tokens(stvp->tgsi.tokens);
441 vpv->tgsi.stream_output = stvp->tgsi.stream_output;
442 vpv->num_inputs = stvp->num_inputs;
443
444 /* Emulate features. */
445 if (key->clamp_color || key->passthrough_edgeflags) {
446 const struct tgsi_token *tokens;
447 unsigned flags =
448 (key->clamp_color ? TGSI_EMU_CLAMP_COLOR_OUTPUTS : 0) |
449 (key->passthrough_edgeflags ? TGSI_EMU_PASSTHROUGH_EDGEFLAG : 0);
450
451 tokens = tgsi_emulate(vpv->tgsi.tokens, flags);
452
453 if (tokens) {
454 tgsi_free_tokens(vpv->tgsi.tokens);
455 vpv->tgsi.tokens = tokens;
456
457 if (key->passthrough_edgeflags)
458 vpv->num_inputs++;
459 } else
460 fprintf(stderr, "mesa: cannot emulate deprecated features\n");
461 }
462
463 if (ST_DEBUG & DEBUG_TGSI) {
464 tgsi_dump(vpv->tgsi.tokens, 0);
465 debug_printf("\n");
466 }
467
468 vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
469 return vpv;
470 }
471
472
473 /**
474 * Find/create a vertex program variant.
475 */
476 struct st_vp_variant *
477 st_get_vp_variant(struct st_context *st,
478 struct st_vertex_program *stvp,
479 const struct st_vp_variant_key *key)
480 {
481 struct st_vp_variant *vpv;
482
483 /* Search for existing variant */
484 for (vpv = stvp->variants; vpv; vpv = vpv->next) {
485 if (memcmp(&vpv->key, key, sizeof(*key)) == 0) {
486 break;
487 }
488 }
489
490 if (!vpv) {
491 /* create now */
492 vpv = st_create_vp_variant(st, stvp, key);
493 if (vpv) {
494 /* insert into list */
495 vpv->next = stvp->variants;
496 stvp->variants = vpv;
497 }
498 }
499
500 return vpv;
501 }
502
503
504 static unsigned
505 st_translate_interp(enum glsl_interp_qualifier glsl_qual, bool is_color)
506 {
507 switch (glsl_qual) {
508 case INTERP_QUALIFIER_NONE:
509 if (is_color)
510 return TGSI_INTERPOLATE_COLOR;
511 return TGSI_INTERPOLATE_PERSPECTIVE;
512 case INTERP_QUALIFIER_SMOOTH:
513 return TGSI_INTERPOLATE_PERSPECTIVE;
514 case INTERP_QUALIFIER_FLAT:
515 return TGSI_INTERPOLATE_CONSTANT;
516 case INTERP_QUALIFIER_NOPERSPECTIVE:
517 return TGSI_INTERPOLATE_LINEAR;
518 default:
519 assert(0 && "unexpected interp mode in st_translate_interp()");
520 return TGSI_INTERPOLATE_PERSPECTIVE;
521 }
522 }
523
524
525 /**
526 * Translate a Mesa fragment shader into a TGSI shader.
527 */
528 bool
529 st_translate_fragment_program(struct st_context *st,
530 struct st_fragment_program *stfp)
531 {
532 GLuint outputMapping[FRAG_RESULT_MAX];
533 GLuint inputMapping[VARYING_SLOT_MAX];
534 GLuint inputSlotToAttr[VARYING_SLOT_MAX];
535 GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */
536 GLuint interpLocation[PIPE_MAX_SHADER_INPUTS];
537 GLuint attr;
538 GLbitfield64 inputsRead;
539 struct ureg_program *ureg;
540
541 GLboolean write_all = GL_FALSE;
542
543 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
544 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
545 uint fs_num_inputs = 0;
546
547 ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
548 ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
549 uint fs_num_outputs = 0;
550
551 memset(inputSlotToAttr, ~0, sizeof(inputSlotToAttr));
552
553 if (!stfp->glsl_to_tgsi) {
554 _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);
555 if (st->ctx->Const.GLSLFragCoordIsSysVal)
556 _mesa_program_fragment_position_to_sysval(&stfp->Base.Base);
557 }
558
559 /*
560 * Convert Mesa program inputs to TGSI input register semantics.
561 */
562 inputsRead = stfp->Base.Base.InputsRead;
563 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
564 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
565 const GLuint slot = fs_num_inputs++;
566
567 inputMapping[attr] = slot;
568 inputSlotToAttr[slot] = attr;
569 if (stfp->Base.IsCentroid & BITFIELD64_BIT(attr))
570 interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTROID;
571 else if (stfp->Base.IsSample & BITFIELD64_BIT(attr))
572 interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;
573 else
574 interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTER;
575
576 switch (attr) {
577 case VARYING_SLOT_POS:
578 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
579 input_semantic_index[slot] = 0;
580 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
581 break;
582 case VARYING_SLOT_COL0:
583 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
584 input_semantic_index[slot] = 0;
585 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
586 TRUE);
587 break;
588 case VARYING_SLOT_COL1:
589 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
590 input_semantic_index[slot] = 1;
591 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
592 TRUE);
593 break;
594 case VARYING_SLOT_FOGC:
595 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
596 input_semantic_index[slot] = 0;
597 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
598 break;
599 case VARYING_SLOT_FACE:
600 input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
601 input_semantic_index[slot] = 0;
602 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
603 break;
604 case VARYING_SLOT_PRIMITIVE_ID:
605 input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
606 input_semantic_index[slot] = 0;
607 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
608 break;
609 case VARYING_SLOT_LAYER:
610 input_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
611 input_semantic_index[slot] = 0;
612 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
613 break;
614 case VARYING_SLOT_VIEWPORT:
615 input_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
616 input_semantic_index[slot] = 0;
617 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
618 break;
619 case VARYING_SLOT_CLIP_DIST0:
620 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
621 input_semantic_index[slot] = 0;
622 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
623 break;
624 case VARYING_SLOT_CLIP_DIST1:
625 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
626 input_semantic_index[slot] = 1;
627 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
628 break;
629 /* In most cases, there is nothing special about these
630 * inputs, so adopt a convention to use the generic
631 * semantic name and the mesa VARYING_SLOT_ number as the
632 * index.
633 *
634 * All that is required is that the vertex shader labels
635 * its own outputs similarly, and that the vertex shader
636 * generates at least every output required by the
637 * fragment shader plus fixed-function hardware (such as
638 * BFC).
639 *
640 * However, some drivers may need us to identify the PNTC and TEXi
641 * varyings if, for example, their capability to replace them with
642 * sprite coordinates is limited.
643 */
644 case VARYING_SLOT_PNTC:
645 if (st->needs_texcoord_semantic) {
646 input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
647 input_semantic_index[slot] = 0;
648 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
649 break;
650 }
651 /* fall through */
652 case VARYING_SLOT_TEX0:
653 case VARYING_SLOT_TEX1:
654 case VARYING_SLOT_TEX2:
655 case VARYING_SLOT_TEX3:
656 case VARYING_SLOT_TEX4:
657 case VARYING_SLOT_TEX5:
658 case VARYING_SLOT_TEX6:
659 case VARYING_SLOT_TEX7:
660 if (st->needs_texcoord_semantic) {
661 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
662 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
663 interpMode[slot] =
664 st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
665 break;
666 }
667 /* fall through */
668 case VARYING_SLOT_VAR0:
669 default:
670 /* Semantic indices should be zero-based because drivers may choose
671 * to assign a fixed slot determined by that index.
672 * This is useful because ARB_separate_shader_objects uses location
673 * qualifiers for linkage, and if the semantic index corresponds to
674 * these locations, linkage passes in the driver become unecessary.
675 *
676 * If needs_texcoord_semantic is true, no semantic indices will be
677 * consumed for the TEXi varyings, and we can base the locations of
678 * the user varyings on VAR0. Otherwise, we use TEX0 as base index.
679 */
680 assert(attr >= VARYING_SLOT_VAR0 || attr == VARYING_SLOT_PNTC ||
681 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
682 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
683 input_semantic_index[slot] = st_get_generic_varying_index(st, attr);
684 if (attr == VARYING_SLOT_PNTC)
685 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
686 else
687 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
688 FALSE);
689 break;
690 }
691 }
692 else {
693 inputMapping[attr] = -1;
694 }
695 }
696
697 /*
698 * Semantics and mapping for outputs
699 */
700 {
701 uint numColors = 0;
702 GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;
703
704 /* if z is written, emit that first */
705 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
706 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
707 fs_output_semantic_index[fs_num_outputs] = 0;
708 outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
709 fs_num_outputs++;
710 outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
711 }
712
713 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
714 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
715 fs_output_semantic_index[fs_num_outputs] = 0;
716 outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
717 fs_num_outputs++;
718 outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
719 }
720
721 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) {
722 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_SAMPLEMASK;
723 fs_output_semantic_index[fs_num_outputs] = 0;
724 outputMapping[FRAG_RESULT_SAMPLE_MASK] = fs_num_outputs;
725 fs_num_outputs++;
726 outputsWritten &= ~(1 << FRAG_RESULT_SAMPLE_MASK);
727 }
728
729 /* handle remaining outputs (color) */
730 for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
731 if (outputsWritten & BITFIELD64_BIT(attr)) {
732 switch (attr) {
733 case FRAG_RESULT_DEPTH:
734 case FRAG_RESULT_STENCIL:
735 case FRAG_RESULT_SAMPLE_MASK:
736 /* handled above */
737 assert(0);
738 break;
739 case FRAG_RESULT_COLOR:
740 write_all = GL_TRUE; /* fallthrough */
741 default:
742 assert(attr == FRAG_RESULT_COLOR ||
743 (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
744 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
745 fs_output_semantic_index[fs_num_outputs] = numColors;
746 outputMapping[attr] = fs_num_outputs;
747 numColors++;
748 break;
749 }
750
751 fs_num_outputs++;
752 }
753 }
754 }
755
756 ureg = ureg_create_with_screen(TGSI_PROCESSOR_FRAGMENT, st->pipe->screen);
757 if (ureg == NULL)
758 return false;
759
760 if (ST_DEBUG & DEBUG_MESA) {
761 _mesa_print_program(&stfp->Base.Base);
762 _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
763 debug_printf("\n");
764 }
765 if (write_all == GL_TRUE)
766 ureg_property(ureg, TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS, 1);
767
768 if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
769 switch (stfp->Base.FragDepthLayout) {
770 case FRAG_DEPTH_LAYOUT_ANY:
771 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
772 TGSI_FS_DEPTH_LAYOUT_ANY);
773 break;
774 case FRAG_DEPTH_LAYOUT_GREATER:
775 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
776 TGSI_FS_DEPTH_LAYOUT_GREATER);
777 break;
778 case FRAG_DEPTH_LAYOUT_LESS:
779 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
780 TGSI_FS_DEPTH_LAYOUT_LESS);
781 break;
782 case FRAG_DEPTH_LAYOUT_UNCHANGED:
783 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
784 TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
785 break;
786 default:
787 assert(0);
788 }
789 }
790
791 if (stfp->glsl_to_tgsi) {
792 st_translate_program(st->ctx,
793 TGSI_PROCESSOR_FRAGMENT,
794 ureg,
795 stfp->glsl_to_tgsi,
796 &stfp->Base.Base,
797 /* inputs */
798 fs_num_inputs,
799 inputMapping,
800 inputSlotToAttr,
801 input_semantic_name,
802 input_semantic_index,
803 interpMode,
804 interpLocation,
805 /* outputs */
806 fs_num_outputs,
807 outputMapping,
808 NULL,
809 fs_output_semantic_name,
810 fs_output_semantic_index);
811
812 free_glsl_to_tgsi_visitor(stfp->glsl_to_tgsi);
813 stfp->glsl_to_tgsi = NULL;
814 } else
815 st_translate_mesa_program(st->ctx,
816 TGSI_PROCESSOR_FRAGMENT,
817 ureg,
818 &stfp->Base.Base,
819 /* inputs */
820 fs_num_inputs,
821 inputMapping,
822 input_semantic_name,
823 input_semantic_index,
824 interpMode,
825 /* outputs */
826 fs_num_outputs,
827 outputMapping,
828 fs_output_semantic_name,
829 fs_output_semantic_index);
830
831 stfp->tgsi.tokens = ureg_get_tokens(ureg, NULL);
832 ureg_destroy(ureg);
833 return stfp->tgsi.tokens != NULL;
834 }
835
836 static struct st_fp_variant *
837 st_create_fp_variant(struct st_context *st,
838 struct st_fragment_program *stfp,
839 const struct st_fp_variant_key *key)
840 {
841 struct pipe_context *pipe = st->pipe;
842 struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
843 struct pipe_shader_state tgsi = {0};
844
845 if (!variant)
846 return NULL;
847
848 tgsi.tokens = stfp->tgsi.tokens;
849
850 assert(!(key->bitmap && key->drawpixels));
851
852 /* Emulate features. */
853 if (key->clamp_color || key->persample_shading) {
854 const struct tgsi_token *tokens;
855 unsigned flags =
856 (key->clamp_color ? TGSI_EMU_CLAMP_COLOR_OUTPUTS : 0) |
857 (key->persample_shading ? TGSI_EMU_FORCE_PERSAMPLE_INTERP : 0);
858
859 tokens = tgsi_emulate(tgsi.tokens, flags);
860
861 if (tokens)
862 tgsi.tokens = tokens;
863 else
864 fprintf(stderr, "mesa: cannot emulate deprecated features\n");
865 }
866
867 /* glBitmap */
868 if (key->bitmap) {
869 const struct tgsi_token *tokens;
870
871 variant->bitmap_sampler = ffs(~stfp->Base.Base.SamplersUsed) - 1;
872
873 tokens = st_get_bitmap_shader(tgsi.tokens,
874 st->internal_target,
875 variant->bitmap_sampler,
876 st->needs_texcoord_semantic,
877 st->bitmap.tex_format ==
878 PIPE_FORMAT_L8_UNORM);
879
880 if (tokens) {
881 if (tgsi.tokens != stfp->tgsi.tokens)
882 tgsi_free_tokens(tgsi.tokens);
883 tgsi.tokens = tokens;
884 } else
885 fprintf(stderr, "mesa: cannot create a shader for glBitmap\n");
886 }
887
888 /* glDrawPixels (color only) */
889 if (key->drawpixels) {
890 const struct tgsi_token *tokens;
891 unsigned scale_const = 0, bias_const = 0, texcoord_const = 0;
892 struct gl_program_parameter_list *params = stfp->Base.Base.Parameters;
893
894 /* Find the first unused slot. */
895 variant->drawpix_sampler = ffs(~stfp->Base.Base.SamplersUsed) - 1;
896
897 if (key->pixelMaps) {
898 unsigned samplers_used = stfp->Base.Base.SamplersUsed |
899 (1 << variant->drawpix_sampler);
900
901 variant->pixelmap_sampler = ffs(~samplers_used) - 1;
902 }
903
904 if (key->scaleAndBias) {
905 static const gl_state_index scale_state[STATE_LENGTH] =
906 { STATE_INTERNAL, STATE_PT_SCALE };
907 static const gl_state_index bias_state[STATE_LENGTH] =
908 { STATE_INTERNAL, STATE_PT_BIAS };
909
910 scale_const = _mesa_add_state_reference(params, scale_state);
911 bias_const = _mesa_add_state_reference(params, bias_state);
912 }
913
914 {
915 static const gl_state_index state[STATE_LENGTH] =
916 { STATE_INTERNAL, STATE_CURRENT_ATTRIB, VERT_ATTRIB_TEX0 };
917
918 texcoord_const = _mesa_add_state_reference(params, state);
919 }
920
921 tokens = st_get_drawpix_shader(tgsi.tokens,
922 st->needs_texcoord_semantic,
923 key->scaleAndBias, scale_const,
924 bias_const, key->pixelMaps,
925 variant->drawpix_sampler,
926 variant->pixelmap_sampler,
927 texcoord_const, st->internal_target);
928
929 if (tokens) {
930 if (tgsi.tokens != stfp->tgsi.tokens)
931 tgsi_free_tokens(tgsi.tokens);
932 tgsi.tokens = tokens;
933 } else
934 fprintf(stderr, "mesa: cannot create a shader for glDrawPixels\n");
935 }
936
937 if (ST_DEBUG & DEBUG_TGSI) {
938 tgsi_dump(tgsi.tokens, 0);
939 debug_printf("\n");
940 }
941
942 /* fill in variant */
943 variant->driver_shader = pipe->create_fs_state(pipe, &tgsi);
944 variant->key = *key;
945
946 if (tgsi.tokens != stfp->tgsi.tokens)
947 tgsi_free_tokens(tgsi.tokens);
948 return variant;
949 }
950
951 /**
952 * Translate fragment program if needed.
953 */
954 struct st_fp_variant *
955 st_get_fp_variant(struct st_context *st,
956 struct st_fragment_program *stfp,
957 const struct st_fp_variant_key *key)
958 {
959 struct st_fp_variant *fpv;
960
961 /* Search for existing variant */
962 for (fpv = stfp->variants; fpv; fpv = fpv->next) {
963 if (memcmp(&fpv->key, key, sizeof(*key)) == 0) {
964 break;
965 }
966 }
967
968 if (!fpv) {
969 /* create new */
970 fpv = st_create_fp_variant(st, stfp, key);
971 if (fpv) {
972 /* insert into list */
973 fpv->next = stfp->variants;
974 stfp->variants = fpv;
975 }
976 }
977
978 return fpv;
979 }
980
981
982 /**
983 * Translate a program. This is common code for geometry and tessellation
984 * shaders.
985 */
986 static void
987 st_translate_program_common(struct st_context *st,
988 struct gl_program *prog,
989 struct glsl_to_tgsi_visitor *glsl_to_tgsi,
990 struct ureg_program *ureg,
991 unsigned tgsi_processor,
992 struct pipe_shader_state *out_state)
993 {
994 GLuint inputSlotToAttr[VARYING_SLOT_TESS_MAX];
995 GLuint inputMapping[VARYING_SLOT_TESS_MAX];
996 GLuint outputSlotToAttr[VARYING_SLOT_TESS_MAX];
997 GLuint outputMapping[VARYING_SLOT_TESS_MAX];
998 GLuint attr;
999
1000 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
1001 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
1002 uint num_inputs = 0;
1003
1004 ubyte output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
1005 ubyte output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
1006 uint num_outputs = 0;
1007
1008 GLint i;
1009
1010 memset(inputSlotToAttr, 0, sizeof(inputSlotToAttr));
1011 memset(inputMapping, 0, sizeof(inputMapping));
1012 memset(outputSlotToAttr, 0, sizeof(outputSlotToAttr));
1013 memset(outputMapping, 0, sizeof(outputMapping));
1014 memset(out_state, 0, sizeof(*out_state));
1015
1016 if (prog->ClipDistanceArraySize)
1017 ureg_property(ureg, TGSI_PROPERTY_NUM_CLIPDIST_ENABLED,
1018 prog->ClipDistanceArraySize);
1019
1020 /*
1021 * Convert Mesa program inputs to TGSI input register semantics.
1022 */
1023 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1024 if ((prog->InputsRead & BITFIELD64_BIT(attr)) != 0) {
1025 const GLuint slot = num_inputs++;
1026
1027 inputMapping[attr] = slot;
1028 inputSlotToAttr[slot] = attr;
1029
1030 switch (attr) {
1031 case VARYING_SLOT_PRIMITIVE_ID:
1032 assert(tgsi_processor == TGSI_PROCESSOR_GEOMETRY);
1033 input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
1034 input_semantic_index[slot] = 0;
1035 break;
1036 case VARYING_SLOT_POS:
1037 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
1038 input_semantic_index[slot] = 0;
1039 break;
1040 case VARYING_SLOT_COL0:
1041 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1042 input_semantic_index[slot] = 0;
1043 break;
1044 case VARYING_SLOT_COL1:
1045 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1046 input_semantic_index[slot] = 1;
1047 break;
1048 case VARYING_SLOT_FOGC:
1049 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
1050 input_semantic_index[slot] = 0;
1051 break;
1052 case VARYING_SLOT_CLIP_VERTEX:
1053 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1054 input_semantic_index[slot] = 0;
1055 break;
1056 case VARYING_SLOT_CLIP_DIST0:
1057 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1058 input_semantic_index[slot] = 0;
1059 break;
1060 case VARYING_SLOT_CLIP_DIST1:
1061 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1062 input_semantic_index[slot] = 1;
1063 break;
1064 case VARYING_SLOT_PSIZ:
1065 input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
1066 input_semantic_index[slot] = 0;
1067 break;
1068 case VARYING_SLOT_TEX0:
1069 case VARYING_SLOT_TEX1:
1070 case VARYING_SLOT_TEX2:
1071 case VARYING_SLOT_TEX3:
1072 case VARYING_SLOT_TEX4:
1073 case VARYING_SLOT_TEX5:
1074 case VARYING_SLOT_TEX6:
1075 case VARYING_SLOT_TEX7:
1076 if (st->needs_texcoord_semantic) {
1077 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
1078 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
1079 break;
1080 }
1081 /* fall through */
1082 case VARYING_SLOT_VAR0:
1083 default:
1084 assert(attr >= VARYING_SLOT_VAR0 ||
1085 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
1086 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1087 input_semantic_index[slot] =
1088 st_get_generic_varying_index(st, attr);
1089 break;
1090 }
1091 }
1092 }
1093
1094 /* Also add patch inputs. */
1095 for (attr = 0; attr < 32; attr++) {
1096 if (prog->PatchInputsRead & (1 << attr)) {
1097 GLuint slot = num_inputs++;
1098 GLuint patch_attr = VARYING_SLOT_PATCH0 + attr;
1099
1100 inputMapping[patch_attr] = slot;
1101 inputSlotToAttr[slot] = patch_attr;
1102 input_semantic_name[slot] = TGSI_SEMANTIC_PATCH;
1103 input_semantic_index[slot] = attr;
1104 }
1105 }
1106
1107 /* initialize output semantics to defaults */
1108 for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
1109 output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
1110 output_semantic_index[i] = 0;
1111 }
1112
1113 /*
1114 * Determine number of outputs, the (default) output register
1115 * mapping and the semantic information for each output.
1116 */
1117 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1118 if (prog->OutputsWritten & BITFIELD64_BIT(attr)) {
1119 GLuint slot = num_outputs++;
1120
1121 outputMapping[attr] = slot;
1122 outputSlotToAttr[slot] = attr;
1123
1124 switch (attr) {
1125 case VARYING_SLOT_POS:
1126 assert(slot == 0);
1127 output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
1128 output_semantic_index[slot] = 0;
1129 break;
1130 case VARYING_SLOT_COL0:
1131 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1132 output_semantic_index[slot] = 0;
1133 break;
1134 case VARYING_SLOT_COL1:
1135 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1136 output_semantic_index[slot] = 1;
1137 break;
1138 case VARYING_SLOT_BFC0:
1139 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1140 output_semantic_index[slot] = 0;
1141 break;
1142 case VARYING_SLOT_BFC1:
1143 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1144 output_semantic_index[slot] = 1;
1145 break;
1146 case VARYING_SLOT_FOGC:
1147 output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
1148 output_semantic_index[slot] = 0;
1149 break;
1150 case VARYING_SLOT_PSIZ:
1151 output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
1152 output_semantic_index[slot] = 0;
1153 break;
1154 case VARYING_SLOT_CLIP_VERTEX:
1155 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1156 output_semantic_index[slot] = 0;
1157 break;
1158 case VARYING_SLOT_CLIP_DIST0:
1159 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1160 output_semantic_index[slot] = 0;
1161 break;
1162 case VARYING_SLOT_CLIP_DIST1:
1163 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1164 output_semantic_index[slot] = 1;
1165 break;
1166 case VARYING_SLOT_LAYER:
1167 output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
1168 output_semantic_index[slot] = 0;
1169 break;
1170 case VARYING_SLOT_PRIMITIVE_ID:
1171 output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
1172 output_semantic_index[slot] = 0;
1173 break;
1174 case VARYING_SLOT_VIEWPORT:
1175 output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
1176 output_semantic_index[slot] = 0;
1177 break;
1178 case VARYING_SLOT_TESS_LEVEL_OUTER:
1179 output_semantic_name[slot] = TGSI_SEMANTIC_TESSOUTER;
1180 output_semantic_index[slot] = 0;
1181 break;
1182 case VARYING_SLOT_TESS_LEVEL_INNER:
1183 output_semantic_name[slot] = TGSI_SEMANTIC_TESSINNER;
1184 output_semantic_index[slot] = 0;
1185 break;
1186 case VARYING_SLOT_TEX0:
1187 case VARYING_SLOT_TEX1:
1188 case VARYING_SLOT_TEX2:
1189 case VARYING_SLOT_TEX3:
1190 case VARYING_SLOT_TEX4:
1191 case VARYING_SLOT_TEX5:
1192 case VARYING_SLOT_TEX6:
1193 case VARYING_SLOT_TEX7:
1194 if (st->needs_texcoord_semantic) {
1195 output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
1196 output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
1197 break;
1198 }
1199 /* fall through */
1200 case VARYING_SLOT_VAR0:
1201 default:
1202 assert(slot < ARRAY_SIZE(output_semantic_name));
1203 assert(attr >= VARYING_SLOT_VAR0 ||
1204 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
1205 output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1206 output_semantic_index[slot] =
1207 st_get_generic_varying_index(st, attr);
1208 break;
1209 }
1210 }
1211 }
1212
1213 /* Also add patch outputs. */
1214 for (attr = 0; attr < 32; attr++) {
1215 if (prog->PatchOutputsWritten & (1 << attr)) {
1216 GLuint slot = num_outputs++;
1217 GLuint patch_attr = VARYING_SLOT_PATCH0 + attr;
1218
1219 outputMapping[patch_attr] = slot;
1220 outputSlotToAttr[slot] = patch_attr;
1221 output_semantic_name[slot] = TGSI_SEMANTIC_PATCH;
1222 output_semantic_index[slot] = attr;
1223 }
1224 }
1225
1226 st_translate_program(st->ctx,
1227 tgsi_processor,
1228 ureg,
1229 glsl_to_tgsi,
1230 prog,
1231 /* inputs */
1232 num_inputs,
1233 inputMapping,
1234 inputSlotToAttr,
1235 input_semantic_name,
1236 input_semantic_index,
1237 NULL,
1238 NULL,
1239 /* outputs */
1240 num_outputs,
1241 outputMapping,
1242 outputSlotToAttr,
1243 output_semantic_name,
1244 output_semantic_index);
1245
1246 out_state->tokens = ureg_get_tokens(ureg, NULL);
1247 ureg_destroy(ureg);
1248
1249 st_translate_stream_output_info(glsl_to_tgsi,
1250 outputMapping,
1251 &out_state->stream_output);
1252
1253 if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
1254 _mesa_print_program(prog);
1255 debug_printf("\n");
1256 }
1257
1258 if (ST_DEBUG & DEBUG_TGSI) {
1259 tgsi_dump(out_state->tokens, 0);
1260 debug_printf("\n");
1261 }
1262 }
1263
1264
1265 /**
1266 * Translate a geometry program to create a new variant.
1267 */
1268 bool
1269 st_translate_geometry_program(struct st_context *st,
1270 struct st_geometry_program *stgp)
1271 {
1272 struct ureg_program *ureg;
1273
1274 ureg = ureg_create_with_screen(TGSI_PROCESSOR_GEOMETRY, st->pipe->screen);
1275 if (ureg == NULL)
1276 return false;
1277
1278 ureg_property(ureg, TGSI_PROPERTY_GS_INPUT_PRIM, stgp->Base.InputType);
1279 ureg_property(ureg, TGSI_PROPERTY_GS_OUTPUT_PRIM, stgp->Base.OutputType);
1280 ureg_property(ureg, TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES,
1281 stgp->Base.VerticesOut);
1282 ureg_property(ureg, TGSI_PROPERTY_GS_INVOCATIONS, stgp->Base.Invocations);
1283
1284 st_translate_program_common(st, &stgp->Base.Base, stgp->glsl_to_tgsi, ureg,
1285 TGSI_PROCESSOR_GEOMETRY, &stgp->tgsi);
1286
1287 free_glsl_to_tgsi_visitor(stgp->glsl_to_tgsi);
1288 stgp->glsl_to_tgsi = NULL;
1289 return true;
1290 }
1291
1292
1293 /**
1294 * Get/create a basic program variant.
1295 */
1296 struct st_basic_variant *
1297 st_get_basic_variant(struct st_context *st,
1298 unsigned pipe_shader,
1299 struct pipe_shader_state *tgsi,
1300 struct st_basic_variant **variants)
1301 {
1302 struct pipe_context *pipe = st->pipe;
1303 struct st_basic_variant *v;
1304 struct st_basic_variant_key key;
1305
1306 memset(&key, 0, sizeof(key));
1307 key.st = st->has_shareable_shaders ? NULL : st;
1308
1309 /* Search for existing variant */
1310 for (v = *variants; v; v = v->next) {
1311 if (memcmp(&v->key, &key, sizeof(key)) == 0) {
1312 break;
1313 }
1314 }
1315
1316 if (!v) {
1317 /* create new */
1318 v = CALLOC_STRUCT(st_basic_variant);
1319 if (v) {
1320 /* fill in new variant */
1321 switch (pipe_shader) {
1322 case PIPE_SHADER_TESS_CTRL:
1323 v->driver_shader = pipe->create_tcs_state(pipe, tgsi);
1324 break;
1325 case PIPE_SHADER_TESS_EVAL:
1326 v->driver_shader = pipe->create_tes_state(pipe, tgsi);
1327 break;
1328 case PIPE_SHADER_GEOMETRY:
1329 v->driver_shader = pipe->create_gs_state(pipe, tgsi);
1330 break;
1331 default:
1332 assert(!"unhandled shader type");
1333 free(v);
1334 return NULL;
1335 }
1336
1337 v->key = key;
1338
1339 /* insert into list */
1340 v->next = *variants;
1341 *variants = v;
1342 }
1343 }
1344
1345 return v;
1346 }
1347
1348
1349 /**
1350 * Translate a tessellation control program to create a new variant.
1351 */
1352 bool
1353 st_translate_tessctrl_program(struct st_context *st,
1354 struct st_tessctrl_program *sttcp)
1355 {
1356 struct ureg_program *ureg;
1357
1358 ureg = ureg_create_with_screen(TGSI_PROCESSOR_TESS_CTRL, st->pipe->screen);
1359 if (ureg == NULL)
1360 return false;
1361
1362 ureg_property(ureg, TGSI_PROPERTY_TCS_VERTICES_OUT,
1363 sttcp->Base.VerticesOut);
1364
1365 st_translate_program_common(st, &sttcp->Base.Base, sttcp->glsl_to_tgsi,
1366 ureg, TGSI_PROCESSOR_TESS_CTRL, &sttcp->tgsi);
1367
1368 free_glsl_to_tgsi_visitor(sttcp->glsl_to_tgsi);
1369 sttcp->glsl_to_tgsi = NULL;
1370 return true;
1371 }
1372
1373
1374 /**
1375 * Translate a tessellation evaluation program to create a new variant.
1376 */
1377 bool
1378 st_translate_tesseval_program(struct st_context *st,
1379 struct st_tesseval_program *sttep)
1380 {
1381 struct ureg_program *ureg;
1382
1383 ureg = ureg_create_with_screen(TGSI_PROCESSOR_TESS_EVAL, st->pipe->screen);
1384 if (ureg == NULL)
1385 return false;
1386
1387 if (sttep->Base.PrimitiveMode == GL_ISOLINES)
1388 ureg_property(ureg, TGSI_PROPERTY_TES_PRIM_MODE, GL_LINES);
1389 else
1390 ureg_property(ureg, TGSI_PROPERTY_TES_PRIM_MODE, sttep->Base.PrimitiveMode);
1391
1392 switch (sttep->Base.Spacing) {
1393 case GL_EQUAL:
1394 ureg_property(ureg, TGSI_PROPERTY_TES_SPACING, PIPE_TESS_SPACING_EQUAL);
1395 break;
1396 case GL_FRACTIONAL_EVEN:
1397 ureg_property(ureg, TGSI_PROPERTY_TES_SPACING,
1398 PIPE_TESS_SPACING_FRACTIONAL_EVEN);
1399 break;
1400 case GL_FRACTIONAL_ODD:
1401 ureg_property(ureg, TGSI_PROPERTY_TES_SPACING,
1402 PIPE_TESS_SPACING_FRACTIONAL_ODD);
1403 break;
1404 default:
1405 assert(0);
1406 }
1407
1408 ureg_property(ureg, TGSI_PROPERTY_TES_VERTEX_ORDER_CW,
1409 sttep->Base.VertexOrder == GL_CW);
1410 ureg_property(ureg, TGSI_PROPERTY_TES_POINT_MODE, sttep->Base.PointMode);
1411
1412 st_translate_program_common(st, &sttep->Base.Base, sttep->glsl_to_tgsi,
1413 ureg, TGSI_PROCESSOR_TESS_EVAL, &sttep->tgsi);
1414
1415 free_glsl_to_tgsi_visitor(sttep->glsl_to_tgsi);
1416 sttep->glsl_to_tgsi = NULL;
1417 return true;
1418 }
1419
1420
1421 /**
1422 * Translate a compute program to create a new variant.
1423 */
1424 bool
1425 st_translate_compute_program(struct st_context *st,
1426 struct st_compute_program *stcp)
1427 {
1428 struct ureg_program *ureg;
1429 struct pipe_shader_state prog;
1430
1431 ureg = ureg_create_with_screen(TGSI_PROCESSOR_COMPUTE, st->pipe->screen);
1432 if (ureg == NULL)
1433 return false;
1434
1435 st_translate_program_common(st, &stcp->Base.Base, stcp->glsl_to_tgsi, ureg,
1436 TGSI_PROCESSOR_COMPUTE, &prog);
1437
1438 stcp->tgsi.prog = prog.tokens;
1439 stcp->tgsi.req_local_mem = stcp->Base.SharedSize;
1440 stcp->tgsi.req_private_mem = 0;
1441 stcp->tgsi.req_input_mem = 0;
1442
1443 free_glsl_to_tgsi_visitor(stcp->glsl_to_tgsi);
1444 stcp->glsl_to_tgsi = NULL;
1445 return true;
1446 }
1447
1448
1449 /**
1450 * Get/create compute program variant.
1451 */
1452 struct st_basic_variant *
1453 st_get_cp_variant(struct st_context *st,
1454 struct pipe_compute_state *tgsi,
1455 struct st_basic_variant **variants)
1456 {
1457 struct pipe_context *pipe = st->pipe;
1458 struct st_basic_variant *v;
1459 struct st_basic_variant_key key;
1460
1461 memset(&key, 0, sizeof(key));
1462 key.st = st->has_shareable_shaders ? NULL : st;
1463
1464 /* Search for existing variant */
1465 for (v = *variants; v; v = v->next) {
1466 if (memcmp(&v->key, &key, sizeof(key)) == 0) {
1467 break;
1468 }
1469 }
1470
1471 if (!v) {
1472 /* create new */
1473 v = CALLOC_STRUCT(st_basic_variant);
1474 if (v) {
1475 /* fill in new variant */
1476 v->driver_shader = pipe->create_compute_state(pipe, tgsi);
1477 v->key = key;
1478
1479 /* insert into list */
1480 v->next = *variants;
1481 *variants = v;
1482 }
1483 }
1484
1485 return v;
1486 }
1487
1488
1489 /**
1490 * Vert/Geom/Frag programs have per-context variants. Free all the
1491 * variants attached to the given program which match the given context.
1492 */
1493 static void
1494 destroy_program_variants(struct st_context *st, struct gl_program *target)
1495 {
1496 if (!target || target == &_mesa_DummyProgram)
1497 return;
1498
1499 switch (target->Target) {
1500 case GL_VERTEX_PROGRAM_ARB:
1501 {
1502 struct st_vertex_program *stvp = (struct st_vertex_program *) target;
1503 struct st_vp_variant *vpv, **prevPtr = &stvp->variants;
1504
1505 for (vpv = stvp->variants; vpv; ) {
1506 struct st_vp_variant *next = vpv->next;
1507 if (vpv->key.st == st) {
1508 /* unlink from list */
1509 *prevPtr = next;
1510 /* destroy this variant */
1511 delete_vp_variant(st, vpv);
1512 }
1513 else {
1514 prevPtr = &vpv->next;
1515 }
1516 vpv = next;
1517 }
1518 }
1519 break;
1520 case GL_FRAGMENT_PROGRAM_ARB:
1521 {
1522 struct st_fragment_program *stfp =
1523 (struct st_fragment_program *) target;
1524 struct st_fp_variant *fpv, **prevPtr = &stfp->variants;
1525
1526 for (fpv = stfp->variants; fpv; ) {
1527 struct st_fp_variant *next = fpv->next;
1528 if (fpv->key.st == st) {
1529 /* unlink from list */
1530 *prevPtr = next;
1531 /* destroy this variant */
1532 delete_fp_variant(st, fpv);
1533 }
1534 else {
1535 prevPtr = &fpv->next;
1536 }
1537 fpv = next;
1538 }
1539 }
1540 break;
1541 case GL_GEOMETRY_PROGRAM_NV:
1542 case GL_TESS_CONTROL_PROGRAM_NV:
1543 case GL_TESS_EVALUATION_PROGRAM_NV:
1544 case GL_COMPUTE_PROGRAM_NV:
1545 {
1546 struct st_geometry_program *gp = (struct st_geometry_program*)target;
1547 struct st_tessctrl_program *tcp = (struct st_tessctrl_program*)target;
1548 struct st_tesseval_program *tep = (struct st_tesseval_program*)target;
1549 struct st_compute_program *cp = (struct st_compute_program*)target;
1550 struct st_basic_variant **variants =
1551 target->Target == GL_GEOMETRY_PROGRAM_NV ? &gp->variants :
1552 target->Target == GL_TESS_CONTROL_PROGRAM_NV ? &tcp->variants :
1553 target->Target == GL_TESS_EVALUATION_PROGRAM_NV ? &tep->variants :
1554 target->Target == GL_COMPUTE_PROGRAM_NV ? &cp->variants :
1555 NULL;
1556 struct st_basic_variant *v, **prevPtr = variants;
1557
1558 for (v = *variants; v; ) {
1559 struct st_basic_variant *next = v->next;
1560 if (v->key.st == st) {
1561 /* unlink from list */
1562 *prevPtr = next;
1563 /* destroy this variant */
1564 delete_basic_variant(st, v, target->Target);
1565 }
1566 else {
1567 prevPtr = &v->next;
1568 }
1569 v = next;
1570 }
1571 }
1572 break;
1573 default:
1574 _mesa_problem(NULL, "Unexpected program target 0x%x in "
1575 "destroy_program_variants_cb()", target->Target);
1576 }
1577 }
1578
1579
1580 /**
1581 * Callback for _mesa_HashWalk. Free all the shader's program variants
1582 * which match the given context.
1583 */
1584 static void
1585 destroy_shader_program_variants_cb(GLuint key, void *data, void *userData)
1586 {
1587 struct st_context *st = (struct st_context *) userData;
1588 struct gl_shader *shader = (struct gl_shader *) data;
1589
1590 switch (shader->Type) {
1591 case GL_SHADER_PROGRAM_MESA:
1592 {
1593 struct gl_shader_program *shProg = (struct gl_shader_program *) data;
1594 GLuint i;
1595
1596 for (i = 0; i < shProg->NumShaders; i++) {
1597 destroy_program_variants(st, shProg->Shaders[i]->Program);
1598 }
1599
1600 for (i = 0; i < ARRAY_SIZE(shProg->_LinkedShaders); i++) {
1601 if (shProg->_LinkedShaders[i])
1602 destroy_program_variants(st, shProg->_LinkedShaders[i]->Program);
1603 }
1604 }
1605 break;
1606 case GL_VERTEX_SHADER:
1607 case GL_FRAGMENT_SHADER:
1608 case GL_GEOMETRY_SHADER:
1609 case GL_TESS_CONTROL_SHADER:
1610 case GL_TESS_EVALUATION_SHADER:
1611 case GL_COMPUTE_SHADER:
1612 {
1613 destroy_program_variants(st, shader->Program);
1614 }
1615 break;
1616 default:
1617 assert(0);
1618 }
1619 }
1620
1621
1622 /**
1623 * Callback for _mesa_HashWalk. Free all the program variants which match
1624 * the given context.
1625 */
1626 static void
1627 destroy_program_variants_cb(GLuint key, void *data, void *userData)
1628 {
1629 struct st_context *st = (struct st_context *) userData;
1630 struct gl_program *program = (struct gl_program *) data;
1631 destroy_program_variants(st, program);
1632 }
1633
1634
1635 /**
1636 * Walk over all shaders and programs to delete any variants which
1637 * belong to the given context.
1638 * This is called during context tear-down.
1639 */
1640 void
1641 st_destroy_program_variants(struct st_context *st)
1642 {
1643 /* If shaders can be shared with other contexts, the last context will
1644 * call DeleteProgram on all shaders, releasing everything.
1645 */
1646 if (st->has_shareable_shaders)
1647 return;
1648
1649 /* ARB vert/frag program */
1650 _mesa_HashWalk(st->ctx->Shared->Programs,
1651 destroy_program_variants_cb, st);
1652
1653 /* GLSL vert/frag/geom shaders */
1654 _mesa_HashWalk(st->ctx->Shared->ShaderObjects,
1655 destroy_shader_program_variants_cb, st);
1656 }
1657
1658
1659 /**
1660 * For debugging, print/dump the current vertex program.
1661 */
1662 void
1663 st_print_current_vertex_program(void)
1664 {
1665 GET_CURRENT_CONTEXT(ctx);
1666
1667 if (ctx->VertexProgram._Current) {
1668 struct st_vertex_program *stvp =
1669 (struct st_vertex_program *) ctx->VertexProgram._Current;
1670 struct st_vp_variant *stv;
1671
1672 debug_printf("Vertex program %u\n", stvp->Base.Base.Id);
1673
1674 for (stv = stvp->variants; stv; stv = stv->next) {
1675 debug_printf("variant %p\n", stv);
1676 tgsi_dump(stv->tgsi.tokens, 0);
1677 }
1678 }
1679 }
1680
1681
1682 /**
1683 * Compile one shader variant.
1684 */
1685 void
1686 st_precompile_shader_variant(struct st_context *st,
1687 struct gl_program *prog)
1688 {
1689 switch (prog->Target) {
1690 case GL_VERTEX_PROGRAM_ARB: {
1691 struct st_vertex_program *p = (struct st_vertex_program *)prog;
1692 struct st_vp_variant_key key;
1693
1694 memset(&key, 0, sizeof(key));
1695 key.st = st->has_shareable_shaders ? NULL : st;
1696 st_get_vp_variant(st, p, &key);
1697 break;
1698 }
1699
1700 case GL_TESS_CONTROL_PROGRAM_NV: {
1701 struct st_tessctrl_program *p = (struct st_tessctrl_program *)prog;
1702 st_get_basic_variant(st, PIPE_SHADER_TESS_CTRL, &p->tgsi, &p->variants);
1703 break;
1704 }
1705
1706 case GL_TESS_EVALUATION_PROGRAM_NV: {
1707 struct st_tesseval_program *p = (struct st_tesseval_program *)prog;
1708 st_get_basic_variant(st, PIPE_SHADER_TESS_EVAL, &p->tgsi, &p->variants);
1709 break;
1710 }
1711
1712 case GL_GEOMETRY_PROGRAM_NV: {
1713 struct st_geometry_program *p = (struct st_geometry_program *)prog;
1714 st_get_basic_variant(st, PIPE_SHADER_GEOMETRY, &p->tgsi, &p->variants);
1715 break;
1716 }
1717
1718 case GL_FRAGMENT_PROGRAM_ARB: {
1719 struct st_fragment_program *p = (struct st_fragment_program *)prog;
1720 struct st_fp_variant_key key;
1721
1722 memset(&key, 0, sizeof(key));
1723 key.st = st->has_shareable_shaders ? NULL : st;
1724 st_get_fp_variant(st, p, &key);
1725 break;
1726 }
1727
1728 case GL_COMPUTE_PROGRAM_NV: {
1729 struct st_compute_program *p = (struct st_compute_program *)prog;
1730 st_get_cp_variant(st, &p->tgsi, &p->variants);
1731 break;
1732 }
1733
1734 default:
1735 assert(0);
1736 }
1737 }