Merge ../mesa into vulkan
[mesa.git] / src / mesa / state_tracker / st_program.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 * Brian Paul
31 */
32
33
34 #include "main/imports.h"
35 #include "main/hash.h"
36 #include "main/mtypes.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/programopt.h"
40
41 #include "pipe/p_context.h"
42 #include "pipe/p_defines.h"
43 #include "pipe/p_shader_tokens.h"
44 #include "draw/draw_context.h"
45 #include "tgsi/tgsi_dump.h"
46 #include "tgsi/tgsi_emulate.h"
47 #include "tgsi/tgsi_parse.h"
48 #include "tgsi/tgsi_ureg.h"
49
50 #include "st_debug.h"
51 #include "st_cb_bitmap.h"
52 #include "st_cb_drawpixels.h"
53 #include "st_context.h"
54 #include "st_program.h"
55 #include "st_mesa_to_tgsi.h"
56 #include "cso_cache/cso_context.h"
57
58
59
60 /**
61 * Delete a vertex program variant. Note the caller must unlink
62 * the variant from the linked list.
63 */
64 static void
65 delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
66 {
67 if (vpv->driver_shader)
68 cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
69
70 if (vpv->draw_shader)
71 draw_delete_vertex_shader( st->draw, vpv->draw_shader );
72
73 if (vpv->tgsi.tokens)
74 ureg_free_tokens(vpv->tgsi.tokens);
75
76 free( vpv );
77 }
78
79
80
81 /**
82 * Clean out any old compilations:
83 */
84 void
85 st_release_vp_variants( struct st_context *st,
86 struct st_vertex_program *stvp )
87 {
88 struct st_vp_variant *vpv;
89
90 for (vpv = stvp->variants; vpv; ) {
91 struct st_vp_variant *next = vpv->next;
92 delete_vp_variant(st, vpv);
93 vpv = next;
94 }
95
96 stvp->variants = NULL;
97
98 if (stvp->tgsi.tokens) {
99 tgsi_free_tokens(stvp->tgsi.tokens);
100 stvp->tgsi.tokens = NULL;
101 }
102 }
103
104
105
106 /**
107 * Delete a fragment program variant. Note the caller must unlink
108 * the variant from the linked list.
109 */
110 static void
111 delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
112 {
113 if (fpv->driver_shader)
114 cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
115 free(fpv);
116 }
117
118
119 /**
120 * Free all variants of a fragment program.
121 */
122 void
123 st_release_fp_variants(struct st_context *st, struct st_fragment_program *stfp)
124 {
125 struct st_fp_variant *fpv;
126
127 for (fpv = stfp->variants; fpv; ) {
128 struct st_fp_variant *next = fpv->next;
129 delete_fp_variant(st, fpv);
130 fpv = next;
131 }
132
133 stfp->variants = NULL;
134
135 if (stfp->tgsi.tokens) {
136 ureg_free_tokens(stfp->tgsi.tokens);
137 stfp->tgsi.tokens = NULL;
138 }
139 }
140
141
142 /**
143 * Delete a geometry program variant. Note the caller must unlink
144 * the variant from the linked list.
145 */
146 static void
147 delete_gp_variant(struct st_context *st, struct st_gp_variant *gpv)
148 {
149 if (gpv->driver_shader)
150 cso_delete_geometry_shader(st->cso_context, gpv->driver_shader);
151
152 free(gpv);
153 }
154
155
156 /**
157 * Free all variants of a geometry program.
158 */
159 void
160 st_release_gp_variants(struct st_context *st, struct st_geometry_program *stgp)
161 {
162 struct st_gp_variant *gpv;
163
164 for (gpv = stgp->variants; gpv; ) {
165 struct st_gp_variant *next = gpv->next;
166 delete_gp_variant(st, gpv);
167 gpv = next;
168 }
169
170 stgp->variants = NULL;
171
172 if (stgp->tgsi.tokens) {
173 ureg_free_tokens(stgp->tgsi.tokens);
174 stgp->tgsi.tokens = NULL;
175 }
176 }
177
178
179 /**
180 * Delete a tessellation control program variant. Note the caller must unlink
181 * the variant from the linked list.
182 */
183 static void
184 delete_tcp_variant(struct st_context *st, struct st_tcp_variant *tcpv)
185 {
186 if (tcpv->driver_shader)
187 cso_delete_tessctrl_shader(st->cso_context, tcpv->driver_shader);
188
189 free(tcpv);
190 }
191
192
193 /**
194 * Free all variants of a tessellation control program.
195 */
196 void
197 st_release_tcp_variants(struct st_context *st, struct st_tessctrl_program *sttcp)
198 {
199 struct st_tcp_variant *tcpv;
200
201 for (tcpv = sttcp->variants; tcpv; ) {
202 struct st_tcp_variant *next = tcpv->next;
203 delete_tcp_variant(st, tcpv);
204 tcpv = next;
205 }
206
207 sttcp->variants = NULL;
208
209 if (sttcp->tgsi.tokens) {
210 ureg_free_tokens(sttcp->tgsi.tokens);
211 sttcp->tgsi.tokens = NULL;
212 }
213 }
214
215
216 /**
217 * Delete a tessellation evaluation program variant. Note the caller must
218 * unlink the variant from the linked list.
219 */
220 static void
221 delete_tep_variant(struct st_context *st, struct st_tep_variant *tepv)
222 {
223 if (tepv->driver_shader)
224 cso_delete_tesseval_shader(st->cso_context, tepv->driver_shader);
225
226 free(tepv);
227 }
228
229
230 /**
231 * Free all variants of a tessellation evaluation program.
232 */
233 void
234 st_release_tep_variants(struct st_context *st, struct st_tesseval_program *sttep)
235 {
236 struct st_tep_variant *tepv;
237
238 for (tepv = sttep->variants; tepv; ) {
239 struct st_tep_variant *next = tepv->next;
240 delete_tep_variant(st, tepv);
241 tepv = next;
242 }
243
244 sttep->variants = NULL;
245
246 if (sttep->tgsi.tokens) {
247 ureg_free_tokens(sttep->tgsi.tokens);
248 sttep->tgsi.tokens = NULL;
249 }
250 }
251
252
253 /**
254 * Translate a vertex program.
255 */
256 bool
257 st_translate_vertex_program(struct st_context *st,
258 struct st_vertex_program *stvp)
259 {
260 struct ureg_program *ureg;
261 enum pipe_error error;
262 unsigned num_outputs = 0;
263 unsigned attr;
264 unsigned input_to_index[VERT_ATTRIB_MAX] = {0};
265 unsigned output_slot_to_attr[VARYING_SLOT_MAX] = {0};
266 ubyte output_semantic_name[VARYING_SLOT_MAX] = {0};
267 ubyte output_semantic_index[VARYING_SLOT_MAX] = {0};
268
269 stvp->num_inputs = 0;
270
271 if (stvp->Base.IsPositionInvariant)
272 _mesa_insert_mvp_code(st->ctx, &stvp->Base);
273
274 /*
275 * Determine number of inputs, the mappings between VERT_ATTRIB_x
276 * and TGSI generic input indexes, plus input attrib semantic info.
277 */
278 for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
279 if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
280 input_to_index[attr] = stvp->num_inputs;
281 stvp->index_to_input[stvp->num_inputs] = attr;
282 stvp->num_inputs++;
283 if ((stvp->Base.Base.DoubleInputsRead & BITFIELD64_BIT(attr)) != 0) {
284 /* add placeholder for second part of a double attribute */
285 stvp->index_to_input[stvp->num_inputs] = ST_DOUBLE_ATTRIB_PLACEHOLDER;
286 stvp->num_inputs++;
287 }
288 }
289 }
290 /* bit of a hack, presetup potentially unused edgeflag input */
291 input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
292 stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;
293
294 /* Compute mapping of vertex program outputs to slots.
295 */
296 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
297 if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
298 stvp->result_to_output[attr] = ~0;
299 }
300 else {
301 unsigned slot = num_outputs++;
302
303 stvp->result_to_output[attr] = slot;
304 output_slot_to_attr[slot] = attr;
305
306 switch (attr) {
307 case VARYING_SLOT_POS:
308 output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
309 output_semantic_index[slot] = 0;
310 break;
311 case VARYING_SLOT_COL0:
312 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
313 output_semantic_index[slot] = 0;
314 break;
315 case VARYING_SLOT_COL1:
316 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
317 output_semantic_index[slot] = 1;
318 break;
319 case VARYING_SLOT_BFC0:
320 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
321 output_semantic_index[slot] = 0;
322 break;
323 case VARYING_SLOT_BFC1:
324 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
325 output_semantic_index[slot] = 1;
326 break;
327 case VARYING_SLOT_FOGC:
328 output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
329 output_semantic_index[slot] = 0;
330 break;
331 case VARYING_SLOT_PSIZ:
332 output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
333 output_semantic_index[slot] = 0;
334 break;
335 case VARYING_SLOT_CLIP_DIST0:
336 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
337 output_semantic_index[slot] = 0;
338 break;
339 case VARYING_SLOT_CLIP_DIST1:
340 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
341 output_semantic_index[slot] = 1;
342 break;
343 case VARYING_SLOT_EDGE:
344 assert(0);
345 break;
346 case VARYING_SLOT_CLIP_VERTEX:
347 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
348 output_semantic_index[slot] = 0;
349 break;
350 case VARYING_SLOT_LAYER:
351 output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
352 output_semantic_index[slot] = 0;
353 break;
354 case VARYING_SLOT_VIEWPORT:
355 output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
356 output_semantic_index[slot] = 0;
357 break;
358
359 case VARYING_SLOT_TEX0:
360 case VARYING_SLOT_TEX1:
361 case VARYING_SLOT_TEX2:
362 case VARYING_SLOT_TEX3:
363 case VARYING_SLOT_TEX4:
364 case VARYING_SLOT_TEX5:
365 case VARYING_SLOT_TEX6:
366 case VARYING_SLOT_TEX7:
367 if (st->needs_texcoord_semantic) {
368 output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
369 output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
370 break;
371 }
372 /* fall through */
373 case VARYING_SLOT_VAR0:
374 default:
375 assert(attr >= VARYING_SLOT_VAR0 ||
376 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
377 output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
378 output_semantic_index[slot] =
379 st_get_generic_varying_index(st, attr);
380 break;
381 }
382 }
383 }
384 /* similar hack to above, presetup potentially unused edgeflag output */
385 stvp->result_to_output[VARYING_SLOT_EDGE] = num_outputs;
386 output_semantic_name[num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
387 output_semantic_index[num_outputs] = 0;
388
389 if (!stvp->glsl_to_tgsi)
390 _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
391
392 ureg = ureg_create_with_screen(TGSI_PROCESSOR_VERTEX, st->pipe->screen);
393 if (ureg == NULL)
394 return false;
395
396 if (stvp->Base.Base.ClipDistanceArraySize)
397 ureg_property(ureg, TGSI_PROPERTY_NUM_CLIPDIST_ENABLED,
398 stvp->Base.Base.ClipDistanceArraySize);
399
400 if (ST_DEBUG & DEBUG_MESA) {
401 _mesa_print_program(&stvp->Base.Base);
402 _mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
403 debug_printf("\n");
404 }
405
406 if (stvp->glsl_to_tgsi) {
407 error = st_translate_program(st->ctx,
408 TGSI_PROCESSOR_VERTEX,
409 ureg,
410 stvp->glsl_to_tgsi,
411 &stvp->Base.Base,
412 /* inputs */
413 stvp->num_inputs,
414 input_to_index,
415 NULL, /* inputSlotToAttr */
416 NULL, /* input semantic name */
417 NULL, /* input semantic index */
418 NULL, /* interp mode */
419 NULL, /* interp location */
420 /* outputs */
421 num_outputs,
422 stvp->result_to_output,
423 output_slot_to_attr,
424 output_semantic_name,
425 output_semantic_index);
426
427 st_translate_stream_output_info(stvp->glsl_to_tgsi,
428 stvp->result_to_output,
429 &stvp->tgsi.stream_output);
430
431 free_glsl_to_tgsi_visitor(stvp->glsl_to_tgsi);
432 stvp->glsl_to_tgsi = NULL;
433 } else
434 error = st_translate_mesa_program(st->ctx,
435 TGSI_PROCESSOR_VERTEX,
436 ureg,
437 &stvp->Base.Base,
438 /* inputs */
439 stvp->num_inputs,
440 input_to_index,
441 NULL, /* input semantic name */
442 NULL, /* input semantic index */
443 NULL,
444 /* outputs */
445 num_outputs,
446 stvp->result_to_output,
447 output_semantic_name,
448 output_semantic_index);
449
450 if (error) {
451 debug_printf("%s: failed to translate Mesa program:\n", __func__);
452 _mesa_print_program(&stvp->Base.Base);
453 debug_assert(0);
454 return false;
455 }
456
457 stvp->tgsi.tokens = ureg_get_tokens(ureg, NULL);
458 ureg_destroy(ureg);
459 return stvp->tgsi.tokens != NULL;
460 }
461
462 static struct st_vp_variant *
463 st_create_vp_variant(struct st_context *st,
464 struct st_vertex_program *stvp,
465 const struct st_vp_variant_key *key)
466 {
467 struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
468 struct pipe_context *pipe = st->pipe;
469
470 vpv->key = *key;
471 vpv->tgsi.tokens = tgsi_dup_tokens(stvp->tgsi.tokens);
472 vpv->tgsi.stream_output = stvp->tgsi.stream_output;
473 vpv->num_inputs = stvp->num_inputs;
474
475 /* Emulate features. */
476 if (key->clamp_color || key->passthrough_edgeflags) {
477 const struct tgsi_token *tokens;
478 unsigned flags =
479 (key->clamp_color ? TGSI_EMU_CLAMP_COLOR_OUTPUTS : 0) |
480 (key->passthrough_edgeflags ? TGSI_EMU_PASSTHROUGH_EDGEFLAG : 0);
481
482 tokens = tgsi_emulate(vpv->tgsi.tokens, flags);
483
484 if (tokens) {
485 tgsi_free_tokens(vpv->tgsi.tokens);
486 vpv->tgsi.tokens = tokens;
487
488 if (key->passthrough_edgeflags)
489 vpv->num_inputs++;
490 } else
491 fprintf(stderr, "mesa: cannot emulate deprecated features\n");
492 }
493
494 if (ST_DEBUG & DEBUG_TGSI) {
495 tgsi_dump(vpv->tgsi.tokens, 0);
496 debug_printf("\n");
497 }
498
499 vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
500 return vpv;
501 }
502
503
504 /**
505 * Find/create a vertex program variant.
506 */
507 struct st_vp_variant *
508 st_get_vp_variant(struct st_context *st,
509 struct st_vertex_program *stvp,
510 const struct st_vp_variant_key *key)
511 {
512 struct st_vp_variant *vpv;
513
514 /* Search for existing variant */
515 for (vpv = stvp->variants; vpv; vpv = vpv->next) {
516 if (memcmp(&vpv->key, key, sizeof(*key)) == 0) {
517 break;
518 }
519 }
520
521 if (!vpv) {
522 /* create now */
523 vpv = st_create_vp_variant(st, stvp, key);
524 if (vpv) {
525 /* insert into list */
526 vpv->next = stvp->variants;
527 stvp->variants = vpv;
528 }
529 }
530
531 return vpv;
532 }
533
534
535 static unsigned
536 st_translate_interp(enum glsl_interp_qualifier glsl_qual, bool is_color)
537 {
538 switch (glsl_qual) {
539 case INTERP_QUALIFIER_NONE:
540 if (is_color)
541 return TGSI_INTERPOLATE_COLOR;
542 return TGSI_INTERPOLATE_PERSPECTIVE;
543 case INTERP_QUALIFIER_SMOOTH:
544 return TGSI_INTERPOLATE_PERSPECTIVE;
545 case INTERP_QUALIFIER_FLAT:
546 return TGSI_INTERPOLATE_CONSTANT;
547 case INTERP_QUALIFIER_NOPERSPECTIVE:
548 return TGSI_INTERPOLATE_LINEAR;
549 default:
550 assert(0 && "unexpected interp mode in st_translate_interp()");
551 return TGSI_INTERPOLATE_PERSPECTIVE;
552 }
553 }
554
555
556 /**
557 * Translate a Mesa fragment shader into a TGSI shader.
558 */
559 bool
560 st_translate_fragment_program(struct st_context *st,
561 struct st_fragment_program *stfp)
562 {
563 GLuint outputMapping[FRAG_RESULT_MAX];
564 GLuint inputMapping[VARYING_SLOT_MAX];
565 GLuint inputSlotToAttr[VARYING_SLOT_MAX];
566 GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */
567 GLuint interpLocation[PIPE_MAX_SHADER_INPUTS];
568 GLuint attr;
569 GLbitfield64 inputsRead;
570 struct ureg_program *ureg;
571
572 GLboolean write_all = GL_FALSE;
573
574 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
575 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
576 uint fs_num_inputs = 0;
577
578 ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
579 ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
580 uint fs_num_outputs = 0;
581
582 memset(inputSlotToAttr, ~0, sizeof(inputSlotToAttr));
583
584 if (!stfp->glsl_to_tgsi) {
585 _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);
586 if (st->ctx->Const.GLSLFragCoordIsSysVal)
587 _mesa_program_fragment_position_to_sysval(&stfp->Base.Base);
588 }
589
590 /*
591 * Convert Mesa program inputs to TGSI input register semantics.
592 */
593 inputsRead = stfp->Base.Base.InputsRead;
594 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
595 if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
596 const GLuint slot = fs_num_inputs++;
597
598 inputMapping[attr] = slot;
599 inputSlotToAttr[slot] = attr;
600 if (stfp->Base.IsCentroid & BITFIELD64_BIT(attr))
601 interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTROID;
602 else if (stfp->Base.IsSample & BITFIELD64_BIT(attr))
603 interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;
604 else
605 interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTER;
606
607 if (stfp->Base.Base.SystemValuesRead & (SYSTEM_BIT_SAMPLE_ID |
608 SYSTEM_BIT_SAMPLE_POS))
609 interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;
610
611 switch (attr) {
612 case VARYING_SLOT_POS:
613 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
614 input_semantic_index[slot] = 0;
615 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
616 break;
617 case VARYING_SLOT_COL0:
618 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
619 input_semantic_index[slot] = 0;
620 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
621 TRUE);
622 break;
623 case VARYING_SLOT_COL1:
624 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
625 input_semantic_index[slot] = 1;
626 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
627 TRUE);
628 break;
629 case VARYING_SLOT_FOGC:
630 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
631 input_semantic_index[slot] = 0;
632 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
633 break;
634 case VARYING_SLOT_FACE:
635 input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
636 input_semantic_index[slot] = 0;
637 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
638 break;
639 case VARYING_SLOT_PRIMITIVE_ID:
640 input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
641 input_semantic_index[slot] = 0;
642 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
643 break;
644 case VARYING_SLOT_LAYER:
645 input_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
646 input_semantic_index[slot] = 0;
647 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
648 break;
649 case VARYING_SLOT_VIEWPORT:
650 input_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
651 input_semantic_index[slot] = 0;
652 interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
653 break;
654 case VARYING_SLOT_CLIP_DIST0:
655 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
656 input_semantic_index[slot] = 0;
657 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
658 break;
659 case VARYING_SLOT_CLIP_DIST1:
660 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
661 input_semantic_index[slot] = 1;
662 interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
663 break;
664 /* In most cases, there is nothing special about these
665 * inputs, so adopt a convention to use the generic
666 * semantic name and the mesa VARYING_SLOT_ number as the
667 * index.
668 *
669 * All that is required is that the vertex shader labels
670 * its own outputs similarly, and that the vertex shader
671 * generates at least every output required by the
672 * fragment shader plus fixed-function hardware (such as
673 * BFC).
674 *
675 * However, some drivers may need us to identify the PNTC and TEXi
676 * varyings if, for example, their capability to replace them with
677 * sprite coordinates is limited.
678 */
679 case VARYING_SLOT_PNTC:
680 if (st->needs_texcoord_semantic) {
681 input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
682 input_semantic_index[slot] = 0;
683 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
684 break;
685 }
686 /* fall through */
687 case VARYING_SLOT_TEX0:
688 case VARYING_SLOT_TEX1:
689 case VARYING_SLOT_TEX2:
690 case VARYING_SLOT_TEX3:
691 case VARYING_SLOT_TEX4:
692 case VARYING_SLOT_TEX5:
693 case VARYING_SLOT_TEX6:
694 case VARYING_SLOT_TEX7:
695 if (st->needs_texcoord_semantic) {
696 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
697 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
698 interpMode[slot] =
699 st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
700 break;
701 }
702 /* fall through */
703 case VARYING_SLOT_VAR0:
704 default:
705 /* Semantic indices should be zero-based because drivers may choose
706 * to assign a fixed slot determined by that index.
707 * This is useful because ARB_separate_shader_objects uses location
708 * qualifiers for linkage, and if the semantic index corresponds to
709 * these locations, linkage passes in the driver become unecessary.
710 *
711 * If needs_texcoord_semantic is true, no semantic indices will be
712 * consumed for the TEXi varyings, and we can base the locations of
713 * the user varyings on VAR0. Otherwise, we use TEX0 as base index.
714 */
715 assert(attr >= VARYING_SLOT_VAR0 || attr == VARYING_SLOT_PNTC ||
716 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
717 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
718 input_semantic_index[slot] = st_get_generic_varying_index(st, attr);
719 if (attr == VARYING_SLOT_PNTC)
720 interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
721 else
722 interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
723 FALSE);
724 break;
725 }
726 }
727 else {
728 inputMapping[attr] = -1;
729 }
730 }
731
732 /*
733 * Semantics and mapping for outputs
734 */
735 {
736 uint numColors = 0;
737 GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;
738
739 /* if z is written, emit that first */
740 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
741 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
742 fs_output_semantic_index[fs_num_outputs] = 0;
743 outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
744 fs_num_outputs++;
745 outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
746 }
747
748 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
749 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
750 fs_output_semantic_index[fs_num_outputs] = 0;
751 outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
752 fs_num_outputs++;
753 outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
754 }
755
756 if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) {
757 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_SAMPLEMASK;
758 fs_output_semantic_index[fs_num_outputs] = 0;
759 outputMapping[FRAG_RESULT_SAMPLE_MASK] = fs_num_outputs;
760 fs_num_outputs++;
761 outputsWritten &= ~(1 << FRAG_RESULT_SAMPLE_MASK);
762 }
763
764 /* handle remaining outputs (color) */
765 for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
766 if (outputsWritten & BITFIELD64_BIT(attr)) {
767 switch (attr) {
768 case FRAG_RESULT_DEPTH:
769 case FRAG_RESULT_STENCIL:
770 case FRAG_RESULT_SAMPLE_MASK:
771 /* handled above */
772 assert(0);
773 break;
774 case FRAG_RESULT_COLOR:
775 write_all = GL_TRUE; /* fallthrough */
776 default:
777 assert(attr == FRAG_RESULT_COLOR ||
778 (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
779 fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
780 fs_output_semantic_index[fs_num_outputs] = numColors;
781 outputMapping[attr] = fs_num_outputs;
782 numColors++;
783 break;
784 }
785
786 fs_num_outputs++;
787 }
788 }
789 }
790
791 ureg = ureg_create_with_screen(TGSI_PROCESSOR_FRAGMENT, st->pipe->screen);
792 if (ureg == NULL)
793 return false;
794
795 if (ST_DEBUG & DEBUG_MESA) {
796 _mesa_print_program(&stfp->Base.Base);
797 _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
798 debug_printf("\n");
799 }
800 if (write_all == GL_TRUE)
801 ureg_property(ureg, TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS, 1);
802
803 if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
804 switch (stfp->Base.FragDepthLayout) {
805 case FRAG_DEPTH_LAYOUT_ANY:
806 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
807 TGSI_FS_DEPTH_LAYOUT_ANY);
808 break;
809 case FRAG_DEPTH_LAYOUT_GREATER:
810 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
811 TGSI_FS_DEPTH_LAYOUT_GREATER);
812 break;
813 case FRAG_DEPTH_LAYOUT_LESS:
814 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
815 TGSI_FS_DEPTH_LAYOUT_LESS);
816 break;
817 case FRAG_DEPTH_LAYOUT_UNCHANGED:
818 ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
819 TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
820 break;
821 default:
822 assert(0);
823 }
824 }
825
826 if (stfp->glsl_to_tgsi) {
827 st_translate_program(st->ctx,
828 TGSI_PROCESSOR_FRAGMENT,
829 ureg,
830 stfp->glsl_to_tgsi,
831 &stfp->Base.Base,
832 /* inputs */
833 fs_num_inputs,
834 inputMapping,
835 inputSlotToAttr,
836 input_semantic_name,
837 input_semantic_index,
838 interpMode,
839 interpLocation,
840 /* outputs */
841 fs_num_outputs,
842 outputMapping,
843 NULL,
844 fs_output_semantic_name,
845 fs_output_semantic_index);
846
847 free_glsl_to_tgsi_visitor(stfp->glsl_to_tgsi);
848 stfp->glsl_to_tgsi = NULL;
849 } else
850 st_translate_mesa_program(st->ctx,
851 TGSI_PROCESSOR_FRAGMENT,
852 ureg,
853 &stfp->Base.Base,
854 /* inputs */
855 fs_num_inputs,
856 inputMapping,
857 input_semantic_name,
858 input_semantic_index,
859 interpMode,
860 /* outputs */
861 fs_num_outputs,
862 outputMapping,
863 fs_output_semantic_name,
864 fs_output_semantic_index);
865
866 stfp->tgsi.tokens = ureg_get_tokens(ureg, NULL);
867 ureg_destroy(ureg);
868 return stfp->tgsi.tokens != NULL;
869 }
870
871 static struct st_fp_variant *
872 st_create_fp_variant(struct st_context *st,
873 struct st_fragment_program *stfp,
874 const struct st_fp_variant_key *key)
875 {
876 struct pipe_context *pipe = st->pipe;
877 struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
878 struct pipe_shader_state tgsi = {0};
879
880 if (!variant)
881 return NULL;
882
883 tgsi.tokens = stfp->tgsi.tokens;
884
885 assert(!(key->bitmap && key->drawpixels));
886
887 /* Emulate features. */
888 if (key->clamp_color || key->persample_shading) {
889 const struct tgsi_token *tokens;
890 unsigned flags =
891 (key->clamp_color ? TGSI_EMU_CLAMP_COLOR_OUTPUTS : 0) |
892 (key->persample_shading ? TGSI_EMU_FORCE_PERSAMPLE_INTERP : 0);
893
894 tokens = tgsi_emulate(tgsi.tokens, flags);
895
896 if (tokens)
897 tgsi.tokens = tokens;
898 else
899 fprintf(stderr, "mesa: cannot emulate deprecated features\n");
900 }
901
902 /* glBitmap */
903 if (key->bitmap) {
904 const struct tgsi_token *tokens;
905
906 variant->bitmap_sampler = ffs(~stfp->Base.Base.SamplersUsed) - 1;
907
908 tokens = st_get_bitmap_shader(tgsi.tokens,
909 variant->bitmap_sampler,
910 st->needs_texcoord_semantic,
911 st->bitmap.tex_format ==
912 PIPE_FORMAT_L8_UNORM);
913
914 if (tokens) {
915 if (tgsi.tokens != stfp->tgsi.tokens)
916 tgsi_free_tokens(tgsi.tokens);
917 tgsi.tokens = tokens;
918 } else
919 fprintf(stderr, "mesa: cannot create a shader for glBitmap\n");
920 }
921
922 /* glDrawPixels (color only) */
923 if (key->drawpixels) {
924 const struct tgsi_token *tokens;
925 unsigned scale_const = 0, bias_const = 0, texcoord_const = 0;
926 struct gl_program_parameter_list *params = stfp->Base.Base.Parameters;
927
928 /* Find the first unused slot. */
929 variant->drawpix_sampler = ffs(~stfp->Base.Base.SamplersUsed) - 1;
930
931 if (key->pixelMaps) {
932 unsigned samplers_used = stfp->Base.Base.SamplersUsed |
933 (1 << variant->drawpix_sampler);
934
935 variant->pixelmap_sampler = ffs(~samplers_used) - 1;
936 }
937
938 if (key->scaleAndBias) {
939 static const gl_state_index scale_state[STATE_LENGTH] =
940 { STATE_INTERNAL, STATE_PT_SCALE };
941 static const gl_state_index bias_state[STATE_LENGTH] =
942 { STATE_INTERNAL, STATE_PT_BIAS };
943
944 scale_const = _mesa_add_state_reference(params, scale_state);
945 bias_const = _mesa_add_state_reference(params, bias_state);
946 }
947
948 {
949 static const gl_state_index state[STATE_LENGTH] =
950 { STATE_INTERNAL, STATE_CURRENT_ATTRIB, VERT_ATTRIB_TEX0 };
951
952 texcoord_const = _mesa_add_state_reference(params, state);
953 }
954
955 tokens = st_get_drawpix_shader(tgsi.tokens,
956 st->needs_texcoord_semantic,
957 key->scaleAndBias, scale_const,
958 bias_const, key->pixelMaps,
959 variant->drawpix_sampler,
960 variant->pixelmap_sampler,
961 texcoord_const);
962
963 if (tokens) {
964 if (tgsi.tokens != stfp->tgsi.tokens)
965 tgsi_free_tokens(tgsi.tokens);
966 tgsi.tokens = tokens;
967 } else
968 fprintf(stderr, "mesa: cannot create a shader for glDrawPixels\n");
969 }
970
971 if (ST_DEBUG & DEBUG_TGSI) {
972 tgsi_dump(tgsi.tokens, 0);
973 debug_printf("\n");
974 }
975
976 /* fill in variant */
977 variant->driver_shader = pipe->create_fs_state(pipe, &tgsi);
978 variant->key = *key;
979
980 if (tgsi.tokens != stfp->tgsi.tokens)
981 tgsi_free_tokens(tgsi.tokens);
982 return variant;
983 }
984
985 /**
986 * Translate fragment program if needed.
987 */
988 struct st_fp_variant *
989 st_get_fp_variant(struct st_context *st,
990 struct st_fragment_program *stfp,
991 const struct st_fp_variant_key *key)
992 {
993 struct st_fp_variant *fpv;
994
995 /* Search for existing variant */
996 for (fpv = stfp->variants; fpv; fpv = fpv->next) {
997 if (memcmp(&fpv->key, key, sizeof(*key)) == 0) {
998 break;
999 }
1000 }
1001
1002 if (!fpv) {
1003 /* create new */
1004 fpv = st_create_fp_variant(st, stfp, key);
1005 if (fpv) {
1006 /* insert into list */
1007 fpv->next = stfp->variants;
1008 stfp->variants = fpv;
1009 }
1010 }
1011
1012 return fpv;
1013 }
1014
1015
1016 /**
1017 * Translate a program. This is common code for geometry and tessellation
1018 * shaders.
1019 */
1020 static void
1021 st_translate_program_common(struct st_context *st,
1022 struct gl_program *prog,
1023 struct glsl_to_tgsi_visitor *glsl_to_tgsi,
1024 struct ureg_program *ureg,
1025 unsigned tgsi_processor,
1026 struct pipe_shader_state *out_state)
1027 {
1028 GLuint inputSlotToAttr[VARYING_SLOT_TESS_MAX];
1029 GLuint inputMapping[VARYING_SLOT_TESS_MAX];
1030 GLuint outputSlotToAttr[VARYING_SLOT_TESS_MAX];
1031 GLuint outputMapping[VARYING_SLOT_TESS_MAX];
1032 GLuint attr;
1033
1034 ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
1035 ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
1036 uint num_inputs = 0;
1037
1038 ubyte output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
1039 ubyte output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
1040 uint num_outputs = 0;
1041
1042 GLint i;
1043
1044 memset(inputSlotToAttr, 0, sizeof(inputSlotToAttr));
1045 memset(inputMapping, 0, sizeof(inputMapping));
1046 memset(outputSlotToAttr, 0, sizeof(outputSlotToAttr));
1047 memset(outputMapping, 0, sizeof(outputMapping));
1048 memset(out_state, 0, sizeof(*out_state));
1049
1050 if (prog->ClipDistanceArraySize)
1051 ureg_property(ureg, TGSI_PROPERTY_NUM_CLIPDIST_ENABLED,
1052 prog->ClipDistanceArraySize);
1053
1054 /*
1055 * Convert Mesa program inputs to TGSI input register semantics.
1056 */
1057 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1058 if ((prog->InputsRead & BITFIELD64_BIT(attr)) != 0) {
1059 const GLuint slot = num_inputs++;
1060
1061 inputMapping[attr] = slot;
1062 inputSlotToAttr[slot] = attr;
1063
1064 switch (attr) {
1065 case VARYING_SLOT_PRIMITIVE_ID:
1066 assert(tgsi_processor == TGSI_PROCESSOR_GEOMETRY);
1067 input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
1068 input_semantic_index[slot] = 0;
1069 break;
1070 case VARYING_SLOT_POS:
1071 input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
1072 input_semantic_index[slot] = 0;
1073 break;
1074 case VARYING_SLOT_COL0:
1075 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1076 input_semantic_index[slot] = 0;
1077 break;
1078 case VARYING_SLOT_COL1:
1079 input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1080 input_semantic_index[slot] = 1;
1081 break;
1082 case VARYING_SLOT_FOGC:
1083 input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
1084 input_semantic_index[slot] = 0;
1085 break;
1086 case VARYING_SLOT_CLIP_VERTEX:
1087 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1088 input_semantic_index[slot] = 0;
1089 break;
1090 case VARYING_SLOT_CLIP_DIST0:
1091 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1092 input_semantic_index[slot] = 0;
1093 break;
1094 case VARYING_SLOT_CLIP_DIST1:
1095 input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1096 input_semantic_index[slot] = 1;
1097 break;
1098 case VARYING_SLOT_PSIZ:
1099 input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
1100 input_semantic_index[slot] = 0;
1101 break;
1102 case VARYING_SLOT_TEX0:
1103 case VARYING_SLOT_TEX1:
1104 case VARYING_SLOT_TEX2:
1105 case VARYING_SLOT_TEX3:
1106 case VARYING_SLOT_TEX4:
1107 case VARYING_SLOT_TEX5:
1108 case VARYING_SLOT_TEX6:
1109 case VARYING_SLOT_TEX7:
1110 if (st->needs_texcoord_semantic) {
1111 input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
1112 input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
1113 break;
1114 }
1115 /* fall through */
1116 case VARYING_SLOT_VAR0:
1117 default:
1118 assert(attr >= VARYING_SLOT_VAR0 ||
1119 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
1120 input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1121 input_semantic_index[slot] =
1122 st_get_generic_varying_index(st, attr);
1123 break;
1124 }
1125 }
1126 }
1127
1128 /* Also add patch inputs. */
1129 for (attr = 0; attr < 32; attr++) {
1130 if (prog->PatchInputsRead & (1 << attr)) {
1131 GLuint slot = num_inputs++;
1132 GLuint patch_attr = VARYING_SLOT_PATCH0 + attr;
1133
1134 inputMapping[patch_attr] = slot;
1135 inputSlotToAttr[slot] = patch_attr;
1136 input_semantic_name[slot] = TGSI_SEMANTIC_PATCH;
1137 input_semantic_index[slot] = attr;
1138 }
1139 }
1140
1141 /* initialize output semantics to defaults */
1142 for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
1143 output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
1144 output_semantic_index[i] = 0;
1145 }
1146
1147 /*
1148 * Determine number of outputs, the (default) output register
1149 * mapping and the semantic information for each output.
1150 */
1151 for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1152 if (prog->OutputsWritten & BITFIELD64_BIT(attr)) {
1153 GLuint slot = num_outputs++;
1154
1155 outputMapping[attr] = slot;
1156 outputSlotToAttr[slot] = attr;
1157
1158 switch (attr) {
1159 case VARYING_SLOT_POS:
1160 assert(slot == 0);
1161 output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
1162 output_semantic_index[slot] = 0;
1163 break;
1164 case VARYING_SLOT_COL0:
1165 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1166 output_semantic_index[slot] = 0;
1167 break;
1168 case VARYING_SLOT_COL1:
1169 output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
1170 output_semantic_index[slot] = 1;
1171 break;
1172 case VARYING_SLOT_BFC0:
1173 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1174 output_semantic_index[slot] = 0;
1175 break;
1176 case VARYING_SLOT_BFC1:
1177 output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
1178 output_semantic_index[slot] = 1;
1179 break;
1180 case VARYING_SLOT_FOGC:
1181 output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
1182 output_semantic_index[slot] = 0;
1183 break;
1184 case VARYING_SLOT_PSIZ:
1185 output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
1186 output_semantic_index[slot] = 0;
1187 break;
1188 case VARYING_SLOT_CLIP_VERTEX:
1189 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
1190 output_semantic_index[slot] = 0;
1191 break;
1192 case VARYING_SLOT_CLIP_DIST0:
1193 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1194 output_semantic_index[slot] = 0;
1195 break;
1196 case VARYING_SLOT_CLIP_DIST1:
1197 output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
1198 output_semantic_index[slot] = 1;
1199 break;
1200 case VARYING_SLOT_LAYER:
1201 output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
1202 output_semantic_index[slot] = 0;
1203 break;
1204 case VARYING_SLOT_PRIMITIVE_ID:
1205 output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
1206 output_semantic_index[slot] = 0;
1207 break;
1208 case VARYING_SLOT_VIEWPORT:
1209 output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
1210 output_semantic_index[slot] = 0;
1211 break;
1212 case VARYING_SLOT_TESS_LEVEL_OUTER:
1213 output_semantic_name[slot] = TGSI_SEMANTIC_TESSOUTER;
1214 output_semantic_index[slot] = 0;
1215 break;
1216 case VARYING_SLOT_TESS_LEVEL_INNER:
1217 output_semantic_name[slot] = TGSI_SEMANTIC_TESSINNER;
1218 output_semantic_index[slot] = 0;
1219 break;
1220 case VARYING_SLOT_TEX0:
1221 case VARYING_SLOT_TEX1:
1222 case VARYING_SLOT_TEX2:
1223 case VARYING_SLOT_TEX3:
1224 case VARYING_SLOT_TEX4:
1225 case VARYING_SLOT_TEX5:
1226 case VARYING_SLOT_TEX6:
1227 case VARYING_SLOT_TEX7:
1228 if (st->needs_texcoord_semantic) {
1229 output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
1230 output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
1231 break;
1232 }
1233 /* fall through */
1234 case VARYING_SLOT_VAR0:
1235 default:
1236 assert(slot < ARRAY_SIZE(output_semantic_name));
1237 assert(attr >= VARYING_SLOT_VAR0 ||
1238 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7));
1239 output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
1240 output_semantic_index[slot] =
1241 st_get_generic_varying_index(st, attr);
1242 break;
1243 }
1244 }
1245 }
1246
1247 /* Also add patch outputs. */
1248 for (attr = 0; attr < 32; attr++) {
1249 if (prog->PatchOutputsWritten & (1 << attr)) {
1250 GLuint slot = num_outputs++;
1251 GLuint patch_attr = VARYING_SLOT_PATCH0 + attr;
1252
1253 outputMapping[patch_attr] = slot;
1254 outputSlotToAttr[slot] = patch_attr;
1255 output_semantic_name[slot] = TGSI_SEMANTIC_PATCH;
1256 output_semantic_index[slot] = attr;
1257 }
1258 }
1259
1260 st_translate_program(st->ctx,
1261 tgsi_processor,
1262 ureg,
1263 glsl_to_tgsi,
1264 prog,
1265 /* inputs */
1266 num_inputs,
1267 inputMapping,
1268 inputSlotToAttr,
1269 input_semantic_name,
1270 input_semantic_index,
1271 NULL,
1272 NULL,
1273 /* outputs */
1274 num_outputs,
1275 outputMapping,
1276 outputSlotToAttr,
1277 output_semantic_name,
1278 output_semantic_index);
1279
1280 out_state->tokens = ureg_get_tokens(ureg, NULL);
1281 ureg_destroy(ureg);
1282
1283 st_translate_stream_output_info(glsl_to_tgsi,
1284 outputMapping,
1285 &out_state->stream_output);
1286
1287 if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
1288 _mesa_print_program(prog);
1289 debug_printf("\n");
1290 }
1291
1292 if (ST_DEBUG & DEBUG_TGSI) {
1293 tgsi_dump(out_state->tokens, 0);
1294 debug_printf("\n");
1295 }
1296 }
1297
1298
1299 /**
1300 * Translate a geometry program to create a new variant.
1301 */
1302 bool
1303 st_translate_geometry_program(struct st_context *st,
1304 struct st_geometry_program *stgp)
1305 {
1306 struct ureg_program *ureg;
1307
1308 ureg = ureg_create_with_screen(TGSI_PROCESSOR_GEOMETRY, st->pipe->screen);
1309 if (ureg == NULL)
1310 return false;
1311
1312 ureg_property(ureg, TGSI_PROPERTY_GS_INPUT_PRIM, stgp->Base.InputType);
1313 ureg_property(ureg, TGSI_PROPERTY_GS_OUTPUT_PRIM, stgp->Base.OutputType);
1314 ureg_property(ureg, TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES,
1315 stgp->Base.VerticesOut);
1316 ureg_property(ureg, TGSI_PROPERTY_GS_INVOCATIONS, stgp->Base.Invocations);
1317
1318 st_translate_program_common(st, &stgp->Base.Base, stgp->glsl_to_tgsi, ureg,
1319 TGSI_PROCESSOR_GEOMETRY, &stgp->tgsi);
1320
1321 free_glsl_to_tgsi_visitor(stgp->glsl_to_tgsi);
1322 stgp->glsl_to_tgsi = NULL;
1323 return true;
1324 }
1325
1326
1327 static struct st_gp_variant *
1328 st_create_gp_variant(struct st_context *st,
1329 struct st_geometry_program *stgp,
1330 const struct st_gp_variant_key *key)
1331 {
1332 struct pipe_context *pipe = st->pipe;
1333 struct st_gp_variant *gpv;
1334
1335 gpv = CALLOC_STRUCT(st_gp_variant);
1336 if (!gpv)
1337 return NULL;
1338
1339 /* fill in new variant */
1340 gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
1341 gpv->key = *key;
1342 return gpv;
1343 }
1344
1345
1346 /**
1347 * Get/create geometry program variant.
1348 */
1349 struct st_gp_variant *
1350 st_get_gp_variant(struct st_context *st,
1351 struct st_geometry_program *stgp,
1352 const struct st_gp_variant_key *key)
1353 {
1354 struct st_gp_variant *gpv;
1355
1356 /* Search for existing variant */
1357 for (gpv = stgp->variants; gpv; gpv = gpv->next) {
1358 if (memcmp(&gpv->key, key, sizeof(*key)) == 0) {
1359 break;
1360 }
1361 }
1362
1363 if (!gpv) {
1364 /* create new */
1365 gpv = st_create_gp_variant(st, stgp, key);
1366 if (gpv) {
1367 /* insert into list */
1368 gpv->next = stgp->variants;
1369 stgp->variants = gpv;
1370 }
1371 }
1372
1373 return gpv;
1374 }
1375
1376
1377 /**
1378 * Translate a tessellation control program to create a new variant.
1379 */
1380 bool
1381 st_translate_tessctrl_program(struct st_context *st,
1382 struct st_tessctrl_program *sttcp)
1383 {
1384 struct ureg_program *ureg;
1385
1386 ureg = ureg_create_with_screen(TGSI_PROCESSOR_TESS_CTRL, st->pipe->screen);
1387 if (ureg == NULL)
1388 return false;
1389
1390 ureg_property(ureg, TGSI_PROPERTY_TCS_VERTICES_OUT,
1391 sttcp->Base.VerticesOut);
1392
1393 st_translate_program_common(st, &sttcp->Base.Base, sttcp->glsl_to_tgsi,
1394 ureg, TGSI_PROCESSOR_TESS_CTRL, &sttcp->tgsi);
1395
1396 free_glsl_to_tgsi_visitor(sttcp->glsl_to_tgsi);
1397 sttcp->glsl_to_tgsi = NULL;
1398 return true;
1399 }
1400
1401
1402 static struct st_tcp_variant *
1403 st_create_tcp_variant(struct st_context *st,
1404 struct st_tessctrl_program *sttcp,
1405 const struct st_tcp_variant_key *key)
1406 {
1407 struct pipe_context *pipe = st->pipe;
1408 struct st_tcp_variant *tcpv;
1409
1410 tcpv = CALLOC_STRUCT(st_tcp_variant);
1411 if (!tcpv)
1412 return NULL;
1413
1414 /* fill in new variant */
1415 tcpv->driver_shader = pipe->create_tcs_state(pipe, &sttcp->tgsi);
1416 tcpv->key = *key;
1417 return tcpv;
1418 }
1419
1420
1421 /**
1422 * Get/create tessellation control program variant.
1423 */
1424 struct st_tcp_variant *
1425 st_get_tcp_variant(struct st_context *st,
1426 struct st_tessctrl_program *sttcp,
1427 const struct st_tcp_variant_key *key)
1428 {
1429 struct st_tcp_variant *tcpv;
1430
1431 /* Search for existing variant */
1432 for (tcpv = sttcp->variants; tcpv; tcpv = tcpv->next) {
1433 if (memcmp(&tcpv->key, key, sizeof(*key)) == 0) {
1434 break;
1435 }
1436 }
1437
1438 if (!tcpv) {
1439 /* create new */
1440 tcpv = st_create_tcp_variant(st, sttcp, key);
1441 if (tcpv) {
1442 /* insert into list */
1443 tcpv->next = sttcp->variants;
1444 sttcp->variants = tcpv;
1445 }
1446 }
1447
1448 return tcpv;
1449 }
1450
1451
1452 /**
1453 * Translate a tessellation evaluation program to create a new variant.
1454 */
1455 bool
1456 st_translate_tesseval_program(struct st_context *st,
1457 struct st_tesseval_program *sttep)
1458 {
1459 struct ureg_program *ureg;
1460
1461 ureg = ureg_create_with_screen(TGSI_PROCESSOR_TESS_EVAL, st->pipe->screen);
1462 if (ureg == NULL)
1463 return false;
1464
1465 if (sttep->Base.PrimitiveMode == GL_ISOLINES)
1466 ureg_property(ureg, TGSI_PROPERTY_TES_PRIM_MODE, GL_LINES);
1467 else
1468 ureg_property(ureg, TGSI_PROPERTY_TES_PRIM_MODE, sttep->Base.PrimitiveMode);
1469
1470 switch (sttep->Base.Spacing) {
1471 case GL_EQUAL:
1472 ureg_property(ureg, TGSI_PROPERTY_TES_SPACING, PIPE_TESS_SPACING_EQUAL);
1473 break;
1474 case GL_FRACTIONAL_EVEN:
1475 ureg_property(ureg, TGSI_PROPERTY_TES_SPACING,
1476 PIPE_TESS_SPACING_FRACTIONAL_EVEN);
1477 break;
1478 case GL_FRACTIONAL_ODD:
1479 ureg_property(ureg, TGSI_PROPERTY_TES_SPACING,
1480 PIPE_TESS_SPACING_FRACTIONAL_ODD);
1481 break;
1482 default:
1483 assert(0);
1484 }
1485
1486 ureg_property(ureg, TGSI_PROPERTY_TES_VERTEX_ORDER_CW,
1487 sttep->Base.VertexOrder == GL_CW);
1488 ureg_property(ureg, TGSI_PROPERTY_TES_POINT_MODE, sttep->Base.PointMode);
1489
1490 st_translate_program_common(st, &sttep->Base.Base, sttep->glsl_to_tgsi,
1491 ureg, TGSI_PROCESSOR_TESS_EVAL, &sttep->tgsi);
1492
1493 free_glsl_to_tgsi_visitor(sttep->glsl_to_tgsi);
1494 sttep->glsl_to_tgsi = NULL;
1495 return true;
1496 }
1497
1498
1499 static struct st_tep_variant *
1500 st_create_tep_variant(struct st_context *st,
1501 struct st_tesseval_program *sttep,
1502 const struct st_tep_variant_key *key)
1503 {
1504 struct pipe_context *pipe = st->pipe;
1505 struct st_tep_variant *tepv;
1506
1507 tepv = CALLOC_STRUCT(st_tep_variant);
1508 if (!tepv)
1509 return NULL;
1510
1511 /* fill in new variant */
1512 tepv->driver_shader = pipe->create_tes_state(pipe, &sttep->tgsi);
1513 tepv->key = *key;
1514 return tepv;
1515 }
1516
1517
1518 /**
1519 * Get/create tessellation evaluation program variant.
1520 */
1521 struct st_tep_variant *
1522 st_get_tep_variant(struct st_context *st,
1523 struct st_tesseval_program *sttep,
1524 const struct st_tep_variant_key *key)
1525 {
1526 struct st_tep_variant *tepv;
1527
1528 /* Search for existing variant */
1529 for (tepv = sttep->variants; tepv; tepv = tepv->next) {
1530 if (memcmp(&tepv->key, key, sizeof(*key)) == 0) {
1531 break;
1532 }
1533 }
1534
1535 if (!tepv) {
1536 /* create new */
1537 tepv = st_create_tep_variant(st, sttep, key);
1538 if (tepv) {
1539 /* insert into list */
1540 tepv->next = sttep->variants;
1541 sttep->variants = tepv;
1542 }
1543 }
1544
1545 return tepv;
1546 }
1547
1548
1549 /**
1550 * Vert/Geom/Frag programs have per-context variants. Free all the
1551 * variants attached to the given program which match the given context.
1552 */
1553 static void
1554 destroy_program_variants(struct st_context *st, struct gl_program *program)
1555 {
1556 if (!program || program == &_mesa_DummyProgram)
1557 return;
1558
1559 switch (program->Target) {
1560 case GL_VERTEX_PROGRAM_ARB:
1561 {
1562 struct st_vertex_program *stvp = (struct st_vertex_program *) program;
1563 struct st_vp_variant *vpv, **prevPtr = &stvp->variants;
1564
1565 for (vpv = stvp->variants; vpv; ) {
1566 struct st_vp_variant *next = vpv->next;
1567 if (vpv->key.st == st) {
1568 /* unlink from list */
1569 *prevPtr = next;
1570 /* destroy this variant */
1571 delete_vp_variant(st, vpv);
1572 }
1573 else {
1574 prevPtr = &vpv->next;
1575 }
1576 vpv = next;
1577 }
1578 }
1579 break;
1580 case GL_FRAGMENT_PROGRAM_ARB:
1581 {
1582 struct st_fragment_program *stfp =
1583 (struct st_fragment_program *) program;
1584 struct st_fp_variant *fpv, **prevPtr = &stfp->variants;
1585
1586 for (fpv = stfp->variants; fpv; ) {
1587 struct st_fp_variant *next = fpv->next;
1588 if (fpv->key.st == st) {
1589 /* unlink from list */
1590 *prevPtr = next;
1591 /* destroy this variant */
1592 delete_fp_variant(st, fpv);
1593 }
1594 else {
1595 prevPtr = &fpv->next;
1596 }
1597 fpv = next;
1598 }
1599 }
1600 break;
1601 case GL_GEOMETRY_PROGRAM_NV:
1602 {
1603 struct st_geometry_program *stgp =
1604 (struct st_geometry_program *) program;
1605 struct st_gp_variant *gpv, **prevPtr = &stgp->variants;
1606
1607 for (gpv = stgp->variants; gpv; ) {
1608 struct st_gp_variant *next = gpv->next;
1609 if (gpv->key.st == st) {
1610 /* unlink from list */
1611 *prevPtr = next;
1612 /* destroy this variant */
1613 delete_gp_variant(st, gpv);
1614 }
1615 else {
1616 prevPtr = &gpv->next;
1617 }
1618 gpv = next;
1619 }
1620 }
1621 break;
1622 case GL_TESS_CONTROL_PROGRAM_NV:
1623 {
1624 struct st_tessctrl_program *sttcp =
1625 (struct st_tessctrl_program *) program;
1626 struct st_tcp_variant *tcpv, **prevPtr = &sttcp->variants;
1627
1628 for (tcpv = sttcp->variants; tcpv; ) {
1629 struct st_tcp_variant *next = tcpv->next;
1630 if (tcpv->key.st == st) {
1631 /* unlink from list */
1632 *prevPtr = next;
1633 /* destroy this variant */
1634 delete_tcp_variant(st, tcpv);
1635 }
1636 else {
1637 prevPtr = &tcpv->next;
1638 }
1639 tcpv = next;
1640 }
1641 }
1642 break;
1643 case GL_TESS_EVALUATION_PROGRAM_NV:
1644 {
1645 struct st_tesseval_program *sttep =
1646 (struct st_tesseval_program *) program;
1647 struct st_tep_variant *tepv, **prevPtr = &sttep->variants;
1648
1649 for (tepv = sttep->variants; tepv; ) {
1650 struct st_tep_variant *next = tepv->next;
1651 if (tepv->key.st == st) {
1652 /* unlink from list */
1653 *prevPtr = next;
1654 /* destroy this variant */
1655 delete_tep_variant(st, tepv);
1656 }
1657 else {
1658 prevPtr = &tepv->next;
1659 }
1660 tepv = next;
1661 }
1662 }
1663 break;
1664 default:
1665 _mesa_problem(NULL, "Unexpected program target 0x%x in "
1666 "destroy_program_variants_cb()", program->Target);
1667 }
1668 }
1669
1670
1671 /**
1672 * Callback for _mesa_HashWalk. Free all the shader's program variants
1673 * which match the given context.
1674 */
1675 static void
1676 destroy_shader_program_variants_cb(GLuint key, void *data, void *userData)
1677 {
1678 struct st_context *st = (struct st_context *) userData;
1679 struct gl_shader *shader = (struct gl_shader *) data;
1680
1681 switch (shader->Type) {
1682 case GL_SHADER_PROGRAM_MESA:
1683 {
1684 struct gl_shader_program *shProg = (struct gl_shader_program *) data;
1685 GLuint i;
1686
1687 for (i = 0; i < shProg->NumShaders; i++) {
1688 destroy_program_variants(st, shProg->Shaders[i]->Program);
1689 }
1690
1691 for (i = 0; i < ARRAY_SIZE(shProg->_LinkedShaders); i++) {
1692 if (shProg->_LinkedShaders[i])
1693 destroy_program_variants(st, shProg->_LinkedShaders[i]->Program);
1694 }
1695 }
1696 break;
1697 case GL_VERTEX_SHADER:
1698 case GL_FRAGMENT_SHADER:
1699 case GL_GEOMETRY_SHADER:
1700 case GL_TESS_CONTROL_SHADER:
1701 case GL_TESS_EVALUATION_SHADER:
1702 {
1703 destroy_program_variants(st, shader->Program);
1704 }
1705 break;
1706 default:
1707 assert(0);
1708 }
1709 }
1710
1711
1712 /**
1713 * Callback for _mesa_HashWalk. Free all the program variants which match
1714 * the given context.
1715 */
1716 static void
1717 destroy_program_variants_cb(GLuint key, void *data, void *userData)
1718 {
1719 struct st_context *st = (struct st_context *) userData;
1720 struct gl_program *program = (struct gl_program *) data;
1721 destroy_program_variants(st, program);
1722 }
1723
1724
1725 /**
1726 * Walk over all shaders and programs to delete any variants which
1727 * belong to the given context.
1728 * This is called during context tear-down.
1729 */
1730 void
1731 st_destroy_program_variants(struct st_context *st)
1732 {
1733 /* If shaders can be shared with other contexts, the last context will
1734 * call DeleteProgram on all shaders, releasing everything.
1735 */
1736 if (st->has_shareable_shaders)
1737 return;
1738
1739 /* ARB vert/frag program */
1740 _mesa_HashWalk(st->ctx->Shared->Programs,
1741 destroy_program_variants_cb, st);
1742
1743 /* GLSL vert/frag/geom shaders */
1744 _mesa_HashWalk(st->ctx->Shared->ShaderObjects,
1745 destroy_shader_program_variants_cb, st);
1746 }
1747
1748
1749 /**
1750 * For debugging, print/dump the current vertex program.
1751 */
1752 void
1753 st_print_current_vertex_program(void)
1754 {
1755 GET_CURRENT_CONTEXT(ctx);
1756
1757 if (ctx->VertexProgram._Current) {
1758 struct st_vertex_program *stvp =
1759 (struct st_vertex_program *) ctx->VertexProgram._Current;
1760 struct st_vp_variant *stv;
1761
1762 debug_printf("Vertex program %u\n", stvp->Base.Base.Id);
1763
1764 for (stv = stvp->variants; stv; stv = stv->next) {
1765 debug_printf("variant %p\n", stv);
1766 tgsi_dump(stv->tgsi.tokens, 0);
1767 }
1768 }
1769 }
1770
1771
1772 /**
1773 * Compile one shader variant.
1774 */
1775 void
1776 st_precompile_shader_variant(struct st_context *st,
1777 struct gl_program *prog)
1778 {
1779 switch (prog->Target) {
1780 case GL_VERTEX_PROGRAM_ARB: {
1781 struct st_vertex_program *p = (struct st_vertex_program *)prog;
1782 struct st_vp_variant_key key;
1783
1784 memset(&key, 0, sizeof(key));
1785 key.st = st->has_shareable_shaders ? NULL : st;
1786 st_get_vp_variant(st, p, &key);
1787 break;
1788 }
1789
1790 case GL_TESS_CONTROL_PROGRAM_NV: {
1791 struct st_tessctrl_program *p = (struct st_tessctrl_program *)prog;
1792 struct st_tcp_variant_key key;
1793
1794 memset(&key, 0, sizeof(key));
1795 key.st = st->has_shareable_shaders ? NULL : st;
1796 st_get_tcp_variant(st, p, &key);
1797 break;
1798 }
1799
1800 case GL_TESS_EVALUATION_PROGRAM_NV: {
1801 struct st_tesseval_program *p = (struct st_tesseval_program *)prog;
1802 struct st_tep_variant_key key;
1803
1804 memset(&key, 0, sizeof(key));
1805 key.st = st->has_shareable_shaders ? NULL : st;
1806 st_get_tep_variant(st, p, &key);
1807 break;
1808 }
1809
1810 case GL_GEOMETRY_PROGRAM_NV: {
1811 struct st_geometry_program *p = (struct st_geometry_program *)prog;
1812 struct st_gp_variant_key key;
1813
1814 memset(&key, 0, sizeof(key));
1815 key.st = st->has_shareable_shaders ? NULL : st;
1816 st_get_gp_variant(st, p, &key);
1817 break;
1818 }
1819
1820 case GL_FRAGMENT_PROGRAM_ARB: {
1821 struct st_fragment_program *p = (struct st_fragment_program *)prog;
1822 struct st_fp_variant_key key;
1823
1824 memset(&key, 0, sizeof(key));
1825 key.st = st->has_shareable_shaders ? NULL : st;
1826 st_get_fp_variant(st, p, &key);
1827 break;
1828 }
1829
1830 default:
1831 assert(0);
1832 }
1833 }