fix a cast (bug 694546)
[mesa.git] / src / mesa / swrast / s_aaline.c
1 /* $Id: s_aaline.c,v 1.18 2003/02/27 23:37:53 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 5.0.1
6 *
7 * Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 #include "glheader.h"
29 #include "swrast/s_aaline.h"
30 #include "swrast/s_context.h"
31 #include "swrast/s_span.h"
32 #include "swrast/swrast.h"
33 #include "mtypes.h"
34 #include "mmath.h"
35
36
37 #define SUB_PIXEL 4
38
39
40 /*
41 * Info about the AA line we're rendering
42 */
43 struct LineInfo
44 {
45 GLfloat x0, y0; /* start */
46 GLfloat x1, y1; /* end */
47 GLfloat dx, dy; /* direction vector */
48 GLfloat len; /* length */
49 GLfloat halfWidth; /* half of line width */
50 GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */
51 /* for coverage computation */
52 GLfloat qx0, qy0; /* quad vertices */
53 GLfloat qx1, qy1;
54 GLfloat qx2, qy2;
55 GLfloat qx3, qy3;
56 GLfloat ex0, ey0; /* quad edge vectors */
57 GLfloat ex1, ey1;
58 GLfloat ex2, ey2;
59 GLfloat ex3, ey3;
60
61 /* DO_Z */
62 GLfloat zPlane[4];
63 /* DO_FOG */
64 GLfloat fPlane[4];
65 /* DO_RGBA */
66 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
67 /* DO_INDEX */
68 GLfloat iPlane[4];
69 /* DO_SPEC */
70 GLfloat srPlane[4], sgPlane[4], sbPlane[4];
71 /* DO_TEX or DO_MULTITEX */
72 GLfloat sPlane[MAX_TEXTURE_COORD_UNITS][4];
73 GLfloat tPlane[MAX_TEXTURE_COORD_UNITS][4];
74 GLfloat uPlane[MAX_TEXTURE_COORD_UNITS][4];
75 GLfloat vPlane[MAX_TEXTURE_COORD_UNITS][4];
76 GLfloat lambda[MAX_TEXTURE_COORD_UNITS];
77 GLfloat texWidth[MAX_TEXTURE_COORD_UNITS];
78 GLfloat texHeight[MAX_TEXTURE_COORD_UNITS];
79
80 struct sw_span span;
81 };
82
83
84
85 /*
86 * Compute the equation of a plane used to interpolate line fragment data
87 * such as color, Z, texture coords, etc.
88 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
89 * z0, and z1 are the end point values to interpolate.
90 * Output: plane - the plane equation.
91 *
92 * Note: we don't really have enough parameters to specify a plane.
93 * We take the endpoints of the line and compute a plane such that
94 * the cross product of the line vector and the plane normal is
95 * parallel to the projection plane.
96 */
97 static void
98 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
99 GLfloat z0, GLfloat z1, GLfloat plane[4])
100 {
101 #if 0
102 /* original */
103 const GLfloat px = x1 - x0;
104 const GLfloat py = y1 - y0;
105 const GLfloat pz = z1 - z0;
106 const GLfloat qx = -py;
107 const GLfloat qy = px;
108 const GLfloat qz = 0;
109 const GLfloat a = py * qz - pz * qy;
110 const GLfloat b = pz * qx - px * qz;
111 const GLfloat c = px * qy - py * qx;
112 const GLfloat d = -(a * x0 + b * y0 + c * z0);
113 plane[0] = a;
114 plane[1] = b;
115 plane[2] = c;
116 plane[3] = d;
117 #else
118 /* simplified */
119 const GLfloat px = x1 - x0;
120 const GLfloat py = y1 - y0;
121 const GLfloat pz = z0 - z1;
122 const GLfloat a = pz * px;
123 const GLfloat b = pz * py;
124 const GLfloat c = px * px + py * py;
125 const GLfloat d = -(a * x0 + b * y0 + c * z0);
126 if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
127 plane[0] = 0.0;
128 plane[1] = 0.0;
129 plane[2] = 1.0;
130 plane[3] = 0.0;
131 }
132 else {
133 plane[0] = a;
134 plane[1] = b;
135 plane[2] = c;
136 plane[3] = d;
137 }
138 #endif
139 }
140
141
142 static INLINE void
143 constant_plane(GLfloat value, GLfloat plane[4])
144 {
145 plane[0] = 0.0;
146 plane[1] = 0.0;
147 plane[2] = -1.0;
148 plane[3] = value;
149 }
150
151
152 static INLINE GLfloat
153 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
154 {
155 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
156 return z;
157 }
158
159 #define SOLVE_PLANE(X, Y, PLANE) \
160 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
161
162
163 /*
164 * Return 1 / solve_plane().
165 */
166 static INLINE GLfloat
167 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
168 {
169 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
170 if (denom == 0.0)
171 return 0.0;
172 else
173 return -plane[2] / denom;
174 }
175
176
177 /*
178 * Solve plane and return clamped GLchan value.
179 */
180 static INLINE GLchan
181 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
182 {
183 GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F;
184 if (z < 0.0F)
185 return 0;
186 else if (z > CHAN_MAXF)
187 return (GLchan) CHAN_MAXF;
188 return (GLchan) z;
189 }
190
191
192 /*
193 * Compute mipmap level of detail.
194 */
195 static INLINE GLfloat
196 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
197 GLfloat invQ, GLfloat width, GLfloat height)
198 {
199 GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
200 GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
201 GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
202 GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
203 GLfloat r1 = dudx * dudx + dudy * dudy;
204 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
205 GLfloat rho2 = r1 + r2;
206 /* return log base 2 of rho */
207 if (rho2 == 0.0F)
208 return 0.0;
209 else
210 return (GLfloat) (log(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
211 }
212
213
214
215
216 /*
217 * Fill in the samples[] array with the (x,y) subpixel positions of
218 * xSamples * ySamples sample positions.
219 * Note that the four corner samples are put into the first four
220 * positions of the array. This allows us to optimize for the common
221 * case of all samples being inside the polygon.
222 */
223 static void
224 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
225 {
226 const GLfloat dx = 1.0F / (GLfloat) xSamples;
227 const GLfloat dy = 1.0F / (GLfloat) ySamples;
228 GLint x, y;
229 GLint i;
230
231 i = 4;
232 for (x = 0; x < xSamples; x++) {
233 for (y = 0; y < ySamples; y++) {
234 GLint j;
235 if (x == 0 && y == 0) {
236 /* lower left */
237 j = 0;
238 }
239 else if (x == xSamples - 1 && y == 0) {
240 /* lower right */
241 j = 1;
242 }
243 else if (x == 0 && y == ySamples - 1) {
244 /* upper left */
245 j = 2;
246 }
247 else if (x == xSamples - 1 && y == ySamples - 1) {
248 /* upper right */
249 j = 3;
250 }
251 else {
252 j = i++;
253 }
254 samples[j][0] = x * dx + 0.5F * dx;
255 samples[j][1] = y * dy + 0.5F * dy;
256 }
257 }
258 }
259
260
261
262 /*
263 * Compute how much of the given pixel's area is inside the rectangle
264 * defined by vertices v0, v1, v2, v3.
265 * Vertices MUST be specified in counter-clockwise order.
266 * Return: coverage in [0, 1].
267 */
268 static GLfloat
269 compute_coveragef(const struct LineInfo *info,
270 GLint winx, GLint winy)
271 {
272 static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
273 static GLboolean haveSamples = GL_FALSE;
274 const GLfloat x = (GLfloat) winx;
275 const GLfloat y = (GLfloat) winy;
276 GLint stop = 4, i;
277 GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
278
279 if (!haveSamples) {
280 make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
281 haveSamples = GL_TRUE;
282 }
283
284 #if 0 /*DEBUG*/
285 {
286 const GLfloat area = dx0 * dy1 - dx1 * dy0;
287 assert(area >= 0.0);
288 }
289 #endif
290
291 for (i = 0; i < stop; i++) {
292 const GLfloat sx = x + samples[i][0];
293 const GLfloat sy = y + samples[i][1];
294 const GLfloat fx0 = sx - info->qx0;
295 const GLfloat fy0 = sy - info->qy0;
296 const GLfloat fx1 = sx - info->qx1;
297 const GLfloat fy1 = sy - info->qy1;
298 const GLfloat fx2 = sx - info->qx2;
299 const GLfloat fy2 = sy - info->qy2;
300 const GLfloat fx3 = sx - info->qx3;
301 const GLfloat fy3 = sy - info->qy3;
302 /* cross product determines if sample is inside or outside each edge */
303 GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
304 GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
305 GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
306 GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
307 /* Check if the sample is exactly on an edge. If so, let cross be a
308 * positive or negative value depending on the direction of the edge.
309 */
310 if (cross0 == 0.0F)
311 cross0 = info->ex0 + info->ey0;
312 if (cross1 == 0.0F)
313 cross1 = info->ex1 + info->ey1;
314 if (cross2 == 0.0F)
315 cross2 = info->ex2 + info->ey2;
316 if (cross3 == 0.0F)
317 cross3 = info->ex3 + info->ey3;
318 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
319 /* point is outside quadrilateral */
320 insideCount -= 1.0F;
321 stop = SUB_PIXEL * SUB_PIXEL;
322 }
323 }
324 if (stop == 4)
325 return 1.0F;
326 else
327 return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
328 }
329
330
331
332 typedef void (*plot_func)(GLcontext *ctx, struct LineInfo *line,
333 int ix, int iy);
334
335
336
337 /*
338 * Draw an AA line segment (called many times per line when stippling)
339 */
340 static void
341 segment(GLcontext *ctx,
342 struct LineInfo *line,
343 plot_func plot,
344 GLfloat t0, GLfloat t1)
345 {
346 const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
347 const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
348 /* compute the actual segment's endpoints */
349 const GLfloat x0 = line->x0 + t0 * line->dx;
350 const GLfloat y0 = line->y0 + t0 * line->dy;
351 const GLfloat x1 = line->x0 + t1 * line->dx;
352 const GLfloat y1 = line->y0 + t1 * line->dy;
353
354 /* compute vertices of the line-aligned quadrilateral */
355 line->qx0 = x0 - line->yAdj;
356 line->qy0 = y0 + line->xAdj;
357 line->qx1 = x0 + line->yAdj;
358 line->qy1 = y0 - line->xAdj;
359 line->qx2 = x1 + line->yAdj;
360 line->qy2 = y1 - line->xAdj;
361 line->qx3 = x1 - line->yAdj;
362 line->qy3 = y1 + line->xAdj;
363 /* compute the quad's edge vectors (for coverage calc) */
364 line->ex0 = line->qx1 - line->qx0;
365 line->ey0 = line->qy1 - line->qy0;
366 line->ex1 = line->qx2 - line->qx1;
367 line->ey1 = line->qy2 - line->qy1;
368 line->ex2 = line->qx3 - line->qx2;
369 line->ey2 = line->qy3 - line->qy2;
370 line->ex3 = line->qx0 - line->qx3;
371 line->ey3 = line->qy0 - line->qy3;
372
373 if (absDx > absDy) {
374 /* X-major line */
375 GLfloat dydx = line->dy / line->dx;
376 GLfloat xLeft, xRight, yBot, yTop;
377 GLint ix, ixRight;
378 if (x0 < x1) {
379 xLeft = x0 - line->halfWidth;
380 xRight = x1 + line->halfWidth;
381 if (line->dy >= 0.0) {
382 yBot = y0 - 3.0F * line->halfWidth;
383 yTop = y0 + line->halfWidth;
384 }
385 else {
386 yBot = y0 - line->halfWidth;
387 yTop = y0 + 3.0F * line->halfWidth;
388 }
389 }
390 else {
391 xLeft = x1 - line->halfWidth;
392 xRight = x0 + line->halfWidth;
393 if (line->dy <= 0.0) {
394 yBot = y1 - 3.0F * line->halfWidth;
395 yTop = y1 + line->halfWidth;
396 }
397 else {
398 yBot = y1 - line->halfWidth;
399 yTop = y1 + 3.0F * line->halfWidth;
400 }
401 }
402
403 /* scan along the line, left-to-right */
404 ixRight = (GLint) (xRight + 1.0F);
405
406 /*printf("avg span height: %g\n", yTop - yBot);*/
407 for (ix = (GLint) xLeft; ix < ixRight; ix++) {
408 const GLint iyBot = (GLint) yBot;
409 const GLint iyTop = (GLint) (yTop + 1.0F);
410 GLint iy;
411 /* scan across the line, bottom-to-top */
412 for (iy = iyBot; iy < iyTop; iy++) {
413 (*plot)(ctx, line, ix, iy);
414 }
415 yBot += dydx;
416 yTop += dydx;
417 }
418 }
419 else {
420 /* Y-major line */
421 GLfloat dxdy = line->dx / line->dy;
422 GLfloat yBot, yTop, xLeft, xRight;
423 GLint iy, iyTop;
424 if (y0 < y1) {
425 yBot = y0 - line->halfWidth;
426 yTop = y1 + line->halfWidth;
427 if (line->dx >= 0.0) {
428 xLeft = x0 - 3.0F * line->halfWidth;
429 xRight = x0 + line->halfWidth;
430 }
431 else {
432 xLeft = x0 - line->halfWidth;
433 xRight = x0 + 3.0F * line->halfWidth;
434 }
435 }
436 else {
437 yBot = y1 - line->halfWidth;
438 yTop = y0 + line->halfWidth;
439 if (line->dx <= 0.0) {
440 xLeft = x1 - 3.0F * line->halfWidth;
441 xRight = x1 + line->halfWidth;
442 }
443 else {
444 xLeft = x1 - line->halfWidth;
445 xRight = x1 + 3.0F * line->halfWidth;
446 }
447 }
448
449 /* scan along the line, bottom-to-top */
450 iyTop = (GLint) (yTop + 1.0F);
451
452 /*printf("avg span width: %g\n", xRight - xLeft);*/
453 for (iy = (GLint) yBot; iy < iyTop; iy++) {
454 const GLint ixLeft = (GLint) xLeft;
455 const GLint ixRight = (GLint) (xRight + 1.0F);
456 GLint ix;
457 /* scan across the line, left-to-right */
458 for (ix = ixLeft; ix < ixRight; ix++) {
459 (*plot)(ctx, line, ix, iy);
460 }
461 xLeft += dxdy;
462 xRight += dxdy;
463 }
464 }
465 }
466
467
468 #define NAME(x) aa_ci_##x
469 #define DO_Z
470 #define DO_FOG
471 #define DO_INDEX
472 #include "s_aalinetemp.h"
473
474
475 #define NAME(x) aa_rgba_##x
476 #define DO_Z
477 #define DO_FOG
478 #define DO_RGBA
479 #include "s_aalinetemp.h"
480
481
482 #define NAME(x) aa_tex_rgba_##x
483 #define DO_Z
484 #define DO_FOG
485 #define DO_RGBA
486 #define DO_TEX
487 #include "s_aalinetemp.h"
488
489
490 #define NAME(x) aa_multitex_rgba_##x
491 #define DO_Z
492 #define DO_FOG
493 #define DO_RGBA
494 #define DO_MULTITEX
495 #include "s_aalinetemp.h"
496
497
498 #define NAME(x) aa_multitex_spec_##x
499 #define DO_Z
500 #define DO_FOG
501 #define DO_RGBA
502 #define DO_MULTITEX
503 #define DO_SPEC
504 #include "s_aalinetemp.h"
505
506
507
508 void
509 _swrast_choose_aa_line_function(GLcontext *ctx)
510 {
511 SWcontext *swrast = SWRAST_CONTEXT(ctx);
512
513 ASSERT(ctx->Line.SmoothFlag);
514
515 if (ctx->Visual.rgbMode) {
516 /* RGBA */
517 if (ctx->Texture._EnabledUnits != 0) {
518 if (ctx->Texture._EnabledUnits > 1) {
519 /* Multitextured! */
520 if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR ||
521 ctx->Fog.ColorSumEnabled)
522 swrast->Line = aa_multitex_spec_line;
523 else
524 swrast->Line = aa_multitex_rgba_line;
525 }
526 else {
527 swrast->Line = aa_tex_rgba_line;
528 }
529 }
530 else {
531 swrast->Line = aa_rgba_line;
532 }
533 }
534 else {
535 /* Color Index */
536 swrast->Line = aa_ci_line;
537 }
538 }