Merge commit 'origin/gallium-0.1' into gallium-0.2
[mesa.git] / src / mesa / swrast / s_aaline.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #include "main/glheader.h"
27 #include "main/imports.h"
28 #include "main/macros.h"
29 #include "main/mtypes.h"
30 #include "swrast/s_aaline.h"
31 #include "swrast/s_context.h"
32 #include "swrast/s_span.h"
33 #include "swrast/swrast.h"
34
35
36 #define SUB_PIXEL 4
37
38
39 /*
40 * Info about the AA line we're rendering
41 */
42 struct LineInfo
43 {
44 GLfloat x0, y0; /* start */
45 GLfloat x1, y1; /* end */
46 GLfloat dx, dy; /* direction vector */
47 GLfloat len; /* length */
48 GLfloat halfWidth; /* half of line width */
49 GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */
50 /* for coverage computation */
51 GLfloat qx0, qy0; /* quad vertices */
52 GLfloat qx1, qy1;
53 GLfloat qx2, qy2;
54 GLfloat qx3, qy3;
55 GLfloat ex0, ey0; /* quad edge vectors */
56 GLfloat ex1, ey1;
57 GLfloat ex2, ey2;
58 GLfloat ex3, ey3;
59
60 /* DO_Z */
61 GLfloat zPlane[4];
62 /* DO_RGBA */
63 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
64 /* DO_INDEX */
65 GLfloat iPlane[4];
66 /* DO_ATTRIBS */
67 GLfloat wPlane[4];
68 GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4];
69 GLfloat lambda[FRAG_ATTRIB_MAX];
70 GLfloat texWidth[FRAG_ATTRIB_MAX];
71 GLfloat texHeight[FRAG_ATTRIB_MAX];
72
73 SWspan span;
74 };
75
76
77
78 /*
79 * Compute the equation of a plane used to interpolate line fragment data
80 * such as color, Z, texture coords, etc.
81 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
82 * z0, and z1 are the end point values to interpolate.
83 * Output: plane - the plane equation.
84 *
85 * Note: we don't really have enough parameters to specify a plane.
86 * We take the endpoints of the line and compute a plane such that
87 * the cross product of the line vector and the plane normal is
88 * parallel to the projection plane.
89 */
90 static void
91 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
92 GLfloat z0, GLfloat z1, GLfloat plane[4])
93 {
94 #if 0
95 /* original */
96 const GLfloat px = x1 - x0;
97 const GLfloat py = y1 - y0;
98 const GLfloat pz = z1 - z0;
99 const GLfloat qx = -py;
100 const GLfloat qy = px;
101 const GLfloat qz = 0;
102 const GLfloat a = py * qz - pz * qy;
103 const GLfloat b = pz * qx - px * qz;
104 const GLfloat c = px * qy - py * qx;
105 const GLfloat d = -(a * x0 + b * y0 + c * z0);
106 plane[0] = a;
107 plane[1] = b;
108 plane[2] = c;
109 plane[3] = d;
110 #else
111 /* simplified */
112 const GLfloat px = x1 - x0;
113 const GLfloat py = y1 - y0;
114 const GLfloat pz = z0 - z1;
115 const GLfloat a = pz * px;
116 const GLfloat b = pz * py;
117 const GLfloat c = px * px + py * py;
118 const GLfloat d = -(a * x0 + b * y0 + c * z0);
119 if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
120 plane[0] = 0.0;
121 plane[1] = 0.0;
122 plane[2] = 1.0;
123 plane[3] = 0.0;
124 }
125 else {
126 plane[0] = a;
127 plane[1] = b;
128 plane[2] = c;
129 plane[3] = d;
130 }
131 #endif
132 }
133
134
135 static INLINE void
136 constant_plane(GLfloat value, GLfloat plane[4])
137 {
138 plane[0] = 0.0;
139 plane[1] = 0.0;
140 plane[2] = -1.0;
141 plane[3] = value;
142 }
143
144
145 static INLINE GLfloat
146 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
147 {
148 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
149 return z;
150 }
151
152 #define SOLVE_PLANE(X, Y, PLANE) \
153 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
154
155
156 /*
157 * Return 1 / solve_plane().
158 */
159 static INLINE GLfloat
160 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
161 {
162 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
163 if (denom == 0.0)
164 return 0.0;
165 else
166 return -plane[2] / denom;
167 }
168
169
170 /*
171 * Solve plane and return clamped GLchan value.
172 */
173 static INLINE GLchan
174 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
175 {
176 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
177 #if CHAN_TYPE == GL_FLOAT
178 return CLAMP(z, 0.0F, CHAN_MAXF);
179 #else
180 if (z < 0)
181 return 0;
182 else if (z > CHAN_MAX)
183 return CHAN_MAX;
184 return (GLchan) IROUND_POS(z);
185 #endif
186 }
187
188
189 /*
190 * Compute mipmap level of detail.
191 */
192 static INLINE GLfloat
193 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
194 GLfloat invQ, GLfloat width, GLfloat height)
195 {
196 GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
197 GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
198 GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
199 GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
200 GLfloat r1 = dudx * dudx + dudy * dudy;
201 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
202 GLfloat rho2 = r1 + r2;
203 /* return log base 2 of rho */
204 if (rho2 == 0.0F)
205 return 0.0;
206 else
207 return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
208 }
209
210
211
212
213 /*
214 * Fill in the samples[] array with the (x,y) subpixel positions of
215 * xSamples * ySamples sample positions.
216 * Note that the four corner samples are put into the first four
217 * positions of the array. This allows us to optimize for the common
218 * case of all samples being inside the polygon.
219 */
220 static void
221 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
222 {
223 const GLfloat dx = 1.0F / (GLfloat) xSamples;
224 const GLfloat dy = 1.0F / (GLfloat) ySamples;
225 GLint x, y;
226 GLint i;
227
228 i = 4;
229 for (x = 0; x < xSamples; x++) {
230 for (y = 0; y < ySamples; y++) {
231 GLint j;
232 if (x == 0 && y == 0) {
233 /* lower left */
234 j = 0;
235 }
236 else if (x == xSamples - 1 && y == 0) {
237 /* lower right */
238 j = 1;
239 }
240 else if (x == 0 && y == ySamples - 1) {
241 /* upper left */
242 j = 2;
243 }
244 else if (x == xSamples - 1 && y == ySamples - 1) {
245 /* upper right */
246 j = 3;
247 }
248 else {
249 j = i++;
250 }
251 samples[j][0] = x * dx + 0.5F * dx;
252 samples[j][1] = y * dy + 0.5F * dy;
253 }
254 }
255 }
256
257
258
259 /*
260 * Compute how much of the given pixel's area is inside the rectangle
261 * defined by vertices v0, v1, v2, v3.
262 * Vertices MUST be specified in counter-clockwise order.
263 * Return: coverage in [0, 1].
264 */
265 static GLfloat
266 compute_coveragef(const struct LineInfo *info,
267 GLint winx, GLint winy)
268 {
269 static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
270 static GLboolean haveSamples = GL_FALSE;
271 const GLfloat x = (GLfloat) winx;
272 const GLfloat y = (GLfloat) winy;
273 GLint stop = 4, i;
274 GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
275
276 if (!haveSamples) {
277 make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
278 haveSamples = GL_TRUE;
279 }
280
281 #if 0 /*DEBUG*/
282 {
283 const GLfloat area = dx0 * dy1 - dx1 * dy0;
284 assert(area >= 0.0);
285 }
286 #endif
287
288 for (i = 0; i < stop; i++) {
289 const GLfloat sx = x + samples[i][0];
290 const GLfloat sy = y + samples[i][1];
291 const GLfloat fx0 = sx - info->qx0;
292 const GLfloat fy0 = sy - info->qy0;
293 const GLfloat fx1 = sx - info->qx1;
294 const GLfloat fy1 = sy - info->qy1;
295 const GLfloat fx2 = sx - info->qx2;
296 const GLfloat fy2 = sy - info->qy2;
297 const GLfloat fx3 = sx - info->qx3;
298 const GLfloat fy3 = sy - info->qy3;
299 /* cross product determines if sample is inside or outside each edge */
300 GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
301 GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
302 GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
303 GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
304 /* Check if the sample is exactly on an edge. If so, let cross be a
305 * positive or negative value depending on the direction of the edge.
306 */
307 if (cross0 == 0.0F)
308 cross0 = info->ex0 + info->ey0;
309 if (cross1 == 0.0F)
310 cross1 = info->ex1 + info->ey1;
311 if (cross2 == 0.0F)
312 cross2 = info->ex2 + info->ey2;
313 if (cross3 == 0.0F)
314 cross3 = info->ex3 + info->ey3;
315 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
316 /* point is outside quadrilateral */
317 insideCount -= 1.0F;
318 stop = SUB_PIXEL * SUB_PIXEL;
319 }
320 }
321 if (stop == 4)
322 return 1.0F;
323 else
324 return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
325 }
326
327
328 /**
329 * Compute coverage value for color index mode.
330 * XXX this may not be quite correct.
331 * \return coverage in [0,15].
332 */
333 static GLfloat
334 compute_coveragei(const struct LineInfo *info,
335 GLint winx, GLint winy)
336 {
337 return compute_coveragef(info, winx, winy) * 15.0F;
338 }
339
340
341
342 typedef void (*plot_func)(GLcontext *ctx, struct LineInfo *line,
343 int ix, int iy);
344
345
346
347 /*
348 * Draw an AA line segment (called many times per line when stippling)
349 */
350 static void
351 segment(GLcontext *ctx,
352 struct LineInfo *line,
353 plot_func plot,
354 GLfloat t0, GLfloat t1)
355 {
356 const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
357 const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
358 /* compute the actual segment's endpoints */
359 const GLfloat x0 = line->x0 + t0 * line->dx;
360 const GLfloat y0 = line->y0 + t0 * line->dy;
361 const GLfloat x1 = line->x0 + t1 * line->dx;
362 const GLfloat y1 = line->y0 + t1 * line->dy;
363
364 /* compute vertices of the line-aligned quadrilateral */
365 line->qx0 = x0 - line->yAdj;
366 line->qy0 = y0 + line->xAdj;
367 line->qx1 = x0 + line->yAdj;
368 line->qy1 = y0 - line->xAdj;
369 line->qx2 = x1 + line->yAdj;
370 line->qy2 = y1 - line->xAdj;
371 line->qx3 = x1 - line->yAdj;
372 line->qy3 = y1 + line->xAdj;
373 /* compute the quad's edge vectors (for coverage calc) */
374 line->ex0 = line->qx1 - line->qx0;
375 line->ey0 = line->qy1 - line->qy0;
376 line->ex1 = line->qx2 - line->qx1;
377 line->ey1 = line->qy2 - line->qy1;
378 line->ex2 = line->qx3 - line->qx2;
379 line->ey2 = line->qy3 - line->qy2;
380 line->ex3 = line->qx0 - line->qx3;
381 line->ey3 = line->qy0 - line->qy3;
382
383 if (absDx > absDy) {
384 /* X-major line */
385 GLfloat dydx = line->dy / line->dx;
386 GLfloat xLeft, xRight, yBot, yTop;
387 GLint ix, ixRight;
388 if (x0 < x1) {
389 xLeft = x0 - line->halfWidth;
390 xRight = x1 + line->halfWidth;
391 if (line->dy >= 0.0) {
392 yBot = y0 - 3.0F * line->halfWidth;
393 yTop = y0 + line->halfWidth;
394 }
395 else {
396 yBot = y0 - line->halfWidth;
397 yTop = y0 + 3.0F * line->halfWidth;
398 }
399 }
400 else {
401 xLeft = x1 - line->halfWidth;
402 xRight = x0 + line->halfWidth;
403 if (line->dy <= 0.0) {
404 yBot = y1 - 3.0F * line->halfWidth;
405 yTop = y1 + line->halfWidth;
406 }
407 else {
408 yBot = y1 - line->halfWidth;
409 yTop = y1 + 3.0F * line->halfWidth;
410 }
411 }
412
413 /* scan along the line, left-to-right */
414 ixRight = (GLint) (xRight + 1.0F);
415
416 /*printf("avg span height: %g\n", yTop - yBot);*/
417 for (ix = (GLint) xLeft; ix < ixRight; ix++) {
418 const GLint iyBot = (GLint) yBot;
419 const GLint iyTop = (GLint) (yTop + 1.0F);
420 GLint iy;
421 /* scan across the line, bottom-to-top */
422 for (iy = iyBot; iy < iyTop; iy++) {
423 (*plot)(ctx, line, ix, iy);
424 }
425 yBot += dydx;
426 yTop += dydx;
427 }
428 }
429 else {
430 /* Y-major line */
431 GLfloat dxdy = line->dx / line->dy;
432 GLfloat yBot, yTop, xLeft, xRight;
433 GLint iy, iyTop;
434 if (y0 < y1) {
435 yBot = y0 - line->halfWidth;
436 yTop = y1 + line->halfWidth;
437 if (line->dx >= 0.0) {
438 xLeft = x0 - 3.0F * line->halfWidth;
439 xRight = x0 + line->halfWidth;
440 }
441 else {
442 xLeft = x0 - line->halfWidth;
443 xRight = x0 + 3.0F * line->halfWidth;
444 }
445 }
446 else {
447 yBot = y1 - line->halfWidth;
448 yTop = y0 + line->halfWidth;
449 if (line->dx <= 0.0) {
450 xLeft = x1 - 3.0F * line->halfWidth;
451 xRight = x1 + line->halfWidth;
452 }
453 else {
454 xLeft = x1 - line->halfWidth;
455 xRight = x1 + 3.0F * line->halfWidth;
456 }
457 }
458
459 /* scan along the line, bottom-to-top */
460 iyTop = (GLint) (yTop + 1.0F);
461
462 /*printf("avg span width: %g\n", xRight - xLeft);*/
463 for (iy = (GLint) yBot; iy < iyTop; iy++) {
464 const GLint ixLeft = (GLint) xLeft;
465 const GLint ixRight = (GLint) (xRight + 1.0F);
466 GLint ix;
467 /* scan across the line, left-to-right */
468 for (ix = ixLeft; ix < ixRight; ix++) {
469 (*plot)(ctx, line, ix, iy);
470 }
471 xLeft += dxdy;
472 xRight += dxdy;
473 }
474 }
475 }
476
477
478 #define NAME(x) aa_ci_##x
479 #define DO_Z
480 #define DO_ATTRIBS /* for fog */
481 #define DO_INDEX
482 #include "s_aalinetemp.h"
483
484
485 #define NAME(x) aa_rgba_##x
486 #define DO_Z
487 #define DO_RGBA
488 #include "s_aalinetemp.h"
489
490
491 #define NAME(x) aa_general_rgba_##x
492 #define DO_Z
493 #define DO_RGBA
494 #define DO_ATTRIBS
495 #include "s_aalinetemp.h"
496
497
498
499 void
500 _swrast_choose_aa_line_function(GLcontext *ctx)
501 {
502 SWcontext *swrast = SWRAST_CONTEXT(ctx);
503
504 ASSERT(ctx->Line.SmoothFlag);
505
506 if (ctx->Visual.rgbMode) {
507 /* RGBA */
508 if (ctx->Texture._EnabledCoordUnits != 0
509 || ctx->FragmentProgram._Current
510 || (ctx->Light.Enabled &&
511 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
512 || ctx->Fog.ColorSumEnabled
513 || swrast->_FogEnabled) {
514 swrast->Line = aa_general_rgba_line;
515 }
516 else {
517 swrast->Line = aa_rgba_line;
518 }
519 }
520 else {
521 /* Color Index */
522 swrast->Line = aa_ci_line;
523 }
524 }