fixed some divide by zero conformance problems
[mesa.git] / src / mesa / swrast / s_aaline.c
1 /* $Id: s_aaline.c,v 1.8 2001/04/10 15:46:51 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 #include "glheader.h"
29 #include "swrast/s_aaline.h"
30 #include "swrast/s_pb.h"
31 #include "swrast/s_context.h"
32 #include "swrast/swrast.h"
33 #include "mtypes.h"
34 #include "mmath.h"
35
36
37 #define SUB_PIXEL 4
38
39
40 /*
41 * Info about the AA line we're rendering
42 */
43 struct LineInfo
44 {
45 GLfloat x0, y0; /* start */
46 GLfloat x1, y1; /* end */
47 GLfloat dx, dy; /* direction vector */
48 GLfloat len; /* length */
49 GLfloat halfWidth; /* half of line width */
50 GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */
51 /* for coverage computation */
52 GLfloat qx0, qy0; /* quad vertices */
53 GLfloat qx1, qy1;
54 GLfloat qx2, qy2;
55 GLfloat qx3, qy3;
56 GLfloat ex0, ey0; /* quad edge vectors */
57 GLfloat ex1, ey1;
58 GLfloat ex2, ey2;
59 GLfloat ex3, ey3;
60
61 /* DO_Z */
62 GLfloat zPlane[4];
63 /* DO_FOG */
64 GLfloat fPlane[4];
65 /* DO_RGBA */
66 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
67 /* DO_INDEX */
68 GLfloat iPlane[4];
69 /* DO_SPEC */
70 GLfloat srPlane[4], sgPlane[4], sbPlane[4];
71 /* DO_TEX or DO_MULTITEX */
72 GLfloat sPlane[MAX_TEXTURE_UNITS][4];
73 GLfloat tPlane[MAX_TEXTURE_UNITS][4];
74 GLfloat uPlane[MAX_TEXTURE_UNITS][4];
75 GLfloat vPlane[MAX_TEXTURE_UNITS][4];
76 GLfloat lambda[MAX_TEXTURE_UNITS];
77 GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
78 };
79
80
81
82 /*
83 * Compute the equation of a plane used to interpolate line fragment data
84 * such as color, Z, texture coords, etc.
85 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
86 * z0, and z1 are the end point values to interpolate.
87 * Output: plane - the plane equation.
88 *
89 * Note: we don't really have enough parameters to specify a plane.
90 * We take the endpoints of the line and compute a plane such that
91 * the cross product of the line vector and the plane normal is
92 * parallel to the projection plane.
93 */
94 static void
95 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
96 GLfloat z0, GLfloat z1, GLfloat plane[4])
97 {
98 #if 0
99 /* original */
100 const GLfloat px = x1 - x0;
101 const GLfloat py = y1 - y0;
102 const GLfloat pz = z1 - z0;
103 const GLfloat qx = -py;
104 const GLfloat qy = px;
105 const GLfloat qz = 0;
106 const GLfloat a = py * qz - pz * qy;
107 const GLfloat b = pz * qx - px * qz;
108 const GLfloat c = px * qy - py * qx;
109 const GLfloat d = -(a * x0 + b * y0 + c * z0);
110 plane[0] = a;
111 plane[1] = b;
112 plane[2] = c;
113 plane[3] = d;
114 #else
115 /* simplified */
116 const GLfloat px = x1 - x0;
117 const GLfloat py = y1 - y0;
118 const GLfloat pz = z0 - z1;
119 const GLfloat a = pz * px;
120 const GLfloat b = pz * py;
121 const GLfloat c = px * px + py * py;
122 const GLfloat d = -(a * x0 + b * y0 + c * z0);
123 if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
124 plane[0] = 0.0;
125 plane[1] = 0.0;
126 plane[2] = 1.0;
127 plane[3] = 0.0;
128 }
129 else {
130 plane[0] = a;
131 plane[1] = b;
132 plane[2] = c;
133 plane[3] = d;
134 }
135 #endif
136 }
137
138
139 static INLINE void
140 constant_plane(GLfloat value, GLfloat plane[4])
141 {
142 plane[0] = 0.0;
143 plane[1] = 0.0;
144 plane[2] = -1.0;
145 plane[3] = value;
146 }
147
148
149 static INLINE GLfloat
150 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
151 {
152 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
153 return z;
154 }
155
156 #define SOLVE_PLANE(X, Y, PLANE) \
157 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
158
159
160 /*
161 * Return 1 / solve_plane().
162 */
163 static INLINE GLfloat
164 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
165 {
166 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
167 if (denom == 0.0)
168 return 0.0;
169 else
170 return -plane[2] / denom;
171 }
172
173
174 /*
175 * Solve plane and return clamped GLchan value.
176 */
177 static INLINE GLchan
178 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
179 {
180 GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F;
181 if (z < 0.0F)
182 return 0;
183 else if (z > CHAN_MAXF)
184 return (GLchan) CHAN_MAXF;
185 return (GLchan) (GLint) z;
186 }
187
188
189 /*
190 * Compute mipmap level of detail.
191 */
192 static INLINE GLfloat
193 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
194 GLfloat invQ, GLfloat width, GLfloat height)
195 {
196 GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
197 GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
198 GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
199 GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
200 GLfloat r1 = dudx * dudx + dudy * dudy;
201 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
202 GLfloat rho2 = r1 + r2;
203 /* return log base 2 of rho */
204 return log(rho2) * 1.442695 * 0.5; /* 1.442695 = 1/log(2) */
205 }
206
207
208
209
210 /*
211 * Fill in the samples[] array with the (x,y) subpixel positions of
212 * xSamples * ySamples sample positions.
213 * Note that the four corner samples are put into the first four
214 * positions of the array. This allows us to optimize for the common
215 * case of all samples being inside the polygon.
216 */
217 static void
218 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
219 {
220 const GLfloat dx = 1.0F / (GLfloat) xSamples;
221 const GLfloat dy = 1.0F / (GLfloat) ySamples;
222 GLint x, y;
223 GLint i;
224
225 i = 4;
226 for (x = 0; x < xSamples; x++) {
227 for (y = 0; y < ySamples; y++) {
228 GLint j;
229 if (x == 0 && y == 0) {
230 /* lower left */
231 j = 0;
232 }
233 else if (x == xSamples - 1 && y == 0) {
234 /* lower right */
235 j = 1;
236 }
237 else if (x == 0 && y == ySamples - 1) {
238 /* upper left */
239 j = 2;
240 }
241 else if (x == xSamples - 1 && y == ySamples - 1) {
242 /* upper right */
243 j = 3;
244 }
245 else {
246 j = i++;
247 }
248 samples[j][0] = x * dx + 0.5 * dx;
249 samples[j][1] = y * dy + 0.5 * dy;
250 }
251 }
252 }
253
254
255
256 /*
257 * Compute how much of the given pixel's area is inside the rectangle
258 * defined by vertices v0, v1, v2, v3.
259 * Vertices MUST be specified in counter-clockwise order.
260 * Return: coverage in [0, 1].
261 */
262 static GLfloat
263 compute_coveragef(const struct LineInfo *info,
264 GLint winx, GLint winy)
265 {
266 static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
267 static GLboolean haveSamples = GL_FALSE;
268 const GLfloat x = (GLfloat) winx;
269 const GLfloat y = (GLfloat) winy;
270 GLint stop = 4, i;
271 GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
272
273 if (!haveSamples) {
274 make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
275 haveSamples = GL_TRUE;
276 }
277
278 #if 0 /*DEBUG*/
279 {
280 const GLfloat area = dx0 * dy1 - dx1 * dy0;
281 assert(area >= 0.0);
282 }
283 #endif
284
285 for (i = 0; i < stop; i++) {
286 const GLfloat sx = x + samples[i][0];
287 const GLfloat sy = y + samples[i][1];
288 const GLfloat fx0 = sx - info->qx0;
289 const GLfloat fy0 = sy - info->qy0;
290 const GLfloat fx1 = sx - info->qx1;
291 const GLfloat fy1 = sy - info->qy1;
292 const GLfloat fx2 = sx - info->qx2;
293 const GLfloat fy2 = sy - info->qy2;
294 const GLfloat fx3 = sx - info->qx3;
295 const GLfloat fy3 = sy - info->qy3;
296 /* cross product determines if sample is inside or outside each edge */
297 GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
298 GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
299 GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
300 GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
301 /* Check if the sample is exactly on an edge. If so, let cross be a
302 * positive or negative value depending on the direction of the edge.
303 */
304 if (cross0 == 0.0F)
305 cross0 = info->ex0 + info->ey0;
306 if (cross1 == 0.0F)
307 cross1 = info->ex1 + info->ey1;
308 if (cross2 == 0.0F)
309 cross2 = info->ex2 + info->ey2;
310 if (cross3 == 0.0F)
311 cross3 = info->ex3 + info->ey3;
312 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
313 /* point is outside quadrilateral */
314 insideCount -= 1.0F;
315 stop = SUB_PIXEL * SUB_PIXEL;
316 }
317 }
318 if (stop == 4)
319 return 1.0F;
320 else
321 return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
322 }
323
324
325
326 typedef void (*plot_func)(GLcontext *ctx, const struct LineInfo *line,
327 struct pixel_buffer *pb, int ix, int iy);
328
329
330 /*
331 * Draw an AA line segment (called many times per line when stippling)
332 */
333 static void
334 segment(GLcontext *ctx,
335 struct LineInfo *line,
336 plot_func plot,
337 struct pixel_buffer *pb,
338 GLfloat t0, GLfloat t1)
339 {
340 const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
341 const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
342 /* compute the actual segment's endpoints */
343 const GLfloat x0 = line->x0 + t0 * line->dx;
344 const GLfloat y0 = line->y0 + t0 * line->dy;
345 const GLfloat x1 = line->x0 + t1 * line->dx;
346 const GLfloat y1 = line->y0 + t1 * line->dy;
347
348 /* compute vertices of the line-aligned quadrilateral */
349 line->qx0 = x0 - line->yAdj;
350 line->qy0 = y0 + line->xAdj;
351 line->qx1 = x0 + line->yAdj;
352 line->qy1 = y0 - line->xAdj;
353 line->qx2 = x1 + line->yAdj;
354 line->qy2 = y1 - line->xAdj;
355 line->qx3 = x1 - line->yAdj;
356 line->qy3 = y1 + line->xAdj;
357 /* compute the quad's edge vectors (for coverage calc) */
358 line->ex0 = line->qx1 - line->qx0;
359 line->ey0 = line->qy1 - line->qy0;
360 line->ex1 = line->qx2 - line->qx1;
361 line->ey1 = line->qy2 - line->qy1;
362 line->ex2 = line->qx3 - line->qx2;
363 line->ey2 = line->qy3 - line->qy2;
364 line->ex3 = line->qx0 - line->qx3;
365 line->ey3 = line->qy0 - line->qy3;
366
367 if (absDx > absDy) {
368 /* X-major line */
369 GLfloat dydx = line->dy / line->dx;
370 GLfloat xLeft, xRight, yBot, yTop;
371 GLint ix, ixRight;
372 if (x0 < x1) {
373 xLeft = x0 - line->halfWidth;
374 xRight = x1 + line->halfWidth;
375 if (line->dy >= 0.0) {
376 yBot = y0 - 3.0 * line->halfWidth;
377 yTop = y0 + line->halfWidth;
378 }
379 else {
380 yBot = y0 - line->halfWidth;
381 yTop = y0 + 3.0 * line->halfWidth;
382 }
383 }
384 else {
385 xLeft = x1 - line->halfWidth;
386 xRight = x0 + line->halfWidth;
387 if (line->dy <= 0.0) {
388 yBot = y1 - 3.0 * line->halfWidth;
389 yTop = y1 + line->halfWidth;
390 }
391 else {
392 yBot = y1 - line->halfWidth;
393 yTop = y1 + 3.0 * line->halfWidth;
394 }
395 }
396
397 /* scan along the line, left-to-right */
398 ixRight = (GLint) (xRight + 1.0F);
399
400 /*printf("avg span height: %g\n", yTop - yBot);*/
401 for (ix = (GLint) xLeft; ix < ixRight; ix++) {
402 const GLint iyBot = (GLint) yBot;
403 const GLint iyTop = (GLint) (yTop + 1.0F);
404 GLint iy;
405 /* scan across the line, bottom-to-top */
406 for (iy = iyBot; iy < iyTop; iy++) {
407 (*plot)(ctx, line, pb, ix, iy);
408 }
409 yBot += dydx;
410 yTop += dydx;
411 }
412 }
413 else {
414 /* Y-major line */
415 GLfloat dxdy = line->dx / line->dy;
416 GLfloat yBot, yTop, xLeft, xRight;
417 GLint iy, iyTop;
418 if (y0 < y1) {
419 yBot = y0 - line->halfWidth;
420 yTop = y1 + line->halfWidth;
421 if (line->dx >= 0.0) {
422 xLeft = x0 - 3.0 * line->halfWidth;
423 xRight = x0 + line->halfWidth;
424 }
425 else {
426 xLeft = x0 - line->halfWidth;
427 xRight = x0 + 3.0 * line->halfWidth;
428 }
429 }
430 else {
431 yBot = y1 - line->halfWidth;
432 yTop = y0 + line->halfWidth;
433 if (line->dx <= 0.0) {
434 xLeft = x1 - 3.0 * line->halfWidth;
435 xRight = x1 + line->halfWidth;
436 }
437 else {
438 xLeft = x1 - line->halfWidth;
439 xRight = x1 + 3.0 * line->halfWidth;
440 }
441 }
442
443 /* scan along the line, bottom-to-top */
444 iyTop = (GLint) (yTop + 1.0F);
445
446 /*printf("avg span width: %g\n", xRight - xLeft);*/
447 for (iy = (GLint) yBot; iy < iyTop; iy++) {
448 const GLint ixLeft = (GLint) xLeft;
449 const GLint ixRight = (GLint) (xRight + 1.0F);
450 GLint ix;
451 /* scan across the line, left-to-right */
452 for (ix = ixLeft; ix < ixRight; ix++) {
453 (*plot)(ctx, line, pb, ix, iy);
454 }
455 xLeft += dxdy;
456 xRight += dxdy;
457 }
458 }
459 }
460
461
462 #define NAME(x) aa_ci_##x
463 #define DO_Z
464 #define DO_FOG
465 #define DO_INDEX
466 #include "s_aalinetemp.h"
467
468
469 #define NAME(x) aa_rgba_##x
470 #define DO_Z
471 #define DO_FOG
472 #define DO_RGBA
473 #include "s_aalinetemp.h"
474
475
476 #define NAME(x) aa_tex_rgba_##x
477 #define DO_Z
478 #define DO_FOG
479 #define DO_RGBA
480 #define DO_TEX
481 #include "s_aalinetemp.h"
482
483
484 #define NAME(x) aa_multitex_rgba_##x
485 #define DO_Z
486 #define DO_RGBA
487 #define DO_MULTITEX
488 #define DO_SPEC
489 #include "s_aalinetemp.h"
490
491
492
493 void
494 _swrast_choose_aa_line_function(GLcontext *ctx)
495 {
496 SWcontext *swrast = SWRAST_CONTEXT(ctx);
497
498 ASSERT(ctx->Line.SmoothFlag);
499
500 if (ctx->Visual.rgbMode) {
501 /* RGBA */
502 if (ctx->Texture._ReallyEnabled) {
503 if (swrast->_MultiTextureEnabled
504 || ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR
505 || ctx->Fog.ColorSumEnabled)
506 /* Multitextured! */
507 swrast->Line = aa_multitex_rgba_line;
508 else
509 swrast->Line = aa_tex_rgba_line;
510 }
511 else {
512 swrast->Line = aa_rgba_line;
513 }
514 }
515 else {
516 /* Color Index */
517 swrast->Line = aa_ci_line;
518 }
519 }