Allocate a sw_span struct in the swrast context instead of allocating it
[mesa.git] / src / mesa / swrast / s_aaline.c
1 /* $Id: s_aaline.c,v 1.14 2002/04/19 14:05:50 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 4.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 #include "glheader.h"
29 #include "swrast/s_aaline.h"
30 #include "swrast/s_context.h"
31 #include "swrast/s_span.h"
32 #include "swrast/swrast.h"
33 #include "mtypes.h"
34 #include "mmath.h"
35
36
37 #define SUB_PIXEL 4
38
39
40 /*
41 * Info about the AA line we're rendering
42 */
43 struct LineInfo
44 {
45 GLfloat x0, y0; /* start */
46 GLfloat x1, y1; /* end */
47 GLfloat dx, dy; /* direction vector */
48 GLfloat len; /* length */
49 GLfloat halfWidth; /* half of line width */
50 GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */
51 /* for coverage computation */
52 GLfloat qx0, qy0; /* quad vertices */
53 GLfloat qx1, qy1;
54 GLfloat qx2, qy2;
55 GLfloat qx3, qy3;
56 GLfloat ex0, ey0; /* quad edge vectors */
57 GLfloat ex1, ey1;
58 GLfloat ex2, ey2;
59 GLfloat ex3, ey3;
60
61 /* DO_Z */
62 GLfloat zPlane[4];
63 /* DO_FOG */
64 GLfloat fPlane[4];
65 /* DO_RGBA */
66 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
67 /* DO_INDEX */
68 GLfloat iPlane[4];
69 /* DO_SPEC */
70 GLfloat srPlane[4], sgPlane[4], sbPlane[4];
71 /* DO_TEX or DO_MULTITEX */
72 GLfloat sPlane[MAX_TEXTURE_UNITS][4];
73 GLfloat tPlane[MAX_TEXTURE_UNITS][4];
74 GLfloat uPlane[MAX_TEXTURE_UNITS][4];
75 GLfloat vPlane[MAX_TEXTURE_UNITS][4];
76 GLfloat lambda[MAX_TEXTURE_UNITS];
77 GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
78
79 struct sw_span *span;
80 };
81
82
83
84 /*
85 * Compute the equation of a plane used to interpolate line fragment data
86 * such as color, Z, texture coords, etc.
87 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
88 * z0, and z1 are the end point values to interpolate.
89 * Output: plane - the plane equation.
90 *
91 * Note: we don't really have enough parameters to specify a plane.
92 * We take the endpoints of the line and compute a plane such that
93 * the cross product of the line vector and the plane normal is
94 * parallel to the projection plane.
95 */
96 static void
97 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
98 GLfloat z0, GLfloat z1, GLfloat plane[4])
99 {
100 #if 0
101 /* original */
102 const GLfloat px = x1 - x0;
103 const GLfloat py = y1 - y0;
104 const GLfloat pz = z1 - z0;
105 const GLfloat qx = -py;
106 const GLfloat qy = px;
107 const GLfloat qz = 0;
108 const GLfloat a = py * qz - pz * qy;
109 const GLfloat b = pz * qx - px * qz;
110 const GLfloat c = px * qy - py * qx;
111 const GLfloat d = -(a * x0 + b * y0 + c * z0);
112 plane[0] = a;
113 plane[1] = b;
114 plane[2] = c;
115 plane[3] = d;
116 #else
117 /* simplified */
118 const GLfloat px = x1 - x0;
119 const GLfloat py = y1 - y0;
120 const GLfloat pz = z0 - z1;
121 const GLfloat a = pz * px;
122 const GLfloat b = pz * py;
123 const GLfloat c = px * px + py * py;
124 const GLfloat d = -(a * x0 + b * y0 + c * z0);
125 if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
126 plane[0] = 0.0;
127 plane[1] = 0.0;
128 plane[2] = 1.0;
129 plane[3] = 0.0;
130 }
131 else {
132 plane[0] = a;
133 plane[1] = b;
134 plane[2] = c;
135 plane[3] = d;
136 }
137 #endif
138 }
139
140
141 static INLINE void
142 constant_plane(GLfloat value, GLfloat plane[4])
143 {
144 plane[0] = 0.0;
145 plane[1] = 0.0;
146 plane[2] = -1.0;
147 plane[3] = value;
148 }
149
150
151 static INLINE GLfloat
152 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
153 {
154 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
155 return z;
156 }
157
158 #define SOLVE_PLANE(X, Y, PLANE) \
159 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
160
161
162 /*
163 * Return 1 / solve_plane().
164 */
165 static INLINE GLfloat
166 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
167 {
168 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
169 if (denom == 0.0)
170 return 0.0;
171 else
172 return -plane[2] / denom;
173 }
174
175
176 /*
177 * Solve plane and return clamped GLchan value.
178 */
179 static INLINE GLchan
180 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
181 {
182 GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F;
183 if (z < 0.0F)
184 return 0;
185 else if (z > CHAN_MAXF)
186 return (GLchan) CHAN_MAXF;
187 return (GLchan) (GLint) z;
188 }
189
190
191 /*
192 * Compute mipmap level of detail.
193 */
194 static INLINE GLfloat
195 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
196 GLfloat invQ, GLfloat width, GLfloat height)
197 {
198 GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
199 GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
200 GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
201 GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
202 GLfloat r1 = dudx * dudx + dudy * dudy;
203 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
204 GLfloat rho2 = r1 + r2;
205 /* return log base 2 of rho */
206 if (rho2 == 0.0F)
207 return 0.0;
208 else
209 return (GLfloat) (log(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
210 }
211
212
213
214
215 /*
216 * Fill in the samples[] array with the (x,y) subpixel positions of
217 * xSamples * ySamples sample positions.
218 * Note that the four corner samples are put into the first four
219 * positions of the array. This allows us to optimize for the common
220 * case of all samples being inside the polygon.
221 */
222 static void
223 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
224 {
225 const GLfloat dx = 1.0F / (GLfloat) xSamples;
226 const GLfloat dy = 1.0F / (GLfloat) ySamples;
227 GLint x, y;
228 GLint i;
229
230 i = 4;
231 for (x = 0; x < xSamples; x++) {
232 for (y = 0; y < ySamples; y++) {
233 GLint j;
234 if (x == 0 && y == 0) {
235 /* lower left */
236 j = 0;
237 }
238 else if (x == xSamples - 1 && y == 0) {
239 /* lower right */
240 j = 1;
241 }
242 else if (x == 0 && y == ySamples - 1) {
243 /* upper left */
244 j = 2;
245 }
246 else if (x == xSamples - 1 && y == ySamples - 1) {
247 /* upper right */
248 j = 3;
249 }
250 else {
251 j = i++;
252 }
253 samples[j][0] = x * dx + 0.5F * dx;
254 samples[j][1] = y * dy + 0.5F * dy;
255 }
256 }
257 }
258
259
260
261 /*
262 * Compute how much of the given pixel's area is inside the rectangle
263 * defined by vertices v0, v1, v2, v3.
264 * Vertices MUST be specified in counter-clockwise order.
265 * Return: coverage in [0, 1].
266 */
267 static GLfloat
268 compute_coveragef(const struct LineInfo *info,
269 GLint winx, GLint winy)
270 {
271 static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
272 static GLboolean haveSamples = GL_FALSE;
273 const GLfloat x = (GLfloat) winx;
274 const GLfloat y = (GLfloat) winy;
275 GLint stop = 4, i;
276 GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
277
278 if (!haveSamples) {
279 make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
280 haveSamples = GL_TRUE;
281 }
282
283 #if 0 /*DEBUG*/
284 {
285 const GLfloat area = dx0 * dy1 - dx1 * dy0;
286 assert(area >= 0.0);
287 }
288 #endif
289
290 for (i = 0; i < stop; i++) {
291 const GLfloat sx = x + samples[i][0];
292 const GLfloat sy = y + samples[i][1];
293 const GLfloat fx0 = sx - info->qx0;
294 const GLfloat fy0 = sy - info->qy0;
295 const GLfloat fx1 = sx - info->qx1;
296 const GLfloat fy1 = sy - info->qy1;
297 const GLfloat fx2 = sx - info->qx2;
298 const GLfloat fy2 = sy - info->qy2;
299 const GLfloat fx3 = sx - info->qx3;
300 const GLfloat fy3 = sy - info->qy3;
301 /* cross product determines if sample is inside or outside each edge */
302 GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
303 GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
304 GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
305 GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
306 /* Check if the sample is exactly on an edge. If so, let cross be a
307 * positive or negative value depending on the direction of the edge.
308 */
309 if (cross0 == 0.0F)
310 cross0 = info->ex0 + info->ey0;
311 if (cross1 == 0.0F)
312 cross1 = info->ex1 + info->ey1;
313 if (cross2 == 0.0F)
314 cross2 = info->ex2 + info->ey2;
315 if (cross3 == 0.0F)
316 cross3 = info->ex3 + info->ey3;
317 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
318 /* point is outside quadrilateral */
319 insideCount -= 1.0F;
320 stop = SUB_PIXEL * SUB_PIXEL;
321 }
322 }
323 if (stop == 4)
324 return 1.0F;
325 else
326 return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
327 }
328
329
330
331 typedef void (*plot_func)(GLcontext *ctx, struct LineInfo *line,
332 int ix, int iy);
333
334
335
336 /*
337 * Draw an AA line segment (called many times per line when stippling)
338 */
339 static void
340 segment(GLcontext *ctx,
341 struct LineInfo *line,
342 plot_func plot,
343 GLfloat t0, GLfloat t1)
344 {
345 const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
346 const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
347 /* compute the actual segment's endpoints */
348 const GLfloat x0 = line->x0 + t0 * line->dx;
349 const GLfloat y0 = line->y0 + t0 * line->dy;
350 const GLfloat x1 = line->x0 + t1 * line->dx;
351 const GLfloat y1 = line->y0 + t1 * line->dy;
352
353 /* compute vertices of the line-aligned quadrilateral */
354 line->qx0 = x0 - line->yAdj;
355 line->qy0 = y0 + line->xAdj;
356 line->qx1 = x0 + line->yAdj;
357 line->qy1 = y0 - line->xAdj;
358 line->qx2 = x1 + line->yAdj;
359 line->qy2 = y1 - line->xAdj;
360 line->qx3 = x1 - line->yAdj;
361 line->qy3 = y1 + line->xAdj;
362 /* compute the quad's edge vectors (for coverage calc) */
363 line->ex0 = line->qx1 - line->qx0;
364 line->ey0 = line->qy1 - line->qy0;
365 line->ex1 = line->qx2 - line->qx1;
366 line->ey1 = line->qy2 - line->qy1;
367 line->ex2 = line->qx3 - line->qx2;
368 line->ey2 = line->qy3 - line->qy2;
369 line->ex3 = line->qx0 - line->qx3;
370 line->ey3 = line->qy0 - line->qy3;
371
372 if (absDx > absDy) {
373 /* X-major line */
374 GLfloat dydx = line->dy / line->dx;
375 GLfloat xLeft, xRight, yBot, yTop;
376 GLint ix, ixRight;
377 if (x0 < x1) {
378 xLeft = x0 - line->halfWidth;
379 xRight = x1 + line->halfWidth;
380 if (line->dy >= 0.0) {
381 yBot = y0 - 3.0F * line->halfWidth;
382 yTop = y0 + line->halfWidth;
383 }
384 else {
385 yBot = y0 - line->halfWidth;
386 yTop = y0 + 3.0F * line->halfWidth;
387 }
388 }
389 else {
390 xLeft = x1 - line->halfWidth;
391 xRight = x0 + line->halfWidth;
392 if (line->dy <= 0.0) {
393 yBot = y1 - 3.0F * line->halfWidth;
394 yTop = y1 + line->halfWidth;
395 }
396 else {
397 yBot = y1 - line->halfWidth;
398 yTop = y1 + 3.0F * line->halfWidth;
399 }
400 }
401
402 /* scan along the line, left-to-right */
403 ixRight = (GLint) (xRight + 1.0F);
404
405 /*printf("avg span height: %g\n", yTop - yBot);*/
406 for (ix = (GLint) xLeft; ix < ixRight; ix++) {
407 const GLint iyBot = (GLint) yBot;
408 const GLint iyTop = (GLint) (yTop + 1.0F);
409 GLint iy;
410 /* scan across the line, bottom-to-top */
411 for (iy = iyBot; iy < iyTop; iy++) {
412 (*plot)(ctx, line, ix, iy);
413 }
414 yBot += dydx;
415 yTop += dydx;
416 }
417 }
418 else {
419 /* Y-major line */
420 GLfloat dxdy = line->dx / line->dy;
421 GLfloat yBot, yTop, xLeft, xRight;
422 GLint iy, iyTop;
423 if (y0 < y1) {
424 yBot = y0 - line->halfWidth;
425 yTop = y1 + line->halfWidth;
426 if (line->dx >= 0.0) {
427 xLeft = x0 - 3.0F * line->halfWidth;
428 xRight = x0 + line->halfWidth;
429 }
430 else {
431 xLeft = x0 - line->halfWidth;
432 xRight = x0 + 3.0F * line->halfWidth;
433 }
434 }
435 else {
436 yBot = y1 - line->halfWidth;
437 yTop = y0 + line->halfWidth;
438 if (line->dx <= 0.0) {
439 xLeft = x1 - 3.0F * line->halfWidth;
440 xRight = x1 + line->halfWidth;
441 }
442 else {
443 xLeft = x1 - line->halfWidth;
444 xRight = x1 + 3.0F * line->halfWidth;
445 }
446 }
447
448 /* scan along the line, bottom-to-top */
449 iyTop = (GLint) (yTop + 1.0F);
450
451 /*printf("avg span width: %g\n", xRight - xLeft);*/
452 for (iy = (GLint) yBot; iy < iyTop; iy++) {
453 const GLint ixLeft = (GLint) xLeft;
454 const GLint ixRight = (GLint) (xRight + 1.0F);
455 GLint ix;
456 /* scan across the line, left-to-right */
457 for (ix = ixLeft; ix < ixRight; ix++) {
458 (*plot)(ctx, line, ix, iy);
459 }
460 xLeft += dxdy;
461 xRight += dxdy;
462 }
463 }
464 }
465
466
467 #define NAME(x) aa_ci_##x
468 #define DO_Z
469 #define DO_FOG
470 #define DO_INDEX
471 #include "s_aalinetemp.h"
472
473
474 #define NAME(x) aa_rgba_##x
475 #define DO_Z
476 #define DO_FOG
477 #define DO_RGBA
478 #include "s_aalinetemp.h"
479
480
481 #define NAME(x) aa_tex_rgba_##x
482 #define DO_Z
483 #define DO_FOG
484 #define DO_RGBA
485 #define DO_TEX
486 #include "s_aalinetemp.h"
487
488
489 #define NAME(x) aa_multitex_rgba_##x
490 #define DO_Z
491 #define DO_FOG
492 #define DO_RGBA
493 #define DO_MULTITEX
494 #include "s_aalinetemp.h"
495
496
497 #define NAME(x) aa_multitex_spec_##x
498 #define DO_Z
499 #define DO_FOG
500 #define DO_RGBA
501 #define DO_MULTITEX
502 #define DO_SPEC
503 #include "s_aalinetemp.h"
504
505
506
507 void
508 _swrast_choose_aa_line_function(GLcontext *ctx)
509 {
510 SWcontext *swrast = SWRAST_CONTEXT(ctx);
511
512 ASSERT(ctx->Line.SmoothFlag);
513
514 if (ctx->Visual.rgbMode) {
515 /* RGBA */
516 if (ctx->Texture._ReallyEnabled) {
517 if (ctx->Texture._ReallyEnabled > TEXTURE0_ANY) {
518 /* Multitextured! */
519 if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR ||
520 ctx->Fog.ColorSumEnabled)
521 swrast->Line = aa_multitex_spec_line;
522 else
523 swrast->Line = aa_multitex_rgba_line;
524 }
525 else {
526 swrast->Line = aa_tex_rgba_line;
527 }
528 }
529 else {
530 swrast->Line = aa_rgba_line;
531 }
532 }
533 else {
534 /* Color Index */
535 swrast->Line = aa_ci_line;
536 }
537 }