fix capitalization, new comments, etc
[mesa.git] / src / mesa / swrast / s_aatriangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 5.1
4 *
5 * Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Antialiased Triangle rasterizers
28 */
29
30
31 #include "glheader.h"
32 #include "context.h"
33 #include "colormac.h"
34 #include "context.h"
35 #include "macros.h"
36 #include "imports.h"
37 #include "nvfragprog.h"
38 #include "s_aatriangle.h"
39 #include "s_context.h"
40 #include "s_span.h"
41
42
43 /*
44 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
45 * vertices and the given Z values.
46 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
47 */
48 static INLINE void
49 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
50 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
51 {
52 const GLfloat px = v1[0] - v0[0];
53 const GLfloat py = v1[1] - v0[1];
54 const GLfloat pz = z1 - z0;
55
56 const GLfloat qx = v2[0] - v0[0];
57 const GLfloat qy = v2[1] - v0[1];
58 const GLfloat qz = z2 - z0;
59
60 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
61 const GLfloat a = py * qz - pz * qy;
62 const GLfloat b = pz * qx - px * qz;
63 const GLfloat c = px * qy - py * qx;
64 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
65 on the distance of plane from origin and arbitrary "w" parallel
66 to the plane. */
67 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
68 which is equal to "-d" below. */
69 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
70
71 plane[0] = a;
72 plane[1] = b;
73 plane[2] = c;
74 plane[3] = d;
75 }
76
77
78 /*
79 * Compute coefficients of a plane with a constant Z value.
80 */
81 static INLINE void
82 constant_plane(GLfloat value, GLfloat plane[4])
83 {
84 plane[0] = 0.0;
85 plane[1] = 0.0;
86 plane[2] = -1.0;
87 plane[3] = value;
88 }
89
90 #define CONSTANT_PLANE(VALUE, PLANE) \
91 do { \
92 PLANE[0] = 0.0F; \
93 PLANE[1] = 0.0F; \
94 PLANE[2] = -1.0F; \
95 PLANE[3] = VALUE; \
96 } while (0)
97
98
99
100 /*
101 * Solve plane equation for Z at (X,Y).
102 */
103 static INLINE GLfloat
104 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
105 {
106 ASSERT(plane[2] != 0.0F);
107 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
108 }
109
110
111 #define SOLVE_PLANE(X, Y, PLANE) \
112 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
113
114
115 /*
116 * Return 1 / solve_plane().
117 */
118 static INLINE GLfloat
119 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
120 {
121 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
122 if (denom == 0.0F)
123 return 0.0F;
124 else
125 return -plane[2] / denom;
126 }
127
128
129 /*
130 * Solve plane and return clamped GLchan value.
131 */
132 static INLINE GLchan
133 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
134 {
135 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
136 #if CHAN_TYPE == GL_FLOAT
137 return CLAMP(z, 0.0F, CHAN_MAXF);
138 #else
139 if (z < 0)
140 return 0;
141 else if (z > CHAN_MAX)
142 return CHAN_MAX;
143 return (GLchan) IROUND_POS(z);
144 #endif
145 }
146
147
148
149 /*
150 * Compute how much (area) of the given pixel is inside the triangle.
151 * Vertices MUST be specified in counter-clockwise order.
152 * Return: coverage in [0, 1].
153 */
154 static GLfloat
155 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
156 const GLfloat v2[3], GLint winx, GLint winy)
157 {
158 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
159 * Contributed by Ray Tice.
160 *
161 * Jitter sample positions -
162 * - average should be .5 in x & y for each column
163 * - each of the 16 rows and columns should be used once
164 * - the rectangle formed by the first four points
165 * should contain the other points
166 * - the distrubition should be fairly even in any given direction
167 *
168 * The pattern drawn below isn't optimal, but it's better than a regular
169 * grid. In the drawing, the center of each subpixel is surrounded by
170 * four dots. The "x" marks the jittered position relative to the
171 * subpixel center.
172 */
173 #define POS(a, b) (0.5+a*4+b)/16
174 static const GLfloat samples[16][2] = {
175 /* start with the four corners */
176 { POS(0, 2), POS(0, 0) },
177 { POS(3, 3), POS(0, 2) },
178 { POS(0, 0), POS(3, 1) },
179 { POS(3, 1), POS(3, 3) },
180 /* continue with interior samples */
181 { POS(1, 1), POS(0, 1) },
182 { POS(2, 0), POS(0, 3) },
183 { POS(0, 3), POS(1, 3) },
184 { POS(1, 2), POS(1, 0) },
185 { POS(2, 3), POS(1, 2) },
186 { POS(3, 2), POS(1, 1) },
187 { POS(0, 1), POS(2, 2) },
188 { POS(1, 0), POS(2, 1) },
189 { POS(2, 1), POS(2, 3) },
190 { POS(3, 0), POS(2, 0) },
191 { POS(1, 3), POS(3, 0) },
192 { POS(2, 2), POS(3, 2) }
193 };
194
195 const GLfloat x = (GLfloat) winx;
196 const GLfloat y = (GLfloat) winy;
197 const GLfloat dx0 = v1[0] - v0[0];
198 const GLfloat dy0 = v1[1] - v0[1];
199 const GLfloat dx1 = v2[0] - v1[0];
200 const GLfloat dy1 = v2[1] - v1[1];
201 const GLfloat dx2 = v0[0] - v2[0];
202 const GLfloat dy2 = v0[1] - v2[1];
203 GLint stop = 4, i;
204 GLfloat insideCount = 16.0F;
205
206 #ifdef DEBUG
207 {
208 const GLfloat area = dx0 * dy1 - dx1 * dy0;
209 ASSERT(area >= 0.0);
210 }
211 #endif
212
213 for (i = 0; i < stop; i++) {
214 const GLfloat sx = x + samples[i][0];
215 const GLfloat sy = y + samples[i][1];
216 /* cross product determines if sample is inside or outside each edge */
217 GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
218 /* Check if the sample is exactly on an edge. If so, let cross be a
219 * positive or negative value depending on the direction of the edge.
220 */
221 if (cross == 0.0F)
222 cross = dx0 + dy0;
223 if (cross < 0.0F) {
224 /* sample point is outside first edge */
225 insideCount -= 1.0F;
226 stop = 16;
227 }
228 else {
229 /* sample point is inside first edge */
230 cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
231 if (cross == 0.0F)
232 cross = dx1 + dy1;
233 if (cross < 0.0F) {
234 /* sample point is outside second edge */
235 insideCount -= 1.0F;
236 stop = 16;
237 }
238 else {
239 /* sample point is inside first and second edges */
240 cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0]));
241 if (cross == 0.0F)
242 cross = dx2 + dy2;
243 if (cross < 0.0F) {
244 /* sample point is outside third edge */
245 insideCount -= 1.0F;
246 stop = 16;
247 }
248 }
249 }
250 }
251 if (stop == 4)
252 return 1.0F;
253 else
254 return insideCount * (1.0F / 16.0F);
255 }
256
257
258
259 /*
260 * Compute how much (area) of the given pixel is inside the triangle.
261 * Vertices MUST be specified in counter-clockwise order.
262 * Return: coverage in [0, 15].
263 */
264 static GLint
265 compute_coveragei(const GLfloat v0[3], const GLfloat v1[3],
266 const GLfloat v2[3], GLint winx, GLint winy)
267 {
268 /* NOTE: 15 samples instead of 16. */
269 static const GLfloat samples[15][2] = {
270 /* start with the four corners */
271 { POS(0, 2), POS(0, 0) },
272 { POS(3, 3), POS(0, 2) },
273 { POS(0, 0), POS(3, 1) },
274 { POS(3, 1), POS(3, 3) },
275 /* continue with interior samples */
276 { POS(1, 1), POS(0, 1) },
277 { POS(2, 0), POS(0, 3) },
278 { POS(0, 3), POS(1, 3) },
279 { POS(1, 2), POS(1, 0) },
280 { POS(2, 3), POS(1, 2) },
281 { POS(3, 2), POS(1, 1) },
282 { POS(0, 1), POS(2, 2) },
283 { POS(1, 0), POS(2, 1) },
284 { POS(2, 1), POS(2, 3) },
285 { POS(3, 0), POS(2, 0) },
286 { POS(1, 3), POS(3, 0) }
287 };
288 const GLfloat x = (GLfloat) winx;
289 const GLfloat y = (GLfloat) winy;
290 const GLfloat dx0 = v1[0] - v0[0];
291 const GLfloat dy0 = v1[1] - v0[1];
292 const GLfloat dx1 = v2[0] - v1[0];
293 const GLfloat dy1 = v2[1] - v1[1];
294 const GLfloat dx2 = v0[0] - v2[0];
295 const GLfloat dy2 = v0[1] - v2[1];
296 GLint stop = 4, i;
297 GLint insideCount = 15;
298
299 #ifdef DEBUG
300 {
301 const GLfloat area = dx0 * dy1 - dx1 * dy0;
302 ASSERT(area >= 0.0);
303 }
304 #endif
305
306 for (i = 0; i < stop; i++) {
307 const GLfloat sx = x + samples[i][0];
308 const GLfloat sy = y + samples[i][1];
309 const GLfloat fx0 = sx - v0[0];
310 const GLfloat fy0 = sy - v0[1];
311 const GLfloat fx1 = sx - v1[0];
312 const GLfloat fy1 = sy - v1[1];
313 const GLfloat fx2 = sx - v2[0];
314 const GLfloat fy2 = sy - v2[1];
315 /* cross product determines if sample is inside or outside each edge */
316 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
317 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
318 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
319 /* Check if the sample is exactly on an edge. If so, let cross be a
320 * positive or negative value depending on the direction of the edge.
321 */
322 if (cross0 == 0.0F)
323 cross0 = dx0 + dy0;
324 if (cross1 == 0.0F)
325 cross1 = dx1 + dy1;
326 if (cross2 == 0.0F)
327 cross2 = dx2 + dy2;
328 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
329 /* point is outside triangle */
330 insideCount--;
331 stop = 15;
332 }
333 }
334 if (stop == 4)
335 return 15;
336 else
337 return insideCount;
338 }
339
340
341
342 static void
343 rgba_aa_tri(GLcontext *ctx,
344 const SWvertex *v0,
345 const SWvertex *v1,
346 const SWvertex *v2)
347 {
348 #define DO_Z
349 #define DO_FOG
350 #define DO_RGBA
351 #include "s_aatritemp.h"
352 }
353
354
355 static void
356 index_aa_tri(GLcontext *ctx,
357 const SWvertex *v0,
358 const SWvertex *v1,
359 const SWvertex *v2)
360 {
361 #define DO_Z
362 #define DO_FOG
363 #define DO_INDEX
364 #include "s_aatritemp.h"
365 }
366
367
368 /*
369 * Compute mipmap level of detail.
370 * XXX we should really include the R coordinate in this computation
371 * in order to do 3-D texture mipmapping.
372 */
373 static INLINE GLfloat
374 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
375 const GLfloat qPlane[4], GLfloat cx, GLfloat cy,
376 GLfloat invQ, GLfloat texWidth, GLfloat texHeight)
377 {
378 const GLfloat s = solve_plane(cx, cy, sPlane);
379 const GLfloat t = solve_plane(cx, cy, tPlane);
380 const GLfloat invQ_x1 = solve_plane_recip(cx+1.0F, cy, qPlane);
381 const GLfloat invQ_y1 = solve_plane_recip(cx, cy+1.0F, qPlane);
382 const GLfloat s_x1 = s - sPlane[0] / sPlane[2];
383 const GLfloat s_y1 = s - sPlane[1] / sPlane[2];
384 const GLfloat t_x1 = t - tPlane[0] / tPlane[2];
385 const GLfloat t_y1 = t - tPlane[1] / tPlane[2];
386 GLfloat dsdx = s_x1 * invQ_x1 - s * invQ;
387 GLfloat dsdy = s_y1 * invQ_y1 - s * invQ;
388 GLfloat dtdx = t_x1 * invQ_x1 - t * invQ;
389 GLfloat dtdy = t_y1 * invQ_y1 - t * invQ;
390 GLfloat maxU, maxV, rho, lambda;
391 dsdx = FABSF(dsdx);
392 dsdy = FABSF(dsdy);
393 dtdx = FABSF(dtdx);
394 dtdy = FABSF(dtdy);
395 maxU = MAX2(dsdx, dsdy) * texWidth;
396 maxV = MAX2(dtdx, dtdy) * texHeight;
397 rho = MAX2(maxU, maxV);
398 lambda = LOG2(rho);
399 return lambda;
400 }
401
402
403 static void
404 tex_aa_tri(GLcontext *ctx,
405 const SWvertex *v0,
406 const SWvertex *v1,
407 const SWvertex *v2)
408 {
409 #define DO_Z
410 #define DO_FOG
411 #define DO_RGBA
412 #define DO_TEX
413 #include "s_aatritemp.h"
414 }
415
416
417 static void
418 spec_tex_aa_tri(GLcontext *ctx,
419 const SWvertex *v0,
420 const SWvertex *v1,
421 const SWvertex *v2)
422 {
423 #define DO_Z
424 #define DO_FOG
425 #define DO_RGBA
426 #define DO_TEX
427 #define DO_SPEC
428 #include "s_aatritemp.h"
429 }
430
431
432 static void
433 multitex_aa_tri(GLcontext *ctx,
434 const SWvertex *v0,
435 const SWvertex *v1,
436 const SWvertex *v2)
437 {
438 #define DO_Z
439 #define DO_FOG
440 #define DO_RGBA
441 #define DO_MULTITEX
442 #include "s_aatritemp.h"
443 }
444
445 static void
446 spec_multitex_aa_tri(GLcontext *ctx,
447 const SWvertex *v0,
448 const SWvertex *v1,
449 const SWvertex *v2)
450 {
451 #define DO_Z
452 #define DO_FOG
453 #define DO_RGBA
454 #define DO_MULTITEX
455 #define DO_SPEC
456 #include "s_aatritemp.h"
457 }
458
459
460 /*
461 * Examine GL state and set swrast->Triangle to an
462 * appropriate antialiased triangle rasterizer function.
463 */
464 void
465 _swrast_set_aa_triangle_function(GLcontext *ctx)
466 {
467 ASSERT(ctx->Polygon.SmoothFlag);
468
469 if (ctx->Texture._EnabledCoordUnits != 0) {
470 if (NEED_SECONDARY_COLOR(ctx)) {
471 if (ctx->Texture._EnabledCoordUnits > 1) {
472 SWRAST_CONTEXT(ctx)->Triangle = spec_multitex_aa_tri;
473 }
474 else {
475 SWRAST_CONTEXT(ctx)->Triangle = spec_tex_aa_tri;
476 }
477 }
478 else {
479 if (ctx->Texture._EnabledCoordUnits > 1) {
480 SWRAST_CONTEXT(ctx)->Triangle = multitex_aa_tri;
481 }
482 else {
483 SWRAST_CONTEXT(ctx)->Triangle = tex_aa_tri;
484 }
485 }
486 }
487 else if (ctx->Visual.rgbMode) {
488 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
489 }
490 else {
491 SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri;
492 }
493
494 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
495 }