mesa/formats: add new mesa formats and their pack/unpack functions.
[mesa.git] / src / mesa / swrast / s_aatriangle.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Antialiased Triangle rasterizers
28 */
29
30
31 #include "main/glheader.h"
32 #include "main/context.h"
33 #include "main/colormac.h"
34 #include "main/macros.h"
35 #include "main/imports.h"
36 #include "main/state.h"
37 #include "s_aatriangle.h"
38 #include "s_context.h"
39 #include "s_span.h"
40
41
42 /*
43 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
44 * vertices and the given Z values.
45 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
46 */
47 static inline void
48 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
49 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
50 {
51 const GLfloat px = v1[0] - v0[0];
52 const GLfloat py = v1[1] - v0[1];
53 const GLfloat pz = z1 - z0;
54
55 const GLfloat qx = v2[0] - v0[0];
56 const GLfloat qy = v2[1] - v0[1];
57 const GLfloat qz = z2 - z0;
58
59 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
60 const GLfloat a = py * qz - pz * qy;
61 const GLfloat b = pz * qx - px * qz;
62 const GLfloat c = px * qy - py * qx;
63 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
64 on the distance of plane from origin and arbitrary "w" parallel
65 to the plane. */
66 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
67 which is equal to "-d" below. */
68 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
69
70 plane[0] = a;
71 plane[1] = b;
72 plane[2] = c;
73 plane[3] = d;
74 }
75
76
77 /*
78 * Compute coefficients of a plane with a constant Z value.
79 */
80 static inline void
81 constant_plane(GLfloat value, GLfloat plane[4])
82 {
83 plane[0] = 0.0;
84 plane[1] = 0.0;
85 plane[2] = -1.0;
86 plane[3] = value;
87 }
88
89 #define CONSTANT_PLANE(VALUE, PLANE) \
90 do { \
91 PLANE[0] = 0.0F; \
92 PLANE[1] = 0.0F; \
93 PLANE[2] = -1.0F; \
94 PLANE[3] = VALUE; \
95 } while (0)
96
97
98
99 /*
100 * Solve plane equation for Z at (X,Y).
101 */
102 static inline GLfloat
103 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
104 {
105 ASSERT(plane[2] != 0.0F);
106 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
107 }
108
109
110 #define SOLVE_PLANE(X, Y, PLANE) \
111 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
112
113
114 /*
115 * Solve plane and return clamped GLchan value.
116 */
117 static inline GLchan
118 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
119 {
120 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
121 #if CHAN_TYPE == GL_FLOAT
122 return CLAMP(z, 0.0F, CHAN_MAXF);
123 #else
124 if (z < 0)
125 return 0;
126 else if (z > CHAN_MAX)
127 return CHAN_MAX;
128 return (GLchan) IROUND_POS(z);
129 #endif
130 }
131
132
133 static inline GLfloat
134 plane_dx(const GLfloat plane[4])
135 {
136 return -plane[0] / plane[2];
137 }
138
139 static inline GLfloat
140 plane_dy(const GLfloat plane[4])
141 {
142 return -plane[1] / plane[2];
143 }
144
145
146
147 /*
148 * Compute how much (area) of the given pixel is inside the triangle.
149 * Vertices MUST be specified in counter-clockwise order.
150 * Return: coverage in [0, 1].
151 */
152 static GLfloat
153 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
154 const GLfloat v2[3], GLint winx, GLint winy)
155 {
156 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
157 * Contributed by Ray Tice.
158 *
159 * Jitter sample positions -
160 * - average should be .5 in x & y for each column
161 * - each of the 16 rows and columns should be used once
162 * - the rectangle formed by the first four points
163 * should contain the other points
164 * - the distrubition should be fairly even in any given direction
165 *
166 * The pattern drawn below isn't optimal, but it's better than a regular
167 * grid. In the drawing, the center of each subpixel is surrounded by
168 * four dots. The "x" marks the jittered position relative to the
169 * subpixel center.
170 */
171 #define POS(a, b) (0.5+a*4+b)/16
172 static const GLfloat samples[16][2] = {
173 /* start with the four corners */
174 { POS(0, 2), POS(0, 0) },
175 { POS(3, 3), POS(0, 2) },
176 { POS(0, 0), POS(3, 1) },
177 { POS(3, 1), POS(3, 3) },
178 /* continue with interior samples */
179 { POS(1, 1), POS(0, 1) },
180 { POS(2, 0), POS(0, 3) },
181 { POS(0, 3), POS(1, 3) },
182 { POS(1, 2), POS(1, 0) },
183 { POS(2, 3), POS(1, 2) },
184 { POS(3, 2), POS(1, 1) },
185 { POS(0, 1), POS(2, 2) },
186 { POS(1, 0), POS(2, 1) },
187 { POS(2, 1), POS(2, 3) },
188 { POS(3, 0), POS(2, 0) },
189 { POS(1, 3), POS(3, 0) },
190 { POS(2, 2), POS(3, 2) }
191 };
192
193 const GLfloat x = (GLfloat) winx;
194 const GLfloat y = (GLfloat) winy;
195 const GLfloat dx0 = v1[0] - v0[0];
196 const GLfloat dy0 = v1[1] - v0[1];
197 const GLfloat dx1 = v2[0] - v1[0];
198 const GLfloat dy1 = v2[1] - v1[1];
199 const GLfloat dx2 = v0[0] - v2[0];
200 const GLfloat dy2 = v0[1] - v2[1];
201 GLint stop = 4, i;
202 GLfloat insideCount = 16.0F;
203
204 ASSERT(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */
205
206 for (i = 0; i < stop; i++) {
207 const GLfloat sx = x + samples[i][0];
208 const GLfloat sy = y + samples[i][1];
209 /* cross product determines if sample is inside or outside each edge */
210 GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
211 /* Check if the sample is exactly on an edge. If so, let cross be a
212 * positive or negative value depending on the direction of the edge.
213 */
214 if (cross == 0.0F)
215 cross = dx0 + dy0;
216 if (cross < 0.0F) {
217 /* sample point is outside first edge */
218 insideCount -= 1.0F;
219 stop = 16;
220 }
221 else {
222 /* sample point is inside first edge */
223 cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
224 if (cross == 0.0F)
225 cross = dx1 + dy1;
226 if (cross < 0.0F) {
227 /* sample point is outside second edge */
228 insideCount -= 1.0F;
229 stop = 16;
230 }
231 else {
232 /* sample point is inside first and second edges */
233 cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0]));
234 if (cross == 0.0F)
235 cross = dx2 + dy2;
236 if (cross < 0.0F) {
237 /* sample point is outside third edge */
238 insideCount -= 1.0F;
239 stop = 16;
240 }
241 }
242 }
243 }
244 if (stop == 4)
245 return 1.0F;
246 else
247 return insideCount * (1.0F / 16.0F);
248 }
249
250
251
252 static void
253 rgba_aa_tri(struct gl_context *ctx,
254 const SWvertex *v0,
255 const SWvertex *v1,
256 const SWvertex *v2)
257 {
258 #define DO_Z
259 #include "s_aatritemp.h"
260 }
261
262
263 static void
264 general_aa_tri(struct gl_context *ctx,
265 const SWvertex *v0,
266 const SWvertex *v1,
267 const SWvertex *v2)
268 {
269 #define DO_Z
270 #define DO_ATTRIBS
271 #include "s_aatritemp.h"
272 }
273
274
275
276 /*
277 * Examine GL state and set swrast->Triangle to an
278 * appropriate antialiased triangle rasterizer function.
279 */
280 void
281 _swrast_set_aa_triangle_function(struct gl_context *ctx)
282 {
283 SWcontext *swrast = SWRAST_CONTEXT(ctx);
284
285 ASSERT(ctx->Polygon.SmoothFlag);
286
287 if (ctx->Texture._EnabledCoordUnits != 0
288 || _swrast_use_fragment_program(ctx)
289 || swrast->_FogEnabled
290 || _mesa_need_secondary_color(ctx)) {
291 SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;
292 }
293 else {
294 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
295 }
296
297 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
298 }