added program.c plus minor fixes
[mesa.git] / src / mesa / swrast / s_aatriangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 5.1
4 *
5 * Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Antialiased Triangle rasterizers
28 */
29
30
31 #include "glheader.h"
32 #include "colormac.h"
33 #include "macros.h"
34 #include "imports.h"
35 #include "s_aatriangle.h"
36 #include "s_context.h"
37 #include "s_span.h"
38
39
40 /*
41 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
42 * vertices and the given Z values.
43 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
44 */
45 static INLINE void
46 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
47 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
48 {
49 const GLfloat px = v1[0] - v0[0];
50 const GLfloat py = v1[1] - v0[1];
51 const GLfloat pz = z1 - z0;
52
53 const GLfloat qx = v2[0] - v0[0];
54 const GLfloat qy = v2[1] - v0[1];
55 const GLfloat qz = z2 - z0;
56
57 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
58 const GLfloat a = py * qz - pz * qy;
59 const GLfloat b = pz * qx - px * qz;
60 const GLfloat c = px * qy - py * qx;
61 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
62 on the distance of plane from origin and arbitrary "w" parallel
63 to the plane. */
64 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
65 which is equal to "-d" below. */
66 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
67
68 plane[0] = a;
69 plane[1] = b;
70 plane[2] = c;
71 plane[3] = d;
72 }
73
74
75 /*
76 * Compute coefficients of a plane with a constant Z value.
77 */
78 static INLINE void
79 constant_plane(GLfloat value, GLfloat plane[4])
80 {
81 plane[0] = 0.0;
82 plane[1] = 0.0;
83 plane[2] = -1.0;
84 plane[3] = value;
85 }
86
87 #define CONSTANT_PLANE(VALUE, PLANE) \
88 do { \
89 PLANE[0] = 0.0F; \
90 PLANE[1] = 0.0F; \
91 PLANE[2] = -1.0F; \
92 PLANE[3] = VALUE; \
93 } while (0)
94
95
96
97 /*
98 * Solve plane equation for Z at (X,Y).
99 */
100 static INLINE GLfloat
101 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
102 {
103 ASSERT(plane[2] != 0.0F);
104 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
105 }
106
107
108 #define SOLVE_PLANE(X, Y, PLANE) \
109 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
110
111
112 /*
113 * Return 1 / solve_plane().
114 */
115 static INLINE GLfloat
116 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
117 {
118 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
119 if (denom == 0.0F)
120 return 0.0F;
121 else
122 return -plane[2] / denom;
123 }
124
125
126 /*
127 * Solve plane and return clamped GLchan value.
128 */
129 static INLINE GLchan
130 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
131 {
132 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
133 #if CHAN_TYPE == GL_FLOAT
134 return CLAMP(z, 0.0F, CHAN_MAXF);
135 #else
136 if (z < 0)
137 return 0;
138 else if (z > CHAN_MAX)
139 return CHAN_MAX;
140 return (GLchan) IROUND_POS(z);
141 #endif
142 }
143
144
145
146 /*
147 * Compute how much (area) of the given pixel is inside the triangle.
148 * Vertices MUST be specified in counter-clockwise order.
149 * Return: coverage in [0, 1].
150 */
151 static GLfloat
152 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
153 const GLfloat v2[3], GLint winx, GLint winy)
154 {
155 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
156 * Contributed by Ray Tice.
157 *
158 * Jitter sample positions -
159 * - average should be .5 in x & y for each column
160 * - each of the 16 rows and columns should be used once
161 * - the rectangle formed by the first four points
162 * should contain the other points
163 * - the distrubition should be fairly even in any given direction
164 *
165 * The pattern drawn below isn't optimal, but it's better than a regular
166 * grid. In the drawing, the center of each subpixel is surrounded by
167 * four dots. The "x" marks the jittered position relative to the
168 * subpixel center.
169 */
170 #define POS(a, b) (0.5+a*4+b)/16
171 static const GLfloat samples[16][2] = {
172 /* start with the four corners */
173 { POS(0, 2), POS(0, 0) },
174 { POS(3, 3), POS(0, 2) },
175 { POS(0, 0), POS(3, 1) },
176 { POS(3, 1), POS(3, 3) },
177 /* continue with interior samples */
178 { POS(1, 1), POS(0, 1) },
179 { POS(2, 0), POS(0, 3) },
180 { POS(0, 3), POS(1, 3) },
181 { POS(1, 2), POS(1, 0) },
182 { POS(2, 3), POS(1, 2) },
183 { POS(3, 2), POS(1, 1) },
184 { POS(0, 1), POS(2, 2) },
185 { POS(1, 0), POS(2, 1) },
186 { POS(2, 1), POS(2, 3) },
187 { POS(3, 0), POS(2, 0) },
188 { POS(1, 3), POS(3, 0) },
189 { POS(2, 2), POS(3, 2) }
190 };
191
192 const GLfloat x = (GLfloat) winx;
193 const GLfloat y = (GLfloat) winy;
194 const GLfloat dx0 = v1[0] - v0[0];
195 const GLfloat dy0 = v1[1] - v0[1];
196 const GLfloat dx1 = v2[0] - v1[0];
197 const GLfloat dy1 = v2[1] - v1[1];
198 const GLfloat dx2 = v0[0] - v2[0];
199 const GLfloat dy2 = v0[1] - v2[1];
200 GLint stop = 4, i;
201 GLfloat insideCount = 16.0F;
202
203 #ifdef DEBUG
204 {
205 const GLfloat area = dx0 * dy1 - dx1 * dy0;
206 ASSERT(area >= 0.0);
207 }
208 #endif
209
210 for (i = 0; i < stop; i++) {
211 const GLfloat sx = x + samples[i][0];
212 const GLfloat sy = y + samples[i][1];
213 /* cross product determines if sample is inside or outside each edge */
214 GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
215 /* Check if the sample is exactly on an edge. If so, let cross be a
216 * positive or negative value depending on the direction of the edge.
217 */
218 if (cross == 0.0F)
219 cross = dx0 + dy0;
220 if (cross < 0.0F) {
221 /* sample point is outside first edge */
222 insideCount -= 1.0F;
223 stop = 16;
224 }
225 else {
226 /* sample point is inside first edge */
227 cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
228 if (cross == 0.0F)
229 cross = dx1 + dy1;
230 if (cross < 0.0F) {
231 /* sample point is outside second edge */
232 insideCount -= 1.0F;
233 stop = 16;
234 }
235 else {
236 /* sample point is inside first and second edges */
237 cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0]));
238 if (cross == 0.0F)
239 cross = dx2 + dy2;
240 if (cross < 0.0F) {
241 /* sample point is outside third edge */
242 insideCount -= 1.0F;
243 stop = 16;
244 }
245 }
246 }
247 }
248 if (stop == 4)
249 return 1.0F;
250 else
251 return insideCount * (1.0F / 16.0F);
252 }
253
254
255
256 /*
257 * Compute how much (area) of the given pixel is inside the triangle.
258 * Vertices MUST be specified in counter-clockwise order.
259 * Return: coverage in [0, 15].
260 */
261 static GLint
262 compute_coveragei(const GLfloat v0[3], const GLfloat v1[3],
263 const GLfloat v2[3], GLint winx, GLint winy)
264 {
265 /* NOTE: 15 samples instead of 16. */
266 static const GLfloat samples[15][2] = {
267 /* start with the four corners */
268 { POS(0, 2), POS(0, 0) },
269 { POS(3, 3), POS(0, 2) },
270 { POS(0, 0), POS(3, 1) },
271 { POS(3, 1), POS(3, 3) },
272 /* continue with interior samples */
273 { POS(1, 1), POS(0, 1) },
274 { POS(2, 0), POS(0, 3) },
275 { POS(0, 3), POS(1, 3) },
276 { POS(1, 2), POS(1, 0) },
277 { POS(2, 3), POS(1, 2) },
278 { POS(3, 2), POS(1, 1) },
279 { POS(0, 1), POS(2, 2) },
280 { POS(1, 0), POS(2, 1) },
281 { POS(2, 1), POS(2, 3) },
282 { POS(3, 0), POS(2, 0) },
283 { POS(1, 3), POS(3, 0) }
284 };
285 const GLfloat x = (GLfloat) winx;
286 const GLfloat y = (GLfloat) winy;
287 const GLfloat dx0 = v1[0] - v0[0];
288 const GLfloat dy0 = v1[1] - v0[1];
289 const GLfloat dx1 = v2[0] - v1[0];
290 const GLfloat dy1 = v2[1] - v1[1];
291 const GLfloat dx2 = v0[0] - v2[0];
292 const GLfloat dy2 = v0[1] - v2[1];
293 GLint stop = 4, i;
294 GLint insideCount = 15;
295
296 #ifdef DEBUG
297 {
298 const GLfloat area = dx0 * dy1 - dx1 * dy0;
299 ASSERT(area >= 0.0);
300 }
301 #endif
302
303 for (i = 0; i < stop; i++) {
304 const GLfloat sx = x + samples[i][0];
305 const GLfloat sy = y + samples[i][1];
306 const GLfloat fx0 = sx - v0[0];
307 const GLfloat fy0 = sy - v0[1];
308 const GLfloat fx1 = sx - v1[0];
309 const GLfloat fy1 = sy - v1[1];
310 const GLfloat fx2 = sx - v2[0];
311 const GLfloat fy2 = sy - v2[1];
312 /* cross product determines if sample is inside or outside each edge */
313 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
314 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
315 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
316 /* Check if the sample is exactly on an edge. If so, let cross be a
317 * positive or negative value depending on the direction of the edge.
318 */
319 if (cross0 == 0.0F)
320 cross0 = dx0 + dy0;
321 if (cross1 == 0.0F)
322 cross1 = dx1 + dy1;
323 if (cross2 == 0.0F)
324 cross2 = dx2 + dy2;
325 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
326 /* point is outside triangle */
327 insideCount--;
328 stop = 15;
329 }
330 }
331 if (stop == 4)
332 return 15;
333 else
334 return insideCount;
335 }
336
337
338
339 static void
340 rgba_aa_tri(GLcontext *ctx,
341 const SWvertex *v0,
342 const SWvertex *v1,
343 const SWvertex *v2)
344 {
345 #define DO_Z
346 #define DO_FOG
347 #define DO_RGBA
348 #include "s_aatritemp.h"
349 }
350
351
352 static void
353 index_aa_tri(GLcontext *ctx,
354 const SWvertex *v0,
355 const SWvertex *v1,
356 const SWvertex *v2)
357 {
358 #define DO_Z
359 #define DO_FOG
360 #define DO_INDEX
361 #include "s_aatritemp.h"
362 }
363
364
365 /*
366 * Compute mipmap level of detail.
367 * XXX we should really include the R coordinate in this computation
368 * in order to do 3-D texture mipmapping.
369 */
370 static INLINE GLfloat
371 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
372 const GLfloat qPlane[4], GLfloat cx, GLfloat cy,
373 GLfloat invQ, GLfloat texWidth, GLfloat texHeight)
374 {
375 const GLfloat s = solve_plane(cx, cy, sPlane);
376 const GLfloat t = solve_plane(cx, cy, tPlane);
377 const GLfloat invQ_x1 = solve_plane_recip(cx+1.0F, cy, qPlane);
378 const GLfloat invQ_y1 = solve_plane_recip(cx, cy+1.0F, qPlane);
379 const GLfloat s_x1 = s - sPlane[0] / sPlane[2];
380 const GLfloat s_y1 = s - sPlane[1] / sPlane[2];
381 const GLfloat t_x1 = t - tPlane[0] / tPlane[2];
382 const GLfloat t_y1 = t - tPlane[1] / tPlane[2];
383 GLfloat dsdx = s_x1 * invQ_x1 - s * invQ;
384 GLfloat dsdy = s_y1 * invQ_y1 - s * invQ;
385 GLfloat dtdx = t_x1 * invQ_x1 - t * invQ;
386 GLfloat dtdy = t_y1 * invQ_y1 - t * invQ;
387 GLfloat maxU, maxV, rho, lambda;
388 dsdx = FABSF(dsdx);
389 dsdy = FABSF(dsdy);
390 dtdx = FABSF(dtdx);
391 dtdy = FABSF(dtdy);
392 maxU = MAX2(dsdx, dsdy) * texWidth;
393 maxV = MAX2(dtdx, dtdy) * texHeight;
394 rho = MAX2(maxU, maxV);
395 lambda = LOG2(rho);
396 return lambda;
397 }
398
399
400 static void
401 tex_aa_tri(GLcontext *ctx,
402 const SWvertex *v0,
403 const SWvertex *v1,
404 const SWvertex *v2)
405 {
406 #define DO_Z
407 #define DO_FOG
408 #define DO_RGBA
409 #define DO_TEX
410 #include "s_aatritemp.h"
411 }
412
413
414 static void
415 spec_tex_aa_tri(GLcontext *ctx,
416 const SWvertex *v0,
417 const SWvertex *v1,
418 const SWvertex *v2)
419 {
420 #define DO_Z
421 #define DO_FOG
422 #define DO_RGBA
423 #define DO_TEX
424 #define DO_SPEC
425 #include "s_aatritemp.h"
426 }
427
428
429 static void
430 multitex_aa_tri(GLcontext *ctx,
431 const SWvertex *v0,
432 const SWvertex *v1,
433 const SWvertex *v2)
434 {
435 #define DO_Z
436 #define DO_FOG
437 #define DO_RGBA
438 #define DO_MULTITEX
439 #include "s_aatritemp.h"
440 }
441
442 static void
443 spec_multitex_aa_tri(GLcontext *ctx,
444 const SWvertex *v0,
445 const SWvertex *v1,
446 const SWvertex *v2)
447 {
448 #define DO_Z
449 #define DO_FOG
450 #define DO_RGBA
451 #define DO_MULTITEX
452 #define DO_SPEC
453 #include "s_aatritemp.h"
454 }
455
456
457 /*
458 * Examine GL state and set swrast->Triangle to an
459 * appropriate antialiased triangle rasterizer function.
460 */
461 void
462 _swrast_set_aa_triangle_function(GLcontext *ctx)
463 {
464 ASSERT(ctx->Polygon.SmoothFlag);
465
466 if (ctx->Texture._EnabledCoordUnits != 0) {
467 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
468 if (ctx->Texture._EnabledCoordUnits > 1) {
469 SWRAST_CONTEXT(ctx)->Triangle = spec_multitex_aa_tri;
470 }
471 else {
472 SWRAST_CONTEXT(ctx)->Triangle = spec_tex_aa_tri;
473 }
474 }
475 else {
476 if (ctx->Texture._EnabledCoordUnits > 1) {
477 SWRAST_CONTEXT(ctx)->Triangle = multitex_aa_tri;
478 }
479 else {
480 SWRAST_CONTEXT(ctx)->Triangle = tex_aa_tri;
481 }
482 }
483 }
484 else if (ctx->Visual.rgbMode) {
485 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
486 }
487 else {
488 SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri;
489 }
490
491 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
492 }