Header file clean-up:
[mesa.git] / src / mesa / swrast / s_aatriangle.c
1 /* $Id: s_aatriangle.c,v 1.26 2002/10/24 23:57:24 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 4.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Antialiased Triangle rasterizers
30 */
31
32
33 #include "glheader.h"
34 #include "macros.h"
35 #include "imports.h"
36 #include "mmath.h"
37 #include "s_aatriangle.h"
38 #include "s_context.h"
39 #include "s_span.h"
40
41
42 /*
43 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
44 * vertices and the given Z values.
45 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
46 */
47 static INLINE void
48 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
49 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
50 {
51 const GLfloat px = v1[0] - v0[0];
52 const GLfloat py = v1[1] - v0[1];
53 const GLfloat pz = z1 - z0;
54
55 const GLfloat qx = v2[0] - v0[0];
56 const GLfloat qy = v2[1] - v0[1];
57 const GLfloat qz = z2 - z0;
58
59 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
60 const GLfloat a = py * qz - pz * qy;
61 const GLfloat b = pz * qx - px * qz;
62 const GLfloat c = px * qy - py * qx;
63 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
64 on the distance of plane from origin and arbitrary "w" parallel
65 to the plane. */
66 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
67 which is equal to "-d" below. */
68 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
69
70 plane[0] = a;
71 plane[1] = b;
72 plane[2] = c;
73 plane[3] = d;
74 }
75
76
77 /*
78 * Compute coefficients of a plane with a constant Z value.
79 */
80 static INLINE void
81 constant_plane(GLfloat value, GLfloat plane[4])
82 {
83 plane[0] = 0.0;
84 plane[1] = 0.0;
85 plane[2] = -1.0;
86 plane[3] = value;
87 }
88
89 #define CONSTANT_PLANE(VALUE, PLANE) \
90 do { \
91 PLANE[0] = 0.0F; \
92 PLANE[1] = 0.0F; \
93 PLANE[2] = -1.0F; \
94 PLANE[3] = VALUE; \
95 } while (0)
96
97
98
99 /*
100 * Solve plane equation for Z at (X,Y).
101 */
102 static INLINE GLfloat
103 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
104 {
105 ASSERT(plane[2] != 0.0F);
106 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
107 }
108
109
110 #define SOLVE_PLANE(X, Y, PLANE) \
111 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
112
113
114 /*
115 * Return 1 / solve_plane().
116 */
117 static INLINE GLfloat
118 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
119 {
120 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
121 if (denom == 0.0F)
122 return 0.0F;
123 else
124 return -plane[2] / denom;
125 }
126
127
128 /*
129 * Solve plane and return clamped GLchan value.
130 */
131 static INLINE GLchan
132 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
133 {
134 GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F;
135 if (z < 0.0F)
136 return 0;
137 else if (z > CHAN_MAXF)
138 return (GLchan) CHAN_MAXF;
139 return (GLchan) (GLint) z;
140 }
141
142
143
144 /*
145 * Compute how much (area) of the given pixel is inside the triangle.
146 * Vertices MUST be specified in counter-clockwise order.
147 * Return: coverage in [0, 1].
148 */
149 static GLfloat
150 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
151 const GLfloat v2[3], GLint winx, GLint winy)
152 {
153 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
154 * Contributed by Ray Tice.
155 *
156 * Jitter sample positions -
157 * - average should be .5 in x & y for each column
158 * - each of the 16 rows and columns should be used once
159 * - the rectangle formed by the first four points
160 * should contain the other points
161 * - the distrubition should be fairly even in any given direction
162 *
163 * The pattern drawn below isn't optimal, but it's better than a regular
164 * grid. In the drawing, the center of each subpixel is surrounded by
165 * four dots. The "x" marks the jittered position relative to the
166 * subpixel center.
167 */
168 #define POS(a, b) (0.5+a*4+b)/16
169 static const GLfloat samples[16][2] = {
170 /* start with the four corners */
171 { POS(0, 2), POS(0, 0) },
172 { POS(3, 3), POS(0, 2) },
173 { POS(0, 0), POS(3, 1) },
174 { POS(3, 1), POS(3, 3) },
175 /* continue with interior samples */
176 { POS(1, 1), POS(0, 1) },
177 { POS(2, 0), POS(0, 3) },
178 { POS(0, 3), POS(1, 3) },
179 { POS(1, 2), POS(1, 0) },
180 { POS(2, 3), POS(1, 2) },
181 { POS(3, 2), POS(1, 1) },
182 { POS(0, 1), POS(2, 2) },
183 { POS(1, 0), POS(2, 1) },
184 { POS(2, 1), POS(2, 3) },
185 { POS(3, 0), POS(2, 0) },
186 { POS(1, 3), POS(3, 0) },
187 { POS(2, 2), POS(3, 2) }
188 };
189
190 const GLfloat x = (GLfloat) winx;
191 const GLfloat y = (GLfloat) winy;
192 const GLfloat dx0 = v1[0] - v0[0];
193 const GLfloat dy0 = v1[1] - v0[1];
194 const GLfloat dx1 = v2[0] - v1[0];
195 const GLfloat dy1 = v2[1] - v1[1];
196 const GLfloat dx2 = v0[0] - v2[0];
197 const GLfloat dy2 = v0[1] - v2[1];
198 GLint stop = 4, i;
199 GLfloat insideCount = 16.0F;
200
201 #ifdef DEBUG
202 {
203 const GLfloat area = dx0 * dy1 - dx1 * dy0;
204 ASSERT(area >= 0.0);
205 }
206 #endif
207
208 for (i = 0; i < stop; i++) {
209 const GLfloat sx = x + samples[i][0];
210 const GLfloat sy = y + samples[i][1];
211 const GLfloat fx0 = sx - v0[0];
212 const GLfloat fy0 = sy - v0[1];
213 const GLfloat fx1 = sx - v1[0];
214 const GLfloat fy1 = sy - v1[1];
215 const GLfloat fx2 = sx - v2[0];
216 const GLfloat fy2 = sy - v2[1];
217 /* cross product determines if sample is inside or outside each edge */
218 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
219 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
220 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
221 /* Check if the sample is exactly on an edge. If so, let cross be a
222 * positive or negative value depending on the direction of the edge.
223 */
224 if (cross0 == 0.0F)
225 cross0 = dx0 + dy0;
226 if (cross1 == 0.0F)
227 cross1 = dx1 + dy1;
228 if (cross2 == 0.0F)
229 cross2 = dx2 + dy2;
230 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
231 /* point is outside triangle */
232 insideCount -= 1.0F;
233 stop = 16;
234 }
235 }
236 if (stop == 4)
237 return 1.0F;
238 else
239 return insideCount * (1.0F / 16.0F);
240 }
241
242
243
244 /*
245 * Compute how much (area) of the given pixel is inside the triangle.
246 * Vertices MUST be specified in counter-clockwise order.
247 * Return: coverage in [0, 15].
248 */
249 static GLint
250 compute_coveragei(const GLfloat v0[3], const GLfloat v1[3],
251 const GLfloat v2[3], GLint winx, GLint winy)
252 {
253 /* NOTE: 15 samples instead of 16. */
254 static const GLfloat samples[15][2] = {
255 /* start with the four corners */
256 { POS(0, 2), POS(0, 0) },
257 { POS(3, 3), POS(0, 2) },
258 { POS(0, 0), POS(3, 1) },
259 { POS(3, 1), POS(3, 3) },
260 /* continue with interior samples */
261 { POS(1, 1), POS(0, 1) },
262 { POS(2, 0), POS(0, 3) },
263 { POS(0, 3), POS(1, 3) },
264 { POS(1, 2), POS(1, 0) },
265 { POS(2, 3), POS(1, 2) },
266 { POS(3, 2), POS(1, 1) },
267 { POS(0, 1), POS(2, 2) },
268 { POS(1, 0), POS(2, 1) },
269 { POS(2, 1), POS(2, 3) },
270 { POS(3, 0), POS(2, 0) },
271 { POS(1, 3), POS(3, 0) }
272 };
273 const GLfloat x = (GLfloat) winx;
274 const GLfloat y = (GLfloat) winy;
275 const GLfloat dx0 = v1[0] - v0[0];
276 const GLfloat dy0 = v1[1] - v0[1];
277 const GLfloat dx1 = v2[0] - v1[0];
278 const GLfloat dy1 = v2[1] - v1[1];
279 const GLfloat dx2 = v0[0] - v2[0];
280 const GLfloat dy2 = v0[1] - v2[1];
281 GLint stop = 4, i;
282 GLint insideCount = 15;
283
284 #ifdef DEBUG
285 {
286 const GLfloat area = dx0 * dy1 - dx1 * dy0;
287 ASSERT(area >= 0.0);
288 }
289 #endif
290
291 for (i = 0; i < stop; i++) {
292 const GLfloat sx = x + samples[i][0];
293 const GLfloat sy = y + samples[i][1];
294 const GLfloat fx0 = sx - v0[0];
295 const GLfloat fy0 = sy - v0[1];
296 const GLfloat fx1 = sx - v1[0];
297 const GLfloat fy1 = sy - v1[1];
298 const GLfloat fx2 = sx - v2[0];
299 const GLfloat fy2 = sy - v2[1];
300 /* cross product determines if sample is inside or outside each edge */
301 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
302 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
303 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
304 /* Check if the sample is exactly on an edge. If so, let cross be a
305 * positive or negative value depending on the direction of the edge.
306 */
307 if (cross0 == 0.0F)
308 cross0 = dx0 + dy0;
309 if (cross1 == 0.0F)
310 cross1 = dx1 + dy1;
311 if (cross2 == 0.0F)
312 cross2 = dx2 + dy2;
313 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
314 /* point is outside triangle */
315 insideCount--;
316 stop = 15;
317 }
318 }
319 if (stop == 4)
320 return 15;
321 else
322 return insideCount;
323 }
324
325
326
327 static void
328 rgba_aa_tri(GLcontext *ctx,
329 const SWvertex *v0,
330 const SWvertex *v1,
331 const SWvertex *v2)
332 {
333 #define DO_Z
334 #define DO_FOG
335 #define DO_RGBA
336 #include "s_aatritemp.h"
337 }
338
339
340 static void
341 index_aa_tri(GLcontext *ctx,
342 const SWvertex *v0,
343 const SWvertex *v1,
344 const SWvertex *v2)
345 {
346 #define DO_Z
347 #define DO_FOG
348 #define DO_INDEX
349 #include "s_aatritemp.h"
350 }
351
352
353 /*
354 * Compute mipmap level of detail.
355 * XXX we should really include the R coordinate in this computation
356 * in order to do 3-D texture mipmapping.
357 */
358 static INLINE GLfloat
359 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
360 const GLfloat qPlane[4], GLfloat cx, GLfloat cy,
361 GLfloat invQ, GLfloat texWidth, GLfloat texHeight)
362 {
363 const GLfloat s = solve_plane(cx, cy, sPlane);
364 const GLfloat t = solve_plane(cx, cy, tPlane);
365 const GLfloat invQ_x1 = solve_plane_recip(cx+1.0F, cy, qPlane);
366 const GLfloat invQ_y1 = solve_plane_recip(cx, cy+1.0F, qPlane);
367 const GLfloat s_x1 = s - sPlane[0] / sPlane[2];
368 const GLfloat s_y1 = s - sPlane[1] / sPlane[2];
369 const GLfloat t_x1 = t - tPlane[0] / tPlane[2];
370 const GLfloat t_y1 = t - tPlane[1] / tPlane[2];
371 GLfloat dsdx = s_x1 * invQ_x1 - s * invQ;
372 GLfloat dsdy = s_y1 * invQ_y1 - s * invQ;
373 GLfloat dtdx = t_x1 * invQ_x1 - t * invQ;
374 GLfloat dtdy = t_y1 * invQ_y1 - t * invQ;
375 GLfloat maxU, maxV, rho, lambda;
376 dsdx = FABSF(dsdx);
377 dsdy = FABSF(dsdy);
378 dtdx = FABSF(dtdx);
379 dtdy = FABSF(dtdy);
380 maxU = MAX2(dsdx, dsdy) * texWidth;
381 maxV = MAX2(dtdx, dtdy) * texHeight;
382 rho = MAX2(maxU, maxV);
383 lambda = LOG2(rho);
384 return lambda;
385 }
386
387
388 static void
389 tex_aa_tri(GLcontext *ctx,
390 const SWvertex *v0,
391 const SWvertex *v1,
392 const SWvertex *v2)
393 {
394 #define DO_Z
395 #define DO_FOG
396 #define DO_RGBA
397 #define DO_TEX
398 #include "s_aatritemp.h"
399 }
400
401
402 static void
403 spec_tex_aa_tri(GLcontext *ctx,
404 const SWvertex *v0,
405 const SWvertex *v1,
406 const SWvertex *v2)
407 {
408 #define DO_Z
409 #define DO_FOG
410 #define DO_RGBA
411 #define DO_TEX
412 #define DO_SPEC
413 #include "s_aatritemp.h"
414 }
415
416
417 static void
418 multitex_aa_tri(GLcontext *ctx,
419 const SWvertex *v0,
420 const SWvertex *v1,
421 const SWvertex *v2)
422 {
423 #define DO_Z
424 #define DO_FOG
425 #define DO_RGBA
426 #define DO_MULTITEX
427 #include "s_aatritemp.h"
428 }
429
430 static void
431 spec_multitex_aa_tri(GLcontext *ctx,
432 const SWvertex *v0,
433 const SWvertex *v1,
434 const SWvertex *v2)
435 {
436 #define DO_Z
437 #define DO_FOG
438 #define DO_RGBA
439 #define DO_MULTITEX
440 #define DO_SPEC
441 #include "s_aatritemp.h"
442 }
443
444
445 /*
446 * Examine GL state and set swrast->Triangle to an
447 * appropriate antialiased triangle rasterizer function.
448 */
449 void
450 _mesa_set_aa_triangle_function(GLcontext *ctx)
451 {
452 ASSERT(ctx->Polygon.SmoothFlag);
453
454 if (ctx->Texture._EnabledUnits != 0) {
455 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
456 if (ctx->Texture._EnabledUnits > 1) {
457 SWRAST_CONTEXT(ctx)->Triangle = spec_multitex_aa_tri;
458 }
459 else {
460 SWRAST_CONTEXT(ctx)->Triangle = spec_tex_aa_tri;
461 }
462 }
463 else {
464 if (ctx->Texture._EnabledUnits > 1) {
465 SWRAST_CONTEXT(ctx)->Triangle = multitex_aa_tri;
466 }
467 else {
468 SWRAST_CONTEXT(ctx)->Triangle = tex_aa_tri;
469 }
470 }
471 }
472 else if (ctx->Visual.rgbMode) {
473 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
474 }
475 else {
476 SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri;
477 }
478
479 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
480 }