New mipmap lambda calculation. Previously, trilinear filtering could
[mesa.git] / src / mesa / swrast / s_aatriangle.c
1 /* $Id: s_aatriangle.c,v 1.23 2002/03/16 18:02:07 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 4.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Antialiased Triangle rasterizers
30 */
31
32
33 #include "macros.h"
34 #include "mem.h"
35 #include "mmath.h"
36 #include "s_aatriangle.h"
37 #include "s_context.h"
38 #include "s_span.h"
39
40
41 /*
42 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
43 * vertices and the given Z values.
44 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
45 */
46 static INLINE void
47 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
48 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
49 {
50 const GLfloat px = v1[0] - v0[0];
51 const GLfloat py = v1[1] - v0[1];
52 const GLfloat pz = z1 - z0;
53
54 const GLfloat qx = v2[0] - v0[0];
55 const GLfloat qy = v2[1] - v0[1];
56 const GLfloat qz = z2 - z0;
57
58 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
59 const GLfloat a = py * qz - pz * qy;
60 const GLfloat b = pz * qx - px * qz;
61 const GLfloat c = px * qy - py * qx;
62 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
63 on the distance of plane from origin and arbitrary "w" parallel
64 to the plane. */
65 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
66 which is equal to "-d" below. */
67 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
68
69 plane[0] = a;
70 plane[1] = b;
71 plane[2] = c;
72 plane[3] = d;
73 }
74
75
76 /*
77 * Compute coefficients of a plane with a constant Z value.
78 */
79 static INLINE void
80 constant_plane(GLfloat value, GLfloat plane[4])
81 {
82 plane[0] = 0.0;
83 plane[1] = 0.0;
84 plane[2] = -1.0;
85 plane[3] = value;
86 }
87
88 #define CONSTANT_PLANE(VALUE, PLANE) \
89 do { \
90 PLANE[0] = 0.0F; \
91 PLANE[1] = 0.0F; \
92 PLANE[2] = -1.0F; \
93 PLANE[3] = VALUE; \
94 } while (0)
95
96
97
98 /*
99 * Solve plane equation for Z at (X,Y).
100 */
101 static INLINE GLfloat
102 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
103 {
104 ASSERT(plane[2] != 0.0F);
105 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
106 }
107
108
109 #define SOLVE_PLANE(X, Y, PLANE) \
110 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
111
112
113 /*
114 * Return 1 / solve_plane().
115 */
116 static INLINE GLfloat
117 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
118 {
119 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
120 if (denom == 0.0F)
121 return 0.0F;
122 else
123 return -plane[2] / denom;
124 }
125
126
127 /*
128 * Solve plane and return clamped GLchan value.
129 */
130 static INLINE GLchan
131 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
132 {
133 GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F;
134 if (z < 0.0F)
135 return 0;
136 else if (z > CHAN_MAXF)
137 return (GLchan) CHAN_MAXF;
138 return (GLchan) (GLint) z;
139 }
140
141
142
143 /*
144 * Compute how much (area) of the given pixel is inside the triangle.
145 * Vertices MUST be specified in counter-clockwise order.
146 * Return: coverage in [0, 1].
147 */
148 static GLfloat
149 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
150 const GLfloat v2[3], GLint winx, GLint winy)
151 {
152 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
153 * Contributed by Ray Tice.
154 *
155 * Jitter sample positions -
156 * - average should be .5 in x & y for each column
157 * - each of the 16 rows and columns should be used once
158 * - the rectangle formed by the first four points
159 * should contain the other points
160 * - the distrubition should be fairly even in any given direction
161 *
162 * The pattern drawn below isn't optimal, but it's better than a regular
163 * grid. In the drawing, the center of each subpixel is surrounded by
164 * four dots. The "x" marks the jittered position relative to the
165 * subpixel center.
166 */
167 #define POS(a, b) (0.5+a*4+b)/16
168 static const GLfloat samples[16][2] = {
169 /* start with the four corners */
170 { POS(0, 2), POS(0, 0) },
171 { POS(3, 3), POS(0, 2) },
172 { POS(0, 0), POS(3, 1) },
173 { POS(3, 1), POS(3, 3) },
174 /* continue with interior samples */
175 { POS(1, 1), POS(0, 1) },
176 { POS(2, 0), POS(0, 3) },
177 { POS(0, 3), POS(1, 3) },
178 { POS(1, 2), POS(1, 0) },
179 { POS(2, 3), POS(1, 2) },
180 { POS(3, 2), POS(1, 1) },
181 { POS(0, 1), POS(2, 2) },
182 { POS(1, 0), POS(2, 1) },
183 { POS(2, 1), POS(2, 3) },
184 { POS(3, 0), POS(2, 0) },
185 { POS(1, 3), POS(3, 0) },
186 { POS(2, 2), POS(3, 2) }
187 };
188
189 const GLfloat x = (GLfloat) winx;
190 const GLfloat y = (GLfloat) winy;
191 const GLfloat dx0 = v1[0] - v0[0];
192 const GLfloat dy0 = v1[1] - v0[1];
193 const GLfloat dx1 = v2[0] - v1[0];
194 const GLfloat dy1 = v2[1] - v1[1];
195 const GLfloat dx2 = v0[0] - v2[0];
196 const GLfloat dy2 = v0[1] - v2[1];
197 GLint stop = 4, i;
198 GLfloat insideCount = 16.0F;
199
200 #ifdef DEBUG
201 {
202 const GLfloat area = dx0 * dy1 - dx1 * dy0;
203 ASSERT(area >= 0.0);
204 }
205 #endif
206
207 for (i = 0; i < stop; i++) {
208 const GLfloat sx = x + samples[i][0];
209 const GLfloat sy = y + samples[i][1];
210 const GLfloat fx0 = sx - v0[0];
211 const GLfloat fy0 = sy - v0[1];
212 const GLfloat fx1 = sx - v1[0];
213 const GLfloat fy1 = sy - v1[1];
214 const GLfloat fx2 = sx - v2[0];
215 const GLfloat fy2 = sy - v2[1];
216 /* cross product determines if sample is inside or outside each edge */
217 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
218 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
219 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
220 /* Check if the sample is exactly on an edge. If so, let cross be a
221 * positive or negative value depending on the direction of the edge.
222 */
223 if (cross0 == 0.0F)
224 cross0 = dx0 + dy0;
225 if (cross1 == 0.0F)
226 cross1 = dx1 + dy1;
227 if (cross2 == 0.0F)
228 cross2 = dx2 + dy2;
229 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
230 /* point is outside triangle */
231 insideCount -= 1.0F;
232 stop = 16;
233 }
234 }
235 if (stop == 4)
236 return 1.0F;
237 else
238 return insideCount * (1.0F / 16.0F);
239 }
240
241
242
243 /*
244 * Compute how much (area) of the given pixel is inside the triangle.
245 * Vertices MUST be specified in counter-clockwise order.
246 * Return: coverage in [0, 15].
247 */
248 static GLint
249 compute_coveragei(const GLfloat v0[3], const GLfloat v1[3],
250 const GLfloat v2[3], GLint winx, GLint winy)
251 {
252 /* NOTE: 15 samples instead of 16. */
253 static const GLfloat samples[15][2] = {
254 /* start with the four corners */
255 { POS(0, 2), POS(0, 0) },
256 { POS(3, 3), POS(0, 2) },
257 { POS(0, 0), POS(3, 1) },
258 { POS(3, 1), POS(3, 3) },
259 /* continue with interior samples */
260 { POS(1, 1), POS(0, 1) },
261 { POS(2, 0), POS(0, 3) },
262 { POS(0, 3), POS(1, 3) },
263 { POS(1, 2), POS(1, 0) },
264 { POS(2, 3), POS(1, 2) },
265 { POS(3, 2), POS(1, 1) },
266 { POS(0, 1), POS(2, 2) },
267 { POS(1, 0), POS(2, 1) },
268 { POS(2, 1), POS(2, 3) },
269 { POS(3, 0), POS(2, 0) },
270 { POS(1, 3), POS(3, 0) }
271 };
272 const GLfloat x = (GLfloat) winx;
273 const GLfloat y = (GLfloat) winy;
274 const GLfloat dx0 = v1[0] - v0[0];
275 const GLfloat dy0 = v1[1] - v0[1];
276 const GLfloat dx1 = v2[0] - v1[0];
277 const GLfloat dy1 = v2[1] - v1[1];
278 const GLfloat dx2 = v0[0] - v2[0];
279 const GLfloat dy2 = v0[1] - v2[1];
280 GLint stop = 4, i;
281 GLint insideCount = 15;
282
283 #ifdef DEBUG
284 {
285 const GLfloat area = dx0 * dy1 - dx1 * dy0;
286 ASSERT(area >= 0.0);
287 }
288 #endif
289
290 for (i = 0; i < stop; i++) {
291 const GLfloat sx = x + samples[i][0];
292 const GLfloat sy = y + samples[i][1];
293 const GLfloat fx0 = sx - v0[0];
294 const GLfloat fy0 = sy - v0[1];
295 const GLfloat fx1 = sx - v1[0];
296 const GLfloat fy1 = sy - v1[1];
297 const GLfloat fx2 = sx - v2[0];
298 const GLfloat fy2 = sy - v2[1];
299 /* cross product determines if sample is inside or outside each edge */
300 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
301 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
302 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
303 /* Check if the sample is exactly on an edge. If so, let cross be a
304 * positive or negative value depending on the direction of the edge.
305 */
306 if (cross0 == 0.0F)
307 cross0 = dx0 + dy0;
308 if (cross1 == 0.0F)
309 cross1 = dx1 + dy1;
310 if (cross2 == 0.0F)
311 cross2 = dx2 + dy2;
312 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
313 /* point is outside triangle */
314 insideCount--;
315 stop = 15;
316 }
317 }
318 if (stop == 4)
319 return 15;
320 else
321 return insideCount;
322 }
323
324
325
326 static void
327 rgba_aa_tri(GLcontext *ctx,
328 const SWvertex *v0,
329 const SWvertex *v1,
330 const SWvertex *v2)
331 {
332 #define DO_Z
333 #define DO_FOG
334 #define DO_RGBA
335 #include "s_aatritemp.h"
336 }
337
338
339 static void
340 index_aa_tri(GLcontext *ctx,
341 const SWvertex *v0,
342 const SWvertex *v1,
343 const SWvertex *v2)
344 {
345 #define DO_Z
346 #define DO_FOG
347 #define DO_INDEX
348 #include "s_aatritemp.h"
349 }
350
351
352 /*
353 * Compute mipmap level of detail.
354 * XXX we should really include the R coordinate in this computation
355 * in order to do 3-D texture mipmapping.
356 */
357 static INLINE GLfloat
358 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
359 const GLfloat qPlane[4], GLfloat cx, GLfloat cy,
360 GLfloat invQ, GLfloat texWidth, GLfloat texHeight)
361 {
362 const GLfloat s = solve_plane(cx, cy, sPlane);
363 const GLfloat t = solve_plane(cx, cy, tPlane);
364 const GLfloat invQ_x1 = solve_plane_recip(cx+1.0, cy, qPlane);
365 const GLfloat invQ_y1 = solve_plane_recip(cx, cy+1.0, qPlane);
366 const GLfloat s_x1 = s - sPlane[0] / sPlane[2];
367 const GLfloat s_y1 = s - sPlane[1] / sPlane[2];
368 const GLfloat t_x1 = t - tPlane[0] / tPlane[2];
369 const GLfloat t_y1 = t - tPlane[1] / tPlane[2];
370 GLfloat dsdx = s_x1 * invQ_x1 - s * invQ;
371 GLfloat dsdy = s_y1 * invQ_y1 - s * invQ;
372 GLfloat dtdx = t_x1 * invQ_x1 - t * invQ;
373 GLfloat dtdy = t_y1 * invQ_y1 - t * invQ;
374 GLfloat maxU, maxV, rho, lambda;
375 dsdx = FABSF(dsdx);
376 dsdy = FABSF(dsdy);
377 dtdx = FABSF(dtdx);
378 dtdy = FABSF(dtdy);
379 maxU = MAX2(dsdx, dsdy) * texWidth;
380 maxV = MAX2(dtdx, dtdy) * texHeight;
381 rho = MAX2(maxU, maxV);
382 lambda = LOG2(rho);
383 return lambda;
384 }
385
386
387 static void
388 tex_aa_tri(GLcontext *ctx,
389 const SWvertex *v0,
390 const SWvertex *v1,
391 const SWvertex *v2)
392 {
393 #define DO_Z
394 #define DO_FOG
395 #define DO_RGBA
396 #define DO_TEX
397 #include "s_aatritemp.h"
398 }
399
400
401 static void
402 spec_tex_aa_tri(GLcontext *ctx,
403 const SWvertex *v0,
404 const SWvertex *v1,
405 const SWvertex *v2)
406 {
407 #define DO_Z
408 #define DO_FOG
409 #define DO_RGBA
410 #define DO_TEX
411 #define DO_SPEC
412 #include "s_aatritemp.h"
413 }
414
415
416 static void
417 multitex_aa_tri(GLcontext *ctx,
418 const SWvertex *v0,
419 const SWvertex *v1,
420 const SWvertex *v2)
421 {
422 #define DO_Z
423 #define DO_FOG
424 #define DO_RGBA
425 #define DO_MULTITEX
426 #include "s_aatritemp.h"
427 }
428
429 static void
430 spec_multitex_aa_tri(GLcontext *ctx,
431 const SWvertex *v0,
432 const SWvertex *v1,
433 const SWvertex *v2)
434 {
435 #define DO_Z
436 #define DO_FOG
437 #define DO_RGBA
438 #define DO_MULTITEX
439 #define DO_SPEC
440 #include "s_aatritemp.h"
441 }
442
443
444 /*
445 * Examine GL state and set swrast->Triangle to an
446 * appropriate antialiased triangle rasterizer function.
447 */
448 void
449 _mesa_set_aa_triangle_function(GLcontext *ctx)
450 {
451 ASSERT(ctx->Polygon.SmoothFlag);
452
453 if (ctx->Texture._ReallyEnabled) {
454 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
455 if (ctx->Texture._ReallyEnabled > TEXTURE0_ANY) {
456 SWRAST_CONTEXT(ctx)->Triangle = spec_multitex_aa_tri;
457 }
458 else {
459 SWRAST_CONTEXT(ctx)->Triangle = spec_tex_aa_tri;
460 }
461 }
462 else {
463 if (ctx->Texture._ReallyEnabled > TEXTURE0_ANY) {
464 SWRAST_CONTEXT(ctx)->Triangle = multitex_aa_tri;
465 }
466 else {
467 SWRAST_CONTEXT(ctx)->Triangle = tex_aa_tri;
468 }
469 }
470 }
471 else if (ctx->Visual.rgbMode) {
472 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
473 }
474 else {
475 SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri;
476 }
477
478 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
479 }